Properties of the binary neutron star merger GW170817
Properties of the binary neutron star merger GW170817
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M when allowing for large component spins, and to lie between 1.16 and 1.60 M (with a total mass 2.73-0.01+0.04 M) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300-230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.
1-32
Abbott, B.P.
20b32f53-5355-40eb-9d69-91c95d56e693
Jones, D.I.
b8f3e32c-d537-445a-a1e4-7436f472e160
LIGO Scientific Collaboration and Virgo Collaboration
January 2019
Abbott, B.P.
20b32f53-5355-40eb-9d69-91c95d56e693
Jones, D.I.
b8f3e32c-d537-445a-a1e4-7436f472e160
Abbott, B.P.
,
et al. and LIGO Scientific Collaboration and Virgo Collaboration
(2019)
Properties of the binary neutron star merger GW170817.
Physical Review X, 9 (1), , [011001].
(doi:10.1103/PhysRevX.9.011001).
Abstract
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M when allowing for large component spins, and to lie between 1.16 and 1.60 M (with a total mass 2.73-0.01+0.04 M) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300-230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.
Text
PhysRevX.9.011001
- Version of Record
More information
Accepted/In Press date: 21 November 2018
e-pub ahead of print date: 2 January 2019
Published date: January 2019
Identifiers
Local EPrints ID: 430113
URI: http://eprints.soton.ac.uk/id/eprint/430113
ISSN: 2160-3308
PURE UUID: c83db912-1a91-4d8b-8f39-9a10d964ecd5
Catalogue record
Date deposited: 12 Apr 2019 16:30
Last modified: 06 Jun 2024 01:38
Export record
Altmetrics
Contributors
Author:
B.P. Abbott
Corporate Author: et al.
Corporate Author: LIGO Scientific Collaboration and Virgo Collaboration
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics