
MMP-DCD-CV based Sparse Channel Estimation Algorithm for
Underwater Acoustic Transform Domain Communication System

Youwen Zhanga,b,c, Tengfei Wuc, Yuriy Zakharovd, Jianghui Lie,∗

aAcoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China
bKey Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Ministry of Industry and

Information Technology, Harbin 150001, China
cCollege of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China

dDepartment of Electronic Engineering, University of York, York, YO10 5DD, U.K.
eInstitute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, U.K.

Abstract

In this paper, we propose a computationally efficient multipath matching pursuit (MMP) channel estimation
algorithm for underwater acoustic (UWA) transform domain communication systems (TDCSs). The algo-
rithm, referred to as the MMP-DCD-CV algorithm, is based on the dichotomous coordinate descent (DCD)
iterations and cross validation (CV). The MMP-DCD-CV sparse channel estimator in each iteration searches
for multiple promising path candidates most relevant to a residual vector and chooses the best candidate.
The DCD iterations are used to solve the corresponding least squares problem with low complexity and
numerical stability. The CV provides a stopping criterion of the algorithm without a priori information on
the channel sparsity and noise level and examines whether the algorithm overfits its data, thus improving
the estimation accuracy. The performance of the proposed algorithm is evaluated under simulated sparse
UWA channels. The numerical results show that the algorithm achieves better performance than the orig-
inal MMP algorithm, has lower complexity, and does not require prior knowledge on the channel sparsity
and noise level. We also propose an UWA TDCS with sparse channel estimation based on the proposed
MMP-DCD-CV algorithm. The proposed UWA communication system is tested by the Waymark simula-
tor, providing the virtual signal transmission in the UWA channel, with a measured Sound Speed Profile
and bathymetry. Numerical results demonstrate that the UWA TDCS with the proposed sparse channel
estimator offers considerable improvement in system performance compared to other TDCS schemes.

Keywords: Compressive sensing, cross validation, DCD iterations, multipath matching pursuit, sparse
channel, transform domain communication system, underwater acoustic communication.

1. Introduction

The underwater acoustic (UWA) channel has a long delay spread, significant Doppler effect, high levels
of ambient noise and interference from shipping and marine biological or sonar sources, which pose a great
challenge to building reliable and effective underwater communication systems[1, 2, 3, 4]. Two strategies
for interference mitigation (IM) and interference-avoiding (IA) most often used in wireless communications
are[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]: modulation format based interference mitigation (MF-
IM)[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and cognitive radio (CR) based interference-avoiding (CR-IA)[16, 17,
18].

For the MF-IM schemes, the spread spectrum (SS) modulation is an effective tool to circumvent the
interference. Two types of SS techniques have been successfully used in military and civilian wireless com-
munications. Direct sequence based SS (DS-SS) systems use pseudo-random (PR) spreading codes[7, 8,
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9, 10, 11], while frequency hopping (FH) based SS (FH-SS) systems use PR hopping sequences to avoid
interference[9]. In [14], an interference mitigation receiver is proposed for orthogonal frequency division
multiplexing (OFDM) in UWA communications. A generalized likelihood ratio test was used for interfer-
ence detection, and interference estimation and data decoding were carried out iteratively given the prior
knowledge of the frequency band and time duration of the interference. In [15], an iterative receiver for
impulsive noise mitigation in UWA OFDM systems is proposed, with positions and amplitude of impulsive
noise samples jointly estimated under the least squares (LS) formulation.

Alternatively, the CR-IA schemes[16, 17] perceive the surrounding environment using the CR technology[28]
and thus avoid the spectrum interference. Based on this feature, the transform domain communication sys-
tems (TDCSs) were proposed[18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Compared to the SS-
based systems, TDCSs improve the robustness against interference by utilizing interference-avoiding wave-
forms, and information data are modulated on the unoccupied spectrum bins sensed via CR. On the other
hand, noise-like basis functions instead of PR spreading codes are used for the information modulation[18],
thus, TDCSs possess the same abilities of low interception rate and strong interference avoidance as the SS-
based systems[23]. To minimize the computational complexity, the TDCS can be efficiently implemented by
the fast Fourier transform (FFT) and inverse FFT (IFFT) operations like that in OFDM systems[27, 28, 29].
The concept of TDCS was first proposed in [18] and then it was applied in a low interception communication
system[19]. TDCS was studied for the military communication due to its strong anti-interference ability and
a low probability of interception[20, 21, 23, 24, 25, 26]. To the best of our knowledge, there is no research
work related to the UWA TDCS.

