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On the merging of turbulent spots in a supersonic boundary-layer flow
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Abstract

The complex transition flow physics associated with the merging of turbulent spots in a Mach 2 boundary-layer has been studied using
direct numerical simulation. Dynamics of an isolated turbulent spot, merging of laterally displaced spots, and merging of two spots in
tandem are considered. The coherent structures associated with the wingtip region of the spot are found to play a major role in desta-
bilising the surrounding laminar fluid. In the merging of laterally displaced spots a strong velocity defect, resulting in unstable inflectional
velocity profiles, is observed in the interaction zone. These local inflectional instabilities within the interaction region trigger new large
scale coherent structures. During the inline merging, the calmed region behind the tail of the downstream spot is found to suppress the
growth of the upstream spot. The upstream spot is ultimately engulfed by the downstream spot.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The growth and breakdown of disturbances initiates
laminar-to-turbulent transition. Large amplitude distur-
bances can bypass the initial linear growth stage and
directly enter the non-linear growth phase. Finally, the dis-
turbances break down into regions of intermittent turbu-
lence in an otherwise laminar flow. Emmons (1951)
named these localised islands of turbulence as ‘turbulent
spots’. The growth and the merger of these turbulent spots
leads to fully developed turbulent flow. The length of the
transition region depends on the spot creation rate and
on spot growth characteristics such as the convective speed
of the leading and trailing edges of the spot, lateral growth
rate and interactions between spots. A schematic of a tur-
bulent spot is depicted in Fig. 1, showing how the turbulent
fluid overhangs laminar fluid at the front and sides of the
spot. Behind the spot there is a region known as the calmed
region (Schubauer and Klebanoff, 1955), where distur-
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bances are low, but skin friction is higher than in the sur-
rounding laminar boundary layer.

Narasimha (1985) reviewed the transition process and
turbulent spots in a variety of flows. A classical spot pho-
tograph (Fig. 2) of Cantwell et al. (1978) reveals streaky
structures in the sublayer trailing the rear interface of the
spot. To date, these streaky structures were identified only
in the incompressible flow visualisation studies. Earlier,
Elder (1960) showed experimentally that a spot can be suc-
cessfully triggered if the perturbation amplitude exceeds a
critical level of about 0.2 times the free-stream velocity.
He also suggested that the region of turbulent flow is the
sum of the areas of individual turbulent spots. This simple
superposition is possible only if the spots grow indepen-
dently of each other. Savas and Coles (1985) constructed
a synthetic turbulent boundary layer by triggering an array
of spots in a hexagonal pattern. They suggested that the
dynamics of the spot interactions are important and ques-
tioned the simple superposition of spot areas. Moreover,
the recent experiments by Makita and Nishizawa (2001)
showed a stronger velocity defect in the interaction zone
and demonstrated that the spot merging process is different
from a simple superposition of spots.
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Fig. 2. Spot flow visualisation showing the sublayer streaks (Cantwell
et al., 1978).

Fig. 1. Turbulent spot nomenclature: (1) front overhang, (2) turbulent
core, (3) lateral wingtip, (4) calmed region, (5) lateral spreading half-angle,
(6) spanwise overhang.
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Direct numerical simulations (DNS) of turbulent spots
in an incompressible boundary layer were presented by
Henningson et al. (1987). They showed that turbulent
patches embedded within an arrowhead-shaped region
grow at a half-spreading angle of about 7�, with estimated
front and rear convection speeds of about 0.83u1 and
0.50u1. Numerical simulation of bypass transition in an
initially laminar boundary layer beneath free-stream turbu-
lence was carried out by Jacobs and Durbin (2001). They
found the near-wall streaks to be stable whereas the lifted
streaks became receptivity sites for smaller scale free-
stream turbulence and triggered turbulent spots. This work
showed the formation of spots in flows with top–down per-
turbations (i.e. free-stream disturbances) in contrast to the
more conventional bottom–up perturbations (caused by
near-wall disturbances).

