The accumulative effect of concentric-biased and eccentric-biased exercise on cardiorespiratory and metabolic responses to subsequent low-intensity exercise: a preliminary study
The accumulative effect of concentric-biased and eccentric-biased exercise on cardiorespiratory and metabolic responses to subsequent low-intensity exercise: a preliminary study
The study investigated the accumulative effect of concentric-biased and eccentric-biased exercise on cardiorespiratory, metabolic and neuromuscular responses to low-intensity exercise performed hours later. Fourteen young men cycled at low-intensity (~60 rpm at 50% maximal oxygen uptake) for 10 min before, and 12 h after: concentric-biased, single-leg cycling exercise (CON) (performed ~19:30 h) and eccentric-biased, double-leg knee extension exercise (ECC) (~06:30 h the following morning). Respiratory measures were sampled breath-by-breath, with oxidation values derived from stoichiometry equations. Knee extensor neuromuscular function was assessed before and after CON and ECC. Cardiorespiratory responses during low-intensity cycling were unchanged by accumulative CON and ECC. The RER was lower during low-intensity exercise 12 h after CON and ECC (0.88 ± 0.08), when compared to baseline (0.92 ± 0.09; p = 0.02). Fat oxidation increased from baseline (0.24 ± 0.2 g·min(-1)) to 12 h after CON and ECC (0.39 ± 0.2 g·min(-1); p = 0.01). Carbohydrate oxidation decreased from baseline (1.59 ± 0.4 g·min(-1)) to 12 h after CON and ECC (1.36 ± 0.4 g·min(-1); p = 0.03). These were accompanied by knee extensor force loss (right leg: -11.6%, p < 0.001; left leg: -10.6%, p = 0.02) and muscle soreness (right leg: 2.5 ± 0.9, p < 0.0001; left leg: 2.3 ± 1.2, p < 0.01). Subsequent concentric-biased and eccentric-biased exercise led to increased fat oxidation and decreased carbohydrate oxidation, without impairing cardiorespiration, during low-intensity cycling. An accumulation of fatiguing and damaging exercise increases fat utilisation during low intensity exercise performed as little as 12 h later.
Journal Article
131-140
Gavin, James Peter
e0d9b404-3f63-4855-8e64-bf1692e6cc3f
Myers, Stephen D
df70fcbd-572b-4579-98fc-3133c8b3de21
Willems, Mark Elisabeth Theodorus
14165c17-e1a0-4577-943b-eaecc1470467
December 2015
Gavin, James Peter
e0d9b404-3f63-4855-8e64-bf1692e6cc3f
Myers, Stephen D
df70fcbd-572b-4579-98fc-3133c8b3de21
Willems, Mark Elisabeth Theodorus
14165c17-e1a0-4577-943b-eaecc1470467
Gavin, James Peter, Myers, Stephen D and Willems, Mark Elisabeth Theodorus
(2015)
The accumulative effect of concentric-biased and eccentric-biased exercise on cardiorespiratory and metabolic responses to subsequent low-intensity exercise: a preliminary study.
Journal of Human Kinetics, 49 (1), .
(doi:10.1515/hukin-2015-0115).
Abstract
The study investigated the accumulative effect of concentric-biased and eccentric-biased exercise on cardiorespiratory, metabolic and neuromuscular responses to low-intensity exercise performed hours later. Fourteen young men cycled at low-intensity (~60 rpm at 50% maximal oxygen uptake) for 10 min before, and 12 h after: concentric-biased, single-leg cycling exercise (CON) (performed ~19:30 h) and eccentric-biased, double-leg knee extension exercise (ECC) (~06:30 h the following morning). Respiratory measures were sampled breath-by-breath, with oxidation values derived from stoichiometry equations. Knee extensor neuromuscular function was assessed before and after CON and ECC. Cardiorespiratory responses during low-intensity cycling were unchanged by accumulative CON and ECC. The RER was lower during low-intensity exercise 12 h after CON and ECC (0.88 ± 0.08), when compared to baseline (0.92 ± 0.09; p = 0.02). Fat oxidation increased from baseline (0.24 ± 0.2 g·min(-1)) to 12 h after CON and ECC (0.39 ± 0.2 g·min(-1); p = 0.01). Carbohydrate oxidation decreased from baseline (1.59 ± 0.4 g·min(-1)) to 12 h after CON and ECC (1.36 ± 0.4 g·min(-1); p = 0.03). These were accompanied by knee extensor force loss (right leg: -11.6%, p < 0.001; left leg: -10.6%, p = 0.02) and muscle soreness (right leg: 2.5 ± 0.9, p < 0.0001; left leg: 2.3 ± 1.2, p < 0.01). Subsequent concentric-biased and eccentric-biased exercise led to increased fat oxidation and decreased carbohydrate oxidation, without impairing cardiorespiration, during low-intensity cycling. An accumulation of fatiguing and damaging exercise increases fat utilisation during low intensity exercise performed as little as 12 h later.
Text
Gavin et al. 2015_accumm
- Version of Record
More information
e-pub ahead of print date: 30 December 2015
Published date: December 2015
Keywords:
Journal Article
Identifiers
Local EPrints ID: 430003
URI: http://eprints.soton.ac.uk/id/eprint/430003
ISSN: 1640-5544
PURE UUID: 134cd7af-626f-4575-a324-554db9e96af5
Catalogue record
Date deposited: 09 Apr 2019 16:30
Last modified: 16 Mar 2024 04:40
Export record
Altmetrics
Contributors
Author:
Stephen D Myers
Author:
Mark Elisabeth Theodorus Willems
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
Loading...
View more statistics