If we want to apply TDCS underwater, there are two basic problems that should be addressed: 1)
interference sensing, and 2) channel state information (CSI) estimation. The interference sensing can be
achieved by nonparametric or parametric methods such as the periodogram, multiple signal classification
(MUSIC), Capon method, etc.[34]. In this paper, we focus on the CSI estimation, and assume that the
narrow band interference is known to both the transmitter and receiver of an UWA TDCS. According to the
channel characteristics and adopted modulation format, block-wise or symbol wise adaptive algorithms can
be applied for channel estimation. Since the implementation of the TDCS is similar to that of an OFDM
system, block-wise channel estimation algorithms are usually utilized. Typical UWA channels have inherent
sparsity, i.e., most of the received signal energy arrives at a few channel delays. The traditional LS based
channel estimation algorithms are greatly influenced by additive noise and inter carrier interference (ICI).
Moreover, there is the noise enhancement problem, so the LS based channel estimation is not appropriate
for sparse channels[40, 41, 42, 43, 44].

In recent years, sparse channel estimation based on the compressive sensing (CS) has received a great
interest. The CS theory breaks the limitation of the Nyquist sampling theorem. When the signal is sparse
in a certain domain[36, 37, 38], one can use fewer sampling points to accurately reconstruct the sparse
signal. Due to this advantage, the CS is widely used for the sparse UWA channel estimation[40, 41, 42, 43].
Multiple sparse recovery algorithms have been recently proposed. A sparse signal can be represented by
a linear combination of atoms selected from a dictionary[45, 39]. The matching pursuit (MP), at each
iteration, selects from a dictionary one atom best matching to a residual signal. An improved selection
of atoms is implemented in the orthogonal MP (OMP)[46, 47, 48, 49]. In the MP and OMP algorithms,
only one atom is selected at a time. The incorrect atom (a path in the multipath channel estimation) will
affect the selection of the next path. The multipath MP (MMP) algorithm searches for multiple possible
paths at a time[50]. The candidate set of paths is selected according to the minimum residual energy. The
above mentioned sparse recovery algorithms have two common problems: 1) high computational complexity
and numerical instability induced by a large number of matrix inverse operations in a sequence of greedy
iterations; and 2) requirement for a priori knowledge of the sparsity and noise level.

In this paper, a novel MMP based sparse channel estimation algorithm with dichotomous coordinate
descent (DCD) iterations[51] and CV[56, 54, 55, 58, 59, 60, 57], henceforth referred to as MMP-DCD-CV,
is proposed for UWA TDCSs. Our contributions are as follows:

1) We propose a modification to MMP based on the line search with DCD iterations (MMP-DCD).
The solver for an LS problem in the MMP algorithm is based on DCD iterations without explicit
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Figure 1: Block diagram of the UWA TDCS system.

multiplications or divisions, which makes it attractive for real-time implementation on hardware such
as FPGAs or DSPs[51, 52]. The complexity of the LS solver in the original MMP algorithm is O(L2)
(L is the size of the LS problem) operations per iteration, whereas the complexity of the DCD based
solver is O(L) in the proposed MMP-DCD algorithm.

2) CV is used for estimation of the UWA channel. It is integrated into the MMP-DCD algorithm,
leading to the MMP-DCD-CV algorithm. For the original MMP algorithm, the priori information
such as sparsity and/or noise level are required to stop greedy iterations. CV is used to estimate
the model order of the channel based on the received signal. The reconstruction performance of
the proposed MMP-DCD-CV algorithm is evaluated by simulating the virtual signal transmission in
sparse UWA channels. Numerical results show that the proposed MMP-DCD-CV algorithm achieves
better reconstruction performance than the original MMP algorithm. It also has lower computational
complexity and does not require the priori knowledge of the channel sparsity or noise level.

3) We propose an UWA TDCS. The system is built on the proposed MMP-DCD-CV channel estimator to
acquire the CSI. To evaluate the performance of proposed UWA TDCS, the receive signal is generated
by the Waymark simulator [61, 62, 63, 64] using measured sound speed profile (SSP) and bathymetry.
Numerical results show that the proposed UWA TDCS with the MMP-DCD-CV algorithm outperforms
other TDCS schemes.

The rest of this paper is organized as follows. In Section II, we present the system model for UWA
TDCS. Section III details the proposed sparse channel estimation algorithm for UWA-TDCS. Simulation
results based on the Waymark simulator are presented in Section IV. Finally, conclusions are drawn in
Section V.

