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Abstract

We study the maximum edge-weighted clique problem, a problem related to the maximum
(vertex-weighted) clique problem which asks for finding a complete subgraph (i.e., a clique) of
maximum total weight on its edges. The problem appears in a wide range of applications,
including bioinformatics, material science, computer vision, robotics, and many more. In this
work, we propose a new combinatorial branch-and-bound algorithm for the problem which
relies on a novel bounding procedure capable of pruning a very large amount of nodes of the
branch-and-bound tree. Extensive computational experiments on random and structured
graphs, encompassing standard benchmarks used in the literature as well as recently introduced
real-world large-scale graphs, show that our new algorithm outperforms the state-of-the-art
by several orders of magnitude on many instances.
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1. Introduction

A large number of emerging applications in scientific areas including material sciences,
bioinformatics, computer vision, and robotics ask for finding a densely connected subgraph
of a given graph which maximizes a measure of correlation among its vertices. When the
pairwise correlation is represented by the weight of an edge of the input graph, this problem
can be modeled as a variant of the maximum (vertex-weighted) clique problem in which the
goal is to find a complete subgraph (i.e., a clique) of maximum weight on its edges. This
problem, which is known in the literature as the maximum edge-weighted clique problem, is
the subject of study of this article.

In material sciences, the task is to find a set of materials with high pairwise similarity modeled
as edge weights in a graph where the materials are vertices) which, due to having similar
features, can be adopted interchangeably [2]. In bioinformatics, the focus is on extracting
protein structures from protein-interaction networks where the vertices are proteins and
the (edge) weights model their degree of interaction [3, 4, 23, 44]. A relevant application
arising in computer vision and pattern recognition [24, 34] and robotics [35] is found in
data correspondence problems, where two sets of elements with different features need to be
matched. The problem can be solved by computing a maximum-weight clique in a so-called
association graph whose vertices represent pairs of elements, one from each set, and an edge
between two pairs indicates that they are compatible. Edge weights in this association graph
can provide a quantitative measure of the quality of the corresponding association.

1.1. Max clique problems

Given a simple undirected graph G = (V,E) with |V | vertices and |E| edges, a subset C ⊆ V
of vertices is called a clique if every pair of vertices in C is connected by an edge in E. The
classical Maximum Clique Problem (MCP) asks for determining a clique of maximum size.

We focus, in this work, on the edge-weighted case, known in the literature as the Maximum
Edge-Weighted Clique Problem (MEWCP). Letting c : E → R+ be a weight function
associating a weight ce with each edge e ∈ E of the graph, the MEWCP asks for finding a
clique C of G which maximizes the total edge weight of the edges whose endpoints are both
contained in C. Formally, this corresponds to maximizing the quantity

c(C) :=
∑
e∈E[C]

ce,

where E[C] := {e = {u, v} ∈ E : u, v ∈ C}, i.e., the subset of edges in E incident to two
vertices in C. We denote by ωc(G) the optimal solution value of the MEWCP on G, and call
it the edge-weighted clique number of G. An illustration is given in Figure 1.

Other generalizations of the MCP typically include the presence of non-unit weights either on
the vertices or on both the edges and the vertices. The vertex-weighted case is known as the
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Figure 1: A graph G with |V | = 6 vertices and |E| = 8 edges. The clique C = {v1, v2, v4} (whose vertices
are highlighted in green) is the (unique) maximum edge-weighted clique that G contains. The edge-weighted
clique number of G is ωc(G) = c(C) = 17.

Maximum Vertex-Weighted Clique Problem (MVWCP), while the vertex and edge-weighted
case is known as the Maximum Total-Weighted Clique Problem (MTWCP). See [13] for a
recent survey.

1.2. Notation

Throughout the paper, we adopt the following notation. For each u ∈ V , we denote by
N(u) := {v ∈ V : {u, v} ∈ E} the neighborhood of u. The complement of the graph
G = (V,E) is the graph G = (V,E) where E := {e = {u, v} with u, v ∈ V : e /∈ E} is the set
of non-edges of G. A subset of vertices I ⊆ V is an independent set (or stable set) if it is
a clique of G. The number of vertices of a largest clique of G (the clique number of G) is
denoted by ω(G).

For a subset of vertices U ⊆ V , we denote by G[U ] := G(U,E[U ]) the graph induced by U ,
with vertex set U and edge set E[U ]. E[U ] corresponds to the subset of edges in E incident
to two vertices in U (i.e., all the edges e = {u, v} with u, v ∈ U).

For each vertex v ∈ V , we denote by δ(v) ⊆ E the subset of edges incident to v. For each
U ⊆ V , we denote by δ(U) the subset of edges incident to exactly one endpoint in U (i.e., all
the edges e = {u, v} with u ∈ U, v ∈ V \ U). Furthermore, we use δ(u, U) to denote the set
of edges that are incident to u ∈ V and any vertex in U , i.e., δ(u, U) := δ(u) ∩ δ(U).

1.3. Paper outline and contribution

In this work, we introduce a new combinatorial branch-and-bound algorithm for the MEWCP
which employs a new bounding procedure which we specifically design for this problem. The
procedure, while based on an Integer Linear Programming (ILP) formulation for the MTWCP,
is purely combinatorial, and it operates on a suitably defined vertex and edge-weighted graph.

The new algorithm, which is designed to efficiently perform the branching and bounding
operations, significantly outperforms the state-of-the-art on a standard set of benchmark
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instances used in literature. We also test our algorithm on a benchmark comprising large-scale
real-world networks with millions of edges, and show that, even for these challenging graphs,
our method allows for finding optimal solutions within a very short computing time.

The paper is structured as follows. Section 2 summarizes the main results in the literature
on solving the MEWCP. Section 3 describes the new algorithm in detail, while Section 4
complements the previous section with an illustrative example. Extensive computational
results are reported in Section 5. Section 6 presents some concluding remarks and elaborates
on future research directions.

2. Literature review

In the literature, many of the studies on edge-weighted clique problems have considered the
case where the size of the clique is bounded by a constant k and one has to find a subset of at
most k vertices of maximum edge weight. Examples of this are the maximum diversity problem
and the related k-subgraph and k-cluster problems. In all these cases, the input graph is usually
assumed to be complete. For more information on diversity problems, we refer the reader
to [30, 17, 26]. The MEWCP can be reduced to a maximum diversity problem by adding
dummy edges with adequate negative weights to make the graph complete and by dropping
the cardinality constraint on the clique size by letting k := |V |. Exact solution methods for
the maximum diversity problem are mainly of branch-and-cut type, see [15, 7, 29, 25, 43].

Exact algorithms in the literature are either based on ad hoc branch-and-bound methods
or on solving mathematical programming formulations with a state-of-the-art solver. We
summarize them in the following.

The authors of [14] propose a quadratic programming formulation for the MEWCP which
maximizes a quadratic function over the unit hypercube (as opposed to the well known
Motzkin-Straus quadratic formulation, whose feasible region is the standard simplex [27]).
Besides characterizing global and local optimality conditions for the formulation and the
corresponding underlying structures in the input graph, the paper proposes an upper bound
based on the continuous relaxation of the new formulation, and embeds it in an exact
branch-and-bound algorithm: CBQ.

The authors of [42] describe a purely combinatorial branch-and-bound algorithm for the
MEWCP, which is the only exact solution method of this type that we are aware of. The
algorithm is called EWCLIQUE and it exploits a “Russian-doll” scheme which iteratively
computes optimal solutions to subproblems of increasing size (the last of which corresponds
to the overall problem to be solved). The solution values obtained by solving the subproblems
are stored and used to bound (in linear time) the subproblems that are encountered in deeper
levels of the branch-and-bound tree. Similar approaches have been described for the MCP,
with a Russian-doll algorithm proposed in [28] and a linear-time bound described in [19].

The authors of [11] describe a number of ILP formulations in different spaces of variables
aimed to exploit the presence of nonedges in the instances of the MEWCP, and propose
a number of enhancements based on different valid inequalities. As one can see from [14]
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and [42], EWCLIQUE and CBQ jointly outperform all the formulations proposed in [11] in terms
of computational efficiency.

