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Abstract

Growing evidence shows that social media facilitate diffusion of both pro-recovery
and anti-recovery information among people affected by mental health problems,
while little is known about the associations of people’s activities in sharing
different types of information. Our work explores this question by analyzing a
large set of Twitter conversations among users who self-identified as eating
disordered. We use clustering algorithms to identify topics shared in online
conversations and represent interpersonal interactions by a multilayer network in
which each layer represents user-to-user communication on a different topic. By
measuring structural properties of the multilayer network, we find that (i) the
same set of users form social networks with different structures in communicating
different types of information and (ii) exposure to content on body image can
reinforce individual engagement in anti-recovery communication and weaken
engagement in pro-recovery communication. By measuring structural changes in
a sequence of temporal, multilayer networks built based on users’ conversations
over time, we further find that (i) actors previously engaged in pro-recovery
communication are likely to engage in anti-recovery communication in the future
and (ii) actors in anti-recovery communication have frequent entries into and
exits from such communication system. Our results shed light on the organization
and evolution of communication in online eating disorder communities.
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1 Introduction
Eating disorders (ED) such as anorexia and bulimia are complex mental illnesses

that can cause serious health consequences and have the highest mortality rate of

any mental illness [1, 2]. Despite such negative effects, there are many online pro-

ED (often known as pro-anorexia and pro-ana) communities that actively promote

ED as a legitimate lifestyle choice rather than a dangerous disease [3, 4, 5]. These

pro-ED communities can negatively affect people with and without ED, through

promoting unrealistic ideals of thinness, encouraging disordered eating behaviors,

and sharing harmful tips on how to develop and maintain ED (known as “thinspi-

ration” or “thinspo”) [6, 7, 4, 8, 9]. As a public concern, pro-ED communities draw

widespread criticism, particularly by so-called pro-recovery communities that aim

to raise awareness of ED and offer support for people to recover [10, 11, 12, 13, 14].

Under pressures from these pro-recovery communities and the general public, sev-

eral social media platforms have adopted censorship-based interventions for pro-ED
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communities, e.g., banning pro-ED content and user accounts on Tumblr[1] and In-

stagram[2] [15, 16, 17]. However, the efficacy of these interventions is still uncertain.

Concerns about this are heightened by recent findings that censoring pro-ED content

leads to a wide spread of more harmful alternatives to such content (e.g., content

sharing self-harm) [15, 16], and banning pro-ED users makes these individuals more

“invisible”, less reachable by health care providers and recovery-oriented informa-

tion [17]. These findings highlight the importance of understanding how different

types of information (not only pro-ED content but also ED-related content more

generally) flow through an online ED community and how these information flows

correlate with one another, before introducing interventions.

However, our understanding of information flows in online ED communities is lim-

ited, as prior studies in this field have often focused on content analysis and largely

ignored interaction patterns. Examples of these analyses are examining the types

of content shared in online ED communities [18, 19, 20, 21, 22, 23], characterizing

linguistic styles of individuals in online self-presentation [10, 12], identifying diag-

nostic information from language use in pro-ED content [24, 13], detecting lexical

variation of pro-ED content [15, 16], and measuring people’s attitudes on pro-ED

and pro-recovery information based users’ emotional expressions in online comments

[9, 11]. Yet, social interactions in information exchange and the resulting communi-

cation networks have been largely under-explored. As a result, little is known about

the organizational structure of communication in online ED communities and the

functional roles of individuals in communicating different types of information.

Although recent studies have turned attention from content analysis to network

analysis [25, 26, 27, 28], they either focus solely on a single type of communication

(e.g., sharing pro-ED content [28]) or do not distinguish different types of informa-

tion shared in online ED communities [25, 26, 27]. It remains unclear how different

types of communication correlate with one another in these communities. Insights

into the correlations among different types of communication can facilitate predic-

tions of an community’s responses to interventions. For example, if users’ activities

in two types of communication have a highly positive correlation, blocking one type

of communication is likely to promote the other type of communication.

In this work, we address these research gaps by using a multilayer network ap-

proach to systematically characterizing communication networks for a broad range

of types of content in an online ED community. We analyze a large set of Twit-

ter conversations (i.e., tweets with a “mention” or “reply”) among individuals who

self-identified by having ED in their Twitter profile descriptions and their online

friends, involving 2,206,919 tweets posted by 55,164 users over 7 years (from March

2009 and March 2016). Three major research questions guide our analysis: (i) what

types of content are often discussed in an online ED community? (ii) how do differ-

ent types of content flow through interpersonal communication networks? and (iii)

whether and how do different types of communication correlate with one another?

The main contributions of this work are as follows.

First, we demonstrate the use of unsupervised clustering methods to identify the

types of content discussed in online ED communities. Unlike previous studies that

[1]https://staff.tumblr.com/post/18563255291/follow-up-tumblrs-new-policy-against
[2]http://instagram.tumblr.com/post/21454597658/instagrams-new-guidelines-against-self-harm

https://staff.tumblr.com/post/18563255291/follow-up-tumblrs-new-policy-against
http://instagram.tumblr.com/post/21454597658/instagrams-new-guidelines-against-self-harm


Wang et al. Page 3 of 22

assume a type of content with predetermined features (e.g., a set of keywords)

[9, 11, 12, 13, 25, 26, 28], our approach allows themes of content to emerge from

the data, which can reduce bias due to predetermined assumptions and provide an

overall view of the full range of topics discussed in an online ED community.

Second, we propose to represent types of communication in online ED commu-

nities by a multilayer network in which each layer is a network representing inter-

actions among the same set of users in discussing a specific topic. Compared to

traditional monolayer networks [29], multilayer networks provide (i) a more natu-

ral representation of a communication system by capturing the multiplex nature

of human interactions [30, 31, 32], and (ii) a more elegant and flexible way for

incorporating multidimensional information. Based on this multilayer representa-

tion, we (i) characterize different types of communication by measuring structures

of single-layer networks in the multilayer communication network, and (ii) examine

interdependencies of different communication by measuring structural correlations

of inter-layer networks.

Finally, we study dynamics of user communication and reveal underlying pro-

cesses that lead to correlations of communication on different topics. By measuring

structural changes and stability in a sequence of temporal, multilayer networks that

are built based on users’ conversations over time, we find that (i) actors previously

engaged in pro-recovery communication are likely to engage in pro-ED communica-

tion in the future and (ii) actors engaged in sharing pro-ED content have frequent

entries into and exits from the corresponding communication network.

