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High-frequency vibrations of a container filled with a fluid generate the pulsation flows
that however are barely visible with the naked eye, and induce the slow but large-
amplitude averaged flows that are important for various practical applications. In this
work we derive a theoretical model that gives the averaged description of the influence
of uniform high-frequency vibrations on an isothermal mixture of two slowly miscible
liquids. The miscible multiphase system is described within the framework of the phase-
field approach. The full Cahn-Hillard-Navier-Stokes equations are split into the separate
systems for the quasi-acoustic, pulsating and averaged flow fields, eliminating the need
for the resolution of the short time-scale pulsation motion and thus making the analysis
of the long-term evolution much more efficient. The resultant averaged model includes
the effects of concentration diffusion and barodiffusion, the dynamic interfacial stresses,
and the generation of the hydrodynamic flows by non-homogeneities of the concentration
field (when they are combined with the effects of gravity and vibrations). The resultant
model for the vibrational convection in a heterogeneous mixture of two fluids separated by
diffusive boundaries could be used for the description of processes of mixing/de-mixing,
solidification/melting, polymerisation, etc. in the presence of vibrations.

1. Introduction

Forced vibrations can be used to control the heat/mass transfer in fluid systems,
the position of interfaces, the buoyancy conditions for solid or fluid inclusions, etc.
High-frequency vibrations of a container filled with a fluid induce the small-amplitude
pulsation motion, that in most cases is hardly-visible with the naked eye, and the slow but
large-amplitude averaged motion that is much more important for practical applications
(e.g. microfluidics, control of crystal growth from melt, and other chemical engineering
processes) (see Gershuni & Lyubimov 1998; Lyubimov et al. 2003).

The effective description of the high-frequency vibrations is achieved with the use
of the multiple-scale method and the averaging procedure, which could be utilised for
splitting the physical processes that occur on different time scales, thus representing the
hydrodynamic evolution as the small-amplitude pulsations on the background of slower
large-amplitude changes, and thus splitting the governing equations for the separate,
although coupled, sets of pulsation and averaged equations. The use of the averaged
equations allows the time integration with much larger time steps as the need to
resolve the short-scale oscillatory motion is eliminated. In addition, the high-frequency
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vibrations are known to generate thin skin-layers near rigid boundaries and interfaces
(see Schlichting & Gersten 2017; Landau & Lifshitz 1987). The multiple-scale analysis
of flow fields in these boundary layers allows the derivation of the so-called effective
boundary conditions that give the values of the variables at the outer side of the skin-layer
making the numerical resolution of the thin skin-layers unnecessary, and thus enormously
reducing the computational time required for the numerical solution of similar problems.

In the current work, we develop a theoretical model for a heterogeneous (with inter-
faces) binary mixture of two slowly miscible liquids that are enclosed in a container that is
subjected to the high-frequency small-amplitude mechanical vibrations. The traditional
description of the multiphase system is given within the Laplacian approach, when the
phases are divided by infinitely thin boundaries endowed with the surface tension (see
e.g. Landau & Lifshitz 1987). To describe the hydrodynamic processes in the multiphase
system, the governing equations are separately solved within each phase, and then the
obtained solutions are matched by using the appropriate boundary conditions imposed
at the interfaces. The traditional description becomes inconvenient if the interfaces
experience strong topological transformations, or may even emerge or disappear during
the evolution of the binary system (which may occur e.g. due to dissolution of existent
inclusions or due to nucleation of inclusions of a new phase).

An alternative description is to represent the interface as a transition layer of a finite
thickness across which almost all variables experience sharp but still continuous changes.
One set of the governing equations is solved for the whole multiphase system including
the interface. The position of the interface is determined on the basis of the so-called
phase function. The governing equations also include the new terms that take into
account the surface tension effects. This continuum approach is primarily used for the
numerical description of the complex evolution of multiphase systems, and this approach
is practically realised by three alternative techniques: the volume-of-fluid, the level set,
and the phase-field methods. These techniques are quite similar, although the two former
approaches are formulated on the bases of the mathematical ideas developed for the
description and tracking of the curved interfaces, and the phase-field approach is based
on the physical background, namely, the consistent thermodynamic model for the binary
mixture of two miscible fluids (see Vorobev 2014).

The effects of vibrations on the behaviour of a multiphase system were earlier described
within the framework of the traditional (Laplacian) approach, and these results are
summarised in books by Gershuni & Lyubimov (1998) and Lyubimov et al. (2003). It
was shown that the high-frequency vibrations excite the average flows in the bulk, that
is described by the additional vibrational force in the Navier-Stokes equation, and the
vibrations can also generate the average motion near the rigid walls or interfaces, and this
motion can be efficiently captured by the use of the effective boundary conditions (this
motion is frequently termed as the acoustic streaming (see e.g. Mason 1965; Landau
& Lifshitz 1987)). In the current work, we develop the phase-field model to describe
the effects of the high-frequency vibrations on the heterogeneous mixture of two slowly
miscible liquids.

Dynamics of miscible systems under the influence of high-frequency vibrations was
previously studied in a number of experimental and numerical works (see Legendre et al.
2003; Gaponenko et al. 2006; Gaponenko & Shevtsova 2010; Gaponenko et al. 2015a,b;
Shevtsova et al. 2015, 2016; Wolf 2018). The theoretical description that was adopted in
all previous papers was based on the traditional approach that presumes that a mixture
of two liquids that are miscible in all proportions can be represented by a single-phase
model, i.e. as a homogeneous binary mixture with the mixture components distinguished
by the different levels of concentration. This description is mathematically equivalent
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to the problem of thermal vibrational convection, when the equation for the balance of
species is replaced by the equation for the temperature field (e.g. the thermal vibrational
convection of fluids near the critical point was studied by Lyubimov et al. 2006a,b;
Zappoli et al. 2015).

This classical approach however completely disregards interfacial stresses that exist at
a liquid/liquid boundary. Indeed, an everyday observation of dissolution of honey droplet
in tea points out that the concept of an interface endowed with surface tension is required
for an accurate description of such a process, as one can observe a sharp clearly visible
boundary that separates two liquids for a long time period, and one can also see that
the honey droplet tends to be of a spherical shape (see Joseph & Renardy 1993; Vorobev
2014). In our current work we develop a theoretical model that takes into account the
dynamic surface tension associated with miscible interfaces.

2. Phase-field approach

We consider a binary mixture that occupies a closed container. The container is
subjected to the high-frequency uniform translational vibrational forcing determined
by the pulsation velocity w0 = aωj cos(ωt), where a and ω are the amplitude and
angular frequency of the vibrations, and the unit vector j determines the direction of
the vibrations.† We call these vibrations uniform, to underline that this is the spatially
uniform vibrational forcing, i.e. both a and j are independent of the spacial coordinates:
all walls of a container oscillate with the same amplitude and in the same direction.
The non-uniform (e.g. rotational) vibrations may induce some different effects, and the
derivation of the averaged equations for such vibrations would be also different (for more
details see Gershuni & Lyubimov 1998).

The vibrations can be included into the hydrodynamic model by adding the pulsation
velocity to the velocity boundary conditions imposed at the container’s walls. This ap-
proach presumes that the problem is solved by using the immovable laboratory reference
frame. A more convenient approach is to change the reference frame and to solve the
problem by using the reference frame that is attached to the vibrating container. The
new reference frame is non-inertial, and thus a new inertial (fictitious) force, −ρ∂w0

∂t , is
to be added to the momentum-balance equation.

The full set of the Navier-Stokes-Cahn-Hilliard equations that determines the thermo-
and hydrodynamic evolution of an isothermal heterogeneous binary mixture were first
obtained by Lowengrub & Truskinovsky (1998). These equations include the laws for the
conservation of mass, species, and momentum (which we augment by adding the inertial
force),

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

ρ

(
∂C

∂t
+ (v · ∇)C

)
= α∇2µ, (2.2)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+∇ · τη − ϵ∇ · τϵ + ρg − ρ

∂w0

∂t
. (2.3)

Here the conventional notations are accepted for all variables, namely, t is the time,
v is the velocity vector (that is defined as the mass-averaged velocity of fluid particle

† The pulsation velocity can be determined by an arbitrary periodic function of time.
Expansion of a periodic function into a Fourier series would reduce the description of any
periodic function to the one discussed in this work.
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composed of two different liquids), ρ is the density, p is the pressure, C is the concentration
(defined as the mass fraction of one of the components in the mixture), µ is the chemical
potential, and g is the gravity acceleration.

To take into account the surface tension effect, the equation for the momentum balance
includes an additional force that is called the Korteweg force (see e.g. Joseph & Renardy
1993). The magnitude of this term is determined by the parameter ϵ called the capillary
constant.

The viscous and Korteweg stress tensors in the equation for the momentum balance
(2.3) are defined by the following expressions:

τη = η

(
∇⊗ v + (∇⊗ v)T − 2

3
(∇ · v)I

)
, (2.4)

τϵ = ρ∇C ⊗∇C. (2.5)

Here the superscript T means the transpose of a matrix, and I stands for the unit matrix.
The coefficient of viscosity η is in general a function of the mixture density.

The diffusive term in the equation for the species balance (2.2) is determined on the
basis of the extended Fick’s law, i.e. with the diffusion flux defined by the gradient of the
chemical potential (Landau & Lifshitz 1987). The mobility coefficient α can be related
to the coefficient of diffusion as D = α

ρ (
∂µ
∂C )p.

For the equation of state, we use the relation for ‘simple mixtures’ that assumes that
there is no volume gain or loss upon mixing of two substances,

1

ρ
=

1− C

ρ01
+

C

ρ02
, (2.6)

where ρ01 and ρ02 are the densities of the pure components.
Finally, the chemical potential is defined by the expression (see Lowengrub & Truski-

novsky 1998):

µ = µ0(C)−
p

ρ2
dρ

dC
− ϵ

ρ
∇ · (ρ∇C), (2.7)

where µ0 is the classical part of the chemical potential that is determined from the free
energy function µ0 = df0

dC .
The formulated mathematical model needs to be completed with the set of the

boundary conditions,

v = 0,
∂µ

∂n
= 0,

∂C

∂n
= 0. (2.8)

The first condition is the standard no-slip boundary condition. The second condition
states the zero diffusive flux through the rigid walls. Here n is the unit vector normal to
the wall, and thus ∂/(∂n) denotes the normal derivative.

Since the set of the governing equations is of the higher, forth, order in terms of the
concentration field the additional condition for the concentration field is needed. This
condition mimics the wetting properties of the wall and liquid/liquid pair, setting the
relative strengths of the interactions of the molecules of the mixture components with
the wall. Here we impose one of the simplest forms of this conditions, which implies that
the wall interacts neutrally with the mixture components, and thus the contact line is
orthogonal to the wall.

We would like to make two additional comments regarding equations (2.1)-(2.3). First,
we limit our analysis to the consideration of the evolution of an isothermal binary system,
assuming that there are no externally imposed temperature gradients and also neglecting
the effects of internal generation of the temperature inhomogeneities (see Umantsev
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2002). In general, phase transitions always occur with the release or absorption of some
latent heats (Landau & Lifshitz 1987). For some processes, e.g. solidification/melting,
the release or absorption of the latent heat determines the propagation of the phase
boundaries. We however focus on the problems of mixing/de-mixing, assuming that the
phase separation is solely driven by the concentration differences, and that the enthalpy
of phase separation is relatively small (for instance, for the binary mixture of polymers
in water studied in Gan et al. (2000), the enthalpy of phase separation was reported
to be 21J/g, which is considerably smaller than e.g. the heat of vaporisation of water,
2.3kJ/g, or the latent heat of ice melting, 330J/g), so that this amount of heat can be
rapidly diffused to the interface (or away from the interface) permitting us to assume
that the mixing/de-mixing processes occur under isothermal conditions. No temperature
differences are reported in the recent experiments (Gaponenko et al. 2015a,b) where
the influence of vibrations on dynamics of two miscible liquids (water/isopropanol) was
studied.

Second, we consider the evolution of two incompressible liquids, i.e. assuming that the
mixture density is independent of pressure. Nevertheless, owing to the dependence of the
mixture density on concentration the full continuity equation still needs to be used (which
is equation (2.1)). This effect is called the quasi-compressibility and the hydrodynamic
processes that are associated with this effect are called the quasi-acoustics. The necessity
to solve the full continuity equation is the major difficulty in the numerical solution of the
full Cahn-Hilliard-Navier-Stokes problem. In all works, where the phase-field method is
used for the numerical simulations, either the mixture components are assumed to have
matched densities (e.g. Chella & Vinals 1996) or the solution is based on the Boussinesq
approximation of the full equations (e.g. Jacqmin 1999; Ding et al. 2007; Vorobev 2010;
Ahmadlouydarab & Feng 2014; Xie & Vorobev 2016; Vorobev & Boghi 2016; Vorobev
et al. 2017; Vorobev & Khlebnikova 2018; Lyubimova et al. 2019).

2.1. Phase diagram

The phase diagram determines the states of thermodynamic equilibrium of a binary
mixture. In the current work we are interested in the slowly miscible mixtures that may
be either homogeneous or heterogeneous. Let us assume that the evolution of the binary
mixture with the upper critical (consolute) point is studied. The components of such
a mixture are fully miscible if the temperature is above the critical point (that is the
binary mixture is homogeneous in equilibrium), and the components are only partially
miscible if the temperature is below the critical point (the mixture is heterogeneous in
equilibrium). This is a common phase behaviour for liquid/liquid binary mixtures, and
the examples could be the mixtures of isobutyric acid/water or butanol/water (Pojman
et al. 2006), or the water soluble polymer studied by Gan et al. (2000).

The equilibrium states of such a mixture can be defined by the free energy function that
was proposed by Landau & Lifshitz (1980) for the description of near-critical systems,

f0 = aT (C − Cc)
2 + b(C − Cc)

4, (2.9)

where Cc is the critical concentration, and aT and b are the phenomenological coefficients.

The classical part of the chemical potential is determined by the following function,

µ0 =
df0
dC

= 2aT (C − Cc) + 4b(C − Cc)
3. (2.10)

If one neglects the capillary and gravity effects, then the equilibrium states of the binary
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system is determined by the equation, µ0 = 0, or

aT
2b

= −(C − Cc)
2. (2.11)

One notices that the aT /(2b) plays the role of temperature, with the critical point given by
aT /(2b) = 0. Near the critical point b is always positive, and aT can be either positive or
negative. In equilibrium, the mixture is heterogeneous if aT is negative, and the mixture
is homogeneous if aT is positive. We are interested in the process of slow mixing of two
liquids, and thus the current state of the mixture is assumed to be different from the
state of thermodynamic equilibrium.

We should mention that expression (2.9) was initially suggested for description of
near-critical states of a mixture, i.e. when aT /(2b) << 1, but the use of expression (2.9)
is frequently extended onto the states that are quite far from the critical point. For
instance, if aT /(2b) = −1/2, expression (2.9) coincides with the double-well potential
that is traditionally used for diffuse-interface modelling of mixtures of immiscible liquids
(see e.g. Jacqmin 1999; Ding et al. 2007; Ahmadlouydarab & Feng 2014; Prokopev et al.
2019) to describe very different physical effects: motion of bubbles/droplets, movements
of polymerisation or solidification fronts, etc.

2.2. Non-dimensional form of the governing equations

Further, for convenience, we shift the reference points for the fields of concentration
and density as follows, (C − Cc) → C and (ρ − ρc) → ρ. Here ρc is the density of the
mixture in its critical (consolute) point.

To re-write the governing equations in the non-dimensional form we adopt the following
scales for the density, chemical potential, viscosity coefficient, velocity and pulsation
velocity, time, and pressure, respectively,

[ρ] = ρc, [µ] = µ∗ = b, [η] = η1, [u] = [w0] = µ
1/2
∗ , (2.12)

τ =
L∗

[u]
=

L∗

µ
1/2
∗

, [p] = ρcµ∗. (2.13)

Here L∗ is the typical size of the geometrical configuration, and η1 is the viscosity of the
pure component 1.

In the non-dimensional form the governing equations read

∂ρ

∂t
+ (v · ∇)ρ = −(1 + ρ)∇ · v, (2.14)

(1 + ρ)

(
∂C

∂t
+ (v · ∇)C

)
=

1

Pe
∇2µ, (2.15)

(1 + ρ)

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ 1

Re
∇ · τη − Cn∇ · τϵ −Ga(1 + ρ)γ − (2.16)

−(1 + ρ)
∂w0

∂t
.

The equation of state is given by

ρ =
ϕC

1− ϕC
; ϕ =

ρc(ρ02 − ρ01)

ρ01ρ02
. (2.17)

Here ϕ is the density contrast for the mixture. For all liquid/liquid mixtures ϕ is rather
small, and thus equation (2.17) could be further simplified e.g. by keeping only the linear
term in the expansion over small ϕ.
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The chemical potential is defined by the equation

µ = 2AC + 4C3 − ϕp− Cn
(
∇2C + ϕ(1 + ρ)(∇C)2

)
. (2.18)

The viscous stress tensor and the Korteweg stress tensor are determined by the
following expressions

τη = η

(
∇⊗ v + (∇⊗ v)T − 2

3
(∇ · v)I

)
, (2.19)

τϵ = (1 + ρ)∇C ⊗∇C. (2.20)

The above equations include a number of the non-dimensional parameters. These are
the Reynolds and Péclet numbers,

Re =
ρ∗µ

1/2
∗ L∗

η∗
, P e =

ρ∗L∗

αµ
1/2
∗

, (2.21)

the Galileo number and the Cahn number (or the capillary parameter)

Ga =
gL∗

µ∗
, Cn =

ϵ

µ∗L2
∗
, (2.22)

the parameter that determines the thermodynamic states of the mixture (this parameter
can be interpreted as the temperature of the binary mixture)

A =
aT
b
, (2.23)

and the non-dimensional frequency of the vibrational forcing,

Ω =
ωL∗

µ
1/2
∗

. (2.24)

All these parameters are introduced on the basis of the non-traditional phenomenologi-
cal coefficients that are adopted by the phase-field approach. We keep using the standard
names for the non-dimensional parameters as almost all of them appear in front of the
corresponding terms of the governing equations, and thus their values determine the
corresponding physical effects (e.g. the Péclet number determines the role of the diffusive
mass transport, the Reynolds number defines the role of the viscous force, the Galileo
number sets the level of the gravity force). The Cahn (capillary) number determines the
role of the surface tension effects.

3. Multiple-scale analysis

3.1. Typical time scales

The physical processes defined by equations (2.14)-(2.20) are characterized by the
different time scales. These are the diffusion and convection scales

τd =
Pe

|A|
, τc = Re, (3.1)

the vibration scale (the period of vibrations),

τv =
1

Ω
, (3.2)
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and the expansion time scale that characterises the duration of the quasi-acoustic
processes,

τe =
ϕ2

Pe
. (3.3)

Two vertical lines in (3.1) denote the absolute value.
We develop the theory for the high-frequency vibrations, when τv << (τd, τc), i.e.

the period of vibrations is much shorter than the time periods needed for the diffusive
and convective changes. The validity of this assumption is easy to illustrate, as τv/τc =
η∗/(ρ∗ωL

2
∗) and τv/τd = (αµ∗|aT |)/(ρ∗ωL2

∗) ∼ (D∗|aT |)/(ωL2
∗), and thus both ratios are

indeed very small if ω >> η∗/(ρ∗L
2
∗) and ω >> D∗/L

2
∗, or, in other words, ω is greater

than, at least, 0.01 s−1; if one assumes that fluid’s density ρ ∼ 103 kg · m−3, viscosity
coefficient η∗ ∼ 10−3 Pa · s, diffusion coefficient D∗ ∼ 10−9 m2s−1, and the typical size of
geometry L∗ ∼ 10−2 m.

In addition, typically, Re >> 1 and Pe >> 1, and ϕ << 1, which means that the
expansion time scale is also small, τe << (τd, τc). Some ambiguity although remains
regarding the relation between the vibration and expansion time scales. We want to
separate these processes, and assume that the expansion scale is much smaller than the
period of the vibrational forcing. Thus, the following inequalities are implied for our
further analysis,

τe << τv << (τd, τc). (3.4)

Following the main idea of the multiple scale method we introduce the three different
times: the fastest time, t−2, to describe the quick quasi-acoustic processes, the interme-
diate time, t0, for description of the pulsation processes, and the slow time, t2, for the
description of the diffusion and convection processes. The time derivative is then replaced
by a sum of three terms,

∂

∂t
= χ−2 ∂

∂t−2
+

∂

∂t0
+ χ2 ∂

∂t2
. (3.5)

Here χ is a small parameter.
In addition, all physical variables are also expanded into the series of the same small

parameter χ,

v = χ2v2 + χ4v4 + . . . , (3.6)

p = p0 + χ2p2 + χ4p4 + . . . , (3.7)

µ = χµ1 + χ3µ3 + . . . , (3.8)

ρ = χ2ρ2 + χ4ρ4 + . . . , (3.9)

C = χC1 + χ3C3 + . . . , (3.10)

η = 1 + . . . (3.11)

The viscosity coefficient is assumed to be a regular function of concentration. The
expansion of this function starts from 1 due to adopted scaling (2.12). For our analysis
however the higher orders of this expansion are not needed.
In addition, we make the following assumptions about the values of the non-dimensional

parameters,

ϕ = χϕ1, P e = Pe0, Re = χ−2Re−2, Ga = χ2Ga2, Cn = χ2Cn2, A = χ2A2. (3.12)

These assumptions are primarily written on the basis of the two requirements: (i) the final
theoretical model should incorporate all relevant physical effects, and the final theoretical
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model should be self-consistent, with no terms that demand the knowledge of the higher-
order variables thus requiring further phenomenological modelling.

3.2. Different orders of the governing equations

Next, using the assumptions summarized above, we write the different orders of the
governing equations that define the evolution of the mixture. The first two orders of the
continuity equation read:

∂ρ2
∂t−2

= 0, (3.13)

∂ρ4
∂t−2

+
∂ρ2
∂t0

= −∇ · v2. (3.14)

The first equation, in particular, states that ρ2 (the highest order of the density field)
does not depend on the fastest time scale.

For the equation for the species conservation the first three orders are written,

∂C1

∂t−2
= 0, (3.15)

∂C3

∂t−2
+
∂C1

∂t0
=

1

Pe0
∇2µ1, (3.16)

∂C5

∂t−2
+
∂C3

∂t0
+
∂C1

∂t2
+ (v2 · ∇)C1 + ρ2

[
∂C3

∂t−2
+
∂C1

∂t0

]
=

1

Pe0
∇2µ3. (3.17)

Finally, the first three orders of the momentum-balance equation read

∂v2

∂t−2
= −∇p0 −

∂w0

∂t0
, (3.18)

∂v4

∂t−2
+
∂v2

∂t0
+ ρ2

∂v2

∂t−2
= −∇p2 −Ga2γ − ρ2

∂w0

∂t0
, (3.19)

∂v6

∂t−2
+
∂v4

∂t0
+
∂v2

∂t2
+ (v2 · ∇)v2 + ρ2

[
∂v4

∂t−2
+
∂v2

∂t0
+ ρ2

∂v2

∂t−2

]
= −∇p4 + (3.20)

+
1

Re−2
∇ · τη,2 − Ca2∇ · τϵ,2 −Ga2ρ2γ − ρ4

∂w0

∂t0
.