3. New branch-and-bound algorithm

We present, in this section, the new branch-and-bound algorithm that we propose for solving
the MEWCP.

Given a node of the branch-and-bound tree, let C ⊆ V be the clique corresponding to the
partial solution associated with it (at the root node, C is the empty set). Let also LB be the
value of the incumbent solution. If, at any node, c(C) > LB, the incumbent solution and
LB are both updated. Let V̂ be the set of all the vertices such that, if a vertex u ∈ V̂ is
individually added to C, C ∪ {u} is still a clique. V̂ corresponds to the intersection of the
neighborhoods of the vertices in C, i.e.:

V̂ :=
⋂
v∈C

N(v). (1)

The subproblem-graph of a specific branching node corresponds to G[V̂ ]. The branch-and-
bound tree is obtained by recursively adding one vertex at a time from V̂ to C in an n-ary
branching fashion.

To reduce the number of nodes generated by the n-ary branching operation, we employ a
bounding technique which we describe in the following sections.

3.1. Weight shifting from the edges to the vertices

Given a node of the branch-and-bound tree, consider the associated (partial) clique C and
the corresponding candidate set V̂ . Since all the vertices in C are already part of the solution,
adding u to C, for any u ∈ V̂ , yields a direct contribution to the objective function equal to
the sum of the weights of all the edges which belong to δ(u)∩ δ(C) (i.e., to δ(u,C)). In other
words, adding u to C increases the objective function value by the quantity:

wu :=
∑

e∈δ(u,C)

ce, u ∈ V̂ . (2)

We refer to wu as the vertex weight of u induced by C. According to (2), the effect of any
(partial) clique C is of shifting the weight ce from each edge e = {u, v} ∈ δ(u,C) to its
endpoint u ∈ V̂ .

Given C and V̂ , we construct a vertex and edge-weighted graph Ĝ = (V̂ , Ê) with Ê := E[V̂ ]
and vertex weights w defined as in Equation (2). Notice that the weight-shifting operation in
Equation (2) assigns a vertex weight only to the vertices in V̂ , whereas it leaves the weight of
every edge e ∈ Ê unchanged. We remark that, assuming that G is connected and that ce > 0
for all e ∈ E, we have wu = 0 for some u ∈ V̂ if and only if C = ∅ (which happens only at
the root node of the branching tree). See Figure 2 for an illustration.
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Figure 2: Illustration of the vertex weight induced by C on the nodes u ∈ V̂ . (a) The original graph, with an
incumbent solution C = {v4} of value 0, highlighted in green, and candidate vertex set V̂ = {v1, v2, v5, v6}.
(b) The original graph with a number associated with each vertex u equal to wu as defined in Equation (2).
Notice that the edge weight of each edge e ∈ E[V̂ ] is unchanged. (c) The edge and vertex-weighted graph
Ĝ = (V̂ , Ê), with the corresponding vertex weight induced by C and the original edge weight on its edges.

We make the following key observation:

Observation. Let C ⊆ V be a clique in G. Let ωc,w(Ĝ) denote the optimal solution value of

the MTWCP on Ĝ with edge weights equal to ce for each e ∈ Ê and vertex weights defined as
in Equation (2) for each v ∈ V̂ . Let ωc(G,C) be the optimal solution value of the MEWCP on
G with the restriction that all the vertices in C be part of the solution. The following holds:

ωc(G,C) = c(C) + ωc,w(Ĝ).

The observation shows that, in our branch-and-bound setting, the MEWCP and the MTWCP
are strongly related, as the latter becomes the problem to be solved after any branching
operation.

3.2. Constructing the branching and pruned sets B and P

We design our algorithm around a branching scheme which has been successfully adopted in
the most effective combinatorial branch-and-bound algorithms proposed for the MCP and the
MVWCP, see, e.g., [16, 20, 21, 22, 36, 37, 38, 39, 41]. It relies on the construction of two sets
of vertices: the branching set B and the pruned set P .

At each node of the branch-and-bound tree, we carry out a |B|-ary branching operation,
thereby creating a tree node per vertex v ∈ B, by individually adding each vertex v ∈ B to C.
The vertices in P are never selected as branching vertices at the current tree node. Therefore,
B is always defined as B := V̂ \ P .

The key idea is to construct P in such a way that any subset of its vertices would not suffice,
when added to C, to produce a solution of value strictly better than LB. This implies that
to improve, if possible, the incumbent, one has to add to C at least one of the vertices in
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B. This is precisely what our branch-and-bound algorithm will do as it generates, for each
v ∈ B, a child node containing the partial clique C ∪ {v}.

For constructing the pruned set P , we look, in principle, for the largest set P such that:

c(C) + ωc,w(Ĝ[P ]) ≤ LB, (3)

where ωc,w(Ĝ[P ]) denotes the optimal solution value of the MTWCP for the graph Ĝ[P ] with
the original edge weights ce for all e ∈ E[P ] and vertex weights wv defined as in Equation (2)
for all v ∈ P . This is motivated by the fact that, the larger P , the smaller is the number
of vertices in B and, thus, the smaller the number of child nodes created by the branching
operation at the current node.

We note that constructing a set P of maximum cardinality which satisfies Inequality (3) is a
very hard problem, harder than the MEWCP and complete (in its decision version) for the
second level of the polynomial hierarchy:

Proposition. Finding the largest set P satisfying Inequality (3) is ΣP2 -hard.

Proof. Letting ce = 0 for all e ∈ Ê and wv = 1 for all v ∈ V̂ , the decision version of the
problem of finding the largest set P satisfying Inequality (3) corresponds to deciding whether,
given an integer k, there is a set P of cardinality |P | ≥ k such that wc,w(Ĝ[P ]) ≤ LB − c(C).

Since, due to our choice of edge weights ce, ωc,w(Ĝ[P ]) = ω(Ĝ[P ]), this problem is an instance
of the Generalized Node Deletion Problem (GNDP) which, given a graph G = (V,E) and
two integers a and b, asks whether there is a subset D ⊆ V such that ω(Ĝ[V̂ \D]) ≤ a and
|D| ≤ b. Letting P := V̂ \D, this is the same as asking whether there is a subset P ⊆ V̂ such
that ω(Ĝ[P ]) ≤ a and |P | ≥ |V | − b. Since [31] shows that the GNDP is ΣP2 -complete, we
conclude that finding the largest P which satisfies Inequality (3) is ΣP2 -hard.

We note that a similar results also applies to the problem of finding P which is considered in
many of the papers we cited on the MCP and MWCP—to the best of our knowledge, the
result in the proposition has not been observed before.

We remark that not only, as the proposition shows, finding the largest P satisfying Inequal-
ity (3) is ΣP2 -hard but, given any P , even checking whether P satisfies Inequality (3) is
NP-hard, as it requires to compute ωc,w(Ĝ[P ]), which is at least as hard as solving the
MEWCP. This shows that the decision version of the problem of finding the largest P belongs
to ΣP2 and, therefore, that this decision problem is ΣP2 -complete.

For these reasons, in Subsection 3.3 we introduce an upper bound on ωc,w(Ĝ[P ]) which, as
shown in Subsection 3.4, can be used to build P incrementally in a computationally efficient
way.

We remark that, the fact that a vertex v may not belong to P at a certain branch-and-bound
node does not imply that the same vertex will belong to P in all the nodes that will descend
from it—that vertex could still be part of B at another node of the branch-and-bound
tree and, thus, it could still be part of the solutions associated with deeper levels of the
implicit-enumeration tree.
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We remark that, with this branching scheme, a node of the branch-and-bound tree is fathomed
only if P = V̂ (i.e., only if B = ∅), which, since P satisfies Inequality (3) by construction,
implies that no solution better than the incumbent can be produced starting from the partial
solution C.

