This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Vibrational convection in a heterogeneous
binary mixture. Part II. Frozen waves

Anatoliy Vorobev!{, and Tatyana Lyubimova?3

!Department of Engineering and Physical Sciences, University of Southampton, SO17 1BJ UK
Institute of Continuous Media Mechanics, Ural Branch RAS, Perm, Russia

3Perm State University, Russia

(Received xx; revised xx; accepted xx)

The action of high-frequency vibrations on a heterogeneous binary mixture that fills in
a closed container is numerically modelled to validate the theoretical model obtained
in the first part of the work, and to investigate the role of interfacial stresses in the
evolution of miscible boundaries. Only weightlessness conditions are considered. A recent
experimental study reports the threshold ignition of the frozen waves at a miscible
interface even under weightlessness conditions, which cannot be explained on the basis
of the classical approach that represents a binary mixture as a single phase fluid with
impurity. This effect, however, can be well explained on the basis of the phase-field
equations that are derived in the first part of our work. In particular, we found that
when the vibrational forcing is sufficiently strong (the vibrational forcing is primarily
determined by the amplitude of the vibrational velocity), above a certain threshold value,
then the interface becomes shaped into a ‘frozen’ (time-independent to the naked eye)
structure of several pillars (the frozen waves) with the axes perpendicular to the directions
of vibrations. The threshold level of vibrations is determined by the interfacial stresses
that need to be associated with miscible interfaces. The time needed for setting up the
frozen pattern is relatively small, determined by hydrodynamic processes, however this
time grows exponentially near the threshold. The frozen pattern remains stable either
indefinitely long (if liquids are partially miscible) or until the interface becomes invisible
due to diffusive smearing (if liquids are miscible in all proportions). A further increase of
the vibrational forcing alters the number of the pillars, which happens discretely when the
intensity of the vibrations surpasses a sequence of further critical levels. Correlation of the
results with the previous experimental and theoretical studies validate the new approach
making it a useful tool for tracing thermo- and hydrodynamic changes in heterogeneous
mixtures.

1. Introduction

If a heterogeneous fluid system (a fluid system with interfaces) is subjected to high-
frequency vibrations it exhibits a quite peculiar behaviour (see figure 1). For instance,
the Rayleigh-Taylor instability may become suppressed by a vibrational forcing that is
enforced in the direction perpendicular to the interface. The translational oscillations in
a plane that is parallel to the interface may induce a frozen (stationary for the naked
eye) relief on the boundary between two liquids (both liquids perform high-frequency
oscillatory movements but the interface with a particular shape remains frozen to the
naked eye). This effect was first experimentally observed by Wolf (1961, 1970), and was
later studied in experiments by Bezdenezhnyh et al. (1991); Talib et al. (2007); Yoshikawa
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FIGURE 1. Schematic illustrations of the time-averaged effects of high-frequency vibrations on the
dynamics of a liquid/liquid interface. (a) The vibrations of fluids in the direction perpendicular
to the interface may stabilise the Rayleigh-Taylor instability (keeping a heavier liquid above a
lighter liquid). (b) The vibrations along the interface may induce the frozen (time-independent)
wave-patten.

& Wesfreid (20110), and more recently by Gandikota et al. (2014a,b); Lyubimova et al.
(2017) who studied the frozen waves in near-critical hydrogen using the magnetic field
to counter-balance the gravity (thus investigating the frozen waves under normal and
reduced gravity). First results on the theoretical description (the linear and weakly non-
linear theories, that predict the stability thresholds and shapes of the frozen interfaces,
as well as the numerical solution of the full equations for tracing the growth of unstable
modes) are summarised in the book by Lyubimov et al. (2003). Later, Talib et al. (2007);
Yoshikawa & Wesfreid (2011a); Lyubimov et al. (2016) and Lyubimov et al. (2017)
studied the effects of viscosity and its contrast at interface on the frozen wave instability.
The linear stability analysis developed by Lyubimov & Cherepanov (1986) for a
liquid/liquid interface of an unrestricted size proved that the flat interface becomes
unstable when the vibrational forcing exceeds a critical (threshold) level set by expression,
(¢aw)2 _ ok ¢g

4 p. k
Here, a and w are the amplitude and frequency of the vibrations (aw is the amplitude
of the vibrational velocity), k is the wavenumber that characterises a disturbance of a
flat interface, g is the gravity acceleration, o, is the coefficient of surface tension, p, is
the typical density (e.g. the average of two densities, p; and po, that are the densities of
two liquids in contact), and ¢ = (p2 — p1)/px is the density contrast. Expression (1.1)
is written assuming that kh >> 1, i.e. the liquid layers are sufficiently deep, and that
¢ << 1 which is true for most liquid/liquid interfaces (the frozen relief forms when the
liquids in contact have comparable densities, and this effect does not exist on e.g. an
air/water boundary).

In the current study we are interested in the dynamics of two miscible liquids. The
formation of frozen waves (or a frozen relief) on the boundary between two miscible
liquids was recently experimentally observed by the research team of V. Shevtsova (see
Gaponenko & Shevtsova 2010; Gaponenko et al. 2015a,b; Shevtsova et al. 2015, 2016).
In the experiment, a container with a shape of a rectangular parallelepiped was filled
with two miscible liquids, that were taken in equal volumes, and the container was
subjected to high-frequency translational vibrations. The experiments were conducted
both under normal gravity conditions and under conditions of weightlessness that were
achieved by performing the experiments during parabolic flights. The frozen shapes of
the liquid/liquid boundaries were photographed and analysed.

The same team conducted the numerical simulations of the experiments (see Gapo-
nenko et al. 2015a,b) by modelling the dynamics of miscible liquids on the basis of
a classical approach, when the miscible liquids are represented by a single-phase fluid
with impurity, and the liquids are distinguished from each other by concentration levels.
Two alternative approaches were used for modelling the influence of the high-frequency

(1.1)
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vibrations: (i) by solving the full equations for a considerably long time period and
averaging the flow fields over a time period of vibrations, and (ii) by solving the time-
averaged equations that were earlier derived by Gaponenko et al. (2006) and Gaponenko
& Shevtsova (2010). Both approaches generated very similar results, even when the
amplitude of vibrations was not small (in comparison with the size of the container). The
numerical results (in particular, the shapes of the frozen wave patterns) were generally
in a favorable agreement with with the experimental observations.

Nevertheless, recently, Wolf (2018) noted that the experimental studies by Gaponenko
et al. (2015a,b) do not fully address whether the frozen interfaces remain stable for
sufficiently long time periods, as he argues that the frozen structure should become
unstable due to development of unstable modes within broaden miscible boundaries.

Another experimental observation that remained poorly understood and that is par-
ticularly interesting for our current work is the fact in the experiment the generation of
frozen waves occurs when the vibrational forcing is over a certain threshold level (see
e.g. Gaponenko et al. 2015a,b), while the classical theory (see equation (1.1)) states
that a miscible interface (with no surface tension forces) under weightlessness conditions
is unstable to any vibrational forcing (simply because there are no other forces in the
equations that may change the shape of a liquid/liquid boundary and may counter-
balance the vibrational force). The validity of the linear theory (1.1) was previously
confirmed experimentally, including a recent work by Lyubimova et al. (2017). To resolve
the discrepancy between the experimental results and theoretical expectations it was
proposed to introduce the concept of effective interfacial stresses associated with miscible
boundaries. The coefficient of the surface tension was estimated as o, ~ 6-1075N /m for
the binary mixture used in the experiment (see Gaponenko et al. 2015b). The concept of
surface tension helps to explain the experimental results but at the same time it makes
the classical approach that is traditionally used for description of miscible systems, and
that completely disregards the interfacial stresses, incapable of describing at least some
of the features of frozen waves in miscible systems.