2 Data
Our dataset is collected from Twitter, a microblogging platform that allows millions

of people to interact by exchanging short tweet messages. Whereas many social me-

dia sites restrict pro-ED content [15], Twitter has not yet enforced any restrictions

[26]. This makes Twitter a unique platform to examine communication naturally

happening within online ED communities in a non-reactive way. All data used in

this study is publicly accessible information on Twitter; no personally identifiable

information is used. Next, we provide details about the dataset we used.

2.1 Collecting user sample

We use a snowball sampling method [33] to gather data about individuals affected

by ED on Twitter. We first search for ED-related tweets by a set of keywords

(e.g., “eating disorder”, “anorexia” and “bulimia”) via the Twitter application pro-

gramming interfaces (APIs). From authors of 1,169 ED-related tweets, we identified

33 users who self-reported both ED-diagnosis information (e.g., “eating disorder”,

“edprob” and “proana”) and personal bio-information (e.g., height and weight) in

their Twitter profile descriptions. Starting with these seed users, we use a snowball

sampling procedure through users’ who-follows-whom networks to expand the user

set. This results in 3,380 ED users who self-identified as disordered in their profile

descriptions. Our data validations show that 95.2% of the ED users are likely to be

affected by ED (i.e., a high precision, see [33] for more details). However, the above

process does not ensure a high recall, as we miss users who did not disclose their

disorders in Twitter profile descriptions.
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To obtain a more representative sample of online ED communities, we further

collect ED users’ Twitter friends (including followees and followers) who posted

ED-related content in tweets. To this end, we first crawl all friends of each ED user

on Twitter, yielding 208,065 users (including the 3,380 ED users). For each user, we

retrieve up to 3,200 (the limit returned from the Twitter APIs) of their most recent

tweets, resulting in 241,243,043 tweets. This collection process finished on March 2,

2016. Then, we search for users who posted an ED-related hashtag in their historical

tweets (see Appendix, Section 1 for details), resulting in 41,456 ED-related users.

2.2 Tracking interpersonal conversations

The other task of our data collection is to track interpersonal communication of

ED-related users. We focus on users’ communication via the “mention” and “reply”

interactions as these interactions are the two main ways to conduct direct commu-

nication on Twitter[3]. Also, as users can discuss a topic by sending and replying

to tweets over several rounds, a single tweet message often cannot provide com-

plete context to understand human communication. For example, it may be hard

to recognize that user A might dissuade user B from committing suicide based on

a single tweet “@XXX please don’t do it, I love you so much!”, without consider-

ing that this tweet is user A’s reply to user B’s tweet “9 30pm on the 8th of July

2012 I will hopefully die, so n/r going to write my suicide note”. Thus, to obtain a

relatively complete context in a discussion, we shift attention from single tweets to

conversations, i.e., aggregations of successive tweets in a discussion [35].

Specifically, for each user, we search for their tweets that contain a mention or re-

ply. Then, we aggregate tweets into conversations based on the “in reply to status id”

field returned by the Twitter APIs. Each conversation consists of a seed tweet, all

tweets in reply to it, and replies to the replies, which can involve several tweets

and users. Mentions that do not receive any replies are considered as individual

conversations. We obtain 1,044,573 conversations consisting of 2,206,919 tweets. All

re-tweets are excluded, since the mentions or replies in a re-tweet are conducted by

the original author of the re-tweet, not by users who re-tweet it. Detailed statistics

of these conversations are presented in Appendix, Section 2.

3 Results
In this section, we present our analyses of Twitter conversations in online ED com-

munities. These analyses involve three steps: (i) characterizing the types of content

in users’ conversations; (ii) examining how different types of content flow through

interpersonal interactions and measuring structural correlations among different

types of communication; and (iii) exploring how different types of communication

correlate by analyzing temporal information.

[3]Although “re-tweet” interactions are also widely used to spread information on

Twitter, it is hard to trace communication pathways in a re-tweeting network based

on Twitter APIs. This is because, in the settings of Twitter APIs, all re-tweets of a

tweet in each cascade are directly linked to the original tweet [34]. That is, if Bob

re-tweets Andy and then Cole re-tweets Bob, both Bob and Cole are linked to Andy

in a re-tweeting network, even though Cole did not re-tweet Andy directly.
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3.1 Content analysis

Common methods for characterizing the types of textual content are topic model-

ing (e.g., latent Dirichlet allocation models [36, 35]) and content-based clustering

methods (e.g., bag-of-words and word/document embeddings [37, 38]). However,

these methods generated topics that were hard to interpret in our preliminary ex-

periments. Previous studies have shown that these methods perform poorly when

applied to short and noisy tweets [35]. Although we aggregate short tweets into a

conversation, most conversations are still short (on average 21.9 words in each con-

versation) and they are often dominated by general chats (e.g., “why do you follow

me?”). Inspired by prior work [34], we here characterize the types of users’ conver-

sations by identifying topics of hashtags used in these conversations. As hashtags

are often used to annotate the theme of a tweet, these clusters of hashtags have

been shown to effectively indicate the underlying topics in tweets [39, 40, 34].
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Figure 1 Topics in hashtag co-occurrence networks. (a-e) Co-occurrence networks of the most
frequent hashtags in each of the five popular topics, where each node denotes a hashtag. The size
of a node is proportional to the number of tweets with a hashtag and edge width is proportional to
the number of co-occurrences between tags. (f) Co-occurrences of popular topics involving more
than 1,000 users, where each node denotes a topic as labeled. The node size is proportional to the
number of tweets mentioning a topic and edge width is proportional to the ratio of the number of
tweets mentioning both topics over the number of tweets mentioning at least one topic.

We detect topics of hashtags by performing community detection in co-occurrence

networks of hashtags. We build an undirected, weighted hashtag network based on

the co-occurrences of hashtags in the tweets of users’ conversations, where an edge is

weighted by the co-occurrence count of hashtags. To filter out noise, only tags used

by more than three distinct users and used in more than three tweets are considered.

The resulting network contains 65,756 nodes and 109,663 edges, partitioned in 672

connected components, where 5,791 nodes are in the giant component and 4 in the

second largest component. Due to the dominance, we focus on analyzing the giant

component and obtain 26 topic clusters of hashtags by applying the Louvain method

[41] to this network[4]. The resulting modularity is Q = 0.51 (z = 6.63 compared

[4]We also tried other well-established methods for community detection in networks,

e.g., the Infomap algorithm [42]. These methods produced comparable results in our
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to a random configuration model [43], p < 0.001 in a two-tailed test), indicating a

clustered topic structure in the hashtag co-occurrence network. By examining the

numbers of tweets and users related to each of the 26 topics identified above, we find

that users have consistently high levels of engagement in five topics with IDs 2, 4, 8,

16 and 22 respectively, whereas other topics are much less popular (see Appendix,

Section 3). To avoid analyzing topics of interest to a specific subgroup of online ED

communities, we focus on the five popular topics in this work.

Figures 1(a-e) show the most frequent hashtags and their co-occurrence networks

for each of the five popular topics. As shown in Figure 1(a), topic 2 is dominated by

“#eatingdisorders”, “#mentalhealth”, “#recovery” and “#bellletstalk”[5], showing

a clear tendency to support recovery from ED and promote mental health [25, 13].

We label this topic mental. In contrast, topic 4 (Figure 1(b)) is dominated by a single

tag “#ff” which is likely to be an abbreviation of “#followfriday”, given frequent

co-occurrences between the two tags. These tags are often used in a weekly social

events where people recommend their followers to follow more people on Twitter[6].

We thus label this topic social. Figure 1(c) shows that topic 8 is mainly concerned

with fitness activities and diet (thus labeled fitness). Topic 16 (Figure 1(d)) is about

“#picslip” which is often used by users to post a picture of themselves[7]. Other

tags that highly co-occur with “#picslip” are “#bodyslip”, “#fat”, “#selfharm”

and “#failure”, indicating a theme of body image and body dissatisfaction, thereby

labeled body. As shown in Figure 1(e), topic 22 is mainly about thinspiration (or

pro-ED) content (e.g., “#thinspo” and “#proana”) which is designed to inspire

people to lose weight and stay extremely thin [18, 19]. We label this topic thinspo.

Moreover, to illustrate the relationships of these popular topics, we visualize a co-

occurrence network of popular topics in Figure 1(f).

To verify our results, we check (i) if the topics found above cover real-world events

in ED communities, and (ii) if the relationships of these topics align with findings

in prior qualitative studies on online ED content [18, 19]. Results of these checks

strongly confirm the reliability of our content analysis (see Appendix, Section 4).

3.2 Network analysis

We proceed to explore how different types of content flow through interpersonal

interactions using network analysis methods. To do this, we first categorize users’

conversations based on the topics of hashtags found above. Given a conversation,

we track the sequence of hashtags used in the conversation and annotate the topics

of this conversation with the topic labels of these hashtags. To avoid ambiguous

annotations, we only consider conversations that are labeled with only one unique

topic; those with multiple topics or without a hashtag are excluded in our analysis[8].

This results in 102,554 conversations consisting of 201,155 unique tweets. Then, we

preliminary analysis. In this work, we use the Louvain method due to its efficiency

of processing large-scale networks [41].
[5]An annual campaign on social media to break the silence around mental illness

and support mental health: https://letstalk.bell.ca/en/
[6]https://www.urbandictionary.com/define.php?term=followfriday
[7]https://www.urbandictionary.com/define.php?term=picslip

[8] While this process reduces the size of our raw data, it can avoid biased results.

For example, one could build classifiers based on content features (e.g., bag-of-words

https://letstalk.bell.ca/en/
https://www.urbandictionary.com/define.php?term=followfriday
https://www.urbandictionary.com/define.php?term=picslip
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represent information about who interacts with whom and on which topic in users’

conversations via a multilayer network with N = 55, 164 nodes representing users

and M = 5 layers representing topics. The multilayer network can be described

by a set of M adjacency matrices, one for each layer, G = [A[1], A[2], ..., A[M ]] ∈
RN×N×M . Each layer A[α] is a directed, weighted network, in which a link a

[α]
ij runs

from a node representing user i to a node representing user j if i mentions or replies

to j in the conversations on topic α = 1, 2, ...,M , weighted by the frequency of these

mentions and replies.

Based on this multilayer representation, we characterize communication patterns

in online ED communities by quantifying structural properties of the multilayer

network. First, we measure structural properties of single-layer networks (i.e., each

layer is considered as a separated network) to examine organizational features of

each type of communication. Second, we measure inter-layer dependencies in the

multilayer network (i.e., structural correlations between inter-layer networks) to

explore associations of different types of communication.

3.2.1 Structures of single-layer networks

We first examine structures of single-layer networks to explore the organization of

an online ED community in a type of communication. Figure 2 shows cumulative

in- and out-strength distributions of each single-layer network, and Table 1 gives

details about structural properties of these networks. The key results are as follows.
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Figure 2 Distributions of in-/out-strength (sin/sout) at each layer and the full aggregated
network (AGG.). All values of s are shifted by 1 to account for nodes with zero values on the
log-log plots. Lines fit a power-law distribution P (s) = s−λ using the maximum likelihood
estimator and a p-value for the goodness of fit is obtained using a bootstrapping procedure [45].
The mean values and standard deviations of exponents λ are shown in the legends, and p-values
obtained via 1,000 bootstrap replications are reported in parenthesis.

Users’ engagement levels in posting harmful content have skewed dis-

tributions. Figures 2(a-e) show two distinct behaviors in in- and out-strength (sin

[44]) in conversations labeled with a single topic to predict the most likely topic for

conversations labeled with multiple topics and conversations without a hashtag.

This however can introduce classification errors and noise data.
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Table 1 Statistics of single-layer networks and the aggregated (AGG.) network, including 1. the

number of active nodes N [α], i.e., nodes that are connected by at least one in-/out-link [30]; 2. the

total number of edges E[α]; 3. the average strength 〈s[α]〉; 4. density D[α] measuring the ratio of the
number of edges to maximum possible number of edges; 5. fraction of nodes in the giant weakly
connected component %G[α]; 6. reciprocity r[α] quantifying the likelihood of nodes with mutual

links; 7. the Kendall’s τ correlation between in- and out-strengths τ(s
[α]
in , s

[α]
out). 8. global clustering

coefficient C[α] which measures the extent that two neighbors of a node are connected; 9.

assortativity coefficient by strength A
[α]
s , i.e., the correlation between the out-strengths of source

nodes and the in-strengths of destination nodes [46]. Values of z(x) are z-scores for the empirical
results based on null models. For each property x of a network, we generate 1,000 randomized
networks via the configuration model [43] and measure the property in these randomized networks.
Then, the deviation of x from randomness is quantified by a z-score: z(x) = (x− 〈x〉)/σx, where 〈x〉
is the mean value of the property in randomized networks and σx is the standard deviation.

