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ABSTRACT 

An efficient modelling technique based on one dimensional (1D) beam finite element 

analysis for buckling of thin-walled laminated composite beams having open/closed sections 

is proposed. The formulation derived has sufficient generality for accommodating arbitrary 

stacking sequences of the individual beam section walls, and includes all possible couplings 

between axial, shear, bending and torsional modes of deformation. The effects of transverse 

shear deformation of the section walls and out-of-plane warping of the beam section are 

considered where provision exists to restrain or allow warping deformation. The 

incorporation of shear deformation leads to a problem in the finite element implementation of 

the proposed beam kinematics, but this is successfully addressed adopting a novel modelling 

concept. Numerical results obtained for the sample cases of open sections I beams and closed 

section box beams are presented. The numerical results are benchmarked/compared to data 

available in open literature, and it is shown that the proposed model performs very well. 

Finally, a study of the effect of axial and end moment loading, acting alone or in 

combination, on the buckling response of thin-walled composite beams is presented.  

 

1. INTRODUCTION  

1.1. Background  

The use of long beam like structural components having a thin-walled construction is 

common in many real-life engineering products such as wind turbine blades, helicopter rotor 

blades, aero-structures, ship masts and many other civil engineering applications such as 

composite beams, columns and reinforcement. In recent years, laminated fibre reinforced 

composite materials (hereinafter referred to as composites) have gained widespread 

acceptance and usage as structural materials in various engineering products including the 

above mentioned structural applications. The rationale is that composites helps to enhance the 

structural performance significantly due to high specific strength and stiffness in addition to 

high fatigue resistance and durability. The use of composite structural elements utilising 

multi-layered composite laminates with arbitrary fibre orientations of the individual layers 

(plies) provide a high degree of flexibility in tailoring the structural performance, but this can 

lead to complexities in their behaviour due to couplings between different modes of 

deformation. Thus, the use of composites introduces additional challenges in the modelling of 

composite structures of thin-walled construction, which is already inherently complex for 

thin-walled structures made from isotropic materials due to warping deformation and other 

characteristic behaviours. In principle, the load-response behaviour of the thin-walled 

construction composite structural elements of open or closed cross section may be analysed 

using a 3D modelling strategy based on solid or shell finite elements (FE), but this modelling 

technique is unfeasible in many cases due to high computational cost and time. To address 
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this problem previous research available in open literature has proposed to develop 

alternative modelling techniques, preferably based on 1D FE beam elements, which leads to 

more efficient and affordable techniques for modelling [e.g. 1-9]. However, a real and 

significant challenge in developing such reduced order 1D FE models is the inclusion of all 

relevant physical coupling effects in the condensed (1D) formulation for thin-walled 

composite beams. 

The relevant previous research can be broadly divided into two groups based on the 

approaches used for determining the constitutive matrix of the beam element. The first 

approach is based on ‘analytical techniques’, while the second alternative utilises a two-

dimensional (2D) cross-sectional analysis based on a 2D finite element model for calculating 

the cross-sectional matrices. Hodges et al. [3,10,11] have contributed significantly toward the 

development of the second approach, which has significant merit in terms of generality, but 

the 2D finite element analysis needed for the evaluation of cross-sectional stiffness 

coefficients is a major task. This was experienced and documented in a recent study [12], 

which is based on a similar approach. On the other hand, the first option (analytical 

approach), like that presented in Ref. [6], adopted in this paper does not require 2D finite 

element analysis, nor does it involve the complex mathematical operations involved with the 

second approach.  

 

1.2. Review of analytical approaches  

Vo and Lee et al. studied the behaviour of thin-walled composite beams having open [e.g. 

13] and closed [e.g. 14] sections, including buckling analysis. It is observed that their 

analyses are mostly based on classical lamination theory, thus neglecting the effect of shear 

deformation of the composite laminated section walls. However, composite laminates are 

generally weak in transverse shear due to their low shear stiffness and strength relative to the 

extensional rigidity and strength. Thus, it is important to incorporate the effect of shear 

deformation to ensure reliable predictive capability for all relevant loading scenarios. In order 

to address this issue, Vo and Lee [15] incorporated the effect of shear deformation, but the 

treatment adopted for the finite element implementation of torsional deformations is not 

promising. They [15] simply extended the concept used for the incorporation of transverse 

shear deformation in a typical isoparametric FE formulation to express the torsional 

deformation by introducing an additional parameter. This parameter is analogous to the 

transverse shear strain but, unfortunately, it does not have any real physical representation. 

Moreover, the formulation faced the difficulty of breaking down the torsional moment into 

three components as they attempted to express the beam response behaviour of these beams 

in terms of stress resultants. With this treatment for the torsion, they [15] succeeded to derive 

their beam element using an isoparametric formulation for all deformation modes. The 

element has 3 nodes thus providing a quadratic interpolation of all (seven) field variables 

using Lagrangian interpolation functions giving seven degrees of freedom at each node.     

Kim et al. [16-18] also considered the effect of shear deformations following the concept 

introduced by Vo and Lee [15] and encountered similar difficulties. Thus, for the finite 

element implementation of the beam theory, an isoparametric formulation for all field 

variables to develop a beam element having C0 continuous deformations was adopted. The 

well-known shear locking problem is typically faced in isoparametric elements as this 

formulation use the same interpolation functions for all field variables. A simple solution of 

this problem is the application of a reduced integration technique, as adopted by Kim et al. 

[16-18], but that may lead to spurious zero energy modes for some cases in addition to stress 

oscillations within the element. Moreover, the reduced integration will affect the evaluation 

of the stiffness corresponding to other modes of deformation, including axial and torsion 

modes and their couplings. Furthermore, it is also difficult to apply a selective reduced 
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integration scheme in this coupled problem. However, Kim et al. [e.g. 16-18]   have 

contributed significantly in this area through investigating various aspects of thin-walled 

section composite beams.   

 

Piovan and Cortinez [19] developed a shear deformable beam element following a 

different approach which seems to be interesting. The beam element has also incorporated the 

effects of warping. In order to avoid shear locking problem, the implementation of shear 

deformation has been achieved by defining transverse displacement and its derivatives as 

done in classical beam model, but an additional term been added to the expression for the 

derivative of transverse displacement. This additional term contributes to the shear 

deformation, but it is a function of material property and geometry of the element which need 

to be calculated for individual cases separately. Also, this term seems to be constant over the 

beam length. The same treatment has also been applied to the torsional deformation of the 

beam taking torsional rotation and its derivative accompanied with a similar function.  

 

Ascione et al. [20] proposed another interesting approach where different plate elements 

forming the beam section are taken separately as beams and they are connected at their 

longitudinal edges using spring elements. This approach helped to accommodate different 

features including shear deformation, but this model needs more unknowns as it will have 

multiple nodes at any cross-section.         

 

The formulations presented by both these groups [14,16] are consistent when the 

contribution of shear deformation is neglected. For this case, the Lagrangian interpolation 

functions are only used for the axial deformation, whereas other deformation modes, i.e. 

torsion and bending (bi-axial), are interpolated with Hermitian interpolation functions. Thus, 

these elements provide C0 continuity (1 degree of freedom at each node – field variable only) 

for the axial displacement, and C1 continuity (2 degrees of freedom at each node – field 

variable and its derivative) for the other modes of deformation.   

  

1.3. Proposed Model  

The aim of this this study is to develop a consistent formulation that includes the effect of 

shear deformation as composite materials are compliant/weak in shear as mentioned above. 

In this formulation, the issues associated with the existing modelling approaches e.g. [15,18], 

discussed in detail above, will be overcome by introducing an alternative approach. The 

proposed formulation will be applied to study the buckling characteristics of thin-walled 

composite beams with open or closed cross sections subjected to axial forces, end moments 

and combinations of these. The different modes of deformation and their coupling included in 

the formulation include: axial, torsional, bi-axial bending, bi-axial shear as well as warping 

(for torsion) deformation. The cross-sectional stiffness property matrices are derived in 

closed-form for both open and closed beam cross sections, including the assumption of both 

plane stress and plain strain conditions at the lamina level.  Once the cross-sectional matrices 

of these thin-walled composite beams are derived, the remaining part of the analysis is the 

formulation and solution of the 1D beam problem, which in this study is achieved by 

adopting a finite element approximation.  

 

Numerical examples of thin-walled composite beams having different cross sections, 

material configurations, boundary conditions and other features have been analysed by the 

proposed model, and the results obtained are presented in terms of predicted critical buckling 

loads (axial and end moment loads) and buckling mode-shapes. A significant amount of the 

numerical predictions have been compared and benchmarked against results available in 
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literature, and it is demonstrated that the proposed modelling approach provides a very close 

match with other model predictions, and that it generally performs very well. New numerical 

results are also presented for a number of problems that may be beneficial to future research 

efforts in this area. 

 

2. MODEL FORMULATION 

2.1. Finite element formulation – basic concepts 

The conventional treatment adopted for incorporating transverse shear deformation in an 

isoparametric finite element context requires a C0 continuous formulation, whilst the warping 

displacement produced by torsion requires a C1 continuous formulation for the twisting 

rotation. The C1 formulation for the torsional deformation is conveniently achieved in this 

study by using cubic Hermitian interpolation functions, including the angle of twist and its 

derivative at the two end nodes of the proposed beam element, see Fig. 1. Alternatively, if the 

C0 continuous formulation is adopted for the transverse shear deformation, this will require 

adoption of a reduced integration technique, but its implementation is problematic in the 

present coupled problem as discussed above. This is a crucial issue, which in this study is 

addressed adopting the approach proposed by Sheikh [22], which eliminates the need for do 

reduced integration.  

 

Adopting the above, a 3 noded beam element as shown in Fig.1 has been developed, 

where the end nodes have 7 degrees of freedom (3 displacements, 3 rotations and the 

derivative of the torsional rotation), and the middle node has 5 degrees of freedom (3 

displacements, 2 bending rotations). It should be noted that quadratic Lagrangian 

interpolation functions are used to model the axial deformation taking 1 degrees of freedom 

at each node. A computer code was written in MATLAB for the implementation of the 

formulation.    

 

 
Fig. 1:  Schematic of beam finite element 

 

2.2. Kinematics of the beam deformations 

Fig. 2 shows part of the cross section of a laminated beam wall segment along with global 

and local coordinate systems and their corresponding displacement components, which form 

the basis for the development of the proposed formulation. The curved geometry of the 

section wall is shown to represent a generic scenario, but the section walls can also be of 

straight geometry.  
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Fig. 2: Cross section of a beam section wall segment with local and global coordinate 

system and corresponding displacement components 

 

In Fig. 2 x-y-z axes define the global Cartesian coordinate system, where x is along the 

beam axis, passing through the centroid of the complete beam cross section, and y, z define 

the beam cross section coordinates. The other axes are the local orthogonal coordinate system 

x-s-n, defined at the mid-plane of a laminated section wall, where n is normal to the shell 

(wall) mid-plane, s is the circumference coordinate, and x is parallel to global x coordinate 

axis. The displacement components at the mid-plane of the shell wall in the local coordinate 

system (x-s-n) can be expressed in terms of the global displacements of the beam (Fig. 2) in 

the form [22]:   

 

y z xu U y z     
, 

cos sin ( ) xv V W r s    
, 

sin cos ( ) xw V W q s     
, 

(1) 

 

where 
y , z are bending rotations (including shear deformations) of the beam cross 

section relative to the along y and z axes, respectively, x  is the torsional rotation of the beam 

cross section relative to the x axis, and   is the warping function. U, V and W are the 

displacement components in the global x, y and z coordinate directions. Defining 
y , z  as 

cross-sectional rotations due to shear deformations of the beam section about the y and z axes, 

the bending rotations can be expressed as 
y yV    and z zW    , respectively, and 

V  ,W   and x  are the derivatives of V, W and x  with respect to x. 