3.3. Towards a combinatorial upper bound

We propose a combinatorial way of constructing an upper bound on ωc,w(Ĝ[P ]) for a given

P ⊆ V̂ , which we will then employ (as shown in the next subsection) for the construction of
a set P which satisfies Inequality (3).

Our bound is based on observing that, by dividing and assigning the weight of each edge to
its endpoints, we obtain an instance of the MVWCP with the property that any bound valid
for it is also valid for the original instance of the MEWCP. In our algorithm, we will rely on
the independent-set bound for the MVWCP used in many of the state-of-the-art methods
for the problem (see, e.g., [8], [16]). The crucial aspect of our procedure is performing the
distribution of edge weights in a dynamic fashion, while the partition into independent sets is
being constructed.

This section shows the validity of the this bound by drawing its connection to LP-duality
theory. Indeed, our bound can be obtained by building a feasible solution to the dual of
the Linear Programming (LP) relaxation of an ILP formulation for the MTWCP which we
now introduce. Let, for each vertex v ∈ P , the binary variable xv take value 1 if and only if
vertex v belongs to the chosen clique. Let also, for each edge e = {u, v} ∈ Ê[P ], the binary
variable ye take value 1 if and only if both endpoints u and v of e belong to the chosen clique.
Letting I be the set of all (maximal) independent sets in Ĝ[P ], a valid formulation for the
MTWCP is:

max
∑
e∈Ê[P ]

ce ye +
∑
u∈P

wuxu (4)

∑
v∈I

xv ≤ 1 I ∈ I (5)

ye ≤ xu e = {u, v} ∈ Ê[P ] (6)

ye ≤ xv e = {u, v} ∈ Ê[P ] (7)

xu ∈ {0, 1} u ∈ P (8)

ye ∈ {0, 1} e ∈ Ê[P ]. (9)

The objective function (4) corresponds to the total edge and vertex weight of the chosen
clique. Constraints (5) impose that at most one vertex be selected from each independent
set. Constraints (6)–(7) guarantee ye = 1 if and only if both xu = 1 and xv = 1, for all
e = {u, v} ∈ Ê[P ].

Note that, due to the equivalence between optimization and separation [12], even solving the
LP relaxation of Formulation (4)–(9) is NP-hard. This is because the formulation features
exponentially many constraints of type (5), one for each independent set I ∈ I , and the
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separation of such constraints is NP-hard (as it corresponds to solving the maximum weighted
independent set problem).

What we propose here is a method for computing an upper bound on the optimal solution
value of Formulation (4)–(9) for a suitably defined collection of independent sets Ĩ ⊆ I
forming a partition of the vertices of P . The way Ĩ is constructed is explained in the next
subsection. By replacing I by Ĩ in Constraints (5), we obtain a relaxation of the original
problem.

The bound that we consider is based on computing a feasible solution to the dual of the LP
relaxation of Formulation (4)–(9) with I replaced by Ĩ . Let, for each I ∈ Ĩ , πI ≥ 0 be the
dual variable of Constraints (5) and let, for each e = {u, v} ∈ Ê[P ], ρue ≥ 0 and ρve ≥ 0 be the
dual variables of Constraints (6) and (7). Since Ĩ is a partition of P , for each u ∈ P there
is a unique independent set I(u) covering it. With I restricted to Ĩ , the dual of the LP
relaxation of Formulation (4)–(9) reads:

min
∑
I∈Ĩ

πI (10)

ρue + ρve ≥ ce e = {u, v} ∈ Ê[P ] (11)

πI(u) ≥ wu +
∑

e∈δ(u,P )

ρue u ∈ P (12)

πI ≥ 0 I ∈ Ĩ (13)

ρue , ρ
v
e ≥ 0 e = {u, v} ∈ Ê[P ]. (14)

The objective function (10) is equal to the sum of the values of the π variables. Constraints (11)
impose that the weight ce of each edge e ∈ Ê[P ] be completely covered by the associated
ρue and ρve variables. For each vertex u ∈ P , Constraints (12) impose that the value of the
variable πI(u) associated with the independent set I(u) containing u be at least as large as
the sum of the values of the ρ variables associated with edges in the star δ(u, P ) of u, plus
the weight wu of the vertex u itself.

Assume that we have chosen values ρ̃ for the ρ variables such that Constraints (11) are
satisfied as equations, namely:

ρ̃ue + ρ̃ve = ce, e = {u, v} ∈ Ê[P ]. (15)

This choice is w.l.o.g., as each of Constraints (11) is satisfied as an equation in any optimal
solution to Formulation (10)–(14). The way ρ̃ is constructed will be explained in the next
subsection. For this choice of ρ̃, the weight of each edge e = {u, v} ∈ Ê[P ] is completely
shared by its endpoints u (via ρ̃ue ) and v (via ρ̃ve). For each vertex u ∈ P , this results in the
following vertex weight:

w̃u := wu +
∑

e∈δ(u,P )

ρ̃ue u ∈ P, (16)

where wu corresponds to the original vertex weight shifted from C.
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Since Ĩ is a partition of P , in any optimal solution each of the π variables takes the following
value, which can be computed in linear time:

π̃I := max
u∈I
{w̃u} I ∈ Ĩ . (17)

We define π̃I := 0 whenever I = ∅.

For the given Ĩ , the pair (π̃, ρ̃) yields a valid solution to Formulation (10)–(14). With it, we
obtain the following upper bound on ωw,c(Ĝ[P ]):

UB(P, Ĩ , ρ̃) :=
∑
I∈Ĩ

π̃I ≥ ωw,c(Ĝ[P ]). (18)

Figure 3 illustrates the computation of the bound for an example graph.
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Figure 3: Illustration of the computation of the upper bound UB(P, Ĩ , ρ̃). (a) The original graph, with an
incumbent solution C = {v4} of value 0, highlighted in green, and candidate vertex set V̂ = {v1, v2, v5, v6}.
We assume P = V̂ . (b) The number associated with each vertex u is equal to ŵu, i.e., to the sum of wu
and

∑
e∈δ(u,P ) ρ̃

u
e (the two terms are reported with a ’+’ symbol between them). The collection Ĩ consists

of two independent sets I1 = {v1, v6} (in red) and I2 = {v2, v5} (in gray), with π̃I1 = max{7, 4} = 7,
π̃I2 = max{10, 7} = 10. The upper bound UB(P, Ĩ , ρ̃) is equal to π̃I1 + π̃I2 = 17 (also equal to the optimal
solution value). (c) A different choice of ρ̃ gives the upper bound UB(P, Ĩ , ρ̃) = π̃I1 + π̃I2 = 7 + 16 = 23.

As it is clear, the quality of the bound is determined by the choice of Ĩ and ρ̃. The choice
we make is described in the next subsection, together with the way we build P .

3.4. Combinatorial procedure for constructing the pruned set P while distributing the edge
weights

We now describe the combinatorial procedure that we propose for constructing a pruned set P
satisfying Inequality (3). We refer to the overall procedure as BUILD P. The pseudocode is
provided in Algorithm 1.

The idea of our procedure is building P incrementally while constructing a collection of

independent sets Ĩ = {I1, . . . , I|Ĩ |} into which P is partitioned (that is, P =
⋃|Ĩ |
i=1 Ii) and
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distributing the edge weights so that P satisfies:

UB(P, Ĩ , ρ̃) ≤ LB − c(C). (19)

Note that Inequality (19) implies that Inequality (3) is satisfied—which, in turn, implies that
P is a valid pruned set.

We start from P = ∅, Ĩ = ∅, and ρue := 0 for all u ∈ V̂ and e ∈ Ê.

Our procedure works by creating a new independent set Ik at each iteration k and, within
that iteration, trying to add to Ik as many vertices in V̂ \ P as possible (note that, since

P =
⋃|Ĩ |
i=1 Ii, all such vertices are also added to P ). Once Ik cannot be enlarged anymore, we

consider it closed and add it to Ĩ . A new empty independent set is then initialized. The
procedure is repeated as long as there are still vertices in V̂ \ P . If, at the last iteration,
the current independent set is empty, we discard it. Whenever a vertex is added to Ik, we
enter the ABSORB and DESORB phases (explained in Sections 3.4.1 and 3.4.2), in which we
update the value of the ρ variables and, with them, the edge weight distribution.

Let k be the current iteration and let Ik := ∅ be the newly created empty independent set.
We iterate over all the vertices u ∈ V̂ \ P with the property that Ik ∩ N(u) = ∅ (i.e., that
Ik ∪ {u} is an independent set). Given a vertex u, we compute the following value:

budget(u) := LB − c(C)−
k−1∑
i=1

π̃Ik − w̃u, (20)

where w̃u is set as in Equation (16). By construction, adding u to Ik and P would violate
Inequality (3) if and only if budget(u) < 0. Thus, vertex u is discarded (by removing it from
V̂ and adding it to B) if budget(u) is strictly smaller than 0, whereas, if budget(u) ≥ 0, we
let:

P = P ∪ {u} and Ik = Ik ∪ {u}.

Then, the ABSORB phase takes place.

3.4.1. ABSORB phase

In the ABSORB phase for a vertex u just added to P and Ik, we determine the value
of the ρue variables for all the edges e = {u, v} ∈ δ(u, V̂ \ P ) by absorbing as much edge
weight ce as possible—that is, we try to cover as much of ce as possible via ρue (rather than
ρve) without exceeding budget(u).2 This phase preventatively absorbs the weight of each edge
e = {u, v} ∈ δ(u, V̂ \ P ) so that, if the other endpoint v not in P were to be added to P in a
future iteration, the weight ce of the edge would already be covered.

We assume that the edges are ordered as e1, e2, . . . , e|δ(u,V̂ \P )| (the details on the specific

order that we adopt are given in Section 3.5). Let ξ(u) := |δ(u, V̂ \ P )| and let ` + 1 be

2The value of the ρue variables for each edge e = {u, v} ∈ δ(u, P ) is set implicitly by the vertices that were
added to P in earlier iterations.
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the index of the (first, in the order we consider) edge such that
∑`

j=1 cej ≤ budget(u) and∑`+1
j=1 cej > budget(u). The weights of the edges in e ∈ δ(u, V̂ \ P ) are absorbed as follows:

ρ̃uej :=


cej if 1 ≤ j ≤ `

budget(u)−
∑`

j=1 cej if j = `+ 1

0 otherwise

ej = {u, v} ∈ {e1, . . . , eξ(u)}. (21)

After that, the value of w̃u is updated as follows:

w̃u := wu +
∑

e∈δ(u,P )

ρ̃ue +
∑

e∈δ(u,V̂ \P )

ρ̃ue . (22)

Observe that, by construction, the redefined value of w̃u in Equation (22) still satisfies the
condition budget(u) ≥ 0. Furthermore, notice that the contribution of the two summation
terms in Equation (22) depends on when w̃u is updated: before entering P (and, therefore,
before the ABSORB phase takes place), it is the vertex weight “imposed by P” that implicitly
defines w̃u as wu +

∑
e∈δ(u,P ) ρ̃

u
e , whereas the second summation is zero. Once u joins P , the

absorption of the weights of the edges e = {u, v} ∈ δ(u, V̂ \ P ) modifies the entries of the
second summation, whereas the weights on the edges between u and P (that is, of the edges
e = {u, v} ∈ δ(u, P )), remains unaltered.

Since the values of ρ are always chosen so to satisfy Equation (11), when computing the values
of ρ̃ue according to Equation (21) we set ρ̃ve := ce − ρ̃ue for all the end points v in N(u)∩ V̂ \ P
opposite of u. Namely:

ρ̃vej :=


0 if 1 ≤ j ≤ `

cej − (budget(u)−
∑`

j=1 cej) if j = `+ 1

cej otherwise

ej = {u, v} ∈ {e1, . . . , eξ(u)}. (23)

For all ρ̃ve > 0, this corresponds to pushing the weight ce (in parts or entirely) to v.

After an independent set Ik has been closed (as no more vertices can be added to it), we
update π̃Ik according to Equation (17).

Since, by design of the ABSORB phase, the weight w̃u of each vertex u ∈ Ik can increase only
by budget(u), the phase guarantees that Inequality (3), which was satisfied before ABSORB
began, is still satisfied after the phase is over.

3.4.2. DESORB phase

After closing an independent set Ik, we carry out the DESORB phase to reduce the difference
between the first and the second largest vertex weights among the vertices in Ik. This is done
to reduce the value of π̃Ik (which, due to Equation (17), is equal to the weight of the heaviest

vertex), as it leads to a larger value of budget(u) for the vertices in u ∈ V̂ \ P , thus allowing
for (potentially) adding more of them to P in future iterations.
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Let v1 and v2 be the two vertices of largest and second-largest weight in Ik and let ∆ be their
difference. Namely:

v1 := arg max
v∈Ik

{ŵv} v2 := arg max
v∈Ik\{v1}

{ŵv} ∆ := ŵv1 − ŵv2 . (24)

We now iterate over all the edges e ∈ δ(v1, V̂ \ P ), desorbing a total of ∆ units of the edge
weights that v1 has absorbed. Let `+ 1 be the index of the first (in the order we use) edge
such that

∑`
j=1 cej ≤ ∆ and

∑`+1
j=1 cej > ∆. We update ρ̃ as follows:

ρ̃v1ej :=


0 if 1 ≤ j ≤ `

cej −
(
∆−

∑`
j=1 cej

)
if j = `+ 1

cej otherwise

ej = {v1, u} ∈ {e1, . . . , eξ(v1)}. (25)

Since the values of ρ are always chosen so to satisfy Equation (11), we set ρ̃ue := ce − ρ̃v1e for
all the end points u in N(v1) ∩ V̂ \ P opposite of v1. Namely:

ρ̃uej :=


cej if 1 ≤ j ≤ `

∆−
∑`

j=1 cej if j = `+ 1

0 otherwise

ej = {v1, u} ∈ {e1, . . . , eξ(v1)}. (26)

For all ρ̃ue > 0, this corresponds to pushing the weight ce (in parts or entirely) to u. Lastly,
the value of w̃u is updated as in Equation (22).

3.5. Outline of the overall branch-and-bound algorithm

We refer to the recursive procedure which implements our combinatorial branch-and-bound
algorithm as BBWEC. The procedure takes as input the current (partial) clique C, the corre-
sponding candidate set V̂ , and the branching set B. The pseudocode of is given in Algorithm 2.

The algorithm processes the vertices from v ∈ B iteratively by looking one step ahead. Note
that, due to this look-ahead, the number of recursive calls is always smaller than the number
of branch-and-bound nodes. It updates C with the inclusion of vertex v (Step 2) and checks if
the node of the tree corresponding to the new clique C would be a leaf node (Step 3). If this
is the case, the value c(Cmax) of the global solution Cmax is compared to c(C) for a possible
update (Step 4).

If we do not get a leaf node, we update V̂ as a consequence of the update of C (Step 8),
compute P via the procedure BUILD P (Step 9) and construct B (Step 10). Finally, we call
BBEWC recursively (if B is nonempty) with input C, V̂ , and B (Step 12). If B is empty
(Step 11), no recursive call takes place—this corresponds to fathoming the current node of
the branch-and-bound tree.

Once the vertex v has been taken into account for extending C, it is removed from V̂
(Step 15). This avoids redundant tree nodes from being generated, further reducing the size
of the branch-and-bound tree.
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Algorithm 1: BUILD P(C, V̂ , LB)

Input :A clique C, the corresponding candidate set V̂ , and LB

Output :The pruned set P

1 k ← 0, Ĩ ← ∅, P ← ∅, B ← ∅, ρ̃← 0

2 while P ∪B 6= V̂ do

3 k ← k + 1, Ik ← ∅, π̃Ik ← 0

4 foreach u ∈ V̂ \ (P ∪B) such that N(u) ∩ Ik = ∅ do
5 w̃u ← wu +

∑
e∈δ(u,P ) ρ̃

u
e

6 Compute budget(u) as in Eq. (20)

7 if budget(u) ≥ 0 then

8 P ← P ∪ {u}
9 Ik ← Ik ∪ {u}

10 Update ρ̃ as in Eq. (21)–(23) // ABSORB

11 w̃u ← w̃u +
∑

e∈δ(u,V̂ \P ) ρ̃
u
e

12 else

13 B ← B ∪ {u}
14 end

15 end

16 Update π̃Ik as in Eq. (17) // Ik is closed

17 if |Ik| ≥ 2 then

18 Update ρ̃ as in Eq. (25)–(26) // DESORB

19 Update w̃u and π̃Ik as in Eq. (22) and Eq. (17), resp.

20 end

21 if Ik 6= ∅ then
22 Ĩ ← Ĩ ∪ {Ik}
23 end

24 end

25 return P
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Algorithm 2: BBEWC(C, V̂ , B)

Input :A clique C, the corresponding candidate set V̂ , and the branching set B.

// Cmax is a global variable.

1 for v ∈ B do

2 C ← C ∪ {v}
3 if V̂ ∩N(v) = ∅ then

4 if c(C) > c(Cmax) then

5 Cmax ← C // leaf node improving the incumbent Cmax

6 end

7 else

8 V̂ ′ ← V̂ ∩N(v)

9 P ← BUILD P(C, V̂ ′, c(Cmax))

10 B′ ← V̂ ′ \ P
11 if B′ 6= ∅ then

12 BBEWC(C, V̂ ′, B′) // recursive call

13 end

14 end

15 V̂ ← V̂ \ {v}
16 C ← C \ {v}

17 end

Our algorithm starts with the call BBEWC(∅, V̂ , V̂ ). Before issuing it, we create a heuristic
solution CH via an adaptation to the MEWCP of the Tabu Search heuristic AMTS proposed
in [45] for the MVWCP. The solution CH is produced by, first, evenly shifting the edge weight
of each edge to its end points and, then, calling AMTS on the resulting vertex-weighted graph.
The corresponding value LB is obtained by recovering the edge weights from CH .

During the execution of our branch-and-bound algorithm, the global variable Cmax corresponds
to the best solution found until now. Upon the termination of BBEWC, Cmax contains a clique
of maximum edge weight.

Throughout the execution of our algorithm, the vertices of G are always sorted in nonincreasing
order of degree. Letting VO be a copy of the original set of vertices, the order is determined
by, for each i from n to 1, selecting from VO a vertex v with minimum degree in the induced
subgraph G[VO], placing it in position i, and removing it from VO. A similar order is used in
many state-of-the art solvers for the MCP, see [37, 38].

Vertices u ∈ V̂ \ (P ∪ B) in Step 4 of BUILD P are examined in this order, and the same
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applies to the edges that are incident to u during the ABSORB and DESORB phases in the
calculations/updates of the values of the ρ variables. Differently, in Step 1 of BBEWC the
vertices in B are examined in reverse order.

Our efficient implementation of BBEWC relies on a bitstring representation to encode the input
graph G as well as the graph Ĝ that is constructed along the branching tree. This allows for a
fast computation of the set V̂ (by intersecting bitstrings corresponding to the neighborhoods
of the vertices in C) as well as for determining the collection of independent sets Ĩ efficiently.

4. Demonstration of our algorithm

In this section, we provide a demonstration of the execution of our novel BBEWC algorithm on
the graph depicted in Figure 1, with 6 vertices and 8 edges. For simplicity, we assume that
the order of the vertices is v1, v2, v3, v4, v5, v6. The tree is explored in depth-first fashion.

The full branch-and-bound tree is reported in Figure 4. For each of the 7 explored nodes,
the associated box reports the sets V̂ , B, P , and C, together with the edge weight of the
clique c(C), the current LB, and the associated upper bound UB(P, Ĩ , ρ̃). For reasons of
space, we denote it simply by UB(P ). An illustration of how the branching and the pruned
sets B and P are obtained for the root and for the first node of the tree is given in Figure 5.

As initial heuristic solution, we consider the clique CH = {v1, v2} of weight c(CH) = 7. The
initial lower bound LB is, therefore, 7.

At node 3, the incumbent solution is improved and the LB is set to 11 (C = {v4, v5, v6}). At
node 5, the incumbent solution is further improved and the LB is set to 17 (C = {v1, v2, v4}).
This clique is the optimal one. Nodes 3 and 5 correspond to two leaf nodes of the tree, while
node 6 is fathomed since the branching set B is empty. The total number of recursive calls
is 4 (the calls take place at the root node and at nodes 1, 2, and 4).

We now illustrate in detail how the branching and pruned sets B and P are obtained for the
root and for the first node of the tree. An illustration is provided in Figure 5.

4.1. Construction of B and P for the root node

The set of vertices V̂ is {v1, v2, v3, v4, v5, v6} (C = ∅). Since C = ∅, the weight w̃u of all the
vertices is equal to 0 initially.

The empty independent set I1 is initialized (colored in red). Every vertex u in the graph has
budget(u) = LB − c(C) = 7. Therefore, every vertex can enter I1. Considering the vertices
in order, we add vertex v1 to I1, which absorbs the full weight (7) of edge {v1, v2} and 0
units of that of edge {v1, v4}. Then, vertex v3 is added to I1, absorbing the full weight (2) of
edge {v2, v3} and 5 units of that of {v3, v5}. Finally, vertex v6 is added to I1, absorbing the
full weight (2) from edge {v4, v6} and the full weight (5) from edge {v5, v6}. Since no more
vertices form an independent set with I1, I1 is closed. We let π̃I1 := max{7, 7, 7} = 7.

No desorbtion can take place, as the first and the second heaviest vertices in I1 have the same
weight (i.e., ∆ = 0).
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V̂ = V
C = ∅
B = {v5, v4}
P = {v1, v2, v3, v6}
c(C) = 0

LB = 7, UB(P ) = 7

V̂ = {v1, v2, v5, v6}
C = {v4}
B = {v2, v6}
P = {v1, v5}
c(C) = 0

LB = 7, UB(P ) = 7

V̂ = {v3, v6}
C = {v5}
B = ∅
P = {v3, v6}
c(C) = 0

LB = 17, UB(P ) = 11

V̂ = {v5}
C = {v4, v6}
B = {v5}
P = ∅
c(C) = 2

LB = 7, UB(P ) = 0

V̂ = {v1}
C = {v2, v4}
B = {v1}
P = ∅
c(C) = 0

LB = 11, UB(P ) = 0

V̂ = ∅
C = {v4, v5, v6}
B = ∅
P = ∅
c(C) = 11

LB = 11, UB(P ) = 0

V̂ = ∅
C = {v1, v2, v4}
B = ∅
P = ∅
c(C) = 17

LB = 17, UB(P ) = 0

C ∪ v5 Node 6C ∪ v4 Node 1

C ∪ v6 Node 2 C ∪ v2 Node 4

C ∪ v5 Node 3 C ∪ v1 Node 5

Figure 4: Branch-and-bound tree produced by the BBEWC algorithm for the graph of Figure 1.

We continue, creating the next independent set I2 (colored in gray), initially empty. Consider-
ing the vertices in order, we analyse v2 which, due to having budget(v2)= LB − c(C)− π̃I1 −
w̃v2 = 7− 0− 7− 0 = 0, enters I2 but cannot absorb any weight. The 9 units of edge {v2, v4}
are therefore pushed to vertex v4. The only vertex that can enter I2 is v5. Since, though, its
weight is w̃v5 = 3, it has negative budget (budget(v5) = 7− 0− 7− 3 = −3). Therefore, v5
does not enter I2 and I2 is closed. Since |I2| < 2, no desorbing takes place.

A new independent set I3 is created. Since the only vertex that can enter it is v4 but it has
negative budget, I3 remains empty and gets discarded.

BUILD P terminates, producing P = {v1, v2, v3, v6}, with UB(P ) = 7 and B = {v5, v4}. We
remark that the order in which the vertices are listed in B corresponds to the reverse order in
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Figure 5: Illustration of the creation of the branching and pruned sets B and P for the root node (above) and
node 1 (below) of the branch-and-bound tree of Figure 4. The subfigures parts (a) and (c) report Ĝ of the
node with the corresponding vertex weights wu. The subfigures parts (b) and (d) report the independent sets
in Ĩ (in red and gray), the values of ŵu, those of ρ̃ue , and the partial clique C = {v4} (in green). For every
e = {u, v} ∈ Ê, an arc going from u to v represents the variable ρ̃ve (only if strictly positive). The number
associated with each vertex u is equal to w̃u, written as the sum of wu and

∑
e∈δ(u,V̂ ) ρ̃

u
e .

which they are taken into account when branching, i.e., in this case v4 is examined before v5.

4.2. Construction of B and P for node 1

The set of vertices V̂ is {v1, v2, v5, v6}, with C = {v4} and c(C) = 0. Note that all the vertices
in V̂ have positive weight.

The empty independent set I1 is initialized (colored in red). The first vertex to be considered
is v1. Since budget(v1) = LB− c(C)− w̃v1 = 7− 0− 0− 1 = 6 ≥ 0, v1 enters I1. It absorbs 6
units from edge {v1, v2}. The remaining unit is pushed to v2.
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We then consider vertex v5 (with w̃(v5) = 4). Since budget(v5) = 7 − 0 − 0 − 4 = 3, v5
absorbs 3 units from edge {v5, v6}, pushing the remaining 2 to v6.

Since no further vertices form an independent set with I1, I1 is closed. We let π̃I1 :=
max{7, 7} = 7.

No desorbtion takes place, as again the first and the second heaviest vertices in I1 have the
same weight (i.e., ∆ = 0).

A new empty independent set I2 is generated. Since all the remaining vertices have negative
budget (as π̃I1 = LB and their weights are all strictly positive), none is added to I2 and I2 is
discarded.

BUILD P terminates, producing P = {v1, v5}, with UB(P ) = 7, and B = {v2, v6}.

5. Computational results

We present the results of an extensive set of experiments carried out to validate our new exact
algorithm BBEWC for the MEWCP and to assess the impact of its features.

In the following, we compare the performance of BBEWC to five methods from the literature:

• CBQ: the exact algorithm for the MEWCP recently proposed in [14] and based on a
quadratic programming formulation for the MEWCP (see Section 2).

• The following four compact ILP formulations, proposed in [11]:

F1: ILP formulation (4)–(9) in which the exponential family of Constraints (5) has
been replaced by the following nonedge constraints:

xu + xv ≤ 1, {u, v} ∈ E. (27)

F2: ILP formulation (4)–(9) in which the exponential family of Constraints (5) has
been replaced by the following family:∑

v/∈N(u)

xv ≤ (|V | − |δ(u)| − 1)(1− xu), u ∈ V. (28)

F11: Formulation F1 augmented with the following constraints, called star inequalities
(see [29, 11]): ∑

e∈δ(u)

ye ≤ (ω(G)− 1)xu, u ∈ V. (29)

Differently from [11], which uses a heuristic upper bound on ω(G) to impose these
inequalities, the exact value of ω(G) is used in our implementation, and hence,
tighter cuts are generated. We calculate ω(G) using the algorithm proposed in [41]
(which runs in a very short computing time for the instances in our test bed).

F21: Formulation F2 augmented with Constraints (29).
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The four formulations are solved using the state-of-the art commercial MILP solver
CPLEX, version 12.7.0 (called just CPLEX in what follows), in single-threaded mode,
leaving all its parameters to their default value.

We refrain from carrying out a systematic comparison with the EWCLIQUE algorithm described
in [42], as the authors’ code is currently not publicly available and the results in the paper
were carried out with a different machine. We will comment on the difference in performance
between the two algorithms in Section 5.1.

All the experiments are carried out on a 20-core Intel(R) Xeon(R) CPU E5-2690 v2@3.00GHz,
equipped with 128 GB of main memory and running a 64 bit Linux operating system.
To facilitate the comparison with other codes run on a different machine, we report the
performance of the clique algorithm dfmax3, commonly used for calibration purposes, on the
benchmark graphs r300.5, r400.5 and r500.5: the computing times are 0.189, 1.155, and 4.369
seconds, respectively (with a precision up to the millisecond).

Our algorithm is implemented in C++, compiled using gcc 4.8.4 (with optimization flag
-o3), and run in a single-threaded environment on a single core. In all the experiments, the
computing time is measured in seconds.

We consider four classes of instances, described in each of the following four subsections:
classical DIMACS instances, weighted real-world networks, random Erdős-Rényi graphs, and
real-world massive networks.

5.1. DIMACS instances

We consider a set of instances taken from the DIMACS 2 set [1], commonly used for testing
maximum clique algorithms (see, e.g., [40, 39, 20, 8]). The edge weights are generated according
to the following formula, as done in previous work on the MEWCP (see, e.g., [11, 14, 42]):

ce = (u+ v) mod 200 + 1, e = {u, v} ∈ E. (30)

We extract from the DIMACS benchmark a subset of graphs which are “tractable”, in the
sense that they can be solved in less than 7200 seconds by at least one of the algorithms we
test. We obtain 36 graphs.

Table 1 reports the names of the instances, their size (in terms of the number of vertices |V |
and edges |E|), their clique number ω(G), and their edge-weighted clique number ωc(G).
Then, column (#calls) reports the number of recursive calls made by our algorithm BBEWC.
The remaining columns show the computing times spent by each of the methods, i.e., BBEWC,
CBQ, and the ILP formulations F1, F2, F11, and F12 solved by CPLEX. The symbol tl indicates
that the 7200 seconds time limit has been exceeded. The smallest computing time across the
three algorithms is highlighted in boldface.

3http://archive.dimacs.rutgers.edu/pub/challenge/graph/solvers
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Table 1 shows the clear superiority of BBEWC in terms of performance over the other algorithms.
BBEWC is the fastest method over all the instances, achieving speedups of more than two orders
of magnitude with respect to CBQ almost always. The difference in performance between
BBEWC and the four ILP formulations solved with CPLEX is even larger. BBEWC manages to
solve all the instances in well under the time limit of 7200, while CBQ fails to solve 8 instances
and CPLEX with the best ILP formulation F12 fails to solve 18 instances.

The table also reveals that the san and gen families of instances are particularly difficult for
both CPLEX and CBQ. CPLEX, in particular, fails to solve to optimality within the time limit
most of these instances for all the ILP formulations. This also applies to the p hat family
for the case of CPLEX, but not CBQ. On the contrary, BBEWC performs very well for all the
families: it solves 19 instances in under a second, 8 instances in less than 5 seconds, and all
the remaining ones (with the sole exception of gen200 p0.9 44 and san200 0.7 2) in less
than 200 seconds.

We report, in Figure 6, a performance profile which provides a graphical representation of
the relative performance of the algorithms we have tested. For each instance, we compute
the normalized time τ as the ratio of the computing time of the considered algorithm (which
is ∞ if the instance is not solved to optimality) over the minimum computing time taken
for all the algorithm we tested. For each value of τ on the horizontal axis, the vertical axis
reports the percentage of instances for which the corresponding algorithm spent at most τ
times the computing time of the fastest algorithm. At τ = 0, the value of the curves is equal
to the percentage of instances in which the corresponding algorithm is the fastest one. At the
right-end of the chart (for the largest value of τ), each curve corresponds to the percentage of
instances solved by a specific algorithm. The best performance is achieved by the algorithms
whose curves occupy the upper part of the chart.

The performance profile confirms that BBEWC is very clearly the best algorithm for this set of
instances, being the fastest one in 100% of the cases. The second best algorithm is CBQ, which
solves more than 60% of the instances to proven optimality—the difference in performance
between the two is, nevertheless, very large. The worst performance is achieved for the ILP
formulations solved with CPLEX. The results for the F11 and F12 formulations (which include
the star inequalities) are slightly better than those for the F1 and F2) formulations but,
nevertheless, they are still substantially inferior to CBQ for every τ ≥ 150.

As mentioned, we cannot carry out a direct comparison with the results obtained for the
combinatorial branch-and-bound algorithm EWCLIQUE described in [42], as we do not have
access to the corresponding code. Nevertheless, as far as the DIMACS instances are concerned
we can make the following observations. According to the results reported in [42], EWCLIQUE
manages to solve 33 instances within a time limit of 1000 seconds. On the other hand, BBEWC
solves 36 DIMACS instances within 7200 seconds, 34 of which under 1000 seconds. Moreover,
on the six instances brock200 1, c-fat200-5, c-fat500-10, p hat300-2, san200 0.7 1,
and san200 0.9 2, BBEWC outperforms EWCLIQUE by more than one order of magnitude,
whereas the opposite is true only for 2 instances (san200 0.7 2 and hamming8-2). Due to
the differences in the machines used for the tests, a more precise and detailed comparison
cannot be carried out.
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Figure 6: Performance profile on the DIMACS instances.

5.2. Weighted real-world networks

We report the results obtained on two sets of weighted real-world networks which have been
frequently used in the recent literature for testing edge-weighted clique algorithms. Specifically,
we consider a subset of the Reuters terror news (RTN) network proposed in [6] and the SC-NIP

networks designed and tested in [11].

The instances from the RTN set are temporal networks based on the stories collected during
66 consecutive days by the Reuters news agency after the 09/11 terrorist attack (considered
as day 0 in the instances). In this data set, each vertex represents a term (which appeared in
the news) and two vertices are connected by an edge if and only if the two corresponding
words appear in the same text unit. The weights on the edges count the number of times the
corresponding couple of terms appeared in the same unit over the period of 66 days. In our
tests, we consider a subset of 4 graphs as done in [14].4 The graphs comprise the observations
collected in days 1, 3, 7, and 15. They are denoted by d1-RTN, d3-RTN, d7-RTN, and d15-RTN,
respectively. As done in [14], we preprocess the instances, which all have |V | = 13308 vertices,
to remove their many isolated vertices. For additional information on these instances, we
refer the interested reader to [11].

The SC-NIP instances correspond to two biological networks built from metabolic reaction
information relative to the saccharomyces cerevisiae data (a type of yeast fungi) [9]. In the
network SC-NIP-m-t1, the vertices are metabolites, with an edge between two metabolites if
they share at least a reaction, i.e., if they both appear either as reactant or as the product of
a chemical reaction. The weights correspond to the number of such reactions. In the second
two networks SC-NIP-r-tk, for k = 1, 2, the vertices correspond to reactions and they are
connected by an edge if and only if they share at least one metabolite. The edge weights

4These graphs were provided to us by the authors of [14].
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correspond to the number of metabolites sharing the corresponding two reactions.

Table 2 shows the results obtained on the seven graphs in this data set.

Table 2: Results on the weighted real-world networks.

BBEWC CBQ F1 F11 F2 F12

|V | |E| ω(G) ωc(G) #calls t. [s] t. [s] t. [s] t. [s] t. [s] t. [s]

d1-RTN 1476 7,734 10 4,524 3 0.00 15.47 84.6 673.4 520.6 591.6

d3-RTN 3125 24,145 18 5,859 11 0.01 177.09 1292.1 t.l. t.l. t.l.

d7-RTN 4420 41,009 18 7,424 23 0.01 519.34 2887.2 t.l. t.l. t.l.

d15-RTN 5498 57,845 18 7,424 98 0.02 976.48 t.l. t.l. t.l. t.l.

SC-NIP-m-t1 770 3,825 9 343 33 0.00 2.39 22.9 104.0 114.7 129.2

SC-NIP-r-t1 1349 56,218 174 25,290 36 0.02 752.83 251.9 972.1 1509.7 1723.6

SC-NIP-r-t2 739 17,479 121 15,188 1 0.00 19.94 109.5 171.0 110.9 147.5

The table provides the same information as that in Table 1, i.e., the number of vertices |V |,
the number of edges |E|, the clique number ω(G), the edge-weighted clique number ωc(G),
the number of calls to the BBEWC algorithm, and the computing time for each of the tested
algorithms. The results show that BBEWC can solve all the instances in a fraction of a second,
while CBQ and the four ILP formulations are slower by several orders of magnitude in all cases.
CPLEX exceeds the time limit of 7200 seconds for all four ILP formulations on the instance
d15-RTN, and F1 is the only formulation which solves to optimality the instances d3-RTN and
d7-RTN within the time limit. Finally, we note that CBQ outperforms CPLEX in all cases except
for the graph SC-NIP-r-t1, where it is around three times slower than F1.

Overall, the table shows that BBEWC substantially outperforms all the other methods also on
this data set. We note that the performance of BBEWC remains unchanged even when run on
the raw RTN graphs (rather than on their preprocessed counterparts). This is not the case for
the other approaches we tested, for which we observe a significantly worse performance when
the preprocessing phase is neglected.

5.3. Random instances

We consider a data set encompassing 180 Erdős-Rényi random graphs G(n, µ) of different
sizes |V |, ranging from 150 to 10000, and different edge densities (see Table 3 for the edge
density value µ of each (n, µ) family of instances). By construction, for each pair of vertices
in u, v ∈ V these graphs contain an edge e = {v, u} with a uniform probability equal to the
edge density µ. Similar graphs are very often used for testing max clique algorithms, see,
e.g., [41]. We consider 10 random instances for each (n, µ) combination of size and density
reported in the table. The edge weights are generated as for the DIMACS instances according
to Formula (30).

For each (n, µ) set of 10 graphs, Table 3 also reports the range of the clique number ω(G) and
the average maximum edge-weighted clique number ωc(G) computed by our BBEWC algorithm.
Finally, the last two columns of the table show the average number of recursive calls (#calls)
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Table 3: Results on random Erdős-Rényi instances.

BBEWC

|V | µ ω(G) ωc(G) #calls t. [s]

150 0.7 16-17 14,739.6 41,853 0.5

150 0.8 23 28,556.2 431,443 8.1

150 0.9 35-38 173,506.6 12,895,115 232.9

200 0.7 17-18 16,737.9 329,136 5.5

200 0.8 25-26 31,692.0 8,861,123 222.1

300 0.6 15-16 12,689.2 331,924 6.7

300 0.7 20-21 20,802.8 7,992,047 188.9

500 0.4 10-11 5,838.0 56,905 1.2

500 0.5 13 9,416.7 594,690 14.4

500 0.6 17 15,347.1 13,258,071 370.2

1000 0.2 7-8 3,095.2 9,204 0.2

1000 0.3 9-10 4,831.0 96,870 3.7

1000 0.4 12 7,695.0 2,091,692 64.2

3000 0.1 6-7 2,402.5 3,780 1.1

3000 0.2 9 4,222.7 484,107 43.7

5000 0.1 7 2,668.8 43,941 7.5

5000 0.2 9-10 4,862.4 2,592,958 522.0

10000 0.1 7-8 3,234.1 1,184,516 156.9

and the average computing time required by BBEWC to solve them to optimality. As can be
seen, BBEWC solves all the instances in under 600 seconds.

The table shows that, given a value of |V |, the instances get harder to solve for increasing
densities, a typical phenomenon in max clique problems, and that the speed at which their
computing time grows is faster for larger values of |V |. For instance, it only takes 188.9
seconds to solve, on average, instances with |V | = 300 and a density µ = 0.7, whereas, with
|V | = 10000, an average of 156.9 seconds are necessary already for µ = 0.1.

It is interesting to point out that the the MEWCP is notably harder to solve than the MCP,
at least in this data set. This can be seen by comparing the results we reported with those
in [39], which employs a state-of-the-art MCP solver for the MCP running on the same
hardware. For example, the average computing times reported for the MCP algorithm NEW

in [41] (Table 2) for instances with |V | = 300 and a density µ = 0.7 is of 2.5 seconds (whereas
BBEWC requires 188.9 seconds), and 25.3 seconds for the instances with |V | = 10000 and a
density of µ = 0.1 (whereas BBEWC requires 156.9 seconds).

5.4. Massive real-world networks

Finally, we analyse the behavior of our algorithm on massive real-world networks. We consider
a set of instances with clique number ω(G) ≥ 10 taken from the SNAP database [18]. They
belong to the following three categories:
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• Social Networks are, generally speaking, graphs whose vertices represent individuals
and an edge indicates that two individuals share some kind of relationship. Interaction
networks encompass the cases where the edges indicate an interaction via the exchange
of a message (e.g., in ia-email-EU the message is an email). In recommendation
networks, an edge indicates the exchange of a recommendation or of an opinion between
individuals (e.g., rec-eachmovie indicates the exchange of a movie preference). In
collaboration networks, the edges identify a work-related collaboration (e.g., in astro-ph

and cond-mat the relationship is between two researchers who coauthored a preprint
uploaded on the “astro physics” or “condensed matter” segment of arXiv). The
relationship is of “friendship” on Facebook in socfb, and of interaction between bloggers
in soc-BlogCatalog.

• Technological networks are networks whose vertices represent routers and whose
edges indicate a communication between a pair of them, as in tech-internet-as.

• Scientific computing networks are mesh graphs derived from mathematical analyses
carried out in different disciplines, such as, e.g., finite elements (sc- instances).

The weights of these instances are constructed according to Equation (30).

For each instance, Table 4 reports its size in terms of number of vertices |V | and edges |E|,
its clique number ω(G), its edge-weighted clique number ωc(G) computed with BBEWC, the
number of recursive calls performed by our algorithm, and the computing time in seconds.
As the table shows, BBEWC manages to solve all the instances to optimality in less than 30
minutes. Moreover, with the sole exception of 4 cases all the instances are solved in well under
a minute. One can see that, in general, larger computing times go hand in hand with a high
density. This applies to the harder instances, socfb-UIllinios, socfb-UF, socfb-Texas84,
and soc-themaker.

We would like to highlight that, to the best of our knowledge, this is the first time that these
real-world instances have been solved to optimality for the MEWCP. We believe this to be a
further practical contribution of our work, as it envisages the possibility of employing the
edge-weighted clique number as one of the characteristic numbers for social networks endowed
with edge-weighted information quantifying the level of (social) interaction between their
vertices (as it is the case for the sparse real-world networks in Section 5.2.)

5.5. On the impact of the DESORB phase and of our bounding procedure

We analyse, in this section, the effect of the DESORB phase on the overall performance of
the algorithm, also illustrating the pruning power of the bounding procedure proposed in
this work. Table 5 illustrates on a subset of 9 DIMACS instances the total number of nodes
(# total) crated by BBEWC, the number of nodes which were pruned (# pruned) due to being
part of the pruned set P , and their percentage (%) as a fraction of V̂ without (left) and with
(right) carrying out the DESORB phase. We remark that the number of nodes that we report
corresponds to the number of subproblems examined by the algorithm, which is not the same
as the number of recursive calls—for example, in the demonstration example described in
Figure 4 the total number of nodes examined by BBEWC is 7, whereas the number of calls is
just 4.
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Table 4: Results on the massive real-world instances taken from the SNAP repository.

BBEWC

|V | |E| ω(G) ωc(G) #calls t. [s]

socfb-UIllinois 30,795 1,264,421 57 160,092 210,611 73.94

cond-mat-2003 31,163 120,029 25 42,324 227 0.32

ia-email-EU 32,430 54,397 12 8,155 192 0.08

rgg n 2 15 s0 32,768 160,240 13 8,058 50 0.40

ia-enron-large 33,696 180,811 20 19,860 1,816 0.64

socfb-UF 35,111 1,465,654 55 149,419 1,417,532 623.44

socfb-Texas84 36,364 1,590,651 51 129,925 838,917 394.95

tech-internet-as 40,164 85,123 16 13,695 168 0.19

cond-mat-2005 40,421 175,691 30 42,324 178 0.55

sc-nasasrb 54,870 1,311,227 24 51,040 260 3.60

soc-brightkite 56,739 212,945 37 67,102 29,550 6.29

soc-loc-brightkite 58,228 214,078 37 79,678 49,430 9.42

rgg n 2 16 s0 65,536 342,127 14 9,711 121 1.62

soc-themarker 69,413 1,644,843 22 23,605 1,136,712 1104.91

rec-eachmovie 74,424 1,634,743 12 7,791 22,930 37.11

soc-Slashdot0811 77,360 469,180 26 35,450 13,054 6.14

soc-Slashdot0902 82,168 504,230 27 34,951 17,082 9.76

sc-pkustk11 87,804 2,565,054 36 77,580 1,179 10.41

ia-wiki-Talk 92,117 360,767 15 12,422 3,898 3.93

sc-pkustk13 94,893 3,260,967 36 99,915 6,719 17.71

Table 5: Impact of the DESORB phase on a subset of DIMACS instances.

BBEWC (no desorbing) BBEWC (with desorbing)

nodes nodes

t. [s] # total # pruned % t. [s] # total # pruned %

brock200 1 32.5 11,973,064 10,404,958 86.9 24.3 8,071,664 6,788,278 84.1

C125.9 54.1 9,670,404 8,247,173 85.3 25.8 3,712,162 2,770,123 74.6

dsjc500.5 15.4 7,359,624 6,735,639 91.5 13.6 5,706,659 5,192,650 91.0

gen200 p0.9 44 9442.8 778,167,572 688,443,365 88.5 5804.5 429,401,459 361,793,146 84.3

gen200 p0.9 55 277.2 14,634,737 13,655,871 93.3 180.1 8,339,910 7,539,837 90.4

p hat1500-1 25.5 9,187,573 8,317,942 90.5 25.2 7,124,764 6,496,646 91.2

san200 0.7 2 1791.8 384,165,586 337,211,091 87.8 1376.2 274,328,570 240,645,344 87.7

san200 0.9 2 102.3 4,212,944 3,967,509 94.2 61.2 2,396,855 2,197,229 91.7

san400 0.5 1 135.5 28,516,995 26,950,815 94.5 129.5 25,880,541 24,468,354 94.5

Averaging the data of Table 5, we notice that the impact of the DESORB phase is quite
substantial, as it allows for a reduction in the total computing time by a factor of 1.6 (reduced
from 11,877.1 seconds to 7,640 seconds) and in the total number of nodes by a similar factor
(from 1.24 billions to 0.76 billions).
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From Table 5 it also emerges that, regardless of the DESORB phase being used or not, the
percentage of nodes that are pruned is very significant—equal to 90.3% when DESORB is
applied and to 87.7% when it is not. This reveals the effectiveness of the bounding procedure
that we have proposed for the problem.

6. Conclusions

We have proposed a new combinatorial branch-and-bound algorithm for the MEWCP based
on a novel bounding procedure with a high pruning capability. The extensive computational
results that we have provided (on random and structured graphs, encompassing standard
benchmarks used in the literature as well as recently introduced real-world large-scale graphs)
show that our new branch-and-bound algorithm improves on previous state-of-the-art exact
approaches from the literature by up to several orders of magnitude.

Interesting and challenging directions for future work include the parallelization of our
algorithm and the development of improved bounding techniques. It would also be of
interest to extend our algorithm to other problems related to the MEWCP, such as the
maximum diversity, k-subgraph, or k-cluster problems. We also believe that the computational
framework that we have proposed offers a good starting point for addressing edge-weighted
clique problems with high centrality measures, whose interest has been recently shown in
social network analysis [33]. Finally, the study of edge-weighted clique problems under
uncertainty and in a bilevel setting would certainly be a further promising area of research
(see, e.g., [32, 10, 5] for related works on vertex-weighted problems of this type).
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