Network Mental Social Fitness Body Thinspo AGG. (all αs)

N [α] 9,381 28,959 17,689 11,199 14,156 55,164
E[α] 17,306 54,609 34,040 17,881 27,807 140,330
〈s[α]〉 3.55 2.89 2.94 2.46 2.96 4.32
D[α] 1.97×10−4 6.51×10−5 1.09×10−4 1.43×10−4 1.39×10−4 4.61×10−5

%G[α] 76.55% 89.17% 83.84% 73.87% 88.87% 95.67%
r[α] 0.24 0.19 0.36 0.45 0.33 0.29

τ(s
[α]
in , s

[α]
out) -0.06 -0.04 0.09 0.21 0.13 0.11

C[α] 0.06 0.04 0.03 0.03 0.01 0.03
z(C[α]) 40.70 198.96 61.25 109.21 6.29 160.67

A
[α]
s -0.08 -0.07 -0.1 -0.02 -0.08 -0.1

z(A
[α]
s ) -10.64 -17.24 -19.05 -4.60 -14.04 -37.80

and sout) distributions of single-layer networks. Specifically, the distributions of sin

are more skewed than those of sout in the mental, social and fitness layers, while

the distributions of sout are more skewed in the body and thinspo layers. These

behaviors can be quantified by fitting a power-law function P (s) = s−λ. We find

that all networks have comparable values of λ in sin distributions, indicating similar

patterns of popularity ranking for actors in different interactions. However, the sout

distributions in the body and thinspo layers (λ ≈ 3) have a larger value of λ than

those in the mental, social and fitness layers (λ ≈ 2). As exposure to thin-ideal con-

tent (thinspo and body) is associated with higher risks of ED [47, 48], this implies

that the fractions of users who actively post harmful content are relatively small.

Private communication takes place in small groups. As shown in Table 1,

mental and body layers have lower fractions of nodes in the giant weakly connected

component %G[α] than other layers, revealing that users tend to form smaller com-

munities when discussing mental health and body image. This may be related to

the private nature of these topics—due to fear of rejection and feelings of shame

[49, 50], people are more likely to talk about their illnesses and body image to

someone they can trust rather than any friends online.

Interactions related to body image are reciprocal. Table 1 shows that

interactions on body image and appearance management (fitness, body and thinspo)

have higher degrees of reciprocity r[α] than those on other types of content (mental

and social). High reciprocity indicates a tendency to reciprocate the interactions

received from others, which can reward and reinforce these interactions [51]. The

high degrees of reciprocity of interactions in the fitness, body and thinspo layers

are confirmed by positive correlations between in- and out-strengths (τ > 0), while

τ < 0 implies a suppression of reciprocity in the mental and social layers.

Users in general communication cluster. While the clustering coefficients

C [α] are low in each network (Table 1), the value of z(C [α]) in general commu-
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nication (social) is larger than those in communication on specific topics (thinspo

and mental). Higher values of z(C [α]) indicate that users are more likely to cluster

together, compared to a baseline of random clustering. Such high value of z(C [α])

in general communication may be due to the fact that more general topics tend

to be of interest to a wider variety of individuals, and a higher level of individuals

sharing common interests leads to a more cohesive social community [52].

Private communication forms a weakly disassortative network. As Ta-

ble 1 shows, all networks are characterized by disassortative mixing by strength

(A
[α]
s < 0), i.e., hubs tend to be attached to peripheral nodes, which aligns with

prior evidence on online social networks [53]. Compared to null models, the disassor-

tative strengths in private communication (body and mental) are relatively weaker

than those in other communication (social, fitness and thinspo). This implies that

people tend to discuss private topics with others who have similar social-status

characteristics in a community.

The independent analysis of single-layer networks described above shows different

organizational structures in different types of communication, highlighting the mul-

tiplex nature of human interactions [54, 55]. To demonstrate the disadvantage of not

distinguishing types of communication, we include the statistics for the aggregated

network (i.e., aggregating all single-layer networks in a single network) in Figure 2

and Table 1. We see that ignoring the differences of interactions leads to the loss of

essential information and a misrepresentation of the system, e.g., losing information

on differential network structures between harmful and healthy communication.

3.2.2 Dependencies between inter-layer networks

We next extend the independent analysis of single-layer networks to analysis of

interdependencies between these networks. The aim of this interdependency analysis

is to examine the correlations of individuals’ activities and their functional roles in

different types of communication. We consider the following measures.

Activity correlation: the tendency of users to be involved in one type of com-

munication if they are involved in another type of communication. This can

be measured by multiplexity, i.e., the fraction of nodes that are active at both

layers α and β in all nodes of a multilayer network [30].

Role correlation: the extent to which hubs (e.g., those users who have high pop-

ularity or active engagement) in one type of communication are also hubs

in another type of communication. We measure this by the Kendall’s τ rank

correlations of nodes’ in-/out-strengths between two layers of the multilayer

communication network. To avoid bias due to a low degree of multiplexity in

real-world networks [30], we only consider nodes that are active in both layers.

Link overlap: the tendency that user i connects to user j in both types of com-

munication. This can be measured by the Jaccard coefficient between two sets

of links (binary links) at two layers [54].

Link-strength correlation: the extent to which user i has frequent interactions

with user j in two types of communication. We measure this by Kendall’s τ

correlation of link strengths between two layers. Due to the sparseness of con-

nections in real-world networks (see Table 1), we only consider links between

two nodes that are present in the two layers.
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These measures alone, however, are not adequate for evaluating inter-layer corre-

lations. This is because the values of these measures are influenced by the size and

connectivity of each single-layer network, which can be related to the processes of

data collection and content categorization discussed in the previous sections. For

a reliable evaluation, we need to assess the statistical significance of a correlation

result. A standard statistical approach for distinguishing patterns of networks from

those generated by chance is null models [56, 43]. A null model generates patterns

by randomizing an observed network many times under proper constraints; an ob-

served pattern that differs from the distribution of randomly generated patterns is

potentially derived from meaningful processes rather than chance [57, 58]. Accord-

ing to the null hypothesis in question, null models can have different constraints and

randomization processes. Here, we consider four null models for testing hypotheses

of interest (see Table 2). In each model, randomized networks in each layer have the

same sizes (i.e., the numbers of active nodes and edges) as the original ones, so as

to control for the effects of data collection and content categorization on inter-layer

correlations. Details of these null models are introduced in Appendix, Section 5.

Table 2 Null hypotheses on correlations of individuals’ activities and roles in types of communication.