Here,

τη,2 = ∇⊗ v2 + (∇⊗ v2)
T − 2

3
(∇ · v2)I, (3.21)

τϵ,2 = ∇C1 ⊗∇C1. (3.22)

3.3. Averaging

As mentioned above, it is assumed that the evolution of the mixture can be represented
by some rapid changes that occur on the background of the slower processes. Thus, all
variables can be further split into the following sums,

h(t−2, t0, t2) = h(t2) + h̃(t0, t2) +
˜̃
h(t−2, t0, t2). (3.23)

Here h stands for any variable. The averaging procedure is used to obtain the evolution
of the mixture on a longer time scale. For instance, to get rid of the fast quasi-acoustic
processes, the equations can be averaged over the period of vibrations, T0 ≡ 1/Ω,

h̃(t0, t2) =
1

T0

∫
T0

˜̃
h(t−2, t0, t2)dt−2. (3.24)
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Similarly, the dynamics on the diffusive and convective time scales can be singled out by
averaging of the equations over the time period that is much greater than the period of
the vibrations. To obtain the equations for the faster processes the averaged equations
need to be subtracted from the full governing equations.

We distinguish the variables that determine the average, pulsation and quasi-acoustic
processes by adding the double-tilde for the quasi-acoustic parts, the single tilde for the
vibrational oscillations, and the bar to denote the averaged quantities. The pulsational
fluid velocity is denoted by the vector w and the velocity field that characterises the
convective processes is denoted by the vector u.

With the help of the outlined averaging procedure, the following equations are obtained
to determine the fastest quasi-acoustic processes,

∂˜̃v2

∂t−2
= −∇˜̃p0, (3.25)

∂
˜̃
C3

∂t−2
=

1

Pe0
∇2˜̃µ1,

∂˜̃ρ4
∂t−2

= −∇ · ˜̃v2, (3.26)

˜̃p0 = − 1

ϕ1
˜̃µ1,

˜̃ρ4 = ϕ1
˜̃
C3. (3.27)

These equations define the rapidly decaying processes, so that all temporal and spatial

variations decay exponentially, as ∼ exp
(
−Pe0

ϕ2
1
t−2

)
. Thus, even if at some time moment,

such processes are excited in a system, they rapidly die out leaving no influence on the
slower dynamics.

The equations that determine the pulsation fields are

∂w2

∂t0
= −∇p̃2 − ρ̃2

∂w0

∂t0
, (3.28)

∂ρ̃2
∂t0

= −∇ ·w2, (3.29)

∂C̃1

∂t0
=

1

Pe0
∇2µ̃1. (3.30)

Using the corresponding order of the equation of state, ρ2 = ϕ1C1, and the corresponding
order of the expression for the chemical potential, µ1 = −ϕ1p0, these equations can be
re-written as

∇×w2 = w0 ×∇ρ2, (3.31)

∇ ·w2 =
ϕ21
Pe0

∇2p̃0. (3.32)

Averaging of (3.18) over the period of vibrations gives the following relation for the
pulsation part of the pressure field,

∇p̃0 +
∂w0

∂t0
= 0. (3.33)

Applying the divergence to the above equation shows that ∇2p̃0 = 0, and hence ∇2µ̃1 =
0. Thus, finally, we conclude that the pulsation fields are determined by the following
equations:

∂ρ̃2
∂t0

= 0,
∂C̃1

∂t0
= 0, (3.34)
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∇×w2 = w0 ×∇ρ2, (3.35)

∇ ·w2 = 0. (3.36)

Earlier we noted that ρ2 does not depend on t−2, and the first equation (3.34) states
that ρ2 does not depend on the pulsation time t0 either. Thus the leading orders of the
density and concentration fields (ρ2 and C1) depend only on the slow time t2, and further
on we cease using the bar for the averaged parts of these variables (as the other parts
for these variables are non-existent).

Let us now write the equations for the slow evolution on the diffusive and convective
time scales,

∂u2

∂t2
+ (u2 · ∇)u2 + (w2 · ∇)w2 = −∇p4 +

1

Re−2
∇ · τη,2 − Cn2∇ · τ ϵ,2 − (3.37)

−Ga2ρ2γ − ρ̃4
∂w0

∂t0
,

∂C1

∂t2
+ (u2 · ∇)C1 =

1

Pe0
∇2µ3, (3.38)

∇ · u2 = 0. (3.39)

Here,

τη,2 = ∇⊗ u2 + (∇⊗ u2)
T , τ ϵ,2 = ∇C1 ⊗∇C1. (3.40)

There are two additional terms in the momentum balance equation (3.37) that appear
due to the averaging of the non-linear terms. The first term can be re-written as follows,

(w2 · ∇)w2 = ∇w2
2

2
−w2 × (∇×w2) = ∇w2

2

2
−w2 × (w0 ×∇ρ2) = (3.41)

= ∇w2
2

2
− (w0(w2 · ∇ρ2)− (w2 ·w0)∇ρ2) .