Notation: Matrices and vectors are denoted by boldface uppercase and lowercase letters, respectively.
(·)† and (·)T denote the Hermitian transposition and the transposition, respectively. R and C denote the
real field and complex field, respectively. �, ~ and ⊗ denote element-by-element multiplication, the linear
convolution and cyclic convolution, respectively. ‖x‖0 denotes l0-norm of a vector x, < denotes the real
part of a complex number. R(q) denotes the q-th column of a matrix R. R(p,q) denotes the element at p-th
row and q-th column of a matrix R. |S| means the cardinality of a set S. 〈a〉q denotes a circular shift of
elements in the vector a by q elements.
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2. System Model for Underwater Acoustic TDCS

2.1. TDCS Technology

The concept of “transform domain” can be traced back to E. German’s work[18] and refers to a trans-
formed version of the received signal in a specified domain (e.g., Fourier, wavelet, etc.) rather than in
the domain in which the signal is received[19, 22, 23]. For example, the spectral notching technique is a
common transform domain filtering technique that removes the narrow band interfering signal by a notch
filter[22, 23]. However, this interference filtering technique also removes the desired signal energy at notched
spectral locations, leading to poor performance of communication compared to the case where no inter-
ference is present[23]. For TDCSs, both the transmitter and receiver jointly sense contaminated spectrum
regions and then avoid using these spectrum regions, i.e., the spectrum locations occupied by the narrow
band interference do not carry any information. Therefore the performance of TDCS is not affected by
jointly avoiding these contaminated spectrum regions at both the transmitter and receiver[23, 24, 25].

2.2. Transmitter with CCSK Modulation

We consider a single-input and single-output UWA TDCS with the cyclic code shift keying (CCSK)
modulation. As depicted in Fig. 1, the TDCS modulation procedure involves environment sensing for spectral
mask generation, PR phase vector generation, generation of time-domain fundamental modulation waveform
(FMW) which is also called the basis function (BF), CCSK modulation, and adding cyclic prefix (CP).
The environment sensing unit samples the local acoustic environment and then obtains a spectrum mask
vector, a = [a0, · · · , an, · · · , aN−1] with an ∈ {0, 1} by using spectrum estimation to sense the unoccupied
frequencies. The parameter N is the number of subcarriers or spectrum bins, and an = 1 means that the
n-th spectrum bin is unoccupied, otherwise it is occupied[28].

A PR phase generator[35] is employed to produce a complex PR phase vector

θ = [θ0, · · · , θi, · · · , θN−1] , i = 0, 1, · · · , N − 1, (1)

where
θi = ej2πmi/Q, (2)

and mi ∈ {0, 1, · · · , Q− 1} is a Q-ary integer generated by a PR integer generator such as a linear feedback
shift register[35, 21]. Generally, Q is set to N for the improved performance of CCSK demodulation based
on the correlation method. The PR phase vector θ is multiplied element-by-element with the spectrum mask
a in a process called spectrum phase coding[31] to produce the spectral vector b = [b0, · · · , bn, · · · , bN−1]
given by

b = λa� θ, (3)

where λ =
√
EsN/NT is a magnitude scaling constant to ensure that equal energy symbols are transmitted

with the desired signal energy Es, and NT =
∑N−1
n=0 an is the total number of unoccupied subcarriers.

The resultant spectral vector, b, is transformed by IFFT into the time domain to produce a noise-like
time-domain BF d = [d0, · · · , dn, · · · , dN−1], dn given by [31]

dn =
1√
N

N−1∑
k=0

bke
j 2πkn

N , (4)

where bk = λake
j
2πmk
Q .

The data and pilot symbols are multiplexed to produce a payload data vector c = [c0, · · · , cd, · · · , cD−1]
with cd ∈ {0, 1}, where D is the total number of transmission bits in c that consists of data bits and pilots.
In SS systems, each transmitted symbol is represented by an unique spreading waveform[35]. Whereas, in
the binary CCSK modulation, the BF d should be generated from the spectrum mask vector a measured by
spectrum sensing before the data transmission and receiving. The spectrum mask will be changed during
different communication stages, thus we can not use a pre-specified and fixed BF to modulate and demodulate
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the transmitted and received signal. Therefore, each symbol is represented by the BF d or a circular version
of BF, 〈d〉τ , where τ is the number to be shifted. In practice, the performance of CCSK demodulation
depends on the property of autocorrelation of d and 〈d〉τ , and the property of cross-correlation between d
and 〈d〉τ [26]. The CCSK modulation procedure is seen as a mapping procedure. For example, if cd = 0, the

transmitted signal x = [x0, x1, · · · , xN−1]
T

is given by[21, 20, 31]

x = 〈d〉0 = [d0, · · · , dn, · · · , dN−1]
T
, (5)

otherwise,

x = 〈d〉τ=N/2
= [dτ , dτ+1, · · · , d2τ−1, d0, d1, · · · , dτ−1]

T
. (6)

Details on the Q-ary CCSK modulation are referred to [29, 30], and omitted for brevity.
One TDCS symbol is formed by adding CP before x for preventing the interference between successive

TDCS symbols, producing the transmit signal s.