Correlation Null hypothesis Null model
Activity correlation The activities of users in a type of communication are

unrelated to those in other types of communication.
Hypergeometric model
[30]

Role correlation The roles of users in a type of communication (i.e.,
their positions in a type of communication network)
are unrelated to those in other communication.

Independent multi-
layer node-permutation
model [59]

Link overlap Users’ interconnections in one type of communica-
tion are unrelated to those in other communication.

Independent multilayer
configuration model [58]

Link-strength cor-
relation

The strength/frequency of interactions between two
users in one type of communication is unrelated to
those in other communication.

Independent directed-
weight reshuffling model
[60]

We generate 1,000 randomized multilayer networks for each null model, and mea-

sure a z-score for the empirical value of an inter-layer correlation measured in the

original network x as z(x) = (x−〈x〉)/σx, where 〈x〉 and σx are the mean and stan-

dard deviation of the values of x measured in randomized networks respectively.

The results are shown in Figure 3, which can be summarized as follows.

Social networks in the body layer bridge those in the mental and thin-

spo layers. Figure 3(a) shows z-scores of inter-layer multiplexity compared to a

hypergeometric model [30]. The largest z-score occurs between body and thinspo

layers, indicating that the correlation of users’ activities in sharing thinspo and

body topics is much stronger than expected at random. On the other hand, while

the overlap of actors in mental and thinspo layers is not significantly different from

randomness, actors in the mental layer have a pronounced overlap with those in the

body layer. These results imply that the group of users who engage in sharing body

may bridge two groups who engage in sharing mental health and thinspo content.

Actors play different roles in healthy and harmful communication. Fig-

ures 3(b-d) show z-scores for in- and out-strength correlations of nodes in pairwise

layers, as compared to an independent multilayer node-permutation model [59]. In

most pairwise layers, nodes with higher in-/out-strengths in a layer tend to have

higher in-/out-strengths in the other layer (Figures 3(b-c)), which indicates that

popular/active users in a field are likely to be popular/active in the other field.
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Figure 3 Deviations of empirical pairwise correlations of inter-layer networks to null models. (a)
Multiplexity, (b-d) in-/out-strength correlations, (e) link overlaps and (f) correlations of link
strengths, where p < 0.05 when z < −1.96 or z > 1.96 with assumptions of normality.

However, nodes’ positions in the mental layer are not significantly correlated with

those in the body layer, implying that actors may play a different role in these

types of communication. Surprisingly, this pattern is absent between the mental

and thinspo layers, i.e., nodes’ positions in these layers are significantly correlated.

A possible reason for such correlations is that pro-recovery users who actively post

mental health may send healthy information to pro-ED users who post thinspo

content as interventions [25]. This can be illustrated by the results in Figure 3(d)

that nodes with higher out-strengths in the thinspo layer are likely to have higher

in-strengths in the mental layer. That is, users who post more thinspo content tend

to receive more content on mental health. Figure 3(d) also reveals users’ responses

when receiving different content. For example, nodes with higher in-strengths in the

fitness and body layers tend to have higher out-strengths in the thinspo layer and

lower out-strengths in the mental layer. This indicates that receiving more fitness

and body content may reinforce users’ engagement in posting thinspo content and

reduce their engagement in posting mental health.

People often connect to the same friends in different types of com-

munication. Figure 3(e) shows z-scores for overlaps of links in pairwise layers, as

compared to an independent multilayer configuration model [58]. We see that high

z-scores show in each pair of layers, indicating that users generally tend to connect

to the same friends when discussing different topics. This aligns with prior evidence

that people are often surrounded by a relatively stable social network [61].

Strengths of interactions on mental health generally have no significant

correlations with those on other content. Figure 3(f) shows z-scores for cor-

relations of link strengths, compared to an independent directed-weight reshuffling

model [60]. A notable pattern is that users who often exchange content of mental

health have no significant tendencies to frequently discuss other topics such as so-

cial, fitness and body. This can arise from two different processes: (i) actors in the

mental layer exclusively focus on discussing mental health, while largely ignoring
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interactions on other topics; and (ii) actors who previously engaged in other topics

are less likely to engage in discussing mental health later. Distinguishing the two

processes requires detailed time information on different interactions, which will be

discussed in the next section.

3.3 Analysis of temporal patterns

To better understand the relationships among different types of communication,

we further consider the time dimension of Twitter conversations and examine the

dynamics of communication networks over time. Compared to the above analysis on

static networks, dynamic analysis on temporal networks allows to explore how users

start/stop to engage in a topic and change interests from one topic to others, yielding

further insights into the correlation patterns of different types of communication.

To this aim, we represent temporal information about who interacts with whom on

which topic and when in Twitter conversations using temporal multilayer networks.

Specifically, we divide users’ conversations into multiple sub-sets over time periods

1, ..., T , based on the posting timestamp of a tweet. To reduce potential bias due to

intermittent posting activities of users and temporal popularity of topics online[9],

we build temporal networks by a fixed number of tweets instead of a fixed time

interval. We rank all tweets by a chronological ordering and partition the tweets

into subsets with a fixed number of tweets. The number of subsets is estimated

by the Freedman-Diaconis rule [62], resulting in 55 subsets. For conversations in

a subset at period t ∈ [1, ..., T ], we build a temporal multilayer network Gt =

[A
[1]
t , A

[2]
t , ..., A

[M ]
t ] ∈ RN×N×M in the same way that we build the static multilayer

network, where M layers representing M topics and N nodes representing N users

are fixed over time. Detailed statistics for these temporal multilayer networks are

reported in Appendix, Section 6.

Based on these temporal networks, we study the dynamics for users’ communi-

cation in two ways. First, we measure the likelihood of users engaging in a type

of communication given that they have engaged in other types of communication.

Clarifying such likelihood is not only useful to understand how the above correlation

patterns appear among different types of communication, but also helps to identify

signs suggestive of engagement in a type of communication, e.g., risk factors for en-

gaging in harmful communication. Second, we examine the stability of a community

of users who engage in a type of communication over time, particularly on inves-

tigating the presence of hardcore actors who have long-standing involvement in a

type of communication. Evidence from this investigation can give insights into what

strategies are likely to achieve quality, cost-effective outcomes in interventions. For

example, if a type of communication is mainly carried out by a fixed set of hard-

core actors, banning a small number of these actors can lead to serious damage to

the connectivity of the communication network [63] and reduce the efficacy of the

network in shaping individual cognition and behavior [64], while banning a larger

number of actors at random may have limited influence on the network [65].