Here equation (3.35) is used. The term in the right hand side can be also modified as,

ρ̃4
∂w0

∂t0
= −w0

∂ρ̃4
∂t0

. (3.42)

To modify ∂ρ̃4

∂t0
we use equation (3.16) together with the corresponding orders of the

equation of state, ρ̃4 = ϕ1C̃3 and of the equation for the chemical potential, µ̃3 = −ϕ1p̃2,
thus obtaining

∂ρ̃4
∂t0

= −(w2 · ∇)ρ2 +
ϕ21
Pe0

(
∇ρ2 ·

∂w0

∂t0

)
. (3.43)

Substitution of this equation into (3.42) gives

ρ̃4
∂w0

∂t0
= w0(w2 · ∇ρ2). (3.44)

Hence, the equations for the diffusive and convective evolution of the system have the
following view

∂u2

∂t2
+ (u2 · ∇)u2 = −∇

(
p4 +

w2
2

2
+ Cn2

(∇C1)
2

2

)
+

1

Re−2
∇2u2 − (3.45)

−Cn2∇2C1∇C1 − ϕ1Ga2C1γ − ϕ1(w2 ·w0)∇C1,



12 A. Vorobev, T. Lyubimova

∂C1

∂t2
+ (u2 · ∇)C1 =

1

Pe0
∇2µ3, (3.46)

∇ · u2 = 0. (3.47)

The equation for the averaged part of the chemical potential reads

µ3 = ϕ1Ga2(γ · r) + 2A2C1 + 4C3
1 − Cn2∇2C1. (3.48)

And the equations for the pulsation fields are

∇×w2 = ϕ1w0 ×∇C1, (3.49)

∇ ·w2 = 0. (3.50)

Equations (3.45)-(3.50) define a closed self-consistent set of the equations that provide
the effective description of the evolution of the binary mixture that is subjected to the
high-frequency vibrational forcing. In particular, equation (3.45) includes two terms of
the vibrational origin that appear due to the averaging of the non-linear terms of the
Navier-Stokes equation. These are the gradient term, ∇(w2

2/2), that does not affect fluid
motion in a closed container, but may be essential for description of a system with a free
interface; and the vibrational force, ϕ1(w2 ·w0)∇C1, that determines the volumetric
mechanism for the generation of the averaged flow.

3.4. Boundary conditions

The high-frequency vibrations are known to generate thin skin-layers near the rigid
walls and near interfaces (see Lyubimov et al. 2003). Thus, the problem is additionally
characterised by the small length scales that can be estimated as δc ∼ 1/

√
ReΩ or δd ∼√

|A|/(PeΩ), which are the thicknesses of the viscous and diffusive layers, respectively.
Let us analyse the behaviour of all variables within the skin-layer that is formed

near the wall (the wall’s position is to be given by z = 0 with z being the coordinate
perpendicular to the wall). For the analysis, we introduce two spatial coordinates, z−1

to track the faster changes within the skin-layer and z0 to describe the slow changes
on the longer scale. In accordance with the multiple-scale method, the z-derivative is
represented as

∂

∂z
= χ−1 ∂

∂z−1
+

∂

∂z0
. (3.51)

For convenience, within the vibration skin-layer the velocity is denoted by v = (V , vz),
where V and vz stand for the velocity components tangential and perpendicular to the
wall (correspondingly, (W , wz) and (U , uz) are used for the pulsation and averaged
velocities), and the nabla-operator is denoted as ∇ = (∇2, ∂/∂z), where ∇2 includes the
derivatives along the wall, and ∂/∂z is the derivative normal to the wall.

Next, by using expansions (3.6) and assumptions (3.12), we write the leading orders of
the governing equations for the skin-layer. The first two orders of the continuity equation
are

∂ρ2
∂t−2

= 0,
∂vz,2
∂z−1

= 0. (3.52)

Thus the normal derivative of the velocity vector is independent of the quick coordinate.
Since the normal component of the velocity is zero at the wall, it remains zero within
the skin-layer. This statement is true for both the pulsation and averaged velocities.

The leading orders of the equation for the z-component of the momentum-balance
equation state that

∂p0
∂z−1

= 0,
∂p2
∂z−1

= 0, (3.53)
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which signify that the highest orders of the pressure do not depend on the fast coordinate.
The leading orders of the equation for the momentum balance along the wall is

∂V 2

∂t−2
= −∇2p0 −

∂w0

∂t0
, (3.54)

∂V 4

∂t−2
+
∂V 2

∂t0
= −∇2p2 +

1

Re−2

∂2V 2

∂z2−1

− ρ2
∂w0

∂t
. (3.55)

The averaging of the latest equation gives

−∇2p2 +
1

Re−2

∂2U2

∂z2−1

= 0. (3.56)

Since the term ∇2p2 is independent of z−1, it needs to be equal zero, otherwise the
tangential component of the averaged velocity diverge as ∼ z−1. Then, owing to the no-
slip boundary condition that is imposed at the wall, one concludes that the tangential
component of the averaged velocity is zero within the entire pulsation skin-layer.

The leading orders of the equation for the species conservation read

∂2µ1

∂z2−1

= 0,
∂C3

∂t−2
+
∂C1

∂t0
=

1

Pe0

(
∇2

2µ1 +
∂2µ3

∂z2−1

)
. (3.57)

Here we already used that the leading order of density (and hence concentration) does
not depend on the fast time-scale, t−2.

The first order of the equation for the chemical potential reads

µ1 = −ϕ1p0 − Cn2
∂2C1

∂z2−1

. (3.58)

The no-penetration condition, stated as the absence of the normal component of the
chemical potential at the wall, together with equations (3.53), (3.57), and (3.58), allow
us to conclude that within the skin-layer

∂µ1

∂z−1
= 0,

∂C1

∂z−1
= 0. (3.59)

The second condition is required as otherwise the values of C1 would diverge. Further,
averaging of the second equation (3.57) gives us the statement that the normal derivative
of the chemical potential is zero within the skin-layer

∂µ3

∂z−1
= 0. (3.60)

Summarising, we conclude at the outer side of the skin-layer,

U2 = 0, Uz,2 = wz,2 = 0. (3.61)

Thus, in our case, there is no generation of the averaged flow at the wall, which however
is the general case for the spatially uniform vibrations (see Gershuni & Lyubimov 1998).