Although the effects of warping displacement in beams having closed cross sections is 

generally not as significant as for beams with open cross section [21], the contribution of 



6 

 

warping displacements is incorporated for both types of cross sections to deliver a generic 

formulation. 

The displacement at any point of the shell wall located at a distance n from the shell wall 

mid-plane can be expressed in terms of the bending and transverse shear deformations of the 

wall as:  

 

xn

w
u u n

x


 
    

  , 

sn

w
v v n

s


 
    

  , 
w w , 

(2) 

 

where xn  and sn are rotations of the shell wall sections due to shear deformations about s 

and x, respectively. Now, xn can be expressed in terms of the corresponding global cross 

section rotations (
y , z ) as sin cosxn y z       , whereas 0sn   based on the 

restrictive assumption that the overall shape of the beam cross section will not be altered 

during the deformation of the beam.  

Substituting the above expressions for xn  and sn  as well as Eq. (1) into Eq. (2), the 

displacements at any point within the shell wall along its local coordinate system (x-s-n) can 

be expressed in terms of the global displacement components of the 1D beam as follows: 

 

     sin cos ( )y z xu U y n z n nq s           
, 

 cos sin ( ) xv V W r s n     
, 

sin cos ( ) xw V W q s     
  

(3) 

 

2.3. Energy systems of the beam 

The potential energy ( Π ) of a beam undergoing buckling caused by an external forces can 

be expressed in terms of the strain energy (U) and the work done by external forces ( eW ) as: 

 

eU W  
 

(4) 

 

Now the strain energy appeared in the above equation can be expressed in terms of stress 

  and strain   vectors of the shell walls expressed in their local axis system (x-s-n) as:  

 

   
1

2

TU dv  
  

(5) 

 

The relationship between the above stress and strain vectors for a ply of the laminated 

shell wall having any orientation can be expressed using its constitutive matrix Q  

following ‘classical lamination theory’ (CLT) as described in texts on mechanics of 

composite materials [4] as: 
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   

11 12 16

21 22 26

61 62 66

55 54

45 44

0 0

0 0

0 0

0 0 0

0 0 0

x x

s s

xs xs

xn xn

sn sn

Q Q Q

Q Q Q

QQ Q Q

Q Q

Q Q

 

 

   

 

 

    
    
       
          
    
    
          

(6) 

 

The above equation is written in terms of all five stress and strain components typically 

occurring in a shell element, but some of these components will not be present in the present 

problem due to the restrictive assumption adopted that the beam cross section will not change 

shape during deformation. Thus, there will be no bending and shear deformations in the s-n 

plane, which leads to 0ns   and 0s   (usually defined as plane stress condition) or 0s   

(plane strain condition). By incorporating this the above equation reduces to:   

 

   
11 16

61 66

55

0

0

0 0

x x

xs xs

xn xn

Q Q

Q Q Q

Q

 

   

 

    
    

         
    
      

(7) 

 

where 
1111

~
QQ  , 1616

~
QQ  , 6666

~
QQ   and 5555

~
QQ   for plane strain condition ( s = 0); 

and 
2212121111 /

~
QQQQQ  , /

~
26121616 QQQQ   22Q , 2216166666 /

~
QQQQQ   and 5555

~
QQ   

for plane stress ( s = 0) condition.   

  

The substitution of the expressions for the local displacement components, at any point of 

the shell wall in terms of the global displacement components (Eq. 3), into the reduced strain 

vector (Eq. (7)), leads to:   

 

 

     

 

sin cos

cos sin 2

sin cos

y z x

y z x

xn y z

u x U y n z n nq

u s v x n r s

     

    

  

            
  

               
       

 (8) 

 

The local strain vector can now be decoupled in terms of the cross section stiffness matrix 

( H ) and strain vector of the beam (  ) which contains global displacement parameters for 

1D beam as : 

 

     H 
  

(9) 

 

where 

 

   
T

y z x x y zU V W                

   ,

1 sin cos 0 0 0

0 0 0 0 2 cos sin

0 0 0 0 0 sin cos

s

y n z n nq

H n r

  

  

 

   
 

     
 
 

  

(10) 
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By substitution of Eqs. (7-9) into Eq. (5), the strain energy of the system can be expressed 

as:  

 

               
1 1 1

2 2 2

TT T T
U dv H Q H dndsdx D dx           

 
(11) 

where  

 

        
T

D H Q H dn ds C ds       
(12) 

 

All individual elements of the matrix [C] are derived explicitly in closed form. Similarly, 

all elements of the cross sectional stiffness matrix [D] are derived specifically and in closed 

form for open I section and closed box section profiles having generic geometric 

configurations, as depicted in Fig. 3. This includes general specification of cross section 

dimensions, and arbitrary lay-up (stacking sequence) of the cross section walls in terms of 

choice of material, number of plies, and ply orientations. The explicit expressions for the 

components of [C] and [D] are derived in a previous article by the authors [23].  

 

   
(a)                                        (b) 

Fig. 3: Thin-walled beam having open and closed section 

For the purpose of this study the warping function   used in the above equations are taken 

as: 

 

2 /c srds A     
(13) 

 

where 
66

s

ds

Q
   , 

66

ds

Q
    . For a closed beam cross section profile cA  is the cross-

sectional area enclosed by the wall mid-plane line/contour. For an open section profile, the 

warping function may be simply obtained by dropping the second term associated with 

secondary warping, thus giving .rds    

The external forces considered in this study, which will be causing the buckling of the 

thin-walled composite beams are axial force ( 0P ) and end moment ( 0M ) loading. Both these 

forces induce only one stress component, the axial stress ( x ), which can be expressed in 

simple form and used to formulate the problem conveniently, i.e.:   
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0

y

x

y

MP
z

A I
    (14) 

where A  and 
yI  are cross-sectional area and moment of inertia of the beam cross sectional 

area. It should be noted that the above equation will give a stress that can be defined as an 

equivalent stress. The aim here to estimate this stress in a simple way without affecting the 

results significantly rather than undertaking a detailed analysis for predicting the stress 

distribution over the individual layers precisely. The work done ( eW ) by the external forces 

0P  and 0M  can be expressed as: 

 

     2 21 1 1
( )

2 2 2

T

e x x g x g

V V V

v
W v w dv v w dv dv

w
    

 
       

 
    (15) 

 

Using Eq. (3), the geometric strain vector  g  in the above equation can be written as  

 

   g g g

'

x

V
v cos sin ( r n )

W [ H ]
w sin cos q

 
 

 


 
       

            
 

. (16) 

 

Eqs. (14) and (16) may be substituted into Eq. (15) leading to: 

 

       0 0

2 2

T T

e g g g g

yV L

P M
W dv z dv

A I
     

 

       0 0

2 2

T T
P M

g g g g g g

yL L

P M
F dx F dx

A I
           

 

(17) 

where  

 

   
T T

P P

g g g g g g

A

F H H dsdn H H dn ds C ds                         
T

M

g g g

A

F H z H dsdn           
 

(18) 

 

The individual elements of the matrices P

gC    are derived explicitly and provided in 

Appendix A. Also, all elements of the matrices P

gF    and M

gF    are derived for the 

considered generic I (open) and box (closed) beam sections and given in Appendix B.   

 

2.4. Finite element formulation 

For the 1D finite element implementation of the thin-walled beam theory based on the 

energy expressions presented in the previous section, quadratic Lagrangian interpolation 

functions are used for the axial deformation, while cubic Hermitian interpolation functions 

are used for the torsional deformation. This ensures the desired C1 continuity of the torsional 

rotation ( x ) as the strain vector (Eq. 8) contains second derivative of x . As mentioned 

earlier, the bending deformations along with the shear deformations are treated in a different 

manner following the approach introduced in [21] to eliminate the difficulties faced by other 
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existing formulations [13-15], [16-18]. According to [21], the cross-sectional rotations 
y  

and 
z  due to shear deformations are adopted as field variables instead of 

y  and z in 

addition to the bending displacements V and W. adopting a linear approximation of 
y , 

z , 

and a cubic approximation of V and W, these field variables (V, W, 
y   and 

z ) along with 

the remaining two field variables (U and x ) can be expressed in the form:   

 
2

1 2 3U a a x a x  
 

2 3

4 5 6 7V a a x a x a x   
 

2 3

8 9 10 11W a a x a x a x   
 

12 13y a a x  
   

14 15z a a x  
 

2 3

16 17 18 19x a a x a x a x   
 

(19) 

 

It should be noted that 
y  and 

z  are defined as field variables, but they are not used as 

nodal degrees of freedom in the finite element formulation. The corresponding nodal degrees 

of freedom correspond to 
y   and z  which can be expressed in the following form 

y   and 

z by invoking the above Eqs. (19): 

 
2

12 13 5 6 72 3y y V a a x a a x a x        
, 
2

14 15 9 10 112 3z z W a a x a a x a x        
 

(20) 

 

The unknown constants (a1, a2, a3 ...... a19) appearing in Eqs. (19) can be replaced in terms 

of the nodal displacement vector    by substitution of U , V , W (from Eqs. 19), 
y  and 

z  (from Eq. (20)) at all three nodes of the beam element (see Fig. 1), and x  (from Eqs. 

(19)) and its derivative x
   2

17 18 192 3a a x a x   at the two end nodes, thus giving: 

 

    R a 
or 

     1a R 
      (21) 

 

where    1 2 3 19

T
a a a a a , [R] consists of the coordinates (x values) of the 3 nodes 

and   

 

   1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 .
T

x y z x y z x y z xU V W U V W U V W           

 

Using Eqs. (19-21), the strain vector of the beam    as appearing in Eq. (9) can be 

expressed in terms of the nodal displacement vector   as:   

 

   
T

y z x x y zU V W              
 

       
   1[ ( )]{ } [ ( )][ ] [ ]S x a S x R B   

 

(22) 
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The above equation can be substituted into Eq. (11) and it is rewritten to get the stiffness 

matrix [K] of the beam element as  

 

                  
1 1 1

2 2 2

TT T T
U D dx B D B dx k        

  
(23) 

 

Again Eqs. (19 - 21) can be substituted into the vector  g  as found in Eq. (16) and it can 

further be expressed in terms of   as:  

 

     ' 1[ ( )]{ } [ ( )][ ] [ ]
T

g x g g gV W S x a S x R B         
. 

(24) 

 

The above equation is substituted into Eq. (17) and rewritten in the form:  

 

       

       

0 0

0 0

2 2

2 2

T TT TP M

e g g g g g g

yL L

T TP M

g g

P M
W B F B dx B F B dx

A I

P M
k k

                     

       

    

   
 

(25) 

 

where 
1 T

P P

g g g g

L

k B F B dx
A

               and 
1 T

M M

g g g g

y L

k B F B dx
I

               are the 

geometric stiffness matrix of the beam element corresponding to axial ( 0P ) and end moment (

0M ) loads, respectively. 

 

Now the strain energy (Eq. (23)) and the work done by the external forces (Eq. (25)) for 

all elements are substituted into the potential energy of the structural system (Eq. (4)), 

followed by minimisation with respect to the nodal displacements of the structure   , to 

obtain the final governing equation of the thin-walled cross section beam as: 

 

   0 0 0P y M

g gK P K M K         
  

(26) 

 

where  K  is the stiffness matrix of the structure, and P

gK    and M

gK    are the geometric 

stiffness matrices for the axial (P) and end moment ( yM ) load cases, respectively. These are 

obtained by assembling their corresponding components of the individual elements.  