The current study has a two-fold objective. The first aim is to verify the governing
equations that are derived in the first part of our work against the available experimental
data. The new equations are based on the phase-field approach for the description of a
mixture, that, in particular, introduces the effect of dynamic surface tension associated
with miscible boundaries (see Joseph & Renardy 1993; Pojman et al. 2006; Zoltowski
et al. 2007; Stevar & Vorobev 2012; Vorobev 2014). Indeed, it is a common everyday
experience that a droplet of honey immersed in tea has a spherical shape, which can
only be explained by using the concept of interfacial stresses. When the droplet is fully
dissolved in tea, the honey/water interface disappears, and, obviously, the interfacial
stresses associated with a miscible interface should also disappear at this moment. In
addition, the phase-field approach is based on the extended Fick’s law that states that
the diffusion flux is proportional to the gradient of chemical potential, not the gradient
of concentration. The definition of the chemical potential includes the classical part, that
allows for the account of the concentration dependence of the diffusion coefficient, the
gravity (barodiffusion) and the surface tension effects.

We would like also to mention that the dissolution of a droplet may be visualized in two
different ways. If there are no hydrodynamic motion, then the classical description with a
constant diffusion coefficient assumes the liquid/liquid interface remains stationary and
the droplet keeps its shape and size while the interface slowly smears until it becomes
indistinguishable (invisible). Alternatively, the dissolution may occur through shrinkage
of a droplet, so that the interface remains sharp (clearly visible) until the droplet’s size
becomes zero. The first scenario should be more appropriate for the dissolution process in
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liquids that are miscible in all proportions, while the second scenario is more applicable for
partially miscible liquids (which are miscible until the limiting solubilities are reached in
each phase). Although, the experiments (see e.g. Zoltowski et al. 2007; Stevar & Vorobev
2012) suggest that the second scenario works even for fully miscible binary mixtures. The
phase-field approach is capable of describing the dissolution of a droplet in accordance
with both scenarios.

Thus, the second aim of the current study is to investigate the formation and evolution
of the frozen waves on a surface of two (partially-miscible) liquids with the account of
the effects of dynamic surface tension, to reveal the role of (quite low) surface tension
forces associated with miscible boundaries on the dynamics of binary mixtures.

2. Problem statement

In our study we aim to reproduce the settings of the experiments that were fulfilled
by Gaponenko et al. (2015a,b). We assume that two miscible liquids, that are taken
in equal volumes and that are initially separated by a thin flat boundary, occupy a
closed 2D rectangular container (with the aspect ratio of 2 : 1), as shown in Figure
6a.T A container is subjected to translational vibrations along its larger dimension. The
weightlessness conditions are assumed.

To facilitate the comparison with other numerical studies, the numerical simulations
in our work are fulfilled with the use of two different sets of equations. Both models
describe the time-averaged effects that are enforced by high-frequency vibrations (in the
sense that a time period of an oscillatory forcing is considerably smaller than typical
hydrodynamic time-scales, or w >> n*/(p*L2) and w >> D*/LQ7 where 7, and D, are
the viscosity and diffusion coefficients) on the dynamics of liquid/liquid mixtures (both
systems of equations assume that the density contrast is relatively small, ¢ << 1). The
first set of equations is derived on the basis of the classical approach, i.e. disregarding the
surface tension effects for miscible interfaces and using the Fickian law for description
of interfacial diffusion. The second set of equations was derived in the first part of our
work, and it is based on the phase-field description of a heterogeneous binary mixture.

2.1. Classical equations

In the framework of the classical description of miscible liquids, the governing equa-
tions, that determine the hydrodynamics of two isothermal incompressible miscible
liquids, read (see Gaponenko et al. 2006; Gaponenko & Shevtsova 2010; Gaponenko
et al. 2015a)

Ou Gs
a-i—(u-V)u-—VH1+AU—§(w-wO)VC, (2.1)
oC 1
o (u-V)C = §AC, (2.2)
V-ou=0. (2.3)

These are the Navier-Stokes equation, the equation for the diffusive transport, and the
continuity equation. For simplicity, dependencies of viscosity and diffusion coefficients on
concentration are disregarded. These are the time-averaged equations that are written
for the time-average quantities, namely, w is the time-averaged velocity, II; is the
modified pressure that is determined from an incompressibility constraint, and C' is the

1 It was shown by Gaponenko et al. (2015b) that the 2D model provides a good representation
of the experimental observations.



Frozen waves 5

concentration that is defined as the mass fraction of one of the liquids in a mixture.
It is assumed that the container that encloses the mixture is subjected to the high-
frequency vibrations, with the direction given by the vector wy = %, where ¢ is a unit
vector along the z-axis. The Navier-Stokes equation includes the vibrational force. The
vector w determines the spatial variations in the pulsational velocity and it is defined by
equations,
VXxw=wyxVC, V-w=0. (2.4)
The above equations (2.1)-(2.4) are written in the non-dimensional form. The following

scales were used to non-dimensionalise the equations

R L.
- an 1= = PRUT; Woi = AW W, = Paw. (2.5)
kL % *

U

Here, for the typical velocity and typical time scale, u, and 7, we adopt the convective
scales; 1, and p, are the typical viscosity and density that may be taken as the average
values of these quantities for pure components of a mixture; and the length scale L, is
equal to the container’s height. The scales of the pulstational fields wg and w are denoted
by wp« and w,. The scale of pressure field I1; is given by II1,.

The governing equations include two non-dimensional parameters, these are the
Schmidt and Gershunif numbers,

1 px¢”(aw)* L]
Sc=—— = 2.6
c= oo & 5. D. (2.6)
The governing equations are supplemented with the following boundary conditions,
aC
:Oa n:077:0 27
u w o (2.7)

On all walls of a container, we impose the no-slip boundary condition for the average
velocity, the no-penetration condition for the pulsational velocity (the equations for
pulsations are inviscid, and hence one may not impose any restrictions on the tangential
component of the pulsational flow), and the last boundary condition excludes the diffusive
transport across the walls.

For the numerical solution of the 2D problem the above equations (2.1)-(2.4) are
convenient to re-write in terms of vorticity (£2 = du, /0y — Ou, /0x) and streamfunction
(uy = 0¢/0y and u, = —0v/0x), namely,

o o2 Gs 0P
§+J(Q,¢)fv Q+&:J<C’ax>’ (2.8)
oC 1,
5 TI(C¥) =5 VC, (2.9)
oC

V2 = -0, V2¢ = (2.10)

oz

Here, J(f1, f2) = 0f1/0x — 0f2/0y, where f1 and fo are two arbitrary functions; and we
also introduced the velocity potential @ for the pulsational velocity, w, by equation,

w=-Cwy+V- P (2.11)

The boundary conditions written with the use of the streamfunction, ¢, and potential,

1 The Gershuni number is also frequently called the vibrational Rayleigh number.
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@, read
oy 0P oC

Here, wg, = 0 at the walls positioned at y = 0 and y = 1; and wg,, = 1 at two other
walls that are set by the coordinates x = 0 and = = 1.

The numerical calculations are initiated by a state with no average motion (ug = 0),
and with a sharp transition in the concentration field across the liquid/liquid interface,

—0.5, for 0 <y < 0.5
Co =140, at y = 0.5; (2.13)
0.5, for 0.5 <y < 1.