2.3. Receiver with CCSK Demodulation

Here, we assume that both the transmitter and receiver are in the same acoustic interference environment,
thus the identical spectrum mask vector a and BF vector b are obtained by environment sensing units at
both the transmitter and receiver locations given the same PR phase vector. The CCSK modulated signal
is transmitted through the UWA channel. After frame synchronization and removing the CP, the received
signal vector y is expressed as

y = Hx + n, (7)

where y = [y0, y1, · · · , yM−1]
T

, M is the length of observed samples, n is additive complex white Gaussian
noise (AWGN) with zero mean and variance σ2

n, which is independent of x. The channel convolution matrix

H ∈ CM×N is a circular matrix obtained from the channel vector h = [h0, h1, · · · , hL−1]
T ∈ CL×1 by zero

padding its L elements to the length M to obtain the first column, where L is the maximum multipath spread
in symbol intervals, and hl denotes the gain of the l-th tap in the channel vector[37, 38, 39, 40, 41, 42].

To estimate the UWA channel impulse response h, a time-domain pilot block is inserted before trans-
mission of the TDCS symbols. At the receiver, the received signal vector yp relating to the pilot symbols is
extracted out of y by de-multiplexing unit and is given by [37, 38, 39, 40, 41, 42]

yp = p ~ h + np, (8)

where p = [p0, p1, · · · , pM−1]
T

is the known pilot symbols, np is AWGN with zero mean and variance σ2
p.

Since the cyclic prefix allows converting the linear convolution between the channel impulse response h and
transmit signal p into a circular convolution, (8) can be expressed in the cyclic convolution format[37, 38,
39, 40, 41, 42]

yp = p⊗ h + np, (9)

thus (9) can be rewritten as
yp = Ch + np, (10)

where

C =


p0 p−1 · · · p−L+1

p1 p0 · · · p−L+2

...
...

. . .
...

pM−1 pM−2 · · · p−L+M

 ∈ CM×L (11)

is a Toeplitz matrix[37, 38, 39, 40, 41, 42].
After channel equalization, the equalized signal is transformed into the time-domain by performing the

IFFT operation. Given b, d, and θ, the estimate of transmitted data can be obtained by performing the
CCSK demodulation which is similar to the despreading procedure used in SS systems[35].
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3. Proposed MMP-DCD-CV based Sparse Channel Estimation Algorithm

The channel vector in (10) can be estimated by the classical LS method. When the channel vector
h is sparse, the channel estimation problem can be transformed into a sparse reconstruction problem. A
number of greedy algorithms were used to estimate the sparse UWA channel over the past decade[40, 41,
42]. On the one hand, given prior information such as sparsity and noise level, most of them can achieve
satisfied performance. In practice, such information should be estimated before performing the sparse
channel estimation. On the other hand, a large number of matrix inversion operations involved in the
LS solver or the greedy algorithms need to be performed. The computational complexity and numerical
instability induced by the matrix inversion operations prevent its applications in practical scenarios.

To address aforementioned problems accounted in sparse reconstruction by using greedy algorithms such
OMP etc., motivated by [50, 52, 54, 55, 56, 57, 58, 59, 60], we propose a new MMP algorithm that combines
the DCD iterations and CV. Compared to the OMP algorithm, the MMP algorithm keeps and examines
multiple promising candidate support sets rather than retaining only a single path set. Thus the MMP
algorithm can overcome the error propagation in the OMP algorithm due to incorrect path selection at a
greedy iteration. The DCD iterations can be used to reduce the computational complexity and avoid the
numerical instability brought by the matrix inversion operations. The LS solver based on DCD iterations
does not require multiplication and division operations[51], which greatly reduces the computational burden
of solving the LS problem, and is particularly suitable for implementation on real-time hardware platforms
such as FPGAs or DSPs. The uncertainty on sparsity and noise level can be bypassed using the CV. CV
is a statistical method that can check whether the model is correct or not, and avoids underfitting and
overfitting of data[54, 55, 56, 58, 59, 60, 57]. Cross validation can be used for stopping greedy iterations
without the prior information such as sparsity or noise level.

