The University of Southampton
University of Southampton Institutional Repository

Computing optimal ex ante correlated equilibria in two-player sequential games

Computing optimal ex ante correlated equilibria in two-player sequential games
Computing optimal ex ante correlated equilibria in two-player sequential games
Association for Computing Machinery
Celli, Andrea
ad235b44-a6f0-4bea-bc1e-bf48df3fdbeb
Coniglio, Stefano
03838248-2ce4-4dbc-a6f4-e010d6fdac67
Gatti, Nicola
df1f0647-b273-4817-8200-b7b84a652970
Agmon, A.
Taylor, M.E.
Elkind, E.
Veloso, M.
Celli, Andrea
ad235b44-a6f0-4bea-bc1e-bf48df3fdbeb
Coniglio, Stefano
03838248-2ce4-4dbc-a6f4-e010d6fdac67
Gatti, Nicola
df1f0647-b273-4817-8200-b7b84a652970
Agmon, A.
Taylor, M.E.
Elkind, E.
Veloso, M.

Celli, Andrea, Coniglio, Stefano and Gatti, Nicola (2019) Computing optimal ex ante correlated equilibria in two-player sequential games. Agmon, A., Taylor, M.E., Elkind, E. and Veloso, M. (eds.) In Proceedings of the 18th International Conference on Autonomous Agents and Multiagent System. Association for Computing Machinery.. (In Press)

Record type: Conference or Workshop Item (Paper)
Text
nfcce.aamas2019.cr.cut
Restricted to Repository staff only
Request a copy

More information

Accepted/In Press date: 27 March 2019

Identifiers

Local EPrints ID: 430022
URI: http://eprints.soton.ac.uk/id/eprint/430022
PURE UUID: e2c684a9-9d1c-433e-8003-5de5ae76bf48
ORCID for Stefano Coniglio: ORCID iD orcid.org/0000-0001-9568-4385

Catalogue record

Date deposited: 10 Apr 2019 16:30
Last modified: 16 Mar 2024 04:24

Export record

Contributors

Author: Andrea Celli
Author: Nicola Gatti
Editor: A. Agmon
Editor: M.E. Taylor
Editor: E. Elkind
Editor: M. Veloso

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×