2.2. Phase-field approach

Next, we write the governing equations for a heterogeneous binary mixture using the
framework of the phase-field approach. These equations are also written in the non-
dimensional form, and to simplify the comparison of the numerical solutions of two
different mathematical problems, the similar scales are accepted to non-dimensionalise
these equations. The equations for the time-average fields read (see part 1 of this work
for derivation of these equations),

ou 1 Gs
a5 T (u-V)u=-VIh+ Au — MCV/J, ~ G (w - wy) VC, (2.14)
ocC 1
Vou=0. (2.16)

The same notations as for equations (2.1)-(2.4) are used here. The Navier-Stokes equation
(2.14) includes two forces in the right-hand-side, the vibrational force and the Korteweg
force. The vector wy = %; and the equations for the pulsation field, w, are

Vxw=wyxVC, V-w=0. (2.17)

In the phase-field approach, the diffusion flux is proportional to the gradient of the
chemical potential. The equation for the chemical potential reads
dfo
TS CnAC. (2.18)
Here fy is the classical part of the free energy function that sets the thermodynamic
behaviour of a mixture. The shape of this function can be taken so to fit the experimental
behaviour of a particular binary mixture. We use an expression that would be suitable for
a wide class of binary mixtures with the upper critical (consolute) point (the components
of such a mixture are miscible in all proportions when the mixture temperature is above
the critical point, and the components of a mixture are partially miscible, until the
equilibrium concentrations are reached, when the mixture temperature is below the
critical point). In particular, the thermodynamic behaviour of such mixtures can be
determined by the Landau function (see chapter XIV in Landau & Lifshitz 2010),

fo=AC? +C*. (2.19)

This function was originally proposed for the description of near-critical systems, al-
though it can be also used for the systems far from the critical point. Indeed, if A = —%

(A is a non-dimensional phenomenological parameter that may be either negative or
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(b)

FIGURE 2. (a) The shapes of the free energy function (2.19), dashed line, and function (2.20),

solid line, for A = —1. (b) The phase diagrams of a binary mixture for function (2.19), dashed

line, and function (2.20), solid line; and the shapes of the spinodal curves for function (2.19),
dotted line, and function (2.20), dash-dotted line. The dots indicate the initial state of the
mixture, and the arrows indicate the thermodynamic transformations experienced by a mixture.

positive) function (2.19) turns into another popular expression, called a ‘double-well
potential’, that is frequently used for numerical modelling of systems with immiscible
interfaces (see e.g. Jacqmin 1999, 2000; Ding et al. 2007; Ahmadlouydarab & Feng 2014;
Prokopev et al. 2019).

In our current study, the free energy function is determined by a different expression,

fo= (A—g)CQ—i-i[(;—I—C)ln(;—i—C’)+(;—C>ln<;—0)}7 (2.20)

which is also suitable for the description of mixtures with the upper critical point.

The shapes of the functions (2.19) and (2.20) are depicted in Figure 2a, and the shapes
of the phase diagrams that determine the equilibrium states of a mixture are depicted in
Figure 2b. One sees that the non-dimensional parameter A sets the value of the ‘mixture
temperature’. The critical point is given by the ‘temperature’ A = 0 and concentration
C = 0. If the mixture temperature is above the critical point, A > 0, then the mixture
is always homogeneous in equilibrium (or, liquids mix in any proportions), and if the
mixture temperature is below the critical point, A < 0, then the mixture can be either
homogeneous or heterogeneous in equilibrium that is determined by the overall mass
balance. One sees that two expressions (2.19) and (2.20) coincide near the critical point,
and separate when |C| — % We wish to associate the values of concentration % and
—% with two pure components of the mixture. The logarithmic terms of function (2.20)
restrict the range of concentration to [—3; 3], while function (2.19) allows overshootings
(non-physical values of concentration that are either above 3 or below —3). Function
(2.20) is chosen for the current study, and the value of parameter A is fixed at —%. Figure
2b depicts the values of the initial concentrations in each phase, and the directions of
the thermodynamic transformations that are experienced by a mixture. For A = —%, the
equilibrium states of a mixture are given by +0.388. The similar thermodynamic model
was earlier used for modelling the dynamics of heterogeneous mixtures with undergoing
phase changes in other physical settings (see e.g. Xie & Vorobev 2016; Vorobev & Boghi

2016; Vorobev & Khlebnikova 2018; Lyubimova et al. 2019).
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The governing equations (2.14)-(2.18) include the following non-dimensional parame-
ters,

5 2 12 2L2
Ge= M ggo PO ()L (2.21)
Qfhy 2N Cefh g
2
= € (2.22)

Pl T LI
These parameters are defined by using the phenomenological constants introduced within
the phase-field approach. The first two parameters are the phase-field analogues of the
Schmidt and Gershuni numbers. Here, « is the mobility coefficient, p., is a typical value
of the chemical potential, and the combination of ay./p. plays the role of the diffusion
coefficient. The phase-field equations are also characterized by two new parameters, that
we call, the Mach number and the Cahn number (following Lowengrub & Truskinovsky
(1998)). The definition of the Mach number does not include the capillary constant,
€, however, this number sets the magnitude of the Korteweg force that determines
the morphology of a liquid/liquid interface. Higher Mach numbers would obviously
correspond to weaker surface tension forces (making the results similar to the classical
approach when the surface tension forces are disregarded), and smaller Mach numbers
would correspond to the stronger interfacial stresses. The Cahn number also determines
the role of the surface tension forces, as it is proportional to the capillary constant €. The
Cahn number also sets the thickness of the transitional layer between the phases, that
can be estimated as /—Cn/A (see e.g. Lowengrub & Truskinovsky 1998). The other
parameter of the phase-field approach is the ‘mixture temperature’ A.

The governing equations are supplemented with the boundary conditions. We impose
the no-slip condition for the average velocity and the no-penetration condition for the
pulsational flow,

u=0, w, =0. (2.23)

We also impose the absence of the diffusive flux at the container’s walls. Since the diffusive
flux is determined by the gradient of the chemical potential, this boundary condition
reads,

ou

I 0. (2.24)
Here n is a unit vector normal to the wall. In comparison with the classical equations, the
phase-field equations are of the higher (forth) order in terms of the concentration field,
and because of this they require one additional boundary condition that would reflect
the wetting properties of the walls. In the current work, we use this boundary condition

in its simplest form,

oC
e 0. (2.25)
This condition assumes that the molecules of the wall interact with the molecules of
the mixture components equally (in other words, the contact line is orthogonal to the
interface).
The governing equations (2.14)-(2.18) written in terms of the vorticity-streamfunction

read,

o0 - 1 Gs b
o HI20) = V22 + (0, C) + (C, 89) , (2.26)
% (O = =V, (2.27)

ot Sc
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oC
W=-0, Vo =— 2.28
V= -0, Vo=, (228)
3 1/24+C 9
And the boundary conditions read
L0 0D op 0C
Finally, the initial state of the system is set by the following concentration field,
—1
Co = 0.495 tanh (y{s/?> . (2.31)
0

Here, the initial interface thickness is (almost always) set by expression, 6y = /—Cn/A,
in exception for Figure 4 where the interfacial thickness is treated as an additional
independent parameter. There is no average motion at the initial time moment (ug = 0).}

2.3. Numerical solution. Convergence

The mathematical problems set for the classical and phase-field models are solved
numerically in the vorticity-streamfunction formulation using the finite-difference ap-
proach. An explicit numerical scheme that uses the first-order discretization for the time
derivative and the second-order discretization for the spatial derivatives is used.

To trace the intensity of the fluid motion and the intensity of the molecular mixing
the following integral parameters are calculated.