Most of the studies to date have been performed to
explore the dynamics of spots in an incompressible flow.
The physics associated with the spot spreading mechanism
and the spot interactions are only vaguely described in the
literature. A clear understanding of the transition physics is
required for the design of supersonic and hypersonic vehi-
cles, yet data for compressible spots in the literature is very
limited.

Krishnan and Sandham (2004a) used DNS to show that
an increase in the Reynolds number has a destabilising
effect while the Mach number inhibits the growth of a sin-
gle hairpin structure into a turbulent spot in a plane
Poiseuille flow. The effect of compressibility on the spread-
ing of isolated turbulent spots in a compressible boundary
layer was reported by Krishnan and Sandham (2004b).
They found a marked reduction in the lateral half-spread-
ing of the spots from 5� to 1.7� with the flow Mach number
varying from 2 to 6 in agreement with experiments (Fischer,
1972). Spot visualisations clearly revealed that young spots
consist of an array of hairpin and quasi streamwise vorti-
ces. Spanwise-coherent structures which are connected to
the supersonic modes (Mack mode) were seen under the
front overhang of the spot in a Mach 6 boundary layer.
Krishnan and Sandham (2004c) investigated the complex
flow physics associated with the interaction of a turbulent
spot with an oblique shock-induced laminar separation
bubble. The passage of the spot completely collapsed the
bubble in the interaction region and the lateral half-spread-
ing angle increased by a factor of about three compared to
an isolated spot.

Previous experimental results were based on ensemble-
averaged flow measurements and planar visualisation
images. A complete picture of the flow field can be obtained
using DNS, which may facilitate the interpretation of the
complex three-dimensional structure of a spot. The present
computations are primarily carried out to improve our
understanding of the physics associated with the merging
of turbulent spots in a supersonic boundary layer flow.

2. Spot simulations

2.1. Numerical approach

The unsteady compressible Navier–Stokes (N–S) equa-
tions for dimensionless density q, velocity ui, pressure p,
temperature T and total energy E, in cartesian coordinates
are
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Table 1
Details of spot simulations

Case ðLx;Ly ;LzÞ=d�in Nx, Ny, Nz

Single (M2I) 400 · 60 · 60 801 · 101 · 121
Lateral (M2LM) 400 · 60 · 100 801 · 101 · 201
Tandem (M2TM) 400 · 60 · 60 801 · 101 · 121

M1 = 2.0, Red�in
¼ 950:0, Tw = 1.672T1.

1 Mean properties refers to the spanwise-averaged flow properties in the
spot core (averaged over 20 6 z 6 40).

544 L. Krishnan, N.D. Sandham / Int. J. Heat and Fluid Flow 27 (2006) 542–550
The non-dimensional parameters governing the flow are
Reynolds number; Re ¼ q�r u�r x�r=l

�
r , Mach number; M ¼

u�r=
ffiffiffiffiffiffiffiffiffiffiffiffi
cR�T �r

p
, ratio of specific heats; c = cp/cv, and Prandtl

number; Pr ¼ l�r c�p=k� which is set to 0.72. The variation
of the dynamic viscosity with temperature is accounted
for by using a power law ðl�=l�r ¼ ðT �=T �r Þ

xÞ with a
constant x = 2/3. In the above expressions the subscript r
denotes a reference value and asterisks (*) represent dimen-
sional variables.

2.2. Entropy-splitting

The governing equations are solved using a stable high-
order scheme. An entropy splitting approach is used to
split the Euler terms into conservative and non-conserva-
tive parts. Consider a system of hyperbolic conservation
equations of the form

ut þ fx ¼ 0 ð7Þ
where u and f are column vectors. Applying the entropy
variable transformation using the split high-order entropy
conserving scheme of Gerritsen and Olsson (1998) gives

uwwt þ fwwx ¼ 0 ð8Þ
The final split form can be written as

b
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where b is a splitting parameter. The original un-split con-
servative form can be recovered as b!1. In the present
simulation the value of b was set to 4.0 (Sandham et al.,
2002). All the spatial discretizations are carried out using
a fourth-order central-difference scheme while the time inte-
gration uses a third-order Runge–Kutta method. A stable
boundary scheme of Carpenter et al. (1999), along with a
Laplacian formulation of the viscous and heat conduction
terms, are used to prevent the odd–even decoupling associ-
ated with central schemes. An artificial compression method
(ACM) variant of a standard total variation diminishing
(TVD) family is used to capture flow discontinuities (shock
waves). The TVD filter is applied at the end of each full time
step in the form of an additional numerical flux term