[9]As shown in Figure S2(d) of Appendix, users are highly active in posting tweets

at some time periods, e.g., in 2013. This can be related to several factors, e.g., users

in our sample might have high levels of engagement at these periods (i.e., sampling

bias), or some topics were popular at these periods (i.e., environmental factors).
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3.3.1 Transition of engagement activities

We first examine how users change their engagement between types of communica-

tion by measuring transitions of nodes’ activities across layers in temporal multilayer

networks. As users can engage in discussing multiple topics at the same time period,

following prior work [30], we represent the activity state of node i across layers at

time t by a node-activity vector bi,t = (b
[1]
i,t, ..., b

[M ]
i,t ), where b

[α]
i,t = 1 if node i is active

at layer α of Gt (i.e., user i engages in topic α at time t) and b
[α]
i,t = 0 otherwise.

For computational efficiency, each binary vector bi,t = (b
[1]
i,t, ..., b

[M ]
i,t ) is encoded as a

decimal integer Ri,t =
∑M
m=1 b

[m]
i,t · 2M−m, where Ri,t = 0 indicates that node i has

no interaction with others at time t and Ri,t = 2M − 1 indicates that node i inter-

acts with others in discussing all topics at time t. Then, we measure the transitions

of users’ engagement from a set of topics to another set by the period-to-period

transition probability of node i from state Rt = x to state Rt+1 = y[10] as:

P (Rt+1 = y|Rt = x) =

∑T−1
t=1

∑N
i=1 I(Ri,t = x,Ri,t+1 = y)∑T−1
t=1

∑N
i=1 I(Ri,t = x)

. (1)

where I(Ri,t = x,Ri,t+1 = y) is an indicator function denoting whether node i has

both an activity state Ri,t = x at time t and a state Ri,t+1 = y at t+ 1, defined as:

I(Ri,t = x,Ri,t+1 = y) =

{
1 if Ri,t = x and Ri,t+1 = y

0 otherwise.
(2)

Similarly, I(Ri,t = x) = 1 if node i has an activity state Ri,t = x at time t and

I(Ri,t = x) = 0 otherwise.

Figure 4(a) shows results of transition probabilities P (Rt+1|Rt) in our data, where

we only consider nodes that are active in at least one of the two successive periods,

i.e., Ri,t +Ri,t+1 > 0. These results reveal the following patterns.
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Figure 4 Transitions of engagement in different topics. (a) Transition probabilities of topic
engagement between two subsequent observations Rt and Rt+1; (b) Fractions of users who
posted content on topic α earlier will post β later (note that

∑
β P (β|α) is not necessarily equal

to 1 as a user can post multiple different topics β after posting α); (c) Transition probabilities of
topic engagement between the beginning Rb and the end Re of participation.

Users tend to shift engagement from healthy communication to other

communication. One notable pattern in Figure 4(a) is that the probability values

[10]For simplicity, we assume that the conditional probability for engagement at the

next period depends only on the current state of engagement and not on the states

of engagement at previous periods.
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in region I, namely P (Rt+1 > 16|Rt < 16), are smaller than those in other regions.

Since Rt ≥ 16 and Rt < 16 denote whether nodes are active in the mental layer

or not respectively, this result indicates that users who previously engaged in other

topics are less likely to discuss mental health subsequently. In contrast, the values

of P (Rt+1 < 16|Rt > 16) in region IV are relatively high, showing that users who

previously talked about mental health tend to change to talk about other topics

like thinspo (i.e., Rt+1 = 1). Together, these results imply that users are more likely

to shift engagement from pro-recovery to pro-ED communication than vice versa.

To reinforce the above argument on users’ engagement between pro-recovery and

pro-ED communication, we inspect users’ historical tweets and compute the prob-

ability that users post content on topic β after posting content on topic α. The

results are shown in Figure 4(b). We see that 17% of users who posted mental

earlier will post thinspo later, while only 10% of users who posted thinspo earlier

will post mental later, which confirms that users are more likely to shift engage-

ment from pro-recovery to pro-ED communication. Also, the probabilities in the

last row of Figure 4(b) are relatively low (P (β|α) ≤ 0.12 when α 6= β), indicating

that users previously engaged in posting other content are less likely to engage in

posting mental health. This explains why the link strengths in the mental layer are

less correlated with those at other layers (Figure 3(f)). Moreover, the highest value

of P (β|α) = 0.26 occurs when users post body content after posting thinspo. This

explains the significant inter-layer correlations between body and thinspo (Section

3.2.2), and also confirms that individuals are likely to engage in comparison of body

image after viewing thinspo content [66].

Users interested in a specific topic earlier tend to engage in the same

topic later. Another notable pattern in Figure 4(a) is the relatively high values of

P (Rt+1|Rt) when Rt+1 = 1, 2, 4, 8, 16 and Rt = 0. Since Rt = 0 denotes users having

no engagement in the communication system at time t and Rt+1 = 1, 2, 4, 8, 16

denotes users engaging in a single topic at t+1, this result suggests that a relatively

large number of new users (and those who restore to active state after an inactive

period) join the communication system by discussing a single topic. Similarly, the

results of P (Rt+1|Rt) when Rt+1 = 0 show the statuses of users’ engagement in

topics before they leave the system. We see that the values of P (Rt+1|Rt) when

Rt+1 = 0 and Rt = 1, 2, 4, 8, 16 are generally high, indicating that users have

high dropout rates when discussing only a single topic. Thus, a natural question is

whether users have constant interests in the same topics at the beginning and the

end of participation in the communication system.

To explore this question, we use the same method described above to measure the

beginning-to-end transition probabilities P (Re|Rb), where Rb and Re are nodes’

activities across layers at the beginning and the end of participation, respectively.

To avoid overestimation of P (Re|Rb) for users who are observed only in one time

period[11], we only consider nodes that are active at least in two different temporal

networks (i.e., 1 ≤ b < e ≤ T ). The results are shown in Figure 4(c). As expected,

high probabilities of P (Re|Rb) appear when Re = Rb (highlighted in a red line)

and Rb = 1, 2, 4, 8, 16, indicating that users who engage in a single topic earlier

[11]For a user i who is observed once, the initial state of participation Ri,b and the

final state of participation Ri,e are the same, leading to P (Ri,e|Ri,b) = 1.
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are more likely to engage in the same topic later. However, this pattern is absent

when users engage in more than one topic at an early stage, i.e., Re = Rb but Rb 6=
1, 2, 4, 8, 16. Measuring Cohen’s κ between Ri,b and Ri,e for each user i confirms

that the consistency between the beginning and end of participation for users with

Ri,b = 1, 2, 4, 8, 16 (κ = 0.34) is higher than that with Ri,b 6= 1, 2, 4, 8, 16 (κ = 0.01).

The diversity of users’ interests decreases over time. We also notice that

the probabilities in region II of Figure 4(c) are higher than those in region I. In

region II, Rb > Re, meaning that users who engage in a wide range of topics at

the beginning of participation tend to focus on a small number of specific topics

at the end of participation. To verify this pattern, we measure the diversity of

users’ interests in tweets over sliding windows. Again, we set sliding windows by a

fixed number of tweets rather than a fixed time interval. This is to avoid bias from

intermittent activities of users, e.g., as a user becomes less active in posting content,

the number of tweets posted in a fixed time interval decreases and the diversity of

topics in these tweets will also decrease over time. Given user u posting n distinct

tweets on topics T1, ..., Tn (with repetition), the diversity of posting interests of u

in window i ∈ [1, n− k + 1] is measured by the entropy of topics Ti, ..., Ti+k:

Hi(u) = −
∑

Tj∈Tu,i

P (Tj) logP (Tj), (3)

where Tu,i is the set of distinct topics among Ti, ..., Ti+k. P (Tj) = C(Tj)/k in which

C(Tj) counts the frequency of Tj in Ti, ..., Ti+k. A larger value of Hi(u) indicates a

higher degree of diversity in users’ interests. In a similar way, we also measure the

diversity of user interests based on tweets that are received from other users.
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Figure 5 Mean entropy 〈Hi〉 and 95% CI of topics in (a) posted and (b) received tweets over
sliding windows with a size of k = 10. CI become wider due to the decreased sample sizes of users
having a large number of tweets. Legends report estimated coefficients B and p-values in a linear
regression model: 〈Hi〉 = Bi+ ε, where estimations are based on windows over i ∈ [1, 150] due to
relatively small mean errors in this range.

Figure 5 shows the mean entropy 〈Hi〉 and 95% confidence intervals (CI) of topics

in tweets posted and received by users over sliding windows, where a window size

of k = 10 is used. Inactive users who have posted or received less than 20 tweets

are excluded to avoid noise. Both plots show that the diversity of user interests has

a decreasing trend over time. Results of linear regression models that relate 〈Hi〉
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to a function of i confirm negative correlations between 〈Hi〉 and i, with p < 0.001

in both models. Robustness checks using other window sizes and thresholds for

excluding inactive users produce similar results. These findings strongly support

the hypothesis that users tend to focus on a small number of specific topics as they

engage more online. Moreover, the diversity of interests in received tweets declines

more slowly, as compared to that in posted tweets. This hints a time-lag between

the two trends, likely because a user may continue to receive information on a topic

from other users even when the user loses interests in posting the topic.

3.3.2 Stability of communities

While “dynamics” typically imply changes, another important direction in studying

the evolution of social networks is to examine the stability or sustainability of a

network over time [64, 67, 68]. The core concept of such research is that members

of a social network retain and remember historical ties to former members of the

network. This ongoing strengthening of relationships will affect the extent to which

the interpersonal network can shape cognition and behavior [64]. As such, we now

turn our focus from analyzing changes in topics of conversations to studying stability

of a community of users involved in a type of communication. We measure the

stability of a community by overlaps of users who engage in the same type of

communication over time, i.e., the overlaps of active nodes in the same layer α in

different pairs of temporal multilayer networks Gt and Gt+∆t. This can be computed

by the Jaccard similarity of nodes that are active in G
[α]
t and G

[α]
t+∆t as:

J [α](t, t+ ∆t) =
N

[α]
11

N
[α]
01 +N

[α]
11 +N

[α]
10

, (4)

where ∆t ∈ [1, T −1] is the time interval between two networks Gt and Gt+∆t. N
[α]
11

is the number of nodes that are active at both G
[α]
t and G

[α]
t+∆t, N

[α]
01 is the number

of nodes that are active at G
[α]
t+∆t but not in G

[α]
t , and N

[α]
10 is the number of nodes

that are active at G
[α]
t but not in G

[α]
t+∆t. Then, we calculate the mean similarity

across intervals ∆t, and can obtain the overlaps of actors as a function of ∆t:

O[α](∆t) =
1

T −∆t

T−∆t∑
t=1

J [α](t, t+ ∆t). (5)

Figure 6(a) shows results of O[α](∆t) in each layer of temporal networks. As only

a small number of observations are available for large values of ∆t, we only consider

results of ∆t ∈ [1, 40] to reduce noise. The key findings are summarized as follows.

Limited numbers of hardcore members engage in harmful communica-

tion. As shown in Figure 6(a), users engaged in discussing mental health have the

largest overlaps over time, indicating strong stability of pro-recovery communities.

Moreover, the overlaps of actors in the mental, social and fitness layers tend to be

relatively stable (see the highlighted region in Figure 6(a)), suggesting the presence

of a large set of hardcore users who have a constantly high level of engagement in

exchanging these types of content. In contrast, the overlaps in the thinspo and body
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Figure 6 (a) Mean overlaps of active users in temporal networks across interval ∆t. Error bars
give 95% CI and yellow region highlights the stable stages in the mental, social and fitness layers.
(b) Average numbers of periods that users post content on each topic. Error bars show 95% CI.

layers continue to decline as the interval ∆t increases. This indicates that mem-

bers of pro-ED communities have frequent entries into and exits from the system,

revealing a high level of fluctuation in these communities.

Individuals engage in harmful communication while organizations en-

gage in healthy communication. To better understand the results in Figure

6(a), we examine users’ posting activities in more detail and compute the number

of time periods that a user posts a topic. Figure 6(b) shows the average number of

posting time periods of users on each topic. We see that users on average share body

and thinspo content in 1.63 and 1.74 time periods respectively, less frequently than

sharing other content. This aligns with our results that active nodes in the body and

thinspo layers are highly fluctuating in Figure 6(a). Inspecting the most active users

in sharing each topic, we find that active users in sharing mental health are often

charities and organizations that aim to prevent ED and mental illnesses, such as

@HealingFromBPD, @beatED and @NEDAstaff. Similarly, active users in sharing

social and fitness often show a brand-promoting or marketing purpose, e.g., @WWE

for social and @Reebok for fitness. In contrast, most active users in sharing thinspo

and body content tend to be personal users. Compared to professional organizations

and marketing accounts, personal users are less likely to keep continuously active

engagement online due to their limited time and attention. Thus, it is not surprising

that the thinspo and body layers have less overlaps of active nodes over time than

other layers. This may also explain why the thinspo and body layers have a more

skewed distribution of nodes’ out-strengths than other layers in Figures 2(d-e).