 

Eq. (26) can be reduced to a simple Eigen-value problem by taking 0 0yM   or 0 0P  , and 

this can be solved to obtain the critical value of the axial load ( CRP ) or the critical value of the 

end moment ( CRM ) as the Eigen value. For the beams with eccentric loads or end moments, a 

geometrically nonlinear analysis could be a better option to consider the second order effect. 

However, the present study adopted a solution technique based on Eigen value problem as 

employed by other investigators [13, 14] in similar situations to keep the formulation linear 

and avoid complexities associated with nonlinear analysis. For a beam subjected to combined 

axial force and end moments and displaying interaction between these loads, one of the load 
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parameters should be specified (i.e. 0 0

y

CRM M M   or 0 CRP P ), whilst and the other 

parameter will be the unknown Eigen value that will be solved to obtain its critical value (i.e. 
i

crP  or 
i

crM ). A given thin-walled beam problem can display multiple buckling modes that 

will provide multiple Eigen values as well as multiple Eigen vectors and mode shapes, which 

will be extracted from   .     

 
3. RESULTS AND DISCUSSION 

In this section, numerical examples of thin-walled composite beams having I and box 

sections are analysed using the developed modelling approach. Initially, the results predicted 

are compared and benchmarked against analytical and numerical results available in literature 

to show the performance of the model proposed herein. After this, the results of parametric 

studies are presented to demonstrate the effect of different parameters on the buckling 

behaviour of the considered thin-walled cross section beams.  

 

3.1. Benchmarking against results from literature  

3.1.1. Buckling of a simply supported doubly symmetric I-section beam subjected to axial 

compression  

A thin-walled laminated composite beam having a span of 6 m is studied assuming plane 

stress conditions ( 0s  ) in the plies. A doubly symmetric I beam cross section is chosen 

with a flange width of 600 mm and a depth of 600 mm for its web. All flange and web plates 

are assumed to be made of 4 plies of 7.5 mm thickness (so 30 mm total thickness), and they 

are assumed to have identical stacking sequence. Five different stacking sequence 

configurations (Table 1) are considered to investigate the five different cases of the thin-

walled I-beam. All plies are assumed to be made of graphite/epoxy with the following 

properties: E1=144 GPa, E2=9.65 GPa, G12= G13=4.14 GPa, G23=3.45 GPa, 12=0.3. To show 

the convergence of the proposed model with respect to element size, a specific case having 

the stacking sequence of  0 90
S

/  is considered and the results are presented in Fig. 4.  

 

 
Fig. 4: Predicted buckling load of a simply supported double symmetric composite I-

section ( 0 90
S

/ ) beam vs. number of elements 
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Fig. 4 shows that the predicted buckling load converges when the number of elements is 8 

or more. Based on this observation, all other composite beams studied ahead are analysed 

with 10 elements unless mentioned otherwise.   

 

The critical buckling loads predicted by the modelling approach developed in this study is 

shown in Table 1 for all five composite lay-up cases (outer right column). Table 1 also shows 

the corresponding buckling loads predicted by Vo & Lee [17], Machado & Cortinez [24], and 

Back & Will [25]. Considering the results predicted by the detailed 3D finite element model 

(ABAQUS - high computational cost) as reference results in terms of accuracy, the proposed 

1D beam element model (high computational efficiency) performed comparatively better than 

other modes. Though the model of Vo and Lee [15] performed well, the problem of their 

formulation for accommodating shear deformation has been explained in Section 1.   

 

Table 1: Critical buckling load (in MN) of a simply supported doubly symmetric 

composite I-section beam 

Lay-ups 
Machado & Cortinez [24] Back & Will [25] 

Vo & Lee 

[15] 

Present 

model 

No shear Incl. shear ABAQUS Incl. shear With shear Incl. shear 

 
4

0
 

42.11 33.18 30.78 28.85 30.38 30.93 

 30
S


 

- - 13.06 13.17 13.17 13.16 

 45
S


 

4.45 4.44 4.41 4.41 4.41 4.41 

 60
S


 

- - 2.89 2.89 2.88 2.88 

 0 90
S

/

 
22.57 19.84 20.41 20.63 20.63 20.63 

 

 

3.1.2. Buckling of a cantilever mono-symmetric I-section beam subjected to axial 

compression  

A cantilever mono-symmetric I section beam length of 1.0 m is investigated for 7 different 

wall stacking sequences (see Table 2) assuming identical lay-up for all section walls in each 

case. The web of the beam is assumed to be 50 mm deep, and the top and bottom flanges are 

30 mm and 50 mm wide, respectively. The web and flange walls/plates are made of 16 

layers/plies each 0.13 mm thick with a symmetrical  
4S

  lay-up. The material assumed for 

all the layers is glass/epoxy with the following elastic properties E1=53.78 GPa, E2=17.93 

GPa, G12= G13=8.96GPa, G23=3.45, GPa, 12=0.25. The I-section beam has been analysed 

with the model proposed herein, and the critical buckling loads obtained for the 7 different 

stacking sequences are presented in Table 2 along with numerical results reported by Kim et 

al. [16], and Vo and Lee [15]. The comparison of the results demonstrates an excellent match 

between the predictions obtained using the element proposed here and the results from [15, 

16].   

 

3.1.3. Buckling of a simply supported I-section beam under axial load and end moments 

A composite I-section beam having a span of l = 8 m is analysed adopting a plane stress 

condition (𝜎𝑠 = 0) for the plies. Both flanges are assumed to be 100 mm wide, and the 

section is assumed to be 200 mm deep (d). All section walls are made of 2 plies each 2.5 mm 

thick (total thickness: t = 5mm) with unidirectional 2[0]  lay-up for the top flange and the 
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web, while the bottom flange is assumed to have a [ ]  lay-up. The material used for all the 

layers is assumed to have the following (normalised) elastic parameters: E1/E2=25, 

G12/E2=0.6, G13=G23 =G12, 12=0.25. The I-beam is first analysed with the proposed model to 

obtain the critical buckling load ( crP ) when the end moment is zero. Then, under the action of 

three different values of the axial force ( 0 crP P ), the critical end buckling moments ( i

crM ) 

corresponding to each of the different value of 0P  interactive scenarios are calculated. Note 

that i

cr crM M  for the case of no axial preload, i.e. 0 0P  . These results, expressed in non-

dimensional form ( 2 3

2/ ( )cr crP P l d tE ; 3

2/ ( )i i

cr crM M l d tE ), are presented in Table 3 along 

with results obtained from Vo and Lee [14].  Table 3 shows that the predictions of the 

modelling approach proposed here show a good correlation with the results of [14]. Further, 

and further that the effect of shear deformation is observable for the cases of end moment 

loading (only included in present model).   

 

Table 2: Critical buckling load (N) of a mono-symmetric cantilever composite I-section 

beam with a symmetrical layup  
4S

  

Lay-ups 
Kim et al. [16] Vo and Lee [15] Present model 

No Shear Incl. shear Incl. shear 

 
16

0
 2998.2 2993.2 2994.5 

 
4

15
S


 2811.8 2803.6 2803.3 

 
4

30
S


 2199.7 2184.7 2185.1 

 
4

45
S


 1561.9 1546.0 1547.2 

 
4

60
S


 1241.3 1227.8 1229.0 

 
4

75
S


 1134.5 1126.7 1127.9 

 
4

0 90
S

/
 2113.9 2100.6 2101.8 

 

Table 3: Critical buckling load 
crP and end moment i

crM  with axial preload of a composite I-

beam (bottom flange: [ ] , web and top flange: 2[0] ) 

0

cr

P

P
 Critical 

Load 
Reference 

Fiber Angle  (degree) 

0 15 30 45 60 75 90 

 crP  
Vo & Lee [14] * 5.153 4.565 2.771 1.631 1.259 1.140 1.112 
Present + 5.139 4.492 2.780 1.576 1.242 1.134 1.109 

-0.5 
i

crM
 

Vo & Lee [14] * 10.175 9.233 6.071 4.265 3.655 3.448 3.397 
Present + 10.183 9.405 6.160 4.427 3.650 3.469 3.374 

0 
i

crM
 

Vo & Lee [14] * 7.370 6.883 4.895 3.597 3.117 2.948 2.905 
Present + 7.372 6.885 4.833 3.540 3.184 2.821 2.821 

0.5 
i

crM
 

Vo & Lee [14] * 4.451 4.042 2.498 1.819 1.621 1.553 1.536 
Present + 4.446 4.244 2.456 1.866 1.688 1.612 1.416 

* Shear effects not included  + Shear effects included 
 

 

3.1.4. Buckling of a simply supported I-section beam under eccentric axial compression 

The behaviour of a 5 m long I-section beam subjected to eccentric axial loading as shown 

in Fig. 5 is investigated. The application of a compression load with a constant known 
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eccentricity (e) will induce a proportional end moment ( 0 0M P e ). This enabled Eq. (26) to 

be expressed in terms of a single unknown load parameter ( 0P ), and the solution of this 

equation provides the critical value of this load ( i

crP ) as the eigenvalue.  For this sample case, 

all the section walls (including the web plate) are assumed to be 50 mm wide and made of 16 

layers each 0.13 mm thick with a symmetrical  
4S

 lay-up. The material for all the layers is 

glass/epoxy assuming the following elastic properties: E1=53.78 GPa, E2=17.93 GPa, G12= 

G13=8.96 GPa, G23=3.45 GPa, 12=0.25.  

 

 
Fig. 5: Simply supported beam under eccentric axial load 

 

The I-section beam has been analysed using the proposed model for three distinct values 

of the eccentricity; e = 0, h/4 and h/2, where h is the depth of the beam.  The predicted values 

of i

crP  by the proposed model are presented in Table 4 along with the results of Vo and Lee 

[14] and Kim et al. [26]. Again, it is found that predictions of the present model are in good 

agreement with the results obtained from ABAQUS [26] (a detailed 3D shell based finite 

element model using the commercial software Abaqus) as well as the predictions of [14]. 

 

Table 4: Effect of eccentricities on critical buckling loads (N) of a composite I-beam with 

a symmetrical  
4S

 lay-up for all walls 

e Reference 
Layups 

 
16

0
 

 
4

15
S


 
 

4
30

S


 
 

4
45

S


 
 

4
60

S


 
 

4
75

S


 

0 
Vo & Lee [14] + 920.80 832.00 617.80 427.60 338.40 311.70 

Present + 920.56 831.76 617.68 427.60 338.33 311.69 

4

h

 

Kim et al. 

[26] 

ABAQUS 
 

809.20 608.10 423.50 335.50 308.60 

Analytical * 
 

810.70 608.70 423.70 335.60 308.60 

Vo & Lee [14] + 890.30 810.50 608.00 422.90 334.90 308.30 

Present + 890.63 810.69 608.63 423.36 334.64 308.03 

2

h

 

Vo & Lee [14] + 818.60 757.50 582.20 410.00 325.30 298.80 

Present + 820.02 758.38 581.55 411.59 326.39 297.98 

* Shear effects not included + Shear effects are included 

 

3.1.5. Buckling of a simply supported box-section beam under axial load and end moments 

The effect of different predefined axial loads on the critical end moments causing buckling 

of an 8 m long beam having a box section has been investigated as well. The box section is 

assumed to be of width b = 100 mm and depth d = 200mm, and different lay-up sequences 

are studied. All section walls are assumed to be made of 2 layers, each having a thickness of 

2.5 mm (total thickness: t = 5mm), and with (relative) elastic properties of E1/E2=25, 

G12/E2=0.6, G13=G23 =G12, 12=0.25. The top and bottom flanges are assumed to have 

unidirectional  
2

0  lay-ups, and the webs have    lay-ups.  