(i) The total kinetic energy of the average fluid motion,

Ey = L / u?dV, (2.32)
2 Jy
where V is the total volume of the fluid domain (in 2D, the volume is in fact replaced
by an area of a fluid domain in the z-y plane). This is the non-dimensional expression,
and the units of energy that were used for non-dimensionalisation are p,u?L2.
(ii) The kinetic energy of the pulsational motion,

Gs 9
e /V w2dV (2.33)
(iii) The interfacial energy,
B =" [ (veyrav. (2.34)
M- Jy

(iv) The volume of the transitional layer between the phases, that is calculated as the
volume of the fluid domain with the concentration values in the range |C| < 0.2.

(v) The average concentration in each liquid phase. It is assumed that the position
of the interface is given by the value C' = 0. Liquid 1 is determined by the negative
values of the concentration field, and liquid 2 is determined by the positive values of
the field of concentration. The average concentration in liquid 1 is denoted by C7, and
the average concentration in liquid 2 is denoted by Cs (owing to the symmetry of the

1 To simplify comparisons with other studies, we show the numerical results for the interface
that is horizontal (stretches along the larger dimension of the container) in the initial moment
as set in experiment (Gaponenko et al. 2015b). Under weightlessness conditions the initial shape
of the interface may be different, and we also performed the simulations when the interface was
curved at the initial moment, but no principal differences in the results were obtained.
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FIGURE 3. (a) The total kinetic energy of the average motion, (b) the interfacial energy, (c) the
volume of the interface, and (d) the average concentration in one liquid vs. time. The results are
shown for A = —0.5, Sc¢ = 10*, Gs =5-10°, M =1, and Cn = 2.5-107°. The dotted lines show
the data obtained with 400 x 800 grid points, the dashed lines are for 500 x 1000 grid points,
and the solid lines are for 600 x 1200 grid points, respectively.

examined problem (the symmetry of the initial state and the symmetry of the phase
diagram, Figure 2b) in all calculations Cy = —C5.).

The numerical convergence and the mesh-independence of the numerical simulations
are illustrated by Figure 3. The required resolution is determined by the governing
parameters: the better resolution is needed at greater values of the Schmidt and Gershuni
numbers, which should be explained by smaller diffusive length scales and higher flow
intensities, and also at smaller values of the Cahn number that correspond to smaller
thicknesses of interfaces. In Figure 3, one may see that the lines that depict the time
changes of different quantities clearly converge to the limiting curves.

For the phase-field results it is also important to investigate the convergence on the
value of the interface thickness. The thickness of a real interface between two immiscible
liquids is of the order of several molecular layers, which is equivalent to zero value for the
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FIGURE 4. (a) The total kinetic energy of the average motion, (b) the interfacial energy, (c) the
volume of the interface, and (d) the average concentration in one liquid vs. time. The results
are shown for A = —0.5, Sc = 10*, Gs =5-10°, M = 1, and Cn = 2.5-107°, and for different
initial thicknesses of the interface, the solid lines shows the data for o = y/—Ca/A =~ 0.007,
the dashed lines are for dp ~ 0.014, and the dotted lines are for §p =~ 0.028.

hydrodynamic (macroscopic) approach. The interface is represented by a transitional
layer of a finite thickness for the sake of numerical simulations, and these interface
thicknesses are not equal to the real thicknesses of interfaces. One however needs to
show that the numerical results converge when the thickness of the interface tends to
zero (tends to the real thickness). It should be mentioned that there are some cases, e.g.
the interface of a near critical mixture, or the interface between two liquids miscible in
all proportions after a prolonged contact, when the interfacial boundary could be quite
diffusive, and in those cases both the numerical and physical thicknesses of the interfacial
boundary are both finite and hence the simulations can be fulfilled with the use of the
real thickness of the interface. Figure 4 depicts the data obtained for the different values
of the initial thicknesses of interfaces, dp. The curves may be different in the very initial
moments (see e.g. the insert in Figure 4d), but they quickly converge to a single curve.
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FIGURE 5. (a) The total kinetic energy of the average motion, (b) the interfacial energy, (c) the
volume of the interface, and (d) the average concentration in one liquid vs. time. The results
are shown for A = —0.5, Sc = 10*, Gs = 5-10°, M = 1, and Cn = 2.5- 107" (solid lines),
Cn = 107* (dashed lines), and Cn = 4 - 10~* (dash-dotted lines).

Further, the curves slowly diverge from each other, nevertheless, they stay sufficiently
close to claim that our numerical results are virtually independent of the value of dg.

Some of the curves in Figure 4 are plotted by taking the initial thickness of the interface
different from the equilibrium value, 1/—Cn/A. Since the initial state of a mixture differs
from the state of thermodynamic equilibrium, the initial thickness of the interface (similar
to the levels of concentrations in the neighbouring liquids) should in general be different
from its equilibrium value. We however observe that all curves quickly converge to a
single curve that is obtained when the initial interface thickness is taken equal to its
equilibrium value. At this moment the whole binary mixture does not reach the state
of thermodynamic equilibrium yet, and there is ongoing diffusive mass transport across
the liquid/liquid boundary, although, the adjustment of the interface thickness to its
equilibrium value is already completed.

In Figure 5, we investigate the numerical convergence on the interface thickness for
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the three runs that are fulfilled with the different values of the Cahn number. By altering
the Cahn number we simultaneously change the interface thickness and the surface
tension coefficient that is associated with the interface. The difference in the values of the
interfacial energy is explained by a factor Cn that appears in front of expression (2.34),
so the curves for the quantity, E;/Cn, would lie much closer to each other. The curves of
the volume of the interfacial line also differ by a similar factor (one sees that when Cn
is doubled the volume of the interfacial line is also doubled). The curves in Figures 5a,d
demonstrate a clear convergence of the numerical results upon a gradual decrease in the
values of the interfacial thickness (the distance between the curves gradually decreases
when the Cahn number is taken smaller and smaller).

In conclusion, we say that the results shown in the next section of our work are obtained
with the numerical grids that contain at least 450 x 900 grid nodes (for lower Gershuni
numbers) and typically include 600 x 1200 grid nodes (for the runs fulfilled for higher
Gershuni numbers). For the phase-field simulations, the main results are obtained for the

fixed value of the Cahn number, Cn = 2.5 - 10~°, fixed value of parameter A, A = —1

9
and for the initial interface thickness, 69 = v/—Cn/A =~ 0.007.

3. Numerical results
3.1. Classical approach

We present the numerical results starting from the data obtained with the use of
the classical equations (2.1)-(2.3). The similar data (for a slightly more general model
that takes into account the concentration dependencies of the diffusion and viscosity
coefficients) was earlier reported in the works by Gaponenko et al. (2015b).

Gaponenko et al. (2015b) presented the results in the dimensional form, and we
present our data using the non-dimensional variables. The data sets can still be easily
compared as all parameters that are used for our simulations were taken to be close to the
experimental values. In particular, the experiment deals with the mixture of 90% water
- 10% isopropanol and 50% water - 50% isopropanol. Owing to the dependence of the
viscous and diffusion coefficients on mixture composition, it is difficult to set the single
values of the Schmidt and Gershuni numbers that would work for the entire fluid domain.
Depending on a particular location within the container, the Schmidt number may vary
in the range of (2030 — 21165). The range of the Gershuni numbers (for different levels
of vibrations, and for different locations in the cavity) could be roughly estimated in the
range of (10* — 10°) (the upper end of this range corresponds to rather large amplitudes
of vibrations that are even greater than the size of the container). Gaponenko et al.
(2015b) avoided this problem by solving the equations in the dimensional form and by
taking into account the density dependencies of the phenomenological parameters. We
neglect the concentration dependencies of the viscosity and diffusivityt, and this allows
us to characterise the mixture by a single Schmidt number (which we set Sc = 10* for
all calculations) and by a single Gershuni number (for a fixed level of the vibrational
forcing). Finally, we mention that the real convective time scale varies in a range of
(16.6 — 39.08)s. The convective time scale is used as a unit of the non-dimensional time
in our work, and thus, we may roughly say that one unit of the non-dimensional time is
approximately 30s.

The data shown in Figure 6 and 7 present typical evolutions of an interface in a

1 In the phase-field theory, that is considered later, the concentration dependence of the
diffusion coefficient is given by free energy function (2.20), namely ~ d?fo/dC?, however, in the
classical approach the diffusion coefficient is assumed to be just constant.
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FIGURE 6. The snapshots of the fields of concentration (isolines) and velocity (vectors). The
data are obtained for the run fulfilled with the use of the classical model for Sc = 10* and
G's = 10°. The double-arrow line in (a) shows the direction of vibrations.

binary system that is subjected to high-frequency vibrations of different intensities. The
snapshots shown in Figure 6 demonstrate a good general agreement of the numerical
results with the experimental observations reported by Gaponenko et al. (2015b). In the
beginning, the vibrations induce some weak average flows in both fluid domains. The
magnitude of the induced flow grows in time, but when the vibrational forcing is weak
(lower Gershuni numbers), during the numerical run the induced flows remain too weak to
disturb the interface shape: the interface remains flat and it just slowly smears in time. If
however the vibrational forcing is stronger, the average motion induced by the vibrations
destabilizes the flat interface, eventually forming a pillar-shaped structure in a container.
The vertical growth of the pillars is restricted by the container’s height, and when the
pillars reach the upper and lower walls of the cavity (occupy the full height of the cavity),
the intensity of the average and pulsation motions decay. The further development of the
pillars occurs much slower, and it is characterised by slow diffusive smearing of immovable
pillar’s walls. These pillar-shaped structures represent a phenomenon of a frozen relief
(or frozen waves).

In Figure 6f, that corresponds to the time moment of 100 (about an hour in physical
time), the interface is very diffuse. The experimental results (see Gaponenko et al.
2015a,b; Shevtsova et al. 2015, 2016) do not include the pictures with so diffusive
interfacial boundaries, which may be explained by a difficulty of processing similar images
or by time restrictions of parabolic flights that were used to achieve the weightlessness
conditions. It is also interesting to note that a typical diffusive time scale is of the order
of Sc, and hence one expects a noticeable diffusive smearing over the time period of the
order of 10*. Figure 6f clearly shows that the diffusive smearing is substantially sped up
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FIGURE 7. (a) The kinetic energy of the average flow, (b) the kinetic energy of the pulsation flow
(here Ew1 = FywSc/Gs), (¢) the volume of the interface, and (d) the average concentration in
liquid 1 vs. time. The data are obtained for the run fulfilled with the use of the classical model
for Sc¢ = 10* and Gs = 10* (dotted line), Gs = 10° (dash-dot-dotted line), Gs = 5-10° (dashed
line), and Gs = 5 - 10° (solid line).

by the vibrational forcing, so the liquids become nearly indistinguishable after the time
period of 100, even under the action of relatively moderate vibrations (Gs = 10°). Figure
6f also answers the Wolf’s question (Wolf 2018) on a long-term stability of the frozen
waves: one sees that the frozen waves formed on a miscible interface remain stable at
least until the interfacial boundary can be visually identified.

Figure 7a shows the time changes of the total kinetic energy of the average flow for
the different Gershuni numbers. At Gis = 10* the intensity of the induced average flow
grows with time, however, at least for the duration of the numerical run the flow always
remains too weak to affect the interface shape. At Gs > 4 - 10%, at some moment the
slower growth of the kinetic energy is suddenly replaced by a faster growth. This happens
at the moment of the interface reconstruction that eventually results in the formation of
several ‘frozen’ pillars stretched from the bottom to the top wall of the container. When
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the pillars are fully set the intensity of the fluid motion drops to almost zero. Figure 7b
depicts the time changes of the kinetic energy of the pulsation flow. The pulsation flow
has the highest intensity in the beginning of the numerical run when the liquid/liquid
interface is sharp, and the initial diffusive smearing of an interface slowly decreases the
pulsation motion. At the moment of the interface reconstruction, the intensity of the
pulsation flow rapidly decays. Figure 7c shows how the volume of the interfacial zone
grows with time. Again, the rapid increase of the volume corresponds to the interface
reconstruction. Figure 7d shows the time changes of the average concentrations in one of
the liquids. The reconstruction of the interface increases the molecular mixing that is to
be explained by the growth of the interface length (i.e. the contact area of two liquids).

In Figure 7 one notices that while the interface is flat the dynamics of the binary
mixture is solely determined by the diffusive process. In the later moments, when the
frozen pillars are fully set, the hydrodynamic motion in the container is also absent, and
the evolution of a mixture is again determined by diffusion. Nevertheless, there are clear
differences between the initial and later dynamics of the mixture: the initial dynamics is
independent of vibrations, and the later dynamics occurs differently for the vibrations of
different intensities. This needs to be explained by the dependence of the shape of the
frozen relief (the different number of the pillars in the container) on the Gershuni number.
The greater the level of vibrations is, the more pillars are formed in the container, as
seen in Figure 8. The liquid/liquid contact surface is obviously greater when there are
more pillars, which explains the differences in the rates of molecular diffusion at the later
time periods.

In Figure 7 one sees that the reconstruction of an interface starts earlier, occurs faster,
and the maximum values of the kinetic energy are greater for the runs with higher
Gershuni numbers, which is also illustrated in Figures 9a,b. In Figure 9c,d the horizontal
size of the pillars characterized by the wave-length that is calculated by taking the ratio
of the numbers of several fully-formed pillars (two pillars form a ‘wave’) in a central part
of the container over the width of the region occupied by these pillars.

A particular attention of the current work is addressed to the question of whether the
formation of the frozen waves requires the vibrational forcing with an intensity over a
certain threshold level. In the classical theory (2.1)-(2.3), the surface tension is completely
disregarded. In accordance with equation (1.1) under weightlessness conditions the ap-
pearance of the frozen waves may happen in the presence of high-frequency vibrations of
any intensity, which could be easily understood from the analysis of equations (2.1)-(2.3)
where the vibrational force is the only term capable of setting the interfacial shape. In
our calculations (for S¢ = 10%) the minimum Gershuni number that allows the formation
of the frozen relief is G's. = 4 - 10, and as one sees in Figure 7 the interface remains flat
for Gs = 10* for the duration of the numerical run, i.e. for ¢t < 100.

The simulations fulfilled for the different levels of the Schmidt number reveal a strong
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FIGURE 9. (a,b) The maximum value of the kinetic energy of the average flow during the
evolution of a binary mixture and the time moments when the kinetic energy is maximum
vs. the Gershuni number. (c,d) The wavelengths and the wavenumbers that characterise the
periodicity of the frozen pillars in the horizontal dimension vs. the Gershuni number. The data
are obtained for the classical model (‘circles’ for Sc = 10*, ‘triangles’ for Sc = 10*, and ‘nablas’
for Sc = 10%) and for the phase-field simulations (‘squares’ for Sc = 10*, M =1, Cn = 2.5-107°,
and A = —0.5).

influence on this parameters, which however can be easily explained by the fact that the
amplitude of the vibrational force in equation (2.1) is set by the ratio Gs/Sc. Figure
10 shows the dependencies of the maximum value of the kinetic energy during the
reconstruction of the interface and the time moment when the kinetic energy reaches
the maximum value as functions of the ratio Gs/Sc. In the new coordinates the curves
obtained for different Schmidt numbers almost coincide when (Gs/Sc) — 0. In addition,
one sees that when (Gs/Sc) — 0 the time required for the formation of the waves
increases exponentially. When the time needed for the reconstruction of an interface
becomes too long, the interface gets too diffusive (practically indistinguishable) before
hydrodynamic motion has time to reshape the interface. Moreover, the interface smearing
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FIGURE 10. The maximum value of the kinetic energy of the average flow during the evolution
of a binary mixture (a,b) and the time moments when the kinetic energy is maximum (c,d) vs.
Gs/Sc (the ratio of Gershuni and Schmidt numbers). The data are obtained for the classical
model (‘circles’ for Sc = 10*, ‘triangles’ for Sc = 103, and ‘nablas’ for Sc = 10°) and for the
phase-field simulations (‘squares’ for Sc¢ = 10*, M =1, Cn =2.5-10"%, and A = —0.5.

reduces the magnitude of the vibrational forcing even further, making its influence even
less significant over the time. In this case the isolines of the concentration field become
only slightly distorted by the hydrodynamic motion, so that the formation of the frozen
waves cannot be seen. We observe such a behavior for (Gs/Se) < 4.

In Figure 9c one sees that the longest structures that are formed in the container
have the wavelength of about 0.85 (for Gs = 5-10° and Sc = 10%), which corresponds
to three pillars (see Figure 6e). When the Gershuni number is increased the number of
the pillars that are formed in the container also grows. Although, as can be seen from
Figures 9c,d, the growth in the number of the pillars does not happen smoothly: there is
a sequence of the critical Gershuni numbers when two new pillars (one wave) are added
that also makes the other pillars thinner so the wavelength jumps to a smaller value.
In particular, for Sc¢ = 10%, the changes of the pattern of the frozen waves occur at
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FIGURE 11. The snapshots of the fields of concentration (isolines) and velocity (vectors). The
data are obtained with the use of the phase-field model for S¢ = 10* and Gs = 10°, M = 1,
A=-05,and Cn=25-1075.

approximately G's = 5 - 10° (five pillars), Gs = 2 - 105 (seven pillars), Gs = 5-10° (nine
pillars), Gs = 8 - 10° (eleven pillars), and so on. At larger Gershuni numbers the pillars
become irregular (non-symmetrical), as can be seen in e.g. Figure 8b.

3.2. Phase-field approach

Figures 11 and 12 illustrate the development of the frozen waves in a heterogeneous
binary mixture which evolution is modelled using the phase-field approach. Figure
11 shows the fields of concentration and velocity and Figure 12 shows the field of
chemical potential. To facilitate the comparisons of the phase-field and classical results
the phase-field calculations are performed for the same values of the Schmidt and
Gershuni numbers. The phase-field approach, however, also requires the values of three
additional parameters: the Mach number, that controls the magnitude of the Korteweg
force, is initially set to an intermediate value of 1; the ‘mixture temperature’ is set
so to allow some diffusion between the phases, A = —0.5, and the Cahn number is
Cn=25-1075.

Within the phase-field approach the rate of diffusion is determined by the field of
chemical potential. At the initial moment the chemical potential has a sharp transition
across the interface (see Figure 12a). During the evolution the magnitude of the gradient
of the chemical potential rapidly decreases, reducing the intensity of interfacial diffusion,
so the diffusive transport becomes completely non-existent at the last snapshot when the
binary system almost reaches its state of thermodynamic equilibrium. For A = —0.5,
the equilibrium concentrations in each phase are +0.388 (if the capillary and vibrational
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effects are totally neglected), and in Figure 13d the average concentration C; is quite
close to this value near the end of the numerical run (¢ ~ 100).

The snapshots for the classical and phase-field theories look very similar, which
indicates that at M = 1 the Korteweg force remains too weak to significantly affect
the dynamics of the mixture. The visible difference between Figures 11 and 6 is the level
of interface smearing: in the case of the classical approach the thickness of the interface
constantly grows, while in the phase-field simulations the interface thickness remains
constant almost during the entire numerical run. Another difference between the phase-
field and classical results is that for lower Gershuni numbers, when the interface remains
flat (Gs = 10* in Figures 7a and 13a), the intensity of the average flow keeps growing in
the classical case, and the level of energy starts decaying at some moment in the case of
the phase-field simulations. The formation of the frozen waves occurs due to development
of the average motion in the neighboring liquids, and when this motion becomes critically
strong, the shape of the interface is changed. The latter observation indicates that for
M =1 the threshold Gershuni number is Gs, = 3 - 10%.

Similarities between the classical and phase-field results are also underlined in Figures
9 and 10, where the phase-field data set is distinguished by square symbols. All general
features of the dynamics of the binary mixture are very similar to the classical results: the
maximum values of the kinetic energy, the time moments when the kinetic energy has a
peak, and the periodicity of the formed waves almost coincide. Some differences however
appear at the higher Gershuni numbers: the development of the instability is characterised
by more intensive flows, and the formation of additional waves in a container occurs at
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FIGURE 13. (a) The kinetic energy of the average flow, (b) the interfacial energy, (c) the
volume of the interface, and (d) the average concentration in liquid 1 vs. time. The data are
obtained for the runs fulfilled with the use of the phase-field model for Sc¢ = 10*, M = 1,
A=—-05Cn=25-107° and Gs = 10* (dotted line), Gs = 5 - 10* gdashed line), G's = 10°
(dash-dot-dotted line), Gs = 5 - 10° (long-dashed line), and G's = 5 - 10° (solid line).

slightly higher Gershuni numbers as compared with the classical simulations, which is to
be explained by the action of the surface tension forces. Namely, three pillars are formed
at Gs > 5-10%, five at Gs > 2-10°, seven at Gs > 3-10%, nine at Gs > 6-10°%, and eleven
at Gs > 107. The clear differences are also seen at very low Gershuni numbers, closer to
the instability threshold. Here, the dynamics of a mixture that is described by a classical
model is characterised by stronger interface smearing, which reduces the magnitude of
the vibrational force and slows down the development of the frozen wave instability, as
compared to the mixture that is described using the phase-field approach.

The above results show that the initially chosen value of the Mach number, M =
1, is too low to generate substantial differences between the classical and phase-field
simulations. To reveal stronger differences we perform the set of numerical simulations
for smaller Mach numbers, M < 1. We however found that the influence of the Korteweg
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FIGURE 14. (a,b) The maximum value of the kinetic energy of the average flow and the time
moment when the kinetic energy is maximum vs. the Gershuni number. (c,d) The wavelengths
and the wavenumbers that characterise the periodicity of the frozen waves vs. the Gershuni
number. The data are obtained for the phase-field model, for the parameters Sc¢ = 10%,
Cn=25-107° A= —0.5and M = 1 (‘squares’), M = 0.001 (‘triangles’), and M = 0.0001
(‘diamonds’).

force remains insignificant (and the behaviour of the mixture remains very close to the one
predicted by the classical equations) for all M > 0.01. The clear differences appear when
the Mach number is M = 0.001 and lower. The general dynamics of a mixture always
remains similar to the one obtained with the help of the classical approach, however, the
threshold Gershuni number required for the ignition of the frozen waves and the levels
of vibrations that control the number of the pillars in the container change, which can
be seen in Figure 14 and in Table 1.

Figures 15 show the frozen structures that are formed in a container under the critical
vibrational forcing for different Mach numbers. All structures look similar, although the
lower the value of the Mach number is, the more elastic the interface becomes thus
reducing the growth of disturbances with shorter wavelengths. In Figures 15¢,d, there is
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FIGURE 15. The shape of an interface subjected to the vibrations, for the parameters, (a) M =1,
Gs=5-10* , (b) M = 0.01, Gs = 10°, (c) M = 0.001, Gs = 2-10°, and M = 0.0001, Gs = 2-10°
(b). The other parameters are Sc = 10*, A = —0.5, and Cn = 2.5-1075.

M classical 1 0.01 0.001 0.0001
Gse 4-10* [3-10*| 10° 2.10° [1.5-10°
Ke 7.0 7.8 7.5 4.0 3.5

20keSeM ™! 0 ~90 |~ 9000|~5-10*|~4-10°

TABLE 1. The threshold Gershuni numbers, Gs., the wavenumbers that characterise the
periodicity of the critical frozen waves (that are formed under the critical value of the Gershuni
number), k., and the threshold Gershuni numbers predicted by the linear theory vs. the
Mach number. The other parameters for the numerical runs are Sc¢ = 10*, A = —0.5, and
Cn = 2.5-1075. For the classical approach, G's. determines the level of vibrations when the
interface shape becomes primarily determined by diffusion rather than by vibrations.

only one pillar in the container, with the size of nearly 1, half of the container’s length.
Such a frozen pattern is the structure with the smallest wavenumber that may be realised
in the container. The similar structures were also observed in the experiment (Gaponenko
et al. 2015b).

We also want to make some further correlations with the linear theory by Lyubimov
& Cherepanov (1986). The non-dimensional form of equation (1.1) looks as follows

Gs.M
2S¢

Here, we assumed the weightlessness conditions; ¢ is the non-dimensional coefficient of
surface tension that is introduced as o, /(p« s L+ ), and that is determined by the integral

o=mEi C’n/ (VO)2av, (3.2)
L v

= ok. (3.1)

where L is the length of the interface (for the 2D problem, L plays the role of the
surface area of the interface, and V' is the surface area of the computational domain).
For calculation of the interface length we may use the volume of the interface and the
fact that the interface thickness remains almost constant in the phase-field simulations.

For instance, Figure 16 depicts the development of the instability for the different
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FIGURE 16. (a) The volume of the interface, (b) the length of the interfacial line, (c) the surface
tension coefficient, and (d) the average concentration in liquid 1 vs. time. The data are obtained
for the runs fulfilled with the use of the phase-field model for Sc = 10*, A = —0.5, Cn = 2.5-1075,
Gs=15-10° and M = 1 (solid line), M = 0.001 (dashed line), M = 0.0001 (dotted line).

values of the Mach number. Figures 16a,b show the volume of the interface and the
length of the interfacial line, and Figure 16c shows the time changes of the surface
tension coefficient, o. If we neglect the initial spikes in the values of this coefficient
and focus on the moments when the frozen waves are already fully set, we may say
that all three curves converge to approximately one value, o ~ 0.0006, that is primarily
determined by the the Cahn number. The value of the surface tension coefficient allows us
to estimate the critical Gershuni numbers as predicted by equation (3.1). These numbers
are listed in the last row of Table 1. All these numbers are different from the actual
critical Gershuni numbers, which should be explained by the fact that equation (3.1) is
obtained for an infinite interface while we examine the dynamics of a mixture enclosed
in a container, which restricts the range of the wavenumbers. For the classical theory the
instability under lower Gershuni numbers is induced by longwave perturbations, with
A — oo and k — 0 (see e.g. Lyubimova et al. 2017) that cannot be realised within a
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FIGURE 17. (a) The length of the interfacial line, and (d) the surface tension coefficient vs. time.
The results are shown for A = —0.5, Sc = 10*, Gs = 5-10°%, M =1, and Cn = 2.5 - 1075 (solid
lines), Cn = 10~ (dashed lines), and Cn =4 - 10~ (dash-dotted lines).

confined geometry. Although one sees that when the role of the surface tension forces
grows so the wavelength of the critical structure becomes larger, the critical Gershuni
numbers predicted by the linear theory (3.1) become closer to the numbers obtained from
the numerical simulations.

We also performed the numerical simulations for the different Cahn numbers (the
results are depicted in Figure 5, 17 and 18). The change of this parameter does not
introduce any qualitative differences to the dynamics of a binary mixture. The change
of the Cahn number alters the surface tension coefficient, which is shown in Figure 17,
and these changes explain the slight differences in the wave patterns that are formed, as
may be observed in Figure 18.

4. Correlation with the experiment

We correlate the numerical results with the microgravity experiments that were con-
ducted by Gaponenko et al. (2015a,b). The experiments were conducted during parabolic
flights, so they were characterised by a relatively short durations (the data sets cover only
12.55).

The experimental settings set the typical length scale as L, ~ 8- 1073m (which
is the height of the container). The liquid/liquid mixture used for the experiments is
characterised by the density contrast, ¢ =~ 0.08, the density, p, ~ 900kgm™2, the
kinematic viscosity, (1./ps) &~ 2 -107%m2s~!, and the diffusion coefficient, D, ~ 4 -
1071%m?2s! (these are the averages of the density, and viscosity and diffusion coefficients
for two components of the mixture). These coefficients, in particular, define the following
scales of time and velocity, 7 ~ 30s and u, ~ 3-10"*ms~!. Thus, the duration of
the experiment is only 0.3 units of the non-dimensional time. The level of vibrations
near the reported threshold (see figure 5 in Gaponenko et al. 2015a), but still above
the threshold, are set by the amplitude ¢ ~ 2 - 10~2m and the angular frequency
w ~ 100s~! (the vibrational velocity is aw =~ 0.2ms~! and the vibrational acceleration is
aw? ~ 20ms~2 ~ 2g, where g is the gravity acceleration).

Thus, for this experiment, the non-dimensional parameters of the classical model can
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FIGURE 18. (a,b) The maximum value of the kinetic energy of the average flow and the time
moment when the kinetic energy is maximum vs. the Gershuni number. (c,d) The wavelengths
and the wavenumbers that characterise the periodicity of the frozen waves vs. the Gershuni
number. The data are obtained for the phase-field model, for the parameters Sc = 10*, M = 1,
A=-05and Cn =2.5-10"° (‘squares’), Cn = 10™* (‘triangles’), and Cn = 4-10~* (‘nablas’).

be roughly estimated as Sc ~ 5-10% and Gs. ~ 107 (or, (Gs,/Sc) ~ 2000), which is
well above (Gs./Sc) ~ 1 that determines the level of vibrations when diffusion starts
to dominate over hydrodynamics (below this level the formation of the frozen waves
does not occur). One may argue that the non-ignition of the frozen waves under lower
levels of vibrations may be explained by a relatively short duration of the microgravity
experiments, although, the reported wavelengths that characterise the experimentally-
observed frozen waves are of the order of the cavity length, A\ ~ 1, which indicates
the near-the-threshold behaviour. Thus, we conclude that the classical approach cannot
describe the threshold generation of the frozen waves.

Correlations of the phase-field results with the experiment is complicated by the use
of the non-standard phenomenological parameters. From the definitions of the non-
dimensional parameters (2.21)-(2.22) we understand that for practical calculations one
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needs to know the mobility coefficient «, the capillary constant €, and a typical value of
the chemical potential .. These parameters are not directly measurable, nevertheless
their values may be determined from the following procedure.

First, the mobility coefficient is obviously proportional to the diffusion coefficient, and
one may write that o = p.D./[is.