4 Discussion
In this study, we have investigated patterns of communication revolved around top-

ics in online ED communities through a large set of conversations among users who

self-identified with ED and their friends on Twitter. Applying clustering algorithms

to textual content of these Twitter conversations, we find that members of online ED

communities are interested in discussing specific topics. By projecting interpersonal

interactions in exchanging different topics into a multilayer communication network,

we show that different types of communication have distinct network structures and
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people play different roles in different types of communication. We further incorpo-

rate an additional dimension, namely time, into the multilayer network and reveal

dynamic characteristics of multiplex communication in online ED communities.

We show that online ED communities largely focus on discussing mental health,

general social activities, fitness, body image and thinspo content, which aligns with

previous qualitative studies on the content in these communities [18, 19, 28]. Beyond

such content analysis, we further find that different types of content are diffused in

different ways, e.g., conversations on private content often take place within small

groups and actors in sharing general topics tend to cluster. This multiplex feature

of communication cannot be observed through a single-layer network obtained by

aggregating all different types of communication, highlighting the importance of

considering multiplex patterns in studying human interactions [30, 54].

In line with evidence on other social media platforms [12, 19, 13, 25], we find the

presence of two communities with distinct stances on Twitter: (i) a pro-recovery

community in which members discuss their health problems and support sufferers

to recover from ED and (ii) a pro-ED community in which members often encourage

people to lose weight and stay thin. We observe that a small number of users engage

in exchanging both pro-ED and pro-recovery content, as indicated by the low value

of multiplexity between mental and thinspo layers. This aligns with prior evidence

that social networks of pro-ED communities have small overlaps with those of pro-

recovery communities on Flickr [25] and YouTube [11]. Despite these small direct

overlaps, our results suggest that both pro-ED and pro-recovery communities have

pronounced overlaps with communities of users who engage in exchanging content

on body image, revealing an indirect connection of social networks between pro-

ED and pro-recovery communities. Moreover, we find that users who receive more

content on body image are likely to post more thinspo content and less content on

mental health. This confirms a conceptual model based on social comparison theory

[48] where people who are exposed to images of others’ bodies tend to compare their

appearance with others, which can lead to a negative view of their own bodies and

social pressures to have a thin body that can promote the development of ED.

Our results show that users are more likely to engage in pro-ED communication

after pro-recovery communication than vice versa. A possible reason for this is

that pro-recovery communities tend to post comments on pro-ED content as an

intervention for pro-ED communities [25]. We also find that people tend to focus

their communication on narrow, specific topics over time. This can be explained

as follows: an individual’s time and attention are finite resources, and hence each

individual must make a choice about how best to use them given the priority of

personal preferences, interests and needs [69]. Prior studies have shown that focusing

on a single topic and posting creative or insightful content on the topic can help

people to gain influence online [70], and the perception of being valued and respected

by others can further motivate people to do so [71]. Moreover, our results suggest

that pro-ED communities have a limited number of hardcore actors, with strongly

fluctuating membership in the periphery of the communities. A recent study has also

shown that individuals of ED communities have short periods of activity in posting

content on Twitter [72]. This unstable community structure aligns with views of

the pro-ED communities as hidden, secretive groups with frequent migrations [17],
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which can make it hard to monitor and track the positions/roles of individuals (e.g.,

influential cores) in these communities [73]. Such fluctuating characteristics is likely

to be reinforced by the banning actions of pro-ED content [17, 28], making pro-ED

communities less reachable by health care professionals on social media sites.

Our findings have implications for public health. To prevent ED and minimize the

negative impact of pro-ED content online, many social media sites have begun to

ban thinspo content. Our results show that pro-ED communities may engage in dis-

seminating other content that is related to thinspo but has not been banned online,

e.g., body image. Exposure to such content can potentially reinforce individuals’ en-

gagement in pro-ED communication and weaken their engagement in pro-recovery

communication, which may be used as alternatives to the thinspo content to avoid

censorship [74, 15]. Thus, to enhance health outcomes, content-based interventions

should account for the relationships of types of content which can be extracted auto-

matically as we did in this study. Another common intervention strategy in public

health is network-based intervention which focuses on using social network data

to promote organizational well-being [75]. One typical approach in this strategy is

identifying community opinion leaders to accelerate behavior change [76, 77]. We

show that people can have different roles in different types of interactions and these

roles can change over time. Thus, network-based interventions should account for

the multiplex and dynamic nature of social interactions for identifying appropriate

opinion leaders for a targeted community.

Future work will focus on exploring effective intervention strategies, tailored to

the structural and dynamic characteristics of different interactions. For example,

one could identify important/central actors in disseminating harmful content, such

that removing or isolating these actors can cause maximum damage to the com-

munication of harmful content but with minimum impact on the communication

of other content in online ED communities. However, traditional measures of cen-

trality in monolayer networks may not be able to identify these actors, since actors

that are not central in each single-layer network might be important for flows of

information across layers and have a high centrality score in a multilayer network

[78]. It is thus necessary to consider the multilayer structure in measuring actors’

roles in diffusive processes. Another direction of future work would be to identify

individuals’ traits, e.g., personality, emotions, positions in social networks, that can

predict the interaction behaviors and dynamics in online ED communities, as well

as proper models for characterizing and evaluating dynamic patterns in multilayer

networks, so as to enhance our understanding of these communities. In particular,

our results indicate that actors’ activities and positions across different layers of

the multilayer communication network are correlated in different ways. Thus, to

build models that predict a user’s engagement in sharing a type of information or

topic, we should not only consider the user’s historical engagement in this topic but

also her/his engagement in other topics. Also, we will explore whether our findings

are applicable to other online communities based on different social media plat-

forms (e.g., Facebook and Instagram), types of multimedia content (e.g., images

and videos), and a wider range of health problems.

In conclusion, our investigation of communication behaviors in online ED com-

munities has uncovered distinct patterns in different types of communication on
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Twitter. The rich information in our data allows us to explore the effects of multi-

dimensional interactions on the structure and evolution of a large-scale social net-

work, thereby establishing the first empirical basis for modeling multiplex and dy-

namic communication in online health communities. Our findings can guide public

health officials to design advanced online interventions to prevent harmful content

from reaching risky individuals and promote organizational well-being.
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