3.1. Review of the MMP algorithm

For the completeness and understanding of the proposed MMP-DCD-CV algorithm, we review the orig-
inal MMP algorithm[50]. In the OMP algorithm, at each iteration, only one candidate path that minimizes
the residual is added into the support set of the final solution. If there is an incorrect selection of a candi-
date path during greedy iterations, the resultant solution will be wrong[46, 47, 50]. The MMP algorithm
maintains multiple support sets and after finishing all greedy iterations, the best support set of the final
solution is chosen from these multiple support sets by minimizing the residuals of the solution[50].

Table 1 summarizes the original MMP algorithm for sparse channel estimation[50], where K is the
sparsity level, k is the iteration index, J is the number of child paths for each candidate path, Ak ={
sk1 , · · · , ski , · · · , sku

}
is the set of candidate paths at the k-th iteration, where ski denotes the i-th candidate

path at the k-th iteration, ĥku denotes the estimate of h at the k-th iteration for the u-th candidate path, rku
denotes the residual at the k-th iteration for the u-th candidate, Csku and CI are the submatrices of C that
contain columns indexed by sku and I, respectively. The vector I with |I| = J denotes the set of all possible

combinations of all child paths for all candidate paths at the k-th iteration, Î = {Î1, · · · , ÎJ} is the index
set of L columns in C that are maximally correlated with the residual rk−1i at the (k − 1)-th iteration for
the i-th candidate path. For the detailed analysis of the MMP algorithm refer to [50].

3.2. Proposed MMP-DCD-CV algorithm

According to the theory behind CV, the received vector yp in (10) is divided into the reconstruction vector
yrep and CV vector ycvp . Correspondingly, the matrix C is also split into two sub-matrices, a reconstruction

matrix Cre ∈ Cm×L and a CV matrix Ccv ∈ Cmcv×L with mcv = M −m. Then one has a reconstruction
equation[55, 56, 57, 58, 59, 60]

yrep = Creh + nrep , (12)

and a CV equation

ycvp = Ccvh + ncvp , (13)
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Table 1: MMP Algorithm for Sparse Channel Estimation

Input: yp, C, J , K
Initialization: r01 = yp, k = 0, A0 = {∅}
1 : while k < K do
2 : k = k + 1, u = 0, Ak = ∅
3 : for i = 1 to

∣∣Ak−1∣∣ do

4 : Î = arg max
|I|=J

∥∥∥(CI
)T

rk−1i

∥∥∥2
2

5 : for j = 1 to J do

6 : stmp = sk−1i

⋃{
Îj

}
7 : if stmp /∈ Ak
8 : u = u+ 1
9 : sku = stmp
10 : Ak = Ak

⋃{
sku
}

11 : ĥku =
{

Csku

}†
yp

12 : rku = yp −Csku ĥku
13 : end if
14 : end for
15 : end for
16 : end while

17 : û = arg min
1≤û≤u

∥∥rKû ∥∥22
18 : ŝ = sKû
Output: ĥ =

{
Cŝ
}†

yp

where yp = [yrep
T ,ycvp

T ]T and np = [nrep
T ,ncvp

T ]T . The matrix C is stacked up by Cre and Ccv. For a

sparse UWA channel, h ∈ CL×1 is an unknown K-sparse channel vector. To exploit the CV in the MMP
algorithm, we use ĥk to denote an estimated channel vector in the k-th iteration, then CV residual of ĥk at
this iteration is given by[55, 56, 57, 58, 59, 60, 57]

εcvk =
∥∥∥ycvp −Ccvĥk

∥∥∥2
2
. (14)

Without CV, i.e., mcv = 0, we define the residual of ĥk at the k-th iteration as

εk =
∥∥∥yp −Cĥk

∥∥∥2
2
. (15)

For notational convenience, we may drop the iteration index k in the following sections.
Table 2 shows a general framework for sparse channel estimation based on the MMP or MMP-DCD

algorithm with CV. Instead of setting a maximum number of iterations or threshold for a reconstruction
error according to the sparsity or noise level, in algorithms driven by CV, only a maximum number of
iterations, Ncv, is required. The value of Ncv often can be set two or three times larger than the sparsity
K. In practice, this setting value can be coarsely estimated by using the synchronization frame. The sparse
channel estimate ĥk is recovered by using the MMP or MMP-DCD algorithm. Given ĥk, at the CV equation
(14), we can obtain the CV residual of ĥk at the k-th iteration. After Ncv iterations, the CV residual vector ε

is used to determine which estimate is the best candidate in the recovered set Ω =
{

ĥ1, · · · , ĥk, · · · , ĥNcv
}

.

The index kcv corresponding to the minimum CV residual in ε is then found, thus indicating the noise- and
sparsity-robust channel estimate ĥcv in Ω.

