
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Quantum Search Aided Multi-User
Detection for Sparse Code Multiple
Access
WENJING YE1, WEI CHEN1,(Senior Member, IEEE), XIN GUO2, CHEN SUN2,(Senior Member,
IEEE), AND LAJOS HANZO.3, (Fellow, IEEE)
1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China. (e-mail: yewj16@mails.tsinghua.edu.cn; wchen@tsinghua.edu.cn)
2Sony China Research Laboratory, Sony (China) Ltd., Beijing 100028, China (e-mail: xin.april.guo@outlook.com; chen.sun@sony.com)
3School of ECS, University of Southampton, SO17 1BJ, UK (email: lh@ecs.soton.ac.uk)

Corresponding author:

The work of Wenjing Ye and Wei Chen is supported by the Beijing Natural Science Foundation (4191001). The work of L. Hanzo is
supported by the EPSRC projects EP/Noo4558/1, EP/PO34284/1, by the Royal Society’s GRFC Grant as well as by the European
Research Council’s Advanced Fellow Grant QuantCom.

ABSTRACT With the explosive proliferation of mobile devices, the scarcity of communication resources
has emerged as a critical issue in the Next Generation (NG) communication systems. To overcome this, Non-
Orthogonal Multiple Access (NOMA) has been shown to provide a beneficial spectral efficiency gain, while
supporting massive connectivity. Sparse Code Multiple Access (SCMA) is one of the NOMA schemes,
but its application is hampered by its high-complexity multi-user detection. Fortunately, quantum search
techniques were shown to substantially reduce the complexity of multi-user detectors (MUD). However, the
quantum search aided multiuser detection of SCMA is an open problem at the time of writing. Hence we
conceive a pair of quantum search aided MUDs for SCMA, namely, a Quantum-assisted Message Passing
Algorithm (Q-MPA) based MUD and a Quantum-assisted Sphere Decoder based MPA (QSD-MPA) MUD.

INDEX TERMS sparse code multiple access, multiuser detection, quantum search algorithm, message
passing algorithm, sphere decoder.

I. INTRODUCTION

Given the explosive proliferation of mobile devices, com-
munication resources are becoming scarce commodities. To
circumvent this problem, Non-Orthogonal Multiple Access
(NOMA) has been employed for enhancing the spectral
efficiency in the face of massive connectivity. In the family
of NOMA schemes, Sparse Code Multiple Access (SCMA)
has been proposed as a promising scheme with superior
link level performance [1]- [5]. However, the implementation
of SCMA is challenging owing to its excessive Multi-User
Detection (MUD) complexity.

To circumvent this, sophisticated classical methods have
been conceived for reducing the complexity of SCMA MUD.
The basic method relies on the classical Message Passing
Algorithm (MPA) based detector that achieves near-optimal
Bit Error Rate (BER) performance [6], [7]. However, the
classical MPA still exhibits an exponentially growing com-
plexity with the number of users. Hence compelling tech-
niques have been put forward for further reducing the MUD

complexity. A plausible approach is to directly simplify the
MPA calculation [8]- [11]. The max-log approximation of [8]
and the Look Up Table (LUT) based technique of [9] can
readily simplify the MPA at a negligible BER performance
erosion. The Partial Marginalization technique based MPA
(PM-MPA) of [10] can be adjusted to strike an attractive
BER vs complexity trade-off. In [11], the MUD complexity
was reduced by a technique that selects the edges of the
classical MPA based on an adaptive Gaussian approximation.
To further reduce the complexity of the classical MPA, low-
complexity codebook design techniques were advocated in
[12], [13]. Specifically, designing SCMA codebooks relying
on the minimum projections technique before invoking the
MPA process (ProjMPA) may result in a reduced effective
codebook size [12]. Thus, the ProjMPA imposes a much
lower complexity than the classical MPA. Moreover, a high-
dimensional codebook design technique was proposed in [13]
for reducing the MUD complexity per symbol. Additionally,
sphere decoder based techniques can also be applied in
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FIGURE 1: Selected contributions on SCMA detector (left) and quantum-assisted multi-user detection (right).

MUD-aided SCMA. Specifically, invoking the List Sphere
Decoder (LSD) of [14] or the Sphere Decoder (SD) of [15]
before the classical MPA also reduces the detection complex-
ity at a marginal BER performance erosion.

As a future solution, the emerging quantum computing
technology promises to reduce the complexity of classi-
cal search problems, as detailed in [16]. Hence, significant
benefits may be expected in the field of communications
by invoking quantum computing at the base station, where
its complexity and price may be deemed acceptable in the
future. Hence in this treatise, we investigate the benefit of
Quantum Search Algorithms (QSA) in reducing the complex-
ity of MUD.

In an unsorted database, QSAs are capable of finding
desired solutions at a lower complexity than the classical
exhaustive search algorithms [17]- [20]. Thus, QSAs can be
chosen for accelerating the solutions of numerous classical
search problems as detailed in [21]. The earliest quantum
search based MUD was conceived for Code Division Mul-
tiple Access (CDMA) in [22], where a Hard Input Hard
Output (HIHO) quantum-assisted MUD was shown to ap-
proach the optimal Maximum Likelihood (ML) BER per-
formance at a reduced complexity. Recent contributions on
quantum-assisted MUD focus on Space Division Multiple
Access (SDMA) [23]- [25], CDMA, and Interleave Division
Multiple Access (IDMA) [26]- [27]. For Space Division
Multiple Access (SDMA) and CDMA, quantum-assisted
MUDs with optimal and sub-optimal BER performance were

considered [23]- [25]. Promising quantum-assisted MUDs
were designed for multi-carrier IDMA systems and multi-
layered video streaming in [26], [27]. As a benefit of the
intrinsic quantum parallelism and quantum superposition
exploited by the QSAs, these contributions demonstrated
significant complexity reductions compared to their classi-
cal counterparts. Fig. 1 summarizes recent contributions on
low-complexity SCMA MUD and quantum-assisted MUD.
However, reduced-complexity quantum-assisted MUDs have
not been designed for SCMA.

Against this background, we intrinsically amalgamate
QSAs with the classical MPA detection schemes for con-
ceiving low-complexity MUDs for SCMA. Specifically, we
design a pair of reduced-complexity QSA-aided classical
MPAs, namely, the Quantum-assisted Message Passing Al-
gorithm (Q-MPA) and the Quantum-assisted Sphere De-
coder based MPA (QSD-MPA). Specifically, the Q-MPA is
conceived by applying QSAs for accelerating the message
updating in the MPA. Our theoretical analysis and simula-
tion results show that the Q-MPA requires a lower number
of Cost-Function (CF) evaluations than the classical MPA.
Additionally, our simulation results demonstrate that the
Q-MPA based SCMA MUDs only suffer from a modest
BER performance erosion compared to the classical MPA.
Furthermore, we use the ProjMPA technique of [12] for
further reducing the complexity of the Q-MPA. We will also
demonstrate that the QSD-MPA can further reduce the MUD
complexity by harnessing the classical SD-MPA. In the QSD-
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FIGURE 2: Uplink SCMA with turbo coding.