F jþ1
2
¼ Rjþ1

2
Ujþ1

2
Wjþ1

2
ð10Þ

where R is the right eigenvector matrix of the flux Jacobian
from the Euler equations and U is defined by the TVD
scheme. W is a sensor (Ducros et al., 1999) which takes
low values where the flow is turbulent and values close to
one in the vicinity of a shock

W ¼ ðdivðV ÞÞ2

ðdivðV ÞÞ2 þ ðrotðV ÞÞ2 þ �
ð11Þ

where V is the velocity vector and � is machine zero.
More details regarding the entropy-splitting and other

numerical issues used in the present scheme can be found
in Sandham et al. (2002).
2.3. Flow configuration

All lengths are normalised with the displacement thick-
ness ðd�inÞ of the laminar inflow profile. The laminar base
flow is obtained by a separate self-similar compressible
boundary layer solution. Details of the various test cases
considered are given in Table 1. For the present flow
conditions an unperturbed laminar base flow remained
laminar. The flow domain is discretized using an equally
spaced grid along the streamwise (x) and spanwise (z)
directions and a stretched grid in the wall normal (y)
direction. The estimated streamwise and spanwise grid
resolutions in viscous wall units are Dx+, Dz+ = 9–11
based on the maximum local mean1 friction velocity
(us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lwðdu=dyÞw=qw

p
, with subscript w denoting the

wall). The minimum grid spacing in the wall-normal direc-
tion is Dy+ = 0.89 and 11 points are used in the sub-layer
region (y+ < 10) and 27 points within y+ < 30. In the super-
sonic part of the inflow boundary all the properties are
fixed, while in the subsonic region the pressure is extrapo-
lated from the interior. Characteristic non-reflective
conditions (Thompson, 1987) at the outlet, integrated char-
acteristic boundary condition (whereby outgoing charac-
teristics are numerically integrated in time and added to
prescribed free stream conditions) at the top surface and
a no-slip, isothermal condition at the flat plate surface
are imposed as boundary conditions. Periodic boundary
conditions are applied in the spanwise direction. First the
laminar base flow is allowed to develop along the plate
until steady-state conditions are reached. The spatially
developed laminar base flow is perturbed by a localised
blowing through the flat plate surface. A spanwise-symmet-
ric rectangular slot of dimensions 4 · 4 (x,z) is used. The
blowing trip is activated for a short duration of eight
non-dimensional time units ðd�in=u1Þ by specifying vertical
velocity at the plate surface as

vin j¼Au1 for

206 x6 24; 286 z6 32; t< 8 ðM2IÞ
366 z6 40; 606 z6 64; t< 8 ðM2LMÞ
286 z6 32; t< 8; 98< t< 106 ðM2TMÞ

8><
>:

The amplitude of the disturbance was chosen as
A = 0.20 such that a spot can be triggered (Elder, 1960)
and tracked within the present domain size. Other ampli-
tudes and spot triggering methods have been employed in



Fig. 4. Iso surface of wall-normal vorticity, (case M2I); t = 451,
xy = ±0.06. Upper figure: plan view. Lower figure: side view.
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Krishnan (2005); the mature spot properties appear to be
independent of the spot initiation method.

3. Results and discussion

In this section the results for a single turbulent spot are
summarized first and then the dynamics of spot merging
are discussed in detail.