Table 3 details the proposed MMP algorithm that combines the CV and DCD iterations. When using
DCD iterations, P is an upper limit to the amplitude of elements in h. The elements of h have a fixed-point

7



Table 2: MMP with CV for Sparse Channel Estimation

Input: yrep , ycvp , Cre, Ccv, Ncv

Initialization: k = 0, εcv0 =
∥∥ycvp ∥∥22, Ω = {∅}, ε = 0Ncv

1 : while k < Ncv do
2 : k = k + 1

3 : Update ĥk using MMP or MMP−DCD

4 : Compute εcvk =
∥∥∥ycvp −Ccvĥk

∥∥∥2
2

5 : Update ε(k) = εcvk
6 : Update Ω = Ω

⋃{
ĥk

}
7 : end while
8 : Compute: kcv = arg min{ε}
Output: ĥ = ĥkcv

representation with Mb bits within the amplitude interval [−P, P ]; δ is a step-size; e is the residual vector

in DCD iterations. C
sku
re and CI

re denote extracting a column indexed by sku or I from Cre, respectively. For
the choice of parameters related to the MMP algorithm and DCD iterations refer to [50, 51, 52, 59, 60].

4. Numerical results

In this section, the recovery performance of the proposed MMP-DCD-CV algorithm is investigated. The
performance of UWA TDCS based on the proposed MMP-DCD-CV algorithm is then evaluated by the
Waymark simulator providing the virtual signal transmission in the UWA channel with measured SSP and
bathymetry obtained in a real lake experiment as described below.

4.1. Recovery Performance of MMP-DCD-CV algorithm

4.1.1. Exact Reconstruction Probability versus Sparsity Level K

To investigate the exact reconstruction probability of the proposed MMP-DCD-CV algorithm, a success-
ful reconstruction condition is defined as follows:

ε =
∥∥∥h− ĥ

∥∥∥2
2
< ξp, (16)

where ε is the recovery error of h, ξp is a small pre-specified constant. The reconstruction is successful
if ε < ξp, otherwise, the reconstruction fails. In this simulation, we consider an underdetermined sparse
system, i.e., the dimension M of observation y is smaller than the length L of the input vector h. Here, M ,
L, J , σ2

p and ξp are set to 128, 256, 10, 0.1 and 10−6, respectively. The sparsity level K is considered to be
known for OMP and MMP-DCD algorithms over this simulation. The number of bits Mb for representation
of the channel taps is set to 32 for both MMP-DCD and MM-DCD-CV algorithms. The exact reconstruction
probability of MMP-DCD and MMP-DCD-CV algorithms is shown in Fig. 2. It can be seen that for the same
sparsity level K for all algorithms, the MMP-DCD-CV reaches the highest exact reconstruction probability,
while that of the OMP algorithm is the lowest. Although the MMP algorithm has the prior information
on the sparsity level K, its exact reconstruction probability is still inferior to that of the MMP-DCD-CV
algorithm. When K ≤ 15, all the three algorithms achieve the perfect reconstruction. The algorithms
completely fail when K ≥ 70. This simulation demonstrates the high robustness of the MMP-DCD-CV
algorithm to recover sparse signals without the prior knowledge on the sparsity.

4.1.2. Exact Reconstruction Probability versus Mb and K

Fig. 3 shows how the performance of the MMP-DCD-CV algorithm is affected by the number of bits
Mb used in the DCD iterations and the sparsity level K for solving the LS problem. The parameter setup

8



Table 3: MMP-DCD-CV Algorithm for Sparse Channel Estimation
Input: yrep , ycvp , Cre, Ccv, J , Ncv, P , L, Mb

Initialization: r01 = yrep , k = 0, A0 = {∅}, Ω = {∅}, s01 = {∅},
εcv0 =

∥∥ycvp ∥∥22, e = C†rey
re
p , R = C†reCre, ĥ1 = 0, δ = P , ε = 0Ncv

1 : while k < Ncv do
2 : k = k + 1, u = 0, Ak = ∅

−−−−−−−−−−−−−−−−−−−−−−
Using MMP−DCD to compute ĥk
−−−−−−−−−−−−−−−−−−−−−−

3 : for i = 1 to
∣∣Ak−1∣∣ do

4 : Î = arg max
|I|=J

∥∥∥(CI
re

)T
rk−1i

∥∥∥2
2

5 : for j = 1 to J do

6 : stmp = sk−1i

⋃{
Îj

}
7 : if stmp /∈ Ak
8 : u = u+ 1, sku = stmp, Ak = Ak

⋃{
sku
}

−−−−−−−−−−−−−−−−−

9 : Using DCD to solve ĥku =
{

C
sku
re

}†
yrep

−−−−−−−−−−−−−−−−−
9.1 : for n = 1 to Mb do
9.2 : δ = δ/2, α = [δ,−δ, jδ,−jδ]
9.3 : flag = 0
9.4 : for q = 1 to L do
9.5 : for t = 1 to 4 do
9.6 : if <