In addition, the highest orders of the concentration and density fields, C1 and ρ2, and
the averaged part of the chemical potential, µ3 are independent of the quick coordinate,
which mean that the requirements imposed on the values of the chemical potential and
concentration on the wall (i.e. the zero normal derivative of the chemical potential and e.g.
zero normal derivative of the concentration) remain unchanged within the vibration skin-
layer. There are no averaged effects induced at the walls. Nevertheless, the undertaken
analysis is still useful as the derived conditions make unnecessary the resolution of the
vibration skin-layers.
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4. Discussion and conclusions

We now omit the indexes that were used to denote the orders of the variables and
re-write the resultant equations (3.45)-(3.50) in the dimensional form.

The equations for the slow dynamics of the binary mixture read

∂u

∂t
+ (u · ∇)u = −∇

(
Π

ρ

)
+
η

ρ
∇2u− ϵ∇2C∇C + ϕCg − ϕ

2
(w ·w0)∇C, (4.1)

∂C

∂t
+ (u · ∇)C =

α

ρ
∇2µ, (4.2)

∇ · u = 0. (4.3)

In the equation for the species conservation (4.2), the letter µ denotes the average part
of the chemical potential, that is determined by the following expression

µ = −ϕ(g · r) + 2aTC + 4bC3 − ϵ∇2C. (4.4)

The letter Π is used to denote the modified averaged pressure,

Π = p+ ρ

(
w2

4
+ ϵ

(∇C)2

2

)
. (4.5)

The equation for the momentum balance (4.1) includes the vibrational force that can
obtained by solving the following equations for the pulsation flow:

∇×w = ϕw0 ×∇C, (4.6)

∇ ·w = 0. (4.7)

Here w0 = aωj is the amplitude of the imposed vibrational forcing.
It is useful also to note that the Navier-Stokes equation (4.1) can be re-written as

∂u

∂t
+ (u · ∇)u = −∇

(
Π1

ρ

)
+
η

ρ
∇2u− C∇µ− ϕ

2
(w ·w0)∇C, (4.8)

where

Π1 = p+ ρ

(
w2

4
+ ϵ

(∇C)2

2
− µC + f0 − ϕ(g · r)C

)
. (4.9)

The latest form for the Korteweg force, −C∇µ, is used in the majority of the works that
utilise the phase-field approach for the numerical studies (e.g. Jacqmin 1999; Ding et al.
2007; Ahmadlouydarab & Feng 2014). It is necessary to note that the buoyancy term
in equation (4.8) is now hidden in the Korteweg term, and this term can be explicitly
written if expression (4.4) is substituted into equation (4.8).

The derived set of the governing equations needs to be supplemented with the boundary
conditions. For the average velocity, the no-slip boundary condition needs to be imposed,
u = 0, stating that both the tangential and normal components of the average velocity
are zero at the rigid walls. The differential equations that define the pulsation field
are of the lower order, thus requiring only the condition, that the normal component
of the pulsation velocity is zero, to be imposed at the wall (this condition reflects the
no-penetration of the mixture through the wall), wn = 0.

Additionally, the zero value of the normal derivative of the chemical potential,
(∂µ)/(∂n) = 0, needs to be imposed to exclude the diffusive flux through the wall.
Finally, since the obtained equations are of the forth order in terms of concentration, the
additional condition is needed. This additional condition defines the wetting properties of
the wall. There are two simplest cases of the wetting properties, (i) the walls are neutral
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to the molecules of the mixture components, and thus the contact line is orthogonal to
the wall, (∂C)/(∂n) = 0, and (ii) the wall is perfectly wetted by one of the liquids, and
in this case the value of the concentration that corresponds to the component needs to
be maintained at the wall.

Let us summarise the assumptions that we make to derive equations (4.1)-(4.6). We
assume that the vibrations are set by a periodic function. The amplitude of the vibrations
is spatially uniform (if the fluid is enclosed in an oscillating container then all walls of the
container oscillate with the same amplitude). The period of the vibrations is much smaller
than the typical convective and diffusive time scales, ω >> η∗/(ρ∗L

2
∗) and ω >> D∗/L

2
∗.

At the same time the expansion time scale remains much smaller than the period of
vibrations, or ω << ρ∗/(αϕ

2). The density contrast is assumed to be small, ϕ << 1;
the mobility coefficient is constant; the dependence of the viscosity on concentration is
given by a regular function that may be expanded into a Taylor series near the critical
(consolute) point. The classical part of the free energy function is approximated by the
Landau formula (2.9), i.e. by two terms with comparable values. The binary mixture
remains isothermal, which includes the assumption that the latent heat of mixing is
negligibly small.

The final equations (4.1)-(4.4) are similar to the Boussinesq approximation of the
full Cahn-Hilliard-Navier-Stokes equations, that was earlier derived using the similar
multiple-scale analysis developed by Vorobev (2010). The obtained theoretical model
describes the slow diffusive and convective evolution of the binary mixture with the
account of the dynamic (varying over the duration of the process) surface tension effects.
The diffusion term is defined on the basis of the extended Fick’s law, and thus the model
includes the effect of barodiffusion. If, however, expression (4.4) is substituted into the
species balance equation, then the barodiffusive term drops out. Nevertheless, this term
still affects the boundary conditions, and thus influencing the equilibrium states of the
mixture and the long-term dynamics of the mixture when the influence of the boundary
conditions propagates into the bulk. In particular, this term, introduces the density
stratification in a homogeneous mixture, and this term defines the deformation of the
shapes of interfacial boundaries by e.g. the action of the gravity force.