3.1. Single spot dynamics

Coherent structures in the flow are identified by calcu-
lating the second invariant P ¼ oui

oxj

ouj

oxi

� �
of the velocity gra-

dient tensor. Negative values of P correspond to regions in
the flow where the vorticity dominates over strain. The
injected low momentum fluid acts as a blockage to the flow
and induces hairpin vortices downstream of the injection
slot. These primary hairpin structures are stretched by
the mean flow shearing action and are convected down-
stream. Fig. 3 shows the structure at t = 36, with a primary
hairpin vortex surrounded by evolving second-generation
structures. The strength of the primary structures is high
due to the large amplitude blowing trip and they trigger
secondary hairpin structures, quasi-streamwise vortices
and other auxiliary structures in the flow by a vortex regen-
eration mechanism (Haidari and Smith, 1994). As they are
convected downstream, the structures grow and their inter-
action finally evolves into a localised turbulent patch i.e. a
turbulent spot. A turbulent spot at time t = 451 is shown in
Fig. 4 with surfaces of constant wall-normal vorticity. This
clearly shows the arrowhead shaped front overhang, lateral
wingtips and the longitudinal vortices around the tail inter-
face and is similar to the classical spot sub-layer flow visu-
alisation pictures of Cantwell et al. (1978) shown in Fig. 2.
A semi-log plot of the mean velocity profiles at different
Fig. 3. Coherent structures downstream of the injection slot (case M2I),
t = 36, surface of second invariant P = �0.002.
streamwise locations along the spot core at time t = 451
(Fig. 5(a)) and the corresponding turbulent fluctuations
shown in Fig. 5(b) illustrate the existence of a well devel-
oped turbulent region inside the spot.

Isolated spot simulations (Krishnan and Sandham,
2004b) showed that the spanwise extremities at the rear
of the spot (the lateral wingtips) are accompanied by a
defect in streamwise velocity. These velocity-defect regions
are caused by the upwash of near-wall fluid by coherent
structures in the wingtip region. This can be explained after
we note that the high momentum turbulent fluid inside the
spot is surrounded by the low speed laminar fluid. This cre-
ates a lateral shear (ou/oz) along the wingtips, the strength
of which will depend on the difference between the turbu-
lent profile within the spot and the laminar profile outside
it. The rollers induced by the lateral shear are tilted in the
streamwise direction by the mean shear, leading to a quasi-
streamwise structure which cause an upwash of near-wall
fluid in the wingtip region. A detailed schematic of the pro-
posed destabilising mechanism responsible for the lateral
spreading of the spot is given in Fig. 6. The velocity-defect
regions are unstable and break down quickly to turbulence,
resulting in a spreading of the spot.

This mechanism based on lateral shear can be used to
explain the qualitative variation in spot spreading rate in
a variety of flows, such as the inhibition of the lateral
growth of spots in a boundary layer with a favourable pres-
sure gradient (where the lateral shear is reduced), enhanced
growth in an adverse pressure gradient flow, suppression of
the spot growth during the interaction with a turbulent
boundary layer and the effects of compressibility. A more
elaborate discussion is provided in Krishnan (2005).

A three-dimensional plan view of the wall-normal vor-
ticity at a threshold value of ±0.06 is used to locate the spot
boundary at different times during the spot evolution. The
axial locations of the spot front, tail and the maximum
half-width ðb1

2
Þ at various time instants are used to calculate

the spot celerities. The spot features are found to propagate
with constant speeds during the self-similar growth of
the spot (Krishnan and Sandham, 2004b). The lateral



Fig. 5. (a) Mean streamwise velocity distribution in the spot core
310 6 x 6 330 for the isolated spot case M2I at time t = 451, dashed line
– law of the wall: u+ = 2.5 * ln(y+) + 5.1, (b) mean velocity fluctuations at
x = 299.5.

Fig. 6. Schematic of the proposed lateral destabilising mechanism of the
spot.

Fig. 7. Iso contours of second invariant P = �0.002 showing the spot
substructures at t = 130.
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half-spreading angle (defined as b ¼ tan�1ðdb1
2
=dxÞ, where

b1
2

is the maximum half-width of the spot) in the present
Mach 2 flow is estimated as 5�, compared to the spreading
angle of incompressible spots, which is in the range of 8.5–
11�. This reduction in growth rate due to compressibility is
consistent with the experimental data of Fischer (1972). The
front of the spot is convected at 0.87u1 and the tail at
0.53u1. The corresponding front and tail speeds of incom-
pressible spots reported in the literature are in the range of
0.85–0.9 and 0.5–0.6, respectively, so the compressibility
can be seen to have a very strong effect on spreading angle,
but apparently only a small effect on spot convection
speeds, at least up to M = 2.
3.2. Lateral merging

Fig. 7 shows a three-dimensional view of the spots
during an early stage of the lateral merging process. Spot
substructures, consisting of hairpin-shaped and quasi-
streamwise vortices may be seen inside the spot. Iso-sur-
faces of the streamwise velocity perturbations (relative to
the laminar profile: u 0 = u � ul) shown in Fig. 8 (plan view)
and Fig. 9 (side view) indicate a strong velocity defect in
the interaction region. The formation of a calmed region
at the rear of the spot is also visible as a velocity excess
region, shown with the lighter surface contour. Fig. 10
shows the streamwise variation of the wall-normal velocity
in the defect region at t = 173. It can be seen that the wall-
normal velocity near the interacting wingtips is almost two
times higher than near the free wingtips. A schematic of
this process is shown in Fig. 11. The spot interaction
triggers highly unstable inflectional velocity profiles away



Fig. 8. Plan view showing iso-contours of streamwise velocity perturba-
tions u 0 = ±0.02 at t = 130.

Fig. 9. Side view showing iso-contours of streamwise velocity perturba-
tions (u 0 = ±0.02, t = 130); dark shade: velocity defect region, light shade:
velocity excess region.
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Fig. 10. Comparison of the wall-normal velocity distribution at y = 2.932,
and t = 173. Free wingtip: z = 25, interacting wingtip: z = 50.

Fig. 11. Schematic outline of spot merging.

Fig. 12. Inflectional streamwise velocity profiles in the merging zone
t = 173, z = 50.

Fig. 13. Contours of second invariant P = �0.002 showing the evolved
coherent structures during the spot merging at t = 290.
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from the wall, as shown in Fig. 12. This inflectional insta-
bility generates new coherent structures which connect the
two spots in the wingtip region. These new structures have
a hairpin shape and can be seen in the region 210 6 x 6

240 on the centreline, z = 50, in Fig. 13.
3.3. Intermittency distribution

The fraction of time a point on the surface experiences
turbulent motion due to the passage of a turbulent spot
is defined as the intermittency c. Dhawan and Narasimha
(1958) successfully calculated the local skin friction distri-
bution during transition, cft, using intermittency data from
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experiments. They assumed that the skin friction during
transition can be represented as a linear combination of
the corresponding laminar cfL and the turbulent skin fric-
tion cfT values as

cft ¼ ð1� cÞcfL þ ccfT ð12Þ

From the DNS results we know the laminar skin friction
distribution and the transitional skin friction value. The
turbulent skin friction value is obtained using the Eckert
(1955) correlation based on the reference temperature
method as

cfT ¼
0:370

½log10ðRex=ðqRlRÞÞ�2:584
;

cfL ¼
0:664ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRex=ðqRlRÞÞ
p ð13Þ

A reference temperature: TR = Te + 0.5(Tw � Te) +
0.22(Trec � Te) is used to calculate the density (qR) and
the viscosity (lR) used in the correlations. Trec is the adia-
batic recovery temperature, Te is the temperature at the
outer edge of the boundary layer and Tw is the temperature
at the wall. Comparison of the present laminar skin friction
value with the Eckert (1955) laminar correlation showed
excellent agreement. The local intermittency distribution
of the spot is estimated by solving Eq. (12) for c. The inter-
mittency distribution at the flat plate surface at time
t = 290 is plotted in Fig. 14. Higher values of c are seen
near the free wingtips and the interaction region. This re-
flects the high skin friction associated with the newly gen-
erated turbulence. The complex interaction dynamics of
the spots should be taken into account for the development
of accurate intermittency based transition models capable
of predicting transitional flow properties.
Fig. 14. Intermittency distribution at t = 290.
3.4. Tandem merging