{
αtc
∗
q

}
> R(q,q)δ

2/2
9.7 : hq = hq + αt
9.8 : e = e− αtR(q)

9.9 : flag = 1
9.10 : end if
9.11 : end for
9.12 : end for
9.13 : if flag = 1
9.14 : go to step 9.4
9.15 : end if
9.16 : end for

−−−−−−−−−−−−−−−−−
10 : rku = yrep −C

sku
re ĥku

11 : end if
12 : end for
13 : end for

−−−−−−−−−−−−−−−−−−−−−−
14 : ε(k) = εcvk =

∥∥∥ycvp −Ccvĥk

∥∥∥2
2

15 : Ω = Ω
⋃{

ĥk

}
16 : end while
17 : Compute: kcv = arg min{ε}
Output: ĥ = ĥkcv

is the same as in the previous simulation except for Mb and K. We observe that Mb significantly affects
the probability of exact reconstruction. It can be seen that, when Mb is less than 22, the algorithm cannot
reconstruct the sparse signal vector. With the increase in Mb, the probability of exact reconstruction
also increases and reaches 100 %. This is explained by the fact that Mb defines the quantization error in
representing the channel taps. When the error is higher than the variable ξp in (16), this inequality cannot
be satisfied and the exact reconstruction fails. However, for higher Mb, the quantization error is smaller than
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Figure 2: Probability of exact reconstruction for OMP with known K, MMP with known K, and MMP-DCD-CV algorithms.

ξp in (16) and the reconstruction is successful. For practice, the value ξp = 10−6, used in this simulation,
is too small, and with higher ξp the number of bits Mb can be reduced. In practice, we need a trade-off
between the probability of exact reconstruction and computational complexity.
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Figure 3: Probability of exact reconstruction as a function of Mb and K.

4.1.3. Average Recovery Error and Residual versus the Maximum Iteration Number

CV is a statistical technique to identify the model order, avoiding overfitting and underfitting of data.
In this simulation, in order to investigate the rationality and effectiveness of the MMP-DCD with CV, M ,
L, K, σ2

p, mcv, and Ncv are set to 400, 1000, 50, 0.1, 31, and 150, respectively.
Fig. 4 shows the recovery error ε, residual ε, and CV residual εcv as a function of the iteration number

Ncv for the MMP-DCD algorithm. It can be seen that the residual ε decreases monotonically, thus it is
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not obvious when to stop iterations without prior information on the sparsity and noise level. Whereas, the
residual of MMP-DCD with CV εcv has a minimum value corresponding to the sparsity level Ncv ≈ K ≈ 50.
At the same time, the residual of MMP-DCD with CV has the same trend as the recovery error. Both the
CV residual εcv and recovery error ε have the same minimum value point. This simulation further verifies
the rationality of CV.
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Figure 4: Residual ε, CV residual εcv , and recovery error ε as a function of the maximum iteration number Ncv for the
MMP-DCD algorithm.

4.1.4. Average Error versus mcv

Now we investigate the effect of the dimension of CV equation mcv on the average error of the MMP-
DCD algorithm with the residual and CV residual. In this simulation, the parameters are as follows: M , L,
K, σ2

p, and Ncv are set to 400, 1000, 50, 0.1, and 150, respectively. The m measurements in the matrix C
are used to reconstruct the sparse signal, and the other mcv measurements are used for CV. The iterations
of the MMP-DCD algorithm are stopped by the given sparsity level. As depicted in Fig. 5, even with a
small number of CV measurements (about 60), the MMP-DCD-CV algorithm can achieve a performance
approaching the performance of the MMP-DCD algorithm with known sparsity and 400 measurements. It
can also be seen that the residual of the MMP-DCD algorithm with known sparsity level can not be an
indicator to stop the greedy iterations.

4.2. Performance of UWA TDCS with Sparse Channel Estimation based on the MMP-DCD-CV algorithm

4.2.1. Simulation Environment

Fig. 6 depicts the layout of the simulation configuration used in the Waymark simulator. The depth of
lake is about 53 m. The transducer and hydrophone were deployed at about 38 m below the surface. The
communication distance is 1.5 km. The SSP used in the simulation was measured in the Songhua Lake,
Jilin province, China, on November 2013. The bathymetry of the Songhua Lake was obtained by a high
resolution multibeam imaging sonar in October 2013. The bottom parameters are: sound speed is 1574
m/s, density is 1.268 g/cm3, and attenuation coefficient is 0.01875 dB/wavelength. The signaling and data
structure is shown in Fig. 7. The carrier frequency is 12 kHz and sampling frequency is 48 kHz. The input
bits are encoded by a half rate recursive convolutional code with generator polynomial [171, 133] in octal
format[65]. Hard decision Viterbi decoder is used[65]. For the CCSK modulation of the UWA TDCS, the
indices of NM = N −NT occupied spectrum bins are generated randomly.
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Figure 5: Average error (residual, CV residual, and recovery error) as a function of mcv .
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Figure 6: Layout of simulation configuration.
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Figure 7: Frame structure of UWA TDCS signaling in simulation.

4.2.2. Channel Characteristics

To demonstrate how transmission loss (TL) varies with the communication distance, the TL is predicted
with the ray tracing software Bellhop [66] using a range-independent waveguide model. Fig. 8 depicts the
TL with the measured SSP. The launch angles of the transducer are within the interval [−30◦, 30◦]. It
is seen that the TL increases significantly for the ranges of 200 m to 1.5 km. Fig. 9 shows the channel
characteristics at 1.5 km. Fig. 9(a) shows the channel impulse response between the source and receiver for
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the configuration depicted in Fig. 6. Obviously, the channel is sparse. As shown in Fig. 9(b), there are many
nulls with deep fading over 8 kHz-16 kHz. The multipath spread is long and it is about 90 ms. This type
of channel is very difficult to estimate and equalize.

Figure 8: Measured SSP and simulated TL.
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Figure 9: UWA channel characteristics: (a) channel impulse response, (b) channel amplitude-frequency response.

4.2.3. Performance of UWA TDCS

Now we investigate the performance of UWA TDCS based on the proposed MMP-DCD-CV algorithm
for varying spread spectrum orders N . Fig. 10 shows the MSE performance of sparse channel estimation
based on the LS, MMP-DCD and MMP-DCD-CV algorithms. The LS and MMP-DCD algorithms operate
assuming the sparsity K to be perfectly known. It can be seen that, with such an assumption, the MMP-
DCD and MMSE-DCD-CV algorithms show similar MSE performance, which is significantly better than
that of the LS algorithm. With increase in N , the MMP-DCD-CV algorithm shows a growing performance
gap between the MMP-DCD and MMP-DCD-CV algorithms with the later outperforming the former. The
gap increases at higher SNR.

Fig. 11 shows the BER performance of UWA TDCS based on the LS, MMP-DCD and MMP-DCD-CV
channel estimators for different spread spectrum orders, with or without coding.
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Figure 10: MSE performance for channel estimation versus spread spectrum order: (a) N = 16, (b) N = 32, and (c) N = 64.

It can be seen that in all cases, the use of the proposed MMP-DCD and MMP-DCD-CV algorithms allows
significant improvement of the detection performance provided by the LS algorithm with perfect knowledge
of the channel sparsity K. The MMP-DCD-CV algorithm, however, shows a better BER performance than
the MMP-DCD algorithm, and what is practically very important, it achieves this improvement without a
priori knowledge on the channel sparsity and noise level.

As the spread spectrum order N increases, the benefits of using the proposed MMP-DCD-CV algorithm
becomes more pronounced in both the MSE and BER performance.

5. Conclusion

In this paper, we have proposed a computationally efficient MMP based sparse channel estimator for an
UWA transform domain communication system (TDCS) that should operate without the knowledge of the
acoustic channel sparsity and noise level. The estimator is based on the dichotomous coordinate descent
(DCD) iterations. The DCD iterations reduce the algorithm complexity and make it numerically stable
compared to the LS channel estimator. We have incorporated the CV into the MMP-DCD algorithm and
arrived at another algorithm (MMP-DCD-CV), that does not need any prior knowledge on the channel
sparsity and noise level. The performance of the proposed MMP-DCD-CV algorithm has been tested using
the virtual signal transmission in a sparse UWA channel with a measured SSP and bathymetry. The
numerical results verify that better performance is achieved by the proposed MMP-DCD-CV algorithm,
with a lower complexity and without a priori knowledge of the channel sparsity and noise level. Numerical
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Figure 11: BER performance of the TDCS with different channel estimators and versus the spread spectrum order: (a) N = 16,
(b) N = 32, and (c) N = 64.

results show that the proposed UWA TDCS with the proposed sparse channel estimator offers considerable
improvement in system performance compared to other TDCS schemes.
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