Initially, the box section beam is analysed using the method presented herein to estimate 

the critical buckling loads ( crP ) with no end moments being applied. Following this, the 
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critical end moments ( i

crM ) are calculated for three different values of axial preloads; 

0 0 5 crP . P  , 0 0P  , and 0 0 5 crP . P  . The results are expressed in non-dimensional form, 
2 3

2/ ( )cr crP P l d tE  and 3

2/ ( )i i

cr crM M l d tE , and presented in Table 5 along with results 

reported by Vo et al. [13].  

 

Table 5: Critical buckling load crP and moment i

crM  with axial preload of a composite 

box-beam (flanges:  
2

0 , webs:   ) 

0

cr

P

P  

Critical 

Load 
Reference 

Fiber Angle  (degree) 

0 15 30 45 60 75 90 

 crP  
Vo et al. [13]* 36.009 29.245 13.549 7.858 6.67 6.419 6.375 

Present + 35.510 28.917 13.479 7.834 6.653 6.403 6.359 

-0.5 
i

crM
 

Vo et al. [13]* 3.309 4.571 3.374 2.111 1.633 1.441 1.386 

Present + 3.269 4.519 3.324 2.098 1.611 1.428 1.379 

0 
i

crM
 

Vo et al. [13]* 2.688 3.725 2.753 1.722 1.332 1.175 1.131 

Present + 2.660 3.681 2.711 1.712 1.315 1.165 1.125 

0.5 
i

crM
 

Vo et al. [13]* 1.891 2.629 1.945 1.217 0.941 0.830 0.798 

Present + 1.874 2.597 1.915 1.210 0.929 0.823 0.795 

* Shear effects not included  + Shear effects are included 

 

To study the effects of varying the stacking sequences of the section of the section walls 

further, the same box section beam is analysed in an exactly the same manner assuming  
2



stacking sequence for the top flange and the left web, and  
2

0  for the right web and the 

bottom flange. The coupling between the different loads will be more pronounced for the 

case of unsymmetrical stacking sequence scheme in comparison with the previous case 

(Table 5). The results predicted by the proposed model are presents in Table 6 along with 

results presented in. [13]. Table 5 and Table 6 show a good agreement between the results.  

 

Table 6: Critical buckling load crP and moment i

crM  with axial preload of a composite 

box-beam (top flange and left web:  
2

 ,  bottom flange and right web:  
2

0 ) 

0

cr

P

P
 

Critical 

Load 
Reference 

Fiber Angle  (degree) 

0 15 30 45 60 75 90 

 crP
 

Vo & Lee [13]* 36.009 30.210 17.015 9.899 7.918 7.454 7.370 

Present + 35.510 29.964 16.820 9.808 7.870 7.415 7.304 

-0.5 
i

crM
 

Vo & Lee [13]* 3.309 3.366 2.834 2.133 1.743 1.571 1.523 

Present + 3.283 3.346 2.842 2.133 1.742 1.570 1.519 

0 
i

crM
 

Vo & Lee [13]* 2.688 2.741 2.322 1.748 1.427 1.285 1.246 

Present + 2.673 2.713 2.303 1.731 1.416 1.277 1.236 

0.5 
i

crM
 

Vo & Lee [13]* 1.891 1.922 1.625 1.232 1.008 0.909 0.881 

Present + 1.884 1.897 1.605 1.209 0.991 0.895 0.867 

* Shear effects not included  + Shear effects included 
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3.2. Parametric Study  

3.2.1. Buckling of a fully clamped I-section beam subjected to axial compression loading  

A clamped I-section beam subjected to axial compression loading is considered. The effect 

of different fibre orientations () of the bottom flange ( 
2

 ) with unaltered laminate lay-up (

 0 / 45 ) for the top flange and the web on the buckling behaviour is studied for different 

slenderness ratios (l/d) of the beam (l is length and d is the depth). The beam section is 300 

mm deep and its flanges are 200mm wide. All section walls are assumed to be made of 2 

layers having a thickness of 2.5mm giving a total wall thickness (t) of 5 mm, and the 

normalised elastic properties of these layers are specified to: E1/E2=25, G12/E2=0.6, G13=G23 

=G12, 12=0.25. The asymmetry with respect to the top and bottom flange laminations is 

responsible for producing nonzero off-diagonal terms in the cross-sectional stiffness matrix 

(F13, F16, F24, F35, see Appendix B [23]), which in turn introduces coupling of different 

deformation modes. The variation of the critical axial load, as predicted by the proposed 

model, for varying values of , ranging from 0 to 900, is presented in Fig. 6 as a non-

dimensional buckling load parameter ( 2 3

2/ ( )crP P l d tE ) taking l/d = 5 (short beam), 10 and 

25 (long beam). It is seen that the critical buckling load decreased monotonically with 

increasing fibre angle (), where the effect is visibly pronounced when  is ranging between 

200 and 500. It is further observed that the effect of varying the slenderness ratio (l/d) is most 

prominent when  is varied between 0 and 200, reduces gradually with increasing values of  

, to become negligible beyond 500. In order to show the contribution of shear deformation, 

the present formulation is amended to exclude the shear deformation by dropping the terms 

y  and 
z . The amended formulation without shear deformation is used to produce in a 

similar manner and included in Fig. 6. Though a similar trend of results is obtained by the 

two formulations, but the contribution of shear deformation is found to be significant for l/d = 

5 (short beam) specifically for lower range of  and it is reduced with the increase of l/d ratio. 

It is also clear from the figure that the non-dimensional buckling load for all l/d ratios without 

shear deformation are identical and very close to shear deformable results for a long beam 

(l/d = 25).               

 

 
Fig. 6: Variation of buckling load parameter ( P ) of a clamped I-section composite beam 

with respect to fibre angle ( ) of its bottom flange 
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The mode shapes the lateral displacements v and the torsional rotation x (beam twist) 

corresponding to the specific parametric case of the beam;   = 75°, l/d = 25, 
1 2.48P  , are 

plotted in Fig. 7, which shows a very pronounced coupled buckling response displaying 

combined bending and twist. 

 

 
Fig. 7: Typical buckling mode shapes of a clamped I-section composite beam 

 

3.2.2. Buckling of a simply supported I-section composite beam subjected to eccentric axial 

compression and end moment preloading 

The case of a simply supported I-section composite beam subjected to combined eccentric 

axial compression and end moment loading is considered, see Fig. 8. It is assumed that the 

beam has the same material properties and geometry as discussed in section 3.1.4. 

 

 
Fig. 8: Simply supported beam subjected to eccentric axial compression and end moment 

loading 

 

In addition to the eccentric axial compression load 0P , additional end moments AddM  are 

applied as a preload, which are combined with the bending moments induced by the eccentric 

axial load as explained in section 3.1.4. Initially, the value of the axial load 0P  is taken as 

zero and the critical value of the end moment, Add crM M , is then calculated. Following this, 

different values of the end moment, Add crM M , are applied as preloading, and the critical 

value of the eccentric axial load i

crP  is calculated. Utilising these results, the interaction 

curves for the eccentric axial force, 
0

i

crP P , and the preloading end moment, i

Add crM M , 

which produce buckling of the I-section beam, is plotted in Fig. 9 for three different 

eccentricities, e = 0, h/2 and h, and three different fibre angles,  0,30    and 60 , for all 

section walls having  
4s

 lay-up. 
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Fig. 9: Interaction between the eccentric axial loads and preloaded end moments for the 

buckling of a composite I-section beam 

 

Fig. 9 shows that both the critical values of the axial force i

crP  and the end moment i

AddM  

decrease with increasing fibre angle . The reason for this is that the cross section stiffness 

reduces when the fibre angle   is increased. Further, it is observed that the critical values of 

the axial loads and end moments are reduced when the loading eccentricity e is increased as 

expected. 

 

 

3.2.3. Buckling of a cantilever I-section composite beam subjected to axial and end 

moment loadings 

A cantilever I-section beam subjected to axial and end moment loading is considered, with a 

focus of investigating a wide range of interactions between the axial compression and the end 

moment loads. The following beam dimensions are assumed; span l = 8 m, flange width 

b=100 mm, web depth d = 200 mm.  It is further assumed that all laminated section walls are 

of  
3

  lay-up, and that each ply is 1.25 mm thick (total thickness t = 7.5 mm). The 

following normalised material properties are assumed: E1/E2=25, G12/E2=0.6, G13=G23 =G12, 

12=0.25. Initially the I-section beam is first analysed assuming only axial loading (i.e. no end 

moment) to determine the critical value, crP , and following that the case of pure end moment 

loading (i.e. no axial compression load) is analysed to evaluate crM . In the next stage, a 

parametric study is conducted in which the axial force 0P  is applied as a preload and varied 

over a wide range from 0 / 0.8crP P   to 0 / 0.8crP P    (axial tension) in increments of 0.2, 

followed by calculation of the critical end moment i

crM  for each value of the axial preload.  

The results are expressed in non-dimensional form 3

2/ ( )i i

cr crM M l d tE and presented in 

Table 7 for different values of   ranging from 0 to 900 with increments of 150. The results 

show that there is a stabilizing effects of axial tension on the buckling of the member for all 
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values of  . Also, for all preload values, it is observed that i

crM increases while   increases 

from 0 to 150 whereas i

crM  decreases monotonically as   increases beyond 150. 

 

 

Table 7: Critical end moment i

crM for buckling of axially preloaded cantilever composite 

I-section beam with  
3

  lay-up in all section walls  

0

cr

P

P  

Fiber Angle   (degree) 

0 15 30 45 60 75 90 

-0.8 12.8825 13.5666 7.5088 3.2986 1.9903 1.5811 1.4801 

-0.6 11.7575 12.5667 7.0303 3.0983 1.8704 1.4853 1.3901 

-0.4 10.6225 11.5416 6.5300 2.8873 1.7439 1.3843 1.2953 

-0.2 9.4740 10.4841 6.0025 2.6629 1.6092 1.2769 1.1945 

0.0 8.3064 9.3833 5.4398 2.4216 1.4641 1.1614 1.0862 

0.2 7.1103 8.2217 4.8298 2.1576 1.3051 1.0349 0.9677 

0.4 5.8683 6.9689 4.1516 1.8612 1.1265 0.8929 0.8347 

0.6 4.5429 5.5639 3.3641 1.5137 0.9166 0.7263 0.6788 

0.8 3.0263 3.8429 2.3605 1.0661 0.6459 0.5116 0.4780 

 

Similarly, a parametric study is conducted in which the end moment 0M  is applied as a 

preload and varied over the range from 0 / 0crM M   to 0.9 in increments of 0.1, followed by 

calculation of the critical axial load i

crP  for each value of the end moment preload. The results 

are presented in Table 8 expressed in non-dimensional form 3

2/ ( )i i

cr crP P l d tE for the same 

range of fibre orientations . Results shows that the value of i

crP  decreases monotonically 

with the increase of   for all preload values. 

 

 

3.2.4. Buckling of a simply supported I-section composite beam subjected to axial and end 

moment loadings 

In this section the behaviour of a 10 m long I-section beam is studied in a similar manner 

as in the previous example analysing four different values of the flange width (b) and web 

height (d), while maintaining same cross-sectional area and wall thickness for all four cases. 

Fixed ply orientation (
0 0 00 30 30 90

S
/ / /   ) is assumed for the web and flange plates, 

where each ply is assumed to 1.25 mm with the following normalised elastic properties: 

E1/E2=25, G12/E2=0.6, G13=G23 =G12, 12=0.25. The variation of critical axial load for the 

buckling of the four I-section beam cases subjected to preloading end moments are plotted in 

Fig. 10. Similarly, Fig. 11 presents the variation of the critical end moments causing buckling 

of I section beams when subjected to axial preloads. Both these figures (Figs. