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of turbulent spots
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Direct numerical simulations have been performed to study the dynamics of isolated
turbulent spots in compressible isothermal-wall boundary layers. Results of a bypass
transition scenario at Mach 2, 4 and 6 are presented. At all Mach numbers the
evolved spots have a leading-edge overhang, followed by a turbulent core and a
calmed region at the rear interface. The spots have an upstream-pointing arrowhead
shape when visualized by near-wall slices, but a downstream-pointing arrowhead in
slices away from the wall. The lateral spreading of the spot decreases substantially
with the Mach number, consistent with a growth mechanism based on the instability
of lateral shear layers. Evidence for a supersonic (Mack) mode substructure is found
in the Mach 6 case, where coherent spanwise structures are observed under the spot
overhang region.

1. Introduction
The breakdown of a laminar boundary layer into turbulence often occurs via the

formation of localized turbulent patches, referred to as turbulent spots. These spots
grow as they are convected downstream and eventually merge into a fully turbulent
boundary layer. The length of the transition region depends on spot characteristics
such as the convection speed of the leading and trailing edges of the spot, the lateral
growth rate and any interactions between spots (Krishnan & Sandham 2006). A
mature turbulent spot is depicted in figure 1(a), showing the arrowhead-shaped spot
core with a leading-edge overhang. Lateral growth from the spot wingtips is measured
by the spreading half-angle β = tan−1(b1/2/x), where b1/2 is the spot half-width. A
classical spot photograph (figure 1b) of Cantwell, Coles & Dimotakis (1978) reveals
the presence of sublayer streaky structures trailing the rear interface of the spot
in what is known as the calmed region. Spots can be triggered artificially using
localized disturbances such as loudspeakers, sparks or suction/blowing slots. With
small-amplitude disturbances the growth of primary instabilities starts the transition
process; however intrusion of large-amplitude nonlinear perturbations may skip the
linear stages of transition in a rapid process known as bypass transition. According
to Haidari & Smith (1994) and Singer (1996), the sequence of events leading to a
mature turbulent spot in a bypass transition scenario triggered by wall blowing is:
(a) rollup of the high-shear layer between the injected fluid and the free-stream fluid
into a primary hairpin structure, (b) generation of secondary hairpin vortices and other
structures due to the lift-up of near-wall low-momentum fluid between the legs of the
hairpin vortex, (c) growth in the lateral direction due to the inviscid deformation of the
vortex lines comprising the hairpin structure, and (d) further growth, regeneration,
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Figure 1. Turbulent spot nomenclature: (1) front overhang, (2) turbulent core, (3) lateral
wingtip, (4) calmed region, (5) lateral spreading half-angle (β), (6) spanwise overhang, seen
in endview. (a) Schematic outline. (b) Spot flow visualization showing the sublayer streaks.
(Cantwell et al. 1978).

nonlinear interactions and breakdown of these hairpin structures, resulting in the
formation of a fully turbulent flow field. The growth mechanism of a spot in a
boundary layer is complex, since the spot interacts with the irrotational free-stream
flow above it and the rotational laminar boundary layer flow surrounding it. The
physical mechanisms involved in the lateral and wall-normal growth of a spot are
different. The wall-normal growth of the spot is similar to the classical entrainment
mechanism, while the difference between convective speeds of the front and the tail
of a spot results in the spot growth in the streamwise direction. Spots are believed
to grow in the lateral direction by destabilizing the surrounding laminar flow, rather
than by turbulent diffusion (Gad-el-Hak, Blackwelder & Riley 1981).

Most of the earlier studies on turbulent spots were performed for incompressible
flows (see for example Narasimha 1985; Wygnanski, Zilberman & Haritonidis 1982),
with relatively few studies of the effect of compressibility. Variation of the wall
and lateral spreading angles of the disturbance region with local Mach number was
reported by Fischer (1972), who also summarized the results of earlier experiments.
The spreading angle relative to the wall remained invariant with Mach number while
the lateral spreading angle decreased sharply from β = 10◦ −11◦ to 3◦ with increasing
Mach number(M) up to M = 6. Clark, Jones & LaGraff (1994) found a decrease in
the lateral spreading of the spot with a favourable pressure gradient and also with
increasing M (β = 9.9◦ for M = 0.24 and β = 6◦ for M = 1.32). Most recently, in
boundary layer transition experiments using thin-film heat-transfer gauges at M = 6,
Mee (2002) also demonstrated that turbulent spots grow with a more slender angle
(β = 3.0◦) than at low M . Most of the available experimental results are based on
ensemble-averaged flow field measurements. The present computational study has
been carried out to provide a more complete picture of the effects of compressibility
on spot characteristics.

2. Simulation details
A high-order scheme is used to solve the time-dependent compressible Navier–

Stokes equations for flow variables (ρ, ρui, ρE), where ρ is the density, ui are velocity
components and E is the total energy per unit mass. Since the simulations need to
be capable of continuing to fully developed turbulent, the full form of the equations
is employed, without any linearization. All the spatial discretizations are done using
a fourth-order central-difference scheme and the time integration is done using the
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Case Mach Re∗
δin

Tw/T∞ (Lx, Ly, Lz)/δ
∗
in Nx, Ny, Nz

M2 2 950 1.67 400 × 60 × 60 801 × 101 × 121
M4 4 2000 3.69 450 × 60 × 60 801 × 101 × 121
M6 6 3000 7.00 600 × 30 × 40 601 × 101 × 121

Table 1. Details of spot simulations.

third-order Runge–Kutta method. Details of the shock-capturing and entropy-splitting
algorithms can be found in Yee, Sandham & Djomeri (1999) and Sandham, Li & Yee
(2002). An additional filter (Ducros et al. 1999; Krishnan & Sandham 2006) is applied
to turn off the shock-capturing scheme within most of the boundary layer. All lengths
are normalized with the displacement thickness (δ∗

in) of the laminar inflow profile,
which is obtained by a separate self-similar compressible boundary layer solution.
Velocity, temperature, density and viscosity are normalized with free-stream values at
the inflow. Details of the various cases considered are given in table 1. The flow is
assumed to be periodic in the spanwise direction and a no-slip fixed-temperature wall
condition is applied at the plate surface. Characteristic boundary conditions are used
at the inflow, outflow and upper surface. The laminar base flow is perturbed by a
localized injection of low-momentum fluid through a spanwise symmetric rectangular
slot of dimensions 4 × 4 (x, z) centred at x =22, z = Lz/2. The blowing trip is
applied for a short duration of 8 non-dimensional time units (δ∗

in/u∞) by specifying
the vertical velocity at the plate surface as vinj = Au∞; the amplitude A of the
disturbance is chosen such that a spot can be efficiently triggered and studied within
the present computational domain. The blowing trip used here has previously been
used in experiments such as Perry, Lim & Teh (1981) and Gad-el-Hak et al. (1981).
Fully developed spots are believed to be independent of the method of initiation
(Singer 1996). A perturbation amplitude of A = 0.2 was used for the Mach number
M = 2 and 6 cases. For the M = 4 case the length of the injection slot was 6 and
the value of A was set to 0.35. The maximum local mean friction velocity (uτ =√

µw(du/dy)w/ρw , with subscript w denoting the wall, and mean properties refer to
the spanwise-averaged flow properties in the spot core) is found to be around 0.055
for the spot cases considered. The estimated grid resolution in viscous wall units is
�x+ = 7.5–12.5, �z+ = 7.5–12.5 based on the maximum mean friction velocity at
the wall, suggesting that the spot turbulence is properly resolved in the simulation.
The present grid resolution is also comparable to other DNS studies in the literature
(for example Maeder, Adams & Kleiser 2001).

3. Results
3.1. Effect of Mach number

The large-amplitude disturbances trigger an incipient spot downstream of the injection
slot as shown by a surface of Π = (∂ui/∂xj )(∂uj/∂xi) on figure 2. The organization
of spot substructures during the early stages of transition at M = 2 tends to follow
the conceptual picture of Perry et al. (1981), with hairpin-shaped substructures visible
within the spot. Further growth, interaction and breakdown of these substructures
finally evolves the flow field into a mature turbulent spot. Plan and side views of
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Figure 2. Iso-surface of the second invariant of the velocity gradient tensor at t = 249;
M = 2 (Π = −0.0008).

the evolved turbulent spot are shown in figures 3(a) and 3(b) at M = 2 and M = 4
respectively. Near-wall streaky structures are clearly visible in the present DNS, as in
flow visualization studies on incompressible spots (Cantwell et al. 1978; Gad-el-Hak
et al. 1981).

In high-Mach-number boundary layers there can be additional inviscid modes
(Mack 1977). The mechanism for instability involves reflection of acoustic waves
between the solid surface and the sonic line. At low Mach numbers the subsonic
mode (first mode) instabilities play a major role in destabilizing the flow. However,
above M = 3.8 the larger amplification rate of the inviscid instabilities (Mack modes)
means that they can dominate the first mode instabilities. In this context we note
that in the M = 6 spot, shown on figure 4, breakdown to turbulence is markedly
different to that at M = 2 and 4. In particular we note the appearance of coherent
spanwise structures close to wall, visible for example in the side view of figure 4 under
the spot overhang. The location and form suggest an underlying mechanism similar
to the Mack modes. Fiala et al. (2006), in their hypersonic transitional boundary
layer experiments on a blunt cylinder model at M = 8.9, observed cell-like patterns
in the surface heat transfer footprints associated with a spot. Figure 4 suggests
that the cell-like patterns may be associated with the development of Mack mode
substructures.

The lateral growth of a spot is highly dependent on the flow Mach number. Figure 5
shows the evolution of the spot half-width (b1/2), which is determined using plan views
of the three-dimensional wall-normal vorticity contours (ωy = ±0.06). The estimated
spot spreading half-angles (listed on table 2), decrease strongly with increasing M∞,
in agreement with the data of Fischer (1972). We note that this growth reduction is
consistent with lateral growth via an instability mechanism, since the growth of shear
layers is strongly reduced by increasing convective Mach number (Papamoschou &
Roshko 1988). The effect of compressibility is to suppress the spot spreading and
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Figure 3. Iso-surface of wall-normal vorticity, ωy = ±0.06. (a) M = 2, t = 451, (b) M = 4,
t = 475.

Case ufront utail uwt β (deg.)

M2 0.87 0.53 0.57 5.0 ± 0.2
M4 0.87 0.59 0.76 4.0 ± 0.2
M6 0.89 0.68 0.76 1.7 ± 0.2

Table 2. Results of spot simulations.

delay transition at supersonic speeds. Front, rear and wingtip convection speeds and
the spot half-spreading angles are given on table 2. The front convection speed is
unaffected by M , while the rear convection speed is found to increase substantially
(from 0.53 at M = 2 to 0.68 at M = 6).
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Figure 4. Iso-surface of the second invariant showing the Mack mode structures; M = 6,
t = 562, Π = −0.0008.

30

25

20

15

10

5

0
100 200 300 400 500

x

b1/2

M = 2

4

6

Figure 5. Variation of spot half-width (b1/2) with axial location x.

3.2. Spot structure

Iso-surfaces of the instantaneous streamwise velocity perturbations shown on figure 6
illustrate the overall structure of a turbulent spot, with an arrowhead-shaped leading-
edge overhang, stable calmed region near the rear interface and an overhang near the
lateral wingtips. Similar features are also observed for the M = 2 and 6 spots. Slices
through the streamwise perturbation velocity field at M = 4 are shown on figure 7
and can be used to explain some discrepancies relating to spot structure reported in
the literature. Wu et al. (1999) simulated the boundary layer transition induced by
periodically passing wakes. Their near-wall results (u′ contours at y+ = 5.4) showed
spots with the arrowhead pointing upstream (i.e. in the opposite direction to that
of the free stream). It was argued that the disturbances induced by the free-stream
turbulence arrive first in the outer part of the boundary layer and have more time to
spread than in the near-wall region. However, we can infer from figure 7(a) that this
also occurs in the present simulations, where forcing was applied at the wall. Away
from the wall (figures 7b and 7c) conventional downstream-pointing arrowheads are
observed. Thus, one can find both upstream- and downstream-pointing arrowheads by
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Figure 6. Iso-surface of the streamwise velocity perturbations at t = 390 (M = 4);
u′ = ±0.02); (a) three-dimensional view, (b) side view.

varying the wall distance within the same spot, irrespective of the origin of the spot.
The smaller spot spreading angles obtained by the surface heat transfer experiments
of Zhong et al. (2000) are similarly explained by the vertical variations in structure;
the lateral overhang means that surface measurements do not represent the width of
the spot as would be seen in a plan view.

In the present simulations wall heat transfer is highly dependent on location within
the spot. A local wall heat transfer coefficient may be defined by

ch =
q∗

w

ρ∗u∗
∞c∗

p(T ∗
0 − T ∗

w)
, (3.1)

where qw = −κ(∂T /∂y)w is the wall heat transfer rate, κ is the thermal conductivity,
T0 is the stagnation temperature and an asterisk denotes a dimensional quantity. The
M = 2 simulation has been used to give some typical values. In the laminar region
and under the front overhang of the spot ch = 0. In the calmed region behind the
spot there is an inrush of cool fluid towards the wall and hence heat is transferred
away from the wall (wall cooling), reaching a maximum ch ≈ 0.0015 at x ≈ 280
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Figure 7. Two-dimensional slices of the streamwise velocity perturbations at various wall-
normal positions, t = 390 (M = 4); u′ = ±0.02); (a) y = 0.16, (b) y = 1.63, (c) y = 4.65.

(see figure 3a). In the rear portion of the turbulent core the heat transfer changes
sign, reaching a minimum of ch ≈ −0.003 (wall heating) at x ≈ 300. The level of
ch then ramps upwards through the spot, with peak heat transfer occurring at the
front of the turbulent core, with ch ≈ 0.004 at x ≈ 335. In connection with these
observations we note that within the turbulent core there are competing effects of
turbulent dissipation, leading to locally increased temperature close to the wall, and
turbulent diffusion, which brings cool fluid towards the wall.

3.3. Intermittency function

In modelling flow transition, the extent of the transition region is described using an
intermittency distribution. Based on the hypothesis of concentrated breakdown, i.e.
that spots form at a preferred streamwise location randomly in time and cross-stream
position, Dhawan & Narasimha (1958) used the universal intermittency distribution
function to characterize the transition zone:

γ (x) = 1 − exp [−(x − xt )
2nσ/u∞](x � xt )

= 0 (x � xt ). (3.2)

Here n is the breakdown rate (spots occurring per unit time at the location xt ) and
σ is the spot propagation parameter

σ =
u∞t

x3

∫ x

xo

b1/2(x, t) dx, (3.3)
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Case σ (equation (3.3)) σ (equation (3.4)) σ (equation (3.5))

M2 0.075 ± 0.003 0.065 0.075
M4 0.046 ± 0.004 0.038 0.046
M6 0.017 ± 0.001 0.010 0.017

Table 3. Comparison of different methods of computing the non-dimensional spot
propagation parameter σ .

where b1/2 is the half-width of the spot and xo is the virtual origin of the spot. The
accuracy of any transition model using the above intermittency distribution function
mainly depends on the value of nσ . In most of the previous transition studies attempts
were made to fit the data to the universal intermittency function, which has resulted
in correlations for nσ in a variety of flows. It is not possible to estimate n from the
present isolated spot study, but the value of σ can be computed directly. Narasimha
(1985) found that 2σ (i.e. using the full spot width in (3.3)) takes a value around
0.25 near the wall and 0.29 away from the wall (the variation is due to the spanwise
overhang). He also estimated 2σ ≈ 0.05 at M =6 using the data of James (1958).
Vinod & Rama (2004) in their recent transition studies defined σ as a function of the
lateral spreading half-angle β and the convective speeds of the front (ufront ) and the
tail (utail ) of the spot:

σ =

[
1

utail

− 1

ufront

]
u∞ tan β. (3.4)

In this study it is more appropriate to define σ based on the spreading half-angle β

and the convective speed of the spot wingtip (lateral extremity of the spot):

σ =
1

2

u∞

uwt

tan β, (3.5)

where uwt is the convective speed of the wingtip. A comparison of the σ values
estimated using equations (3.3), (3.4) and (3.5) is shown in table 3. The present
definition (3.5) of the non-dimensional spot propagation parameter σ shows good
agreement with the integral definition of Narasimha (1985). This reduction in σ

is also consistent with the spreading half-angles given in table 2, indicating that
compressibility enters primarily via the σ parameter.

4. Summary
A localized blowing mechanism was used to trigger a turbulent spot in laminar

base flows at M = 2, 4 and 6. Prior to breakdown an array of hairpin structures and
quasi-streamwise vortices were noticed inside the spot. Mutual interactions between
these structures resulted in spots with an arrowhead-shaped front overhang region
and a calmed region at the rear interface. Spanwise-coherent structures observed
under the front overhang of the Mach 6 spot suggest the presence of Mack mode
instabilities. The spot structure shows an upstream-pointing arrowhead shape in the
near-wall slices through the spot and a downstream-pointing arrowhead further away
from the wall. This makes it difficult to interpret the exact spot structure from surface
heat transfer footprints and other planar two-dimensional measurements, and is also
a reason for discrepancies in the spot shape and spreading rates reported in the
literature. The estimated spot growth rate and propagation parameters are consistent
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with previous experimental results and provide additional data on turbulent spot
celerities in compressible flows. The effect of compressibility is found mainly to
suppress the spot propagation parameter σ .
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