MPA, the sphere decoding algorithm can be formulated as
a search algorithm. To efficiently solve the resultant search
problem, we present a Quantum-assisted Sphere Decoder
(QSD) based on the Boyer-Brassard-Hoyer-Tapp Quantum
Search Algorithm (BBHT-QSA) [19]. Even if the number
of legitimate codeword combinations is unknown, the QSD
is capable of finding all the desired legitimate codeword
combinations. Let us now denote the number of legitimate
codeword combinations by S. When S is smaller than a
certain critical value, the QSD requires a lower number CF
Evaluations (CFE) than the classical SD. By invoking the
QSD before the MPA, we arrive at our new QSD-MPA MUD
scheme. The theoretical analysis and simulation results show
that the QSD-MPA has a lower number of CFEs than the
SD-MPA, provided that the number of solutions is smaller
than a critical value. Moreover, our simulation results show
that the QSD-MPA approaches the BER performance of the
SD-MPA at a reduced complexity. Thus, the Q-MPA and the
QSD-MPA are potential candidates for reduced-complexity
SCMA MUD.

The rest of this paper is organized as follows. Section
II presents the uplink SCMA system model. Based on the
classical MUDs and QSAs, our Q-MPA and the QSD-MPA
are conceived in Sections III and IV, respectively. In Section
V, our numerical results characterizing the Q-MPA and the
QSD-MPA are presented. Finally, our conclusions are offered
in Section VI.

II. SYSTEM MODEL
In this section, we first present the system model for the

SCMA uplink along with the SCMA codeword structure.

A. UPLINK SCMA MODEL
We are interested in a non-orthogonal multiple access

system, in which K (K > 0) users transmit to a common
Base Station (BS) simultaneously in the shared spectrum. Its
block diagram is shown in Fig. 2. The bit stream of the user k
emanating from the source is denoted by bk, which is entered
into the turbo encoder. The output of the turbo encoder is di-
vided into code blocks, where each block consists ofR coded
bits. A code block is denoted by ck = (ck,1, ck,2, ..., ck,R)T ,
which is forwarded to the SCMA encoder. In the SCMA

encoder, ck is mapped into an N -dimensional SCMA code-
word denoted by xk = (xk,1, xk,1, ..., xk,N )T that is selected
from the SCMA codebook Xk of size M = 2R. Finally,
the SCMA codewords are transmitted by the Orthogonal
Frequency Division Multiplexing (OFDM) modulator.

The modulated symbols are transmitted through the wire-
less channels by using N OFDM sub-carriers. Let hk,n
denote the channel coefficient of the link between the BS and
user k on the n-th sub-carrier. The channel vector between
user k and the BS is given by hk = (hk,1, hk,2, ..., hk,N )T .
In addition, let zn denote the Additive White Gaussian Noise
(AWGN) imposed on the n-th sub-carrier with variance σ2.
The noise imposed on the transmitted signal is denoted by
z = (z1, z2, ..., zN )T .

At the BS side, the received signal vector is denoted by y =
(y1, y1, ..., yN )T , in which yn is the received signal at the
n-th sub-carrier. As shown in Fig. 3(a), the signals received
from all users at the same codeword location are transmitted
on the same OFDM sub-carrier. Then, the received signal y
is given by

y =

k=K∑
k=1

diag{hk}xk + z. (1)

When y is received, the information bits will be restored
by using both the SCMA Detector of Fig. 2 and the turbo
decoder.

B. SCMA CODEWORD STRUCTURE
In this subsection, we characterize the codeword structure

by using a mapping matrix and the factor graph concept. The
mapping matrix and the factor graph are denoted by F and
F(V,N ), respectively. The mapping matrix F is a (K×N)-
element matrix, where the element at the k-th row and n-
th column of F is denoted by Fk,n. If the n-th element of
k-th user’s codeword is non-zero, then we have Fk,n = 1,
otherwise Fk,n = 0. Furthermore, the factor graph F(V,N )
is a bipartite graph with N Function Nodes (FN) and K
Variable Nodes (VN). On the factor graph, the n-th FN is
connected to the k-th VN via an edge if Fk,n = 1. Moreover,
the set φ(n) = {k : Fk,n = 1} is defined as the collection
of neighboring nodes of FN n. Similarly, the neighbor nodes
of VN k are defined as ψ(k) = {n : Fk,n = 1} that has a
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degree of |ψ(k)| = dv . Additionally, the sets φ(n) and ψ(k)
represent the users colliding on the n-th OFDM sub-carrier
and the OFDM subcarriers used to transmit the k-th user’s
data, respectively. The mapping matrix and factor graph are
shown in Fig. 3(b) and Fig. 3(c), respectively.

III. THE QUANTUM-ASSISTED MPA MUD
In this section, we introduce a Q-MPA based iterative

MUD. Based on the classical MPA, we then propose a Q-
MPA detection scheme and conceive its reduced complexity
counterpart.

A. THE ITERATIVE STRUCTURE OF MULTI-USER
DETECTOR

In the MUD, the extrinsic information is exchanged
between the SCMA detector and the turbo decoder. In
the SCMA detector, the a posteriori Log-Likelihood Ratio
(LLR) denoted by L1 of each channel coded bit is calculated
as

L1(ck,r) = log
Pr{ck,r = 1|y}
Pr{ck,r = 0|y}

. (2)

By exploiting Bayes’ law, we have

L1(ck,r) = log
Pr{y|ck,r = 1}
Pr{y|ck,r = 0}

+ log
Pr{ck,r = 1}
Pr{ck,r = 0}

= λ1(ck,r) + λp2(ck,r),

(3)

where λ1(ck,r) is the extrinsic information delivered by the
SCMA detector, while λp2(ck,r) is the a priori LLR delivered
by the turbo decoder. In the turbo decoder, the a posteriori
LLR denoted by L2 is also calculated similarly

L2(ck,r) = λ2(ck,r) + λp1(ck,r), (4)

where λp1(ck,r) represents the a priori LLR gleaned from the
SCMA detector. Using the Q-MPA, we can obtain the value
of λ1(ck,r) in the SCMA detector at the cost of a reduced
number of CF evaluations.

B. THE QUANTUM-ASSISTED MPA

In this section, we present a Q-MPA method along with its
complexity analysis. The Q-MPA is conceived by using Durr-
Hoyer Quantum Search Algorithm (DH-QSA) to reduce the
complexity of the classical MPA. Readers can refer to the
appendix for details about the classical MPA and DH-QSA.

1) The Procedure of Q-MPA

The Q-MPA consists of message updating in FNs, message
updating in VNs, and the LLR computation. For the first two
steps, the messages are updated iteratively between the FNs
and the VNs on the factor graph. The message sent from
the n-th FN to the k-th VN at the j-th iteration is denoted
by ljn→k(xk), where xk is the SCMA codeword of user k.
Similarly, the message sent from the k-th VN to the n-th FN
at the j-th iteration is denoted by ljn←k(xk). When j = 0,
the initial messages are set to 0. We denote the maximum
number of MPA iterations by J . Then the messages will be
updated iteratively until j = J is reached and the LLR will
be computed by using the results of the iterative process.

We first describe the message updating in FNs. In this step,
a pair of equivalent CFs, i.e., f cn,k and fqn,k are defined in the
classical processing phase and the quantum processing phase,
respectively. When the codeword of user k is xmk , the CF f cn,k
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is given by

f cn,k(x[n]) = − 1

2σ2
‖yn−

∑
l∈φ(n)

hl,nxl,n‖2+
∑

l∈φ(n)\k

lj−1n←l(xl),

(5)
where x[n] = {xl,n : l ∈ φ(n)} is a codeword combination
at the n-th sub-carrier. Then, we formulate the equivalent CF
fqn,k in the quantum domain. Let us denote the m-th SCMA
codeword in the codebook Xk by xmk . We define Xk,n =
(x1k,n, x

2
k,n, ..., x

M
k,n)T , where xmk,n is the n-th element of xmk .

Moreover, we define a vector Ljn←k given by

Ljn←k = [ljn←k(x1k), ljn←k(x2k), ..., ljn←k(xMk )]T . (6)

Equivalent to f cn,k, the CF fqn,k is given by

fqn,k(a[n]) =− 1

2σ2
‖yn − hk,nxk,n −

∑
l∈φ(n)\k

hl,nalXl,n‖2

+
∑

l∈φ(n)\k

alL
j−1
n←l,

(7)
where a[n] = {al : l ∈ φ(n)}, al is a M -dimensional vector
denoted by al = (al,1, al,2, ..., al,M ), al,m belongs to {0, 1}
and

∑M
m=1 al,m = 1. Moreover, we denote al associated

with al,m = 1 by aml , where aml belongs to {a1l , a2l , ..., aMl }.
If al = aml , then we have xl = xml . As a result, if
a[n] = {aml

l : l ∈ φ(n), 1 ≤ ml ≤ M}, then a codeword
combination is formulated as x[n] = {xml

l,n : l ∈ φ(n)}.
The message updating in FNs contains the quantum pro-

cessing phase and the message processing phase. In the
quantum processing phase, the entry xmax[n] that maximizes
f cn,k is found by a modified DH-QSA. Specifically, the DH
QSA of [20] utilizes fqn,k and f cn,k as the CFs in the quantum
domain and the classical domain, respectively. A threshold
value δ is initialized randomly. Then the specific input as[n]
that satisfies fqn,k(as[n]) > δ is termed as a solution. Then,
the DH-QSA iteratively employs the BBHT-QSA for finding
the solutions. When a result is found by the BBHT-QSA, a
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FIGURE 6: Flowchart of Algorithm 1. The Q/C Conversion
step converts the quantum information as[n] output by the
BBHT-QSA into classical information xs[n]. Then the value
f cn,k(xs[n]) will be computed in the classical domain.

codeword combination xs[n] is determined by as[n]. The CF
value f cn,k(xs[n]) is computed in the classical domain to check
if it is a solution. Since fqn,k and f cn,k are equivalent, the CF
value f cn,k(xs[n]) is equivalent to fqn,k(as[n]). The reason for
this modification is to avoid introducing extra complexity in
the classical domain. If as[n] is a solution, the threshold value
δ is updated to be f cn,k(xs[n]). The DH-QSA will terminate
when no solution can be found or the maximum number
of applying Grover operators has been exhausted. Finally,
the xmax[n] will be found by the DH-QSA. The DH-QSA is
summarized in Algorithm 1 and its flowchart is also given
in Fig. 6. Interested readers might like to refer to Appendix
B for further details on the basis of quantum computing and
QSA.

In the classical processing phase, the particular codeword
combination xmax[n] that maximizes f cn,k is found by the DH-
QSA. Then, the FN updates the message ljn→k(xk) in the
classical domain as

ljn→k(xk) = f cn,k(xmax[n] ). (8)

The message updating in FNs is illustrated in Fig. 5. The
messages obtained are then forwarded to the neighbor VNs.
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Algorithm 1 The Modified DH-QSA for Q-MPA

1: Set ΩQDDHA ← 0. Randomly choose a[n], set threshold
δ ← fqn,k(a[n]), amax[n] ← a[n].

2: The BBHT-QSA is employed to find a solution as[n] that
satisfies fqn,k(as[n]) > δ. Obtaining a solution as[n] and
ΩBBHT from the BBHT-QSA.

3: ΩQDDHA ← ΩQDDHA + ΩBBHT .
4: Determine xs[n] by as[n].
5: if fsn,k(xs[n]) ≤ δ or ΩQDDHA ≥ 22.5

√
Mdf−1 then

6: Output amax[n] and exit.
7: else
8: Set threshold δ ← fqn,k(as[n]), amax[n] ← as[n], go to step

2.
9: end if

Let us now describe the message updating processes in
VNs. Since xk belongs to {x1k, x2k, ..., xMk }, the messages are
updated in the VNs as follows:

ljn←k(xk) =
∑

u∈ψ(k)\n

lju→k(xk). (9)

Then, the messages obtained are forwarded to the neighbor
FNs. The above message updating steps between the FNs
and VNs will be continuous until the maximum number of
iterations is reached.

Finally, the LLRs are computed when j = J is reached.
Specifically, the SCMA detector calculates the LLR of ck,r
as

λ1(ck,r) = max
xk∈X 1(ck,r)

L(xk)− max
xk∈X 0(ck,r)

L(xk)−λp2(ck,r),

(10)
where we have

L(xk) =
∑

n∈ψ(k)

lJn→k(xk). (11)

Both of the message updating step in the VNs and the LLR
computation step are carried out in the classical processing
phase. In this way, the LLR of (2) can be obtained by the
Q-MPA. The Q-MPA is summarized in Algorithm 2.

2) Complexity Analysis of the Q-MPA
Since the Q-MPA consists of the quantum processing

phase and the classical processing phase, the total complexity
of the Q-MPA is constituted by the sum of the complexity in
the quantum domain and in the classical domain. Specifically,
the complexity in the quantum domain is determined by the
number of Grover operator applications, while the complex-
ity in the classical domain is determined by the number of
classical CFEs in (5). In this paper, we use the idealized
simplifying assumption that one Grover operator application
in the quantum domain is equivalent to one CFE in the
classical domain. Moreover, we characterize the complexity
of the Q-MPA by the total Number of CFEs (NCFE), which
is denoted by ΩQMPA. In Theorem 1, we present the NCFE
of the Q-MPA.

Algorithm 2 Quantum-assisted MPA

1: Initialization:
l0n→k(xk) ← 0, l0n←k(xk) ← 0, L0

n←k(xk) ←
[0, 0, ..., 0]T , ΩQMPA ← 0.

2: Iterative Updating:
3: for j ≤ J do
4: for n ≤ N , k ≤ K do
5: for m ≤M do
6: Invoke Algorithm 1 to find the index xmax[n] that

maximizes f cn,k(x[n]), obtaining ΩDHA.
7: ΩQMPA ← ΩQMPA + ΩDHA.
8: Update ljn→k(xmk )← f cn,k(xmax[n] ).
9: Update ljn←k(xmk ) as (9). Store the messages in

vector Ljn←k(xk) as (6).
10: end for
11: end for
12: end for
13: Calculate LLR:

Compute λ1(k, r) as (10).

Theorem 1: The total NCFE of the Q-MPA isO(M (df+1)/2).
Proof 1: In a single DHA search, let ΩCD and ΩQD denote
the NCFE in the classical domain and the complexity in the
quantum domain, respectively. According to (7), there are
Mdf−1 codeword combinations for each CF. As a result, the
size of the search space is Mdf−1 for each DHA search.
According to the DHA introduced in Appendix B-D, the
upper-bound and lower-bound of ΩQD are given by

4.5
√
Mdf−1 ≤ ΩQD ≤ 22.5

√
Mdf−1. (12)

By contrast, the NCFE in the classical domain is on the order
of ΩCD = O(log

√
Mdf−1). Let us denote the total NCFE

of a single DHA search by ΩDHA, which is given by

ΩDHA = ΩQD + ΩCD = O(
√
Mdf−1). (13)

Since there are M SCMA codewords for each message
updating in the FNs, the total NCFE of the Q-MPA is given
by

ΩQMPA = O(MΩ) = O(M (df+1)/2). (14)

Therefore, the NCFE of the Q-MPA is accelerated to be lower
than the NCFE of the classical MPA given by O(Mdf ).

Due to the random search of the QSAs, the NCFE of a
single quantum search is not constant. We define the average
NCFE as the mean of ΩQMPA. To evaluate the NCFE of the
Q-MPA more accurately, we use the average NCFE as the
metric of characterizing the Q-MPA.

C. PROJMPA TECHNIQUE BASED Q-MPA
Although we have seen that the NCFE can be reduced by

Q-MPA, it can still be further reduced by using other low-
complexity classical techniques. Since the NCFE of the Q-
MPA increases both with the codebook size M and with the
degree of the FNs df , it can be further mitigated by reducing
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TABLE 1: NCFE Comparison of Different Receivers

Receiver Type Number of CFEs
Classical MPA O(Mdf )

ProjMPA O(M
df
p )

Q-MPA O(
√

Mdf+1)

ProjQMPA O(

√
M

df+1
p )

M or df . In this subsection, we hence further reduce the
NCFE of the Q-MPA by invoking the classical ProjMPA
technique of [12].

The SCMA codebook size can be viewed as the number
of projections of the SCMA codebook over each non-zero
element in the SCMA codewords [12]. By designing the
SCMA codebook to have the minimum number of projec-
tions, the effective number of codebook entries is reduced
from M to Mp (Mp < M ). When a 16-point SCMA
codebook is employed, the effective codebook size can be
reduced to as few as 9 points [12]. Therefore, we can use the
SCMA codebook having a reduced number of projections for
reducing the NCFE of the Q-MPA. For simplicity, we refer to
this technique as ProjQMPA.

In the ProjQMPA, the number of CF entries is reduced to
M

df−1
p . As a result, the NCFE of each DH-QSA application

in the Q-MPA becomes O(M
(df−1)/2
p ) by using (13). Since

there are Mp different possible codewords for each message
in the FNs, the total NCFE of the ProjQMPA is given by
O(M

(df+1)/2
p ). Compared to the Q-MPA having the NCFE

order of O(M (df+1)/2), the ProjQMPA further reduces the
NCFE. Furthermore, the theoretical NCFE of the Q-MPA
based MUDs is given in Table I. Observe from Table I that
the Q-MPA based receivers all exhibit lower NCFE than their
classical counterparts. Thus, the Q-MPA can be beneficially
amalgamated with the family of classical SCMA MUDs for
further reducing the MUD complexity.

IV. THE QUANTUM-ASSISTED SPHERE DECODER
BASED MPA MUD

In each iteration of the classical MPA, each message updat-
ing in the FNs requiresMdf CFEs. To reduce the complexity
of the classical MPA, the SD-MPA of [15] was proposed
to find all solutions of 5 within a hypersphere by using a
classical SD. Specifically, a CF is defined to measure the
Euclidean distance between the received signal and the code-
word combinations. Though significant complexity reduction
has been achieved by the SD-MPA, the SD still requires CFEs
of all codeword combinations. The SD is shown in Fig. 7.
Thus, the NCFE of SD-MPA can be further reduced by using
QSAs.

In this section, we present a QSD-MPA method along with
its complexity analysis. Based on the classical SD-MPA, we
first present a Quantum-assisted Sphere Decoder (QSD) by
using the BBHT-QSA to accelerate the classical SD. Then,
the classical MPA adopted in the QSD-MPA is introduced.
The complexity analysis of the QSD-MPA is given at the end

of this section. Readers might like to refer to Appendix A and
Appendix B for details of the classical SD-MPA and of the
BBHT-QSA, respectively.

A. THE QSD-MPA
The QSD-MPA consists of two steps, namely, the QSD

step and the classical MPA step. In the QSD, all the code-
word combinations within a given hypersphere are chosen
as legitimate codeword combinations. In the MPA, the legiti-
mate codeword combinations are used for updating messages
between the FNs and VNs on the factor graph. In this
subsection, we describe the QSD step and the MPA step,
respectively.

1) The QSD
In the QSD, all the legitimate codeword combinations

within a given hypersphere have to be found. To achieve this,
a CF is defined for quantifying the distance between each
codeword combination and the received signal. A codeword
combination at the n-th sub-carrier is denoted by x[n] =
{xl,n : l ∈ φ(n)}. At the n-th sub-carrier, the CF of the QSD
is defined as the Euclidean distance between the codeword
combination considered and the received signal, as

f(x[n]) = ‖yn −
∑
l∈φ(n)

hl,nxl,n‖, (15)

where yn is the received signal. Given the radius of the
hypersphere ∆, a codeword combination x[n] is legitimate
if it satisfies

f(x[n]) ≤ ∆. (16)

For simplicity, a legitimate codeword combination is termed
as a solution for the CF f . The number of solutions is denoted
by S. When S is unknown a priori, the QSD finds all the
solutions by using the following algorithm.