The difference of the new model from the earlier equations (Vorobev 2010) is the
addition of the vibration terms. The averaged vibrational force and the equations for
the pulsation flow coincide with the standard equations that determine the effects of
the uniform vibrations on a single-phase fluid flow (see e.g. Gershuni & Lyubimov 1998;
Gaponenko et al. 2006; Gaponenko & Shevtsova 2010). It is known that the vibrational
terms are different for the cases of the uniform and non-uniform vibrational fields. The
imposed vibrational forcing is spatially uniform, although, it is also known that the
vibration field becomes spatially non-uniform in a heterogeneous fluid with the interfaces
that separate different phases. In the case of the non-uniform vibrations the vibrational
terms in the averaged equations are different (some of the terms, that dropped out during
the derivation of the averaged equations shown in this work, would stay, and these terms
appear in the different orders of the multiple-scale analysis (see e.g. Lyubimov et al.
2006a,b)). We model the behaviour of the heterogeneous system, and thus should expect
the similarity of the resultant equations with the non-uniform model. Although, seemingly
owing to the chosen phase-field approach, and owing to the assumptions made, which
effectively imply the consideration of a near-critical system when the thickness of an
interfacial boundary is not small, the final equations coincide with the standard averaged
model for the uniform vibrations.

The advantage introduced by the obtained model is the possibility to perform the
time-integration with the larger time steps, with no need for the resolution of the quick
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quasi-acoustic and pulsation effects that would require the use of smaller time steps. The
use of the effective boundary conditions also permits not to resolve the thin vibrational
skin-layers. Although, owing to the diffuse interface approach that is adopted for the
description of the multi-phase system, the increased spatial resolution required for the
resolution of the interfacial boundaries is still needed.

The real thickness of an interface is just several molecular layers (∼ 1nm), which is zero
for a macroscopic approach. The interface is smeared (replaced by a transitional layer of
a finite thickness) primarily for the sake of numerical description. In order to obtain the
physically-relevant results one needs to establish the behaviour of a multiphase system in
the limit of infinitely thin interface, which is possible to obtain by running the simulations
for different values of the interface thickness and observing the limiting behaviour of a
multiphase system. Frequently, this is a computational consuming task, although, this
requirement applies to any diffuse-interface numerical approach.

We should also mention that the main advantage of the model is that the set of
obtained equations is closed, and now this model could be used for a variety of different
problems. Moreover, the applicability of the derived equations should not be strictly
restricted to the assumptions made during the derivation (i.e. to the vicinity to the
critical point). The standard Boussinesq approximation, for instance, is also derived in
the assumptions of smaller values of the density contrast and larger values of the Galileo
number, so that their product, the Rayleigh number, remains finite. Later, however, the
Boussinesq equations are frequently used for quite large values of the Rayleigh numbers.
The Landau free energy function, that we use to determine the thermodynamic model of
the binary mixture, was originally proposed for near critical systems, but this function
is in fact coincide with the ‘double-well’ potential (see Jacqmin 1999; Ding et al. 2007;
Ahmadlouydarab & Feng 2014) that is traditionally utilised for tracing the deformations
of immiscible interfaces (i.e. far from the critical point). Finally, we should mention that
the obtained model includes just one viscosity coefficient, which however does not imply
that the viscosity of the mixture is constant. As mentioned in the main part of the work,
we assume that the viscosity is a regular function of concentration, although for the
assumptions made, the leading order of the viscous force does not require the account of
the variations in the viscosity coefficient.

In the end, let us illustrate the use of the obtained equations for a very simple problem.
Namely, we obtain the state of quasi-equilibrium for two semi-infinite liquid domains that
are brought into contact. In the theory of vibrational convection (Gershuni & Lyubimov
1998) the state of quasi-equilibrium is determined as the state with no averaged flows (i.e.
u = 0), but with the non-zero pulsation motion. For simplicity, we neglect the gravity
effect, and consider the 2D solution only, introducing the Cartesian coordinates x and
y to characterise the spatial changes in the system along and across the liquid/liquid
interface. The equations that determine the quasi-equilibrium state read

∇
(
Π1

ρ

)
− C∇µ− ϕ

2
(w ·w0)∇C = 0, (4.10)

∇2µ = 0, µ = 2aTC + 4bC3 − ϵ∇2C, (4.11)

∇×w = ϕw0 ×∇C, ∇ ·w = 0. (4.12)

The solution of the equation for the chemical potential is trivial, µ = 0. This solution
defines the state of thermodynamic equilibrium for the binary system. The concentration
profile for this state is given by the well known tanh-solution,

C(y) = Ceq tanh

(
y

δeq

)
. (4.13)



Time-averaged equations 17

Here δ2eq ≡ −ϵ/aT and C2
eq ≡ −aT /(2b).

Next, we determine the structure of the pulsation field. For this problem it is convenient
to introduce the streamfunction, ψ, by using the following definitions, wx = ∂ψ/∂y and
wy = −∂ψ/∂x. We also assume that the imposed vibrational forcing is given by the
expression, w0 = aωj, with the direction of the vibrations given by the unit vector
j = (jx, jy). The field of the streamfunction is then determined by the equation

∇2ψ = −ϕaω
(
jy
∂C

∂x
− jx

∂C

∂y

)
. (4.14)

For the examined configuration the field of concentration is the sole function of y. Hence,
the pulsation flow would be absent if the directions of the vibrations is orthogonal to the
interface surface. If the vibrations are imposed along the interface, j = (1, 0), then there
is a no-zero pulsation flow as given below

w = (wx, wy) = (−ϕaωC(y), 0). (4.15)

Finally, one may also obtain the following expression for the modified pressure field,

Π1 =
1

4
ρ(ϕaω)2C2(y). (4.16)

The obtained expressions define the state of the quasi-equilibrium. The study of the
stability of this case would need a much more elaborate analysis due to a long number
of the non-dimensional parameters that enter the governing equations. The stability of
an interface between two miscible liquids that are just brought into contact and that fill
in a container subjected to high-frequency vibrational forcing is the focus of the second
part of our work.
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