The capillary constant may be obtained from the measurements of the interface
thickness € ~ (u.d.)?, (here d, is a typical interface thickness). The measurements of
the interfacial thickness are quite rare. Molecular dynamics simulations indicate that
the thickness of the interface is just several molecular layers, ~ 1nm (see e.g. Jacqmin
2000). Nevertheless, some direct measurements of this parameter can be also found
in e.g. the work by Zoltowski et al. (2007), where the thickness of the interface in a
monomer/polymer binary mixture is measured as approximately 0.0lcm (which seems
to be the case of a very diffusive interface in a mixture of two fully miscible liquids after
their prolonged contact).

Finally, the typical value of the chemical potential can be obtained from the measure-
ments of the surface tension coeflicient, since . = 0. /(p«L+0), and such measurements
for several mixtures are available e.g. in papers by Pojman et al. (2006); Zoltowski et al.
(2007). Gaponenko et al. (2015b) also provided the estimation of the surface tension
coefficient for the mixture used in their experiments. By correlating the experimental
data with the linear theory by Lyubimov & Cherepanov (1986), they suggested that
the miscible interface is to be endowed with the effective surface tension coefficient of
0. ~ 6-10"°Nm~!. In our calculations the non-dimensional coefficient of the surface
tension o depends on the Cahn number, and, as can be seen in Figure 17, this coefficient
is roughly equal to o ~ 6 - 10~ for most of our calculations. Combining all these data,
we can show that the typical value of the chemical potential is p, ~ 1073J kg™ !.

The numerical results obtained on the basis of the phase-field model are sensitive
to the value of the Mach number, which can be estimated as M ~ 6 - 1073 for the
experiment by Gaponenko et al. (2015a,b). This is a very rough estimate, but it improves
the interpretation of the experimental results that are reported by Gaponenko et al.
(2015a,b). Indeed, Figure 14 and table 1 indicate that the threshold Gershuni number
for the estimated level of the surface tension forces (that is set by the Mach number) is
roughly to be Gs. ~ 10°, which is in a more favorable agreement with the experimental
parameters, as compared with the predictions of the classical approach. Nevertheless,
this threshold level is still substantially below the value reported in the experiment. This
can be explained by a substantial slowing down of the development of the frozen wave
instability at the near-the-threshold levels of vibrations. By extending the time of the
experiment, observations of the frozen waves at lower Gershuni numbers should become
possible, making the measured threshold level of vibrations closer to the theoretical
prediction.

Another measure to solve the discrepancy of the theory and experiment is to recon-
sider /improve the estimate of the surface tension coefficient reported by Gaponenko et al.
(2015b). The original estimate is obtained by the comparison of the experimental results
with the predictions of the linear theory that deals with inviscid liquids, unbounded
interfaces, and the most dangerous but not the fastest growing normal perturbations
(the fastest growing modes define the shape of the frozen pattern).

5. Conclusions

We study the evolution of a heterogeneous binary mixture that is subjected to high-
frequency vibrations. We assume that the initial state of a mixture is different from
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the state of thermodynamic equilibrium, so the hydrodynamic evolution of a mixture is
accompanied by the diffusive mass transport. Weightlessness conditions are also assumed.
We found that if the level of vibrations exceeds a certain threshold value, then the frozen
waves in the form of pillars (or vertical stripes) that stretch from top to bottom of
the container (with the walls perpendicular to the direction of vibrations) are formed.
The threshold level of vibrations is determined by interfacial stresses that need to be
associated even with miscible liquid/liquid boundaries.

The phenomenon of the frozen waves in a mixture of two miscible liquids was earlier
studied experimentally and numerically. The numerical modelling was based on the
classical approach, that represented a heterogeneous binary mixture as a single-phase
fluid with an impurity and that disregarded the surface tension effects for miscible
interfaces. This simplified approach produced the results that were in a generally good
agreement with the experiments, in terms that the experimentally observed frozen
patterns could be well reproduced. However, in accordance with the linear stability theory
of an interface subjected to high-frequency vibrations (1.1), the instability should occur
unconditionally. This conclusion could be derived from a simple analysis of the governing
equations for the classical model, where one could easily see that the vibrational force
is the only term capable of setting the concentration field (or the shape of the miscible
interface). In the experiment however the start of the instability was characterised by
a threshold level of vibrations. To fit the experimental data with formula (1.1) it was
earlier proposed to introduce the effective surface tension to be associated with a miscible
interface. This effect was missing in the classical model and thus the classical model could
not reproduce all phenomena observed in the experiment.

In our work, in addition to the classical approach, we undertake the modelling of
the experiment on the basis of the phase-field approach. The particular features of the
phase-field approach are the account of the surface tension effects and the more general
description of the diffusion process, permitting consideration of mixtures of fully miscible
and partially miscible liquids. The governing equations that describe the influence of the
high-frequency vibrational forcing on the dynamics of a heterogeneous binary mixture
are obtained in the first part of the work.

First, we re-confirm that many experimental features of the frozen wave instability can
in fact be reproduced on the basis of the simplified traditional classical approach. The
success of the classical model can be explained by the relatively low surface tension forces
associated with miscible interfaces, as well as by a sufficiently fast rate of development of
the frozen waves which makes diffusion effect insignificant. However, a clear failure of the
classical model is an inability to predict the threshold level of vibrations. A particular
focus of our work was also to investigate the behavior of miscible liquids under very low
level of vibrations, to understand if the classical model can explain the threshold ignition
of the frozen waves. We found that under very weak levels of vibrations the classical
approach predicts the disappearance of the frozen waves (if the liquids are miscible in all
proportions), which is explained by the increase of the diffusion effect (and by associated
further weakening of the vibrational forcing due to interface smearing), so the frozen wave
instability has no time to develop. Such a behaviour however should be characterised
by very diffusive interfacial boundaries that are not observed in the relatively short
microgravity experiments.

On the basis of the phase-field theory we reproduce all experimental observations,
including the threshold ignition of the instability. We show that the threshold Gershuni
number primarily depends on the value of the effective surface tension coefficient that
is associated with a miscible boundary. The correlation of the numerical simulations
with the microgravity experiment gives a good agreement between the experimentally-
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observed and theoretical-predicted threshold levels of vibrations. In addition, the sim-
ulations show that the time needed for setting up the frozen waves increases when the
Gershuni number approaches the threshold value. This imposes a substantial restriction
on the minimum duration of the experiment. We also observe that upon further increase
of the vibrational forcing (which intensity is solely determined by the Gershuni number,
i.e. by a square of the vibrational velocity aw) the frozen pattern may change (additional
frozen waves appear in the container); the changes of the pattern occur discretely, over
certain ranges of the Gershuni number.

In our work we fulfill quite long numerical calculations that describe the evolution of
a binary mixture for the period of about 1 hour. The frozen wave patten remain stable
during the whole run, no additional instabilities within a transitional layer, that were
expected by Wolf (2018), were noticed. Depending on whether the liquids are fully or
partially miscible, the pillar’s walls either smear until they become completely indistin-
guishable, or remain sharp indefinitely long. In the latter case the diffusion process ends
when the concentrations in the neighbouring components reach the equilibrium values,
so the binary mixture attains the state of mechanical and thermodynamic equilibrium.

In conclusion, we would like to state that the time-average equations, that are derived
in the first part of our work, present a powerful computational tool that allows to trace
the dynamics of miscible (completely or partially miscible) and immiscible liquids with
the correct account of the surface tension effects that needs to be associated even with
miscible interfaces, and which is not possible to do on the basis of the classical approach
traditionally used for the description of miscible interfaces.
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