We assume that all the codeword combinations form an un-
sorted database with Q elements, where we have Q = Mdf

at the beginning. An iterative quantum-assisted algorithm
based on the BBHT-QSA is adopted to search through the
database for all solutions. Specifically, the QSD iteratively
employs the BBHT-QSA for finding the legitimate codeword
combinations one by one. Since the BBHT-QSA can find
a specific solution in an unsorted database even when the
number of solutions is unknown a priori, the QSD can find all
solutions in the database after a certain number of iterations.
When a result xo[n] is obtained by a specific BBHT-QSA
iteration, the CF value f(xo[n]) is computed in the classical
domain to check, whether it is legitimate. If f(xo[n]) ≤ ∆,
then xo[n] will be output as a solution and it will be removed
from the database. As a result, both the number of remaining
solutions S and the number of remaining elements Q in the
database are reduced by 1. However, if f(xo[n]) > ∆, we
define this occurrence as a failure of the BBHT-QSA. In this
case, the number of remaining solutions S and the number
of remaining elements Q in the database will not change.
Furthermore, we derive a variable V to represent the number
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FIGURE 7: The diagram of sphere decoding. Each point
represents a codeword combination at n-th sub-carrier. The
legitimate codeword combinations are the points within the
sphere.

of immediately consecutive failures. If failures occur twice in
succession, we have V > 1. In this case, the QSD is believed
to have obtained all solutions in the database. Therefore, the
BBHT-QSA will be invoked iteratively until we reach V > 1.
By using the above algorithm, all the legitimate codeword
combinations and its CF values can be obtained. The QSD is
summarized in the QSD step in Algorithm 3.

2) The MPA

In the MPA, the messages are iteratively updated between
the FNs and VNs on the factor graph. However, only the
legitimate codeword combinations obtained by the QSD will
be used to update the messages. The message forwarded from
the n-th FN to the k-th VN at the j-th iteration is denoted by
Ljn→k(xk), where xk is the codeword of user k. Similarly,
the message passed on from the k-th VN to the n-th FN
at the j-th iteration is denoted by Ljn←k(xk). If x[n] is a
legitimate codeword combination, the FN utilizes the pre-
stored CF value f(x[n]) to update messages. Specifically, the
message Ljn→k(xk) is given by

Ljn→k(xk) = max
xl:l∈φ(n)\k

{
− 1

2σ2
f2(x[n]) +

∑
l∈φ(n)\k

Lj−1n←l(xl)

}
.

(17)
In the k-th VN, the message Ljn←k(xk) is updated as

Ljn←k(xk) =
∑

u∈ψ(k)\n

Lju→k(xk). (18)

When the maximum number of MPA iterations is reached,
the LLR of each coded bit is computed by using (27). The
QSD-MPA is summarized in Algorithm 3.

Algorithm 3 QSD-MPA

1: The QSD step:
ΩQSD ← 0,ΩQDQSD ← 0,ΩCDQSD ← 0, V ← 0, Q ←
Mdf and set the sphere radius ∆.

2: while V < 2 do
3: Invoke the BBHT-QSA to search the Q possible code-

word combinations. Obtaining a result xo[n], ΩQDBBHT ,
and ΩCDBBHT .

4: ΩQDQSD ← ΩQDQSD + ΩQDBBHT , ΩCDQSD ← ΩCDQSD +

ΩCDBBHT .
5: if f(xo[n]) > ∆ then
6: V ← V + 1;
7: continue.
8: else
9: Output xo[n] as a legitimate codeword combination,

store the value of f(xo[n]) in a database, and delete
xo[n] from database;

10: Q← Q− 1, V ← 0.
11: end if
12: end while
13: ΩQSD ← ΩQDQSD + ΩCDQSD.
14: The MPA step:
15: for j ≤ J do
16: Compute Ljn→k(xk) as (17);
17: Compute Ljn←k(xk) as (26).
18: end for
19: Compute λ1(k, r) as (27).

B. COMPLEXITY ANALYSIS OF THE QSD-MPA
We use the complexity of the classical SD-MPA as the

benchmark. Since the QSD-MPA has a QSD step and a MPA
step, the total complexity of the QSD-MPA is contributed to
both by the QSD step and by the MPA step. We first consider
the complexity of the MPA. According to the introduction
of the QSD-MPA, the QSD-MPA and the SD-MPA have the
same MPA step. Therefore, the complexity of the MPA step
in the QSD-MPA is the same as in the SD-MPA. Moreover,
the MPA step only adds a modest contribution to the overall
complexity because of the low-complexity additions and
multiplications.

Then, we consider the complexity of the QSD step. Again,
we characterize the complexity of the QSD by the NCFE. Let
us denote the total number of codeword combinations and the
number of legitimate codeword combinations by Q and S,
respectively. Since the classical SD-MPA finds the legitimate
codeword combinations by exhaustively searching through
all codeword combinations, the NCFE of the classical SD-
MPA is Q, or equivalently, Mdf . However, a lower NCFE
can be imposed by the QSD-MPA, if S is less than a critical
value. The total NCFE of the QSD is contributed to by
the NCFE in the classical domain and that in the quantum
domain. The NCFE in the quantum domain and that in the
classical domain are determined by the number of Grover op-
erator applications and by the number of CFEs, respectively.
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Again we assume that one Grover operator application in the
quantum domain is equivalent to one CFE in the classical
domain. For simplicity, the NCFE in the quantum domain
and that in the classical domain are denoted by ΩQDQSD and
ΩCDQSD, respectively. Additionally, we use ΩQSD to denote
the overall NCFE of the QSD. As shown in Algorithm 3,
ΩCDQSD and ΩQDQSD are obtained by considering all the NCFE
contributions of each BBHT-QSA in the corresponding do-
main. In Theorem 2, we present the overall NCFE of the QSD
step.
Theorem 2: The NCFE of the QSD is upper bounded by
ΩQSD = O(

√
SMdf−1).

Proof 2: After a certain number of iterations of the BBHT-
QSA, we denote the number of solutions remaining in the
database by s (0 < s ≤ S). In this case, the NCFE of the
BBHT-QSA in the classical domain and the quantum domain
by ΩCDBBHT and ΩQDBBHT , respectively. The NCFE ΩQDBBHT is
upper bounded by

ΩQDBBHT ≤ 4.5

√
Q

s
. (19)

If s = 0, the BBHT-QSA requires 4.5
√
Q3 number of Grover

operator applications. Since S is unknown a priori, the total
NCFE of the QSD in the quantum domain is given by

ΩQDQSD ≤
S−1∑
s=0

4.5

√
Q− s
S − s

+O(
√
Q) ≤ 4.5

√
Q

S∑
s=1

1√
s

+O(
√
Q),

(20)
where the O(

√
Q) represents the NCFE of the failures of the

BBHT-QSA. For the first item at the right side of (20), we
have

4.5

S∑
s=1

1√
s
≤ 4.5

S∑
s=1

2(
√
s−
√
s− 1) < 9

√
S. (21)

According (20) and (21), the NCFE ΩQDQSD is O(
√
QS).

Meanwhile, ΩCDBBHT is on the order of logλ(
√
Q). Note that

Q = Mdf−1. Thus, the NCFE of the QSD is given by

ΩQSD = ΩCDQSD + ΩQDQSD = O(
√
SMdf−1). (22)

According to Theorem 2, the QSD has lower NCFE than the
classical SD when S is lower than a critical value. Therefore,
the QSD-MPA can be used for reducing the MUD complexity
of SCMA.

According to the BBHT-QSA, each BBHT-QSA iteration
may apply different number of Grover operator applications.
To compare the NCFE of the QSD and the classical SD, we
use the average NCFE denoted by Ω̃QSD.

V. NUMERICAL RESULTS
In this section, we evaluate the BER performance vs NCFE

of the quantum-assisted MUD schemes.
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FIGURE 8: NCFE comparison between the classical MPA
and the Q-MPA.

A. PERFORMANCE VS NCFE
Due to the random search of QSAs, simulations are re-

quired to evaluate the NCFE of our quantum-assisted MUDs.
We proceed by our NCFE comparison between the quantum-
assisted schemes and their classical counterparts in this sec-
tion.

1) NCFE of the Q-MPA based MUDs
We first present our NCFE comparison between the clas-

sical MPA and the Q-MPA, where the average NCFE curves
and theoretical NCFE lower-bound are portrayed. To com-
pare the NCFE of the Q-MPA and the classical MPA, the
NCFE ratio R1 is defined as

R1 =
Ω̃QMPA

Mdf
, (23)

where Mdf is the NCFE of the classical MPA. The NCFE
of the Q-MPA is then characterized by the NCFE ratio R1.
In Fig. 8, the Y-axis represents the NCFE ratio R1 and the
X-axis the SCMA codebook size M . Our simulation results
show that the Q-MPA exhibits 45.55% of the classical MPA
NCFE for M = 16 and df = 3. Additionally, the average
NCFE is only 11.57% higher than the theoretical NCFE
lower-bound. Furthermore, the NCFE ratio curves decrease
significantly as either M or df becomes higher. The lower
NCFE imposed by the Q-MPA is because of applying fewer
Grover operators in the quantum domain. Therefore, it can be
concluded that the Q-MPA significantly reduces the NCFE of
the classical MPA, especially when M and df are large.

Moreover, we compare the NCFE of the ProjQMPA and
of the classical ProjMPA. In this case, the 16-point SCMA
codebook is reduced to as few as 9 effective projections.
When df = 3, our simulation results show that the Pro-
jQMPA exhibits an average NCFE 80.42% compared to
the classical ProjMPA. Thus, the complexity of the Q-MPA
can be reduced by combining it with the classical ProjMPA
technique.
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2) NCFE of the QSD-MPA MUD
In this subsection, the NCFE of the QSD-MPA is pre-

sented. We first characterize the NCFE of the QSD for
different number of solutions. The NCFE ratio R2 is defined
as

R2 =
Ω̃QSD
Q

, (24)

where Q represents the NCFE of the classical exhaustive
search, while Ω̃QSD is the average NCFE of the QSD. The
NCFE ratio curves of the database sizes on Q = 4096
and Q = 2048 are shown in Fig. 9. The simulation results
demonstrate that the average NCFE monotonically increases
with the number of solutions S. As a result, critical values
exist on the NCFE ratio curves. Specifically, the critical value
is 408 for Q = 4096 and 178 for Q = 2048. Explicitly, the
MUD NCFE can be reduced if R2 ≤ 1. When S = 200 and
Q = 4096, the NCFE ratio is R2 = 78.5%. Furthermore,
the NCFE can be further reduced if S is a smaller number.
The results are consistent with Theorem 2. Therefore, it can
be concluded that the QSD reduces the NCFE of the classical
SD, provided that S is below the critical value of Fig. 9.

In the following QSD-MPA based simulations, we adopt
the 16-point SCMA codebook of [12] and the SCMA code-
word structure shown in Fig. 3. As a result, the number of
codeword combinations in each OFDM sub-carrier is Q =
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FIGURE 11: NCFE ratio vs SNR.

4096. Additionally, we set the radii of the QSD to ∆ = 3σ,
∆ = 2.8σ, and ∆ = 2.5σ, respectively. In the QSD, the
number of legitimate codeword combinations may vary de-
pending on the uncertainty of the received signal. We hereby
give the simulation results that describe the average number
of legitimate codeword combinations corresponding to dif-
ferent SNRs. As shown in Fig. 10, the results confirm that
only a small number of codeword combinations are within
the SNR-dependent hypersphere. Specifically, the number of
solutions is only 142, when ∆ = 3σ and the SNR is 13 dB.
Moreover, the number of legitimate codeword combinations
decreases with the radius of the hypersphere. According to
the NCFE of the QSD, we can see that the average numbers
are within the reduced-number region. Therefore, the QSD
has a lower average NCFE than the classical SD.

To evaluate the average NCFE of the QSD-MPA more
intuitively, we also demonstrate the NCFE vs SNRs. Since
the MPA step of the QSD-MPA is the same as that of the
classical MPA, we only consider the NCFE of the QSD
and that of the classical SD in this simulation. We adopt
the same parameters as in the simulations of Fig. 10. As
shown in Fig. 11, the results show that the average NCFE
of the QSD method is lower than that of the classical SD
method. Specifically, when the SNR is 15 dB, the NCFE
ratio is R2 = 56.7%, 53.4%, and 49.2% when ∆ = 3σ,
∆ = 2.8σ, and ∆ = 2.5σ, respectively. According to
the simulation results of the QSD, the NCFE reduction is
due to the sphere radius. Additionally, we can observe from
the results that the NCFE ratio R2 decreases as the SNR
increases. In conclusion, the QSD-MPA detection scheme is
capable of reducing the complexity of the classical MPA.

B. BER PERFORMANCE
In this section, we evaluate the BER performance of the

quantum-assisted MUD schemes. Specifically, BER perfor-
mance comparisons are provided between the Q-MPA and
the classical MPA, the ProjQMPA and the classical ProjMPA,
the QSD-MPA and the classical SD-MPA, respectively. In
our simulations, the basic parameters are set as follows: the
number of users is K = 6, the number of OFDM subcarriers
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is N = 4, the degrees of the factor graph are df = 3 and
dv = 2. We adopt the SCMA codeword structure shown
in Fig. 3. Additionally, we employ a turbo code having an
interleaver length of 1024 bits and coding rate of 1/3 as our
channel code.

We first present the BER performance of the Q-MPA under
3, 5, and 7 MPA iterations. In this simulation, the 16-point
SCMA codebook of [12] is employed. As shown in Fig. 12,
the simulation curves of the Q-MPA basically overlap with
MPA curves when the SNR is lower than 14 dB. Moreover,
the Q-MPA suffers less than 0.01 dB SNR penalty at 14.5
dB. In conclusion, the Q-MPA suffers only negligible BER
performance degradation, which is due to the fact that the
success probability of DH-QSA is slightly less than 1.

In Fig. 13, we compare the BER performance of the
ProjQMPA and of the classical ProjMPA. In this case, the
number of SCMA codewords is reduced from 16 to 9 pro-
jections per non-zero OFDM sub-carrier by using the low
number of projections technique. Compared to the classical
MPA, the ProjQMPA achieves an even closer BER match
with its classical counterpart. It can be concluded From Fig.
12 and Fig. 13 that the Q-MPA based SCMA MUDs only
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FIGURE 14: BER comparison between the QSD-MPA and
the classical SD-MPA method.

suffer slight BER performance erosion.
Additionally, we give the BER performance of our QSD-

MPA detection scheme. In this simulation, the 16-point
SCMA codebook of [12] is adopted. As a result, the number
of possible codeword combinations at a single sub-carrier is
4096. Moreover, we set the radii of the QSD as ∆ = 2.5σ,
∆ = 2.8σ, and ∆ = 3σ. As shown in Fig. 14, the BER
curves of the QSD-MPA overlap with the corresponding BER
curves of the classical SD-MPA. Therefore, the simulation
results indicate that the QSD-MPA achieves a similar BER
performance as the classical SD-MPA. The sustained BER
performance of the QSD-MPA MUD is a benefit of the QSD
finding all the legitimate codeword combinations within the
hypersphere with near-certainty. Thus, we can conclude that
the QSD-MPA achieves a similar BER as the classical SD-
MPA at a lower complexity.

VI. CONCLUSIONS
In this paper, we conceived two quantum-assisted MUDs

for SCMA by amalgamating QSAs and classical MUDs.
Specifically, we conceived a Q-MPA scheme and a QSD-
MPA scheme for reducing the complexity of the classical
MPA scheme in two different ways. The Q-MPA was con-
ceived by adopting the DH-QSA to accelerate the maxi-
mization search process of the classical MPA. By contrast,
the QSD-MPA was conceived by invoking the QSD before
the classical MPA. We characterize the complexity of both
schemes by the total NCFE in the quantum domain and in
the classical domain. Our simulation results show that the
Q-MPA is capable of reducing the NCFE substantially at
the cost of a negligible BER performance loss. Furthermore,
the NCFE can be further reduced by using low-complexity
classical techniques for shrinking the search space of the
Q-MPA. Additionally, our simulation results show that the
QSD-MPA can reduce the NCFE for MUD without BER
performance degradation compared to the classical SD-MPA
scheme. Therefore, the Q-MPA and the QSD-MPA can be
used for low-complexity SCMA detection, albeit it still re-
quires substantial research on QSAs.
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.

APPENDIX A THE CLASSICAL MPA AND THE
CLASSICAL SD-MPA

In this Appendix, we first describe the classical MPA.
Then, the classical SD-MPA MUD is introduced.

A.1 CLASSICAL MPA
The classical MPA can be divided into message updating

step in the FNs, message updating step in the VNs, and
the LLR computation step. For the first two steps, messages
are iteratively updated between the FNs and VNs on the
factor graph. When the SCMA codeword of user k is xk,
the message sent from the n-th FN to the k-th VN at the j-
th iteration is denoted by Ljn→k(xk). Similarly, the message
sent from the k-th VN to the n-th FN at the j-th iteration is
denoted by Ljn←k(xk). When j = 0, all the initial messages
are set to 0. In the n-th FN, the messageLjn→k(xk) is updated
as

Ljn→k(xk) = max
xl:l∈φ(n)\k

{
− 1

2σ2
‖yn −

∑
l∈φ(n)

hl,nxl,n‖2

+
∑

l∈φ(n)\k

Lj−1n←l(xl)

}
,

(25)
where yn is the received signal at the n-th sub-carrier, and
φ(n)\k represents the neighbor VNs excluding the k-th VN.
In the k-th VN, the message Ljn←k(xk) is updated as

Ljn←k(xk) =
∑

u∈ψ(k)\n

Lju→k(xk). (26)

The maximum number of MPA iterations is denoted by J
and when j = J is reached, the LLR computation step is
executed. Let us define X 1(ck,r) = {ck,r = 1|xk ∈ X} and
X 0(ck,r) = {ck,r = 0|xk ∈ X}. By using the results on the
factor graph, the extrinsic information of (2) is obtained by

λ1(ck,r) = max
xk∈X 1(ck,r)

L(xk)− max
xk∈X 0(ck,r)

L(xk)−λp2(ck,r),

(27)
where

L(xk) =
∑

n∈ψ(k)

LJn→k(xk). (28)

In the SCMA detector, the LLR of each coded bit can thus be
obtained.

In Eq.(25), the message updating operation requires
searching through the codeword combinations, which results
in an exponentially increasing complexity order of O(Mdf ).
However, (26) will introduce only a modest complexity be-
cause of the simple multiplications and additions. Thus, the
message updating in the FNs imposes the highest complexity
contribution of the classical MPA.

A.2 CLASSICAL SPHERE DECODER BASED MPA
The classical SD-MPA was proposed in [15] for reducing

the complexity of the classical MPA. The SD-MPA is divided

Algorithm 4 BBHT Quantum Search Algorithm

1: Set value δ2. λ ← 6/5, m ← 1, ΩBBHT ← 0,
ΩCDBBHT ← 0, ΩQDBBHT ← 0.

2: Initiate the state of quantum system in |ϕ〉 as (30).
3: Uniformly pick ω ∈ {1, 2, ...,m}.
4: Apply ω number of Grover operators on the system,

obtain the final state |xo〉 = Gω |x〉.
5: Measure the final state |xo〉 and obtain the output |q〉.
6: Compute f2(q) in the classical domain.
7: ΩQDBBHT ← ΩQDBBHT + ω,ΩCDBBHT = ΩCDBBHT + 1.
8: if f2(q) = δ2 or ΩQDBBHT ≥ 4.5

√
Q2 then

9: xs ← q, output xs and exit.
10: else
11: m← bλm,

√
Q2c, go to step 3.

12: end if
13: ΩBBHT ← ΩQDBBHT + ΩCDBBHT .

into the SD step and the MPA step. In the SD step, only
the codeword combinations falling within a given hyper-
sphere are selected as legitimate codeword combinations.
The codeword combination in the n-th sub-carrier is denoted
by x[n] = {xl,n : l ∈ φ(n)}. Codeword combination x[n] is
legitimate, if it satisfies

‖yn −
∑
l∈φ(n)

hl,nxl,n‖ ≤ ∆, (29)

where yn is the signal received by the n-th sub-carrier, while
∆ is the radius of the given hypersphere. The left side of (29)
is defined as the CF for the SD step. By computing and pre-
storing the CF values of all the codeword combinations, the
legitimate codeword combinations are obtained. In the MPA,
the CF values of legitimate codeword combinations are used
for updating the messages in the FNs.

Since there are a total Mdf of codeword combinations
at each sub-carrier, the SD requires computing and pre-
storing Mdf CF values. In the MPA step, only legitimate
codeword combinations are considered. The SD-MPA has
a significantly lower complexity than the classical MPA.
Furthermore, a BER vs complexity trade-off can be struck
by dynamically changing the sphere radius ∆ according to
the noise power σ.

APPENDIX B QUANTUM COMPUTING AND QUANTUM
SEARCH ALGORITHMS

In this Appendix, we provide a rudimentary introduction to
QSAs. First, the basis of quantum computing is introduced.
Then, we describe three popular QSAs, namely, the Grover’s
QSA, the BBHT-QSA, and the DH-QSA.

B.1 BASIS OF QUANTUM COMPUTING
In quantum computing, the basic information storage unit

is qubit [17]. A single qubit is in a superposed state denoted
by |ρ〉 that can be expressed as |ρ〉 = α |0〉 + β |1〉, where
|α|2 + |β|2 = 1 and α, β ∈ C. Once a measurement
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or observation of a qubit is performed, the quantum state
|ρ〉 will collapse into |0〉 with probability |α|2 or |1〉 with
probability |β|2. To store more information in qubits, large
quantum systems can be created by using the entanglement
of qubits. Let us consider for example a quantum system
relying on a pair of two entangled qubits |ρ1〉 and |ρ2〉.
Then the state of the quantum system can be expressed as
|ρ1〉 |ρ2〉 = α00 |00〉+α01 |01〉+α10 |10〉+α11 |11〉, where
we have |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. Furthermore,
the quantum state of a quantum system is manipulated by
unitary quantum operators U , where U−1 = U+ [17]. By
designing appropriate QSAs that are represented by unitary
operators, the quantum state can be beneficially manipulated
to achieve specific tasks.

B.2 GROVER’S QUANTUM SEARCH ALGORITHM
Given a value δ1 and an unsorted database having Q1

elements that represent the inputs of a CF f1, Grover’s QSA
finds an element qs in the database that satisfies f1(qs) = δ1.
The specific element qs that satisfies f1(qs) = δ1 is termed as
a solution. Provided that the number of solutions is known a
priori, Grover’s QSA succeeds in finding the specific entries
constituting the solutions with a probability of almost 100%.

Grover’s QSA prepares a quantum system that has log2Q1

qubits in |0〉 state. The Hadamard gateH is applied to initiate
the system with an equiprobable state |ϕ〉. The resultant state
|ϕ〉 is given by

|ϕ〉 = H |0〉 =

Q1−1∑
q=0

|q〉 , (30)

where computational basis state |q〉 represents an element
q in the database. Then, Grover operator G = HP0HO
is applied repeatedly to |ϕ〉, where P0 = 2 |0〉 〈0| − I
represents a conditional phase shift operator associated with
every computational basis state except for state |0〉 which
is subjected to a phase shift of −1, and O is the so-called
Oracle [17] [18]. To elaborate a little further, the Oracle
O evaluates f1 for all inputs in parallel and recognizes the
solutions sought in the database. If we have f1(q) = δ1, the
Oracle maps |q〉 to − |q〉, otherwise |q〉 remains unchanged.
Since the complexity of the Oracle depends on the specific
application [17], we assume that each application of the
Grover operator corresponds to one CFE [18] [21]. Assuming
that the number of solutions is S1, the optimal number of ap-
plying Grover operators to |ϕ〉 is Ωopt = bπ/4

√
Q1/S1c. It

follows that the probability of successfully finding a solution
is Popt = sin2[(2Ωopt + 1)θ], where θ = arcsin(

√
S1/Q1)

[18].

B.3 BBHT QUANTUM SEARCH ALGORITHM
Given a value δ2 and an unsorted database having Q2

elements that represent the legitimate inputs of a CF f2,
an element xs that satisfies f2(xs) = δ2 is termed as
a solution. When the number of solutions is unknown a
priori, the BBHT-QSA is capable of finding a solution with

Algorithm 5 Durr-Hoyer Quantum Search Algorithm

1: Set Ω ← 0. Randomly choose q0 ∈ {0, 1, ..., Q3 − 1},
set threshold δ3 ← f3(q0), xmax ← q0.

2: The BBHT-QSA is employed to find a solution xs that
satisfies f3(xs) > δ3. Obtaining a solution xs and
ΩBBHT from the BBHT-QSA.

3: ΩDHA ← ΩDHA + ΩBBHT .
4: if f3(xs) ≤ δ3 or ΩQDDHA ≥ 22.5

√
Q3 then

5: Output xmax and exit.
6: else
7: Set threshold δ3 ← f3(xs), xmax ← xs, go to step 2.
8: end if

a probability of almost 100%. As shown in Algorithm 4, the
BBHT-QSA applies a pseudo-random number ω of Grover
operators G to the initial state |ϕ〉 in (30). The process of
applying Grover operator will be repeated until a legitimate
solution xs is found. Let us define the number of CFEs in the
quantum domain by ΩQDBBHT and the number of CFEs in the
classical domain by ΩCDBBHT . The overall complexity of the
BBHT-QSA is given by

ΩBBHT = ΩCDBBHT + ΩQDBBHT . (31)

The number of solutions is denoted by S2. When λ = 6/5
and S2 > 0, at most ΩmaxQD = 4.5

√
Q2/S2 Grover operators

are used by the BBHT-QSA before finding a solution [19],
otherwise S2 = 0.

B.4 DURR-HOYER QUANTUM SEARCH ALGORITHM
Given an unsorted database havingQ3 elements that repre-

sent the legitimate inputs of a CF f3, the DH-QSA succeeds
in finding the specific entry denoted by xmax that maximizes
f3 with a probability of almost 100% [20] [24]. The DH-
QSA randomly selects a threshold δ3 at the beginning. Then,
the BBHT-QSA is employed for finding an element having a
higher CF value in the database. To achieve this, the Oracle
in the BBHT-QSA only marks an element |x〉 that satisfies
f3(x) > δ3 as a solution. Once a solution xs is obtained by
the BBHT-QSA, the threshold δ3 and xmax will be updated
as δ3 ← f3(xs) and xmax ← xs, respectively. In DH-QSA,
the BBHT-QSA will be invoked repeatedly until no solution
x that satisfies f3(x) > δ3 can be found. Let us denote the
total number of applying Grover operator in the DH-QSA by
ΩQDDHA. The DH-QSA succeeds in finding xmax by using at
least 4.5

√
Q3 Grover operators, and at most 22.5

√
Q3 Grover

operators. Thus, the lower-bound and upper-bound of ΩQDDHA
are given by

4.5
√
Q3 ≤ ΩQDDHA ≤ 22.5

√
Q3. (32)

Additionally, the complexity ΩCDDHA in the classical domain
is on the order of O(logQ3). Thus, the complexity of the
DH-QSA is O(

√
Q3). The DH-QSA is detailed in Algorithm

5.
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