The inline (tandem) merging of two spots is different to
the lateral merging case of the previous section since there
is a calmed region behind the spot. The influence of the
calmed region of the downstream spot on the growth of
the upstream spot is addressed in this section. Iso-contours
of the streamwise velocity perturbations at t = 134 are plot-
ted in Fig. 15. This shows how the upstream spot enters the
calmed region of the downstream spot. This calmed region
has fuller velocity profiles and hence a strong stabilising
effect on the upstream spot. Further downstream the over-
hang region of the upstream spot is found to overtake the
tail of the downstream spot, since the front overhang is
travelling at a convection speed of about 0.87u1. The lead-
ing edge hairpin structure of the upstream spot can still be
identified in the merged region, as seen in Fig. 16, which
shows surfaces of constant P. The lateral growth of the
upstream spot is seen to be reduced relative to that of an
isolated spot. The intermittency distribution, shown in
Fig. 17, confirms the suppressed growth of the upstream
spot. Further downstream at t = 450, Fig. 18 indicates that
the upstream spot has been trapped inside the downstream
spot. The dashed line marks the boundary of the upstream
spot, in which individual structures can still be tracked.
Due to the interaction the celerity of the downstream spot
is not altered. However, the influence of its calmed region
on the dynamics of the upstream spot is significant. This
Fig. 16. Coherent structures showing the interaction of the upstream spot
with the tail of the downstream spot, t = 374, P = ±�0.002. The dashed
line shows the approximate location of the upstream spot.

Fig. 15. Streamwise velocity perturbations at t = 134, u 0 = ±0.02; dark
shade: velocity defect region, light shade: velocity excess region.



Fig. 17. Intermittency distribution during tandem merging of spots at
t = 374. The dashed line shows the approximate location of the upstream
spot.

Fig. 18. Coherent structures showing the interaction of the upstream spot
with the tail of the downstream spot, t = 450, P = ±�0.002. The dashed
line shows the approximate location of the upstream spot.
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process is consistent with the experiments of Gutmark and
Blackwelder (1987), who noticed a reduction in the celerit-
ies of the upstream spot with a decrease in the time delay
between the generation of spots in an incompressible flow.

There are also similarities with Zilberman et al. (1977),
who initiated a turbulent spot in a laminar boundary layer
and allowed it to interact with a turbulent boundary layer
downstream. They noticed large scale structures evolving
from the interactions and also found a drastic reduction in
the lateral and streamwise growth of the spot. In this case
the velocity difference across the wingtips is reduced, since
the surrounding turbulent fluid is travelling at a faster speed.
This in turn reduces the lateral shear and the spot destabil-
isation process i.e. a weak upwash near the wingtips.

4. Summary

The dynamics of an isolated turbulent spot, together
with lateral and tandem merging of spots in a supersonic
boundary layer have been studied in detail by DNS. An
array of hairpin-shaped and quasi-streamwise vortices are
identified as the main spot substructures. Coherent struc-
tures in the wingtip region destabilise the surrounding lam-
inar fluid by displacing the near-wall fluid away from the
surface (upwash) and were found to be responsible for
the lateral growth of the spot. In the lateral merging of
spots a strong velocity-defect region is created in the inter-
action zone due to the combined upwash associated with
the wingtip structures. The effect is twice as large as in an
isolated spot. Inflectional velocity profiles associated with
the velocity defect trigger new large scale structures in the
interaction zone. For tandem merging of spots it was found
that the growth of the upstream spot was highly suppressed
in the calmed region of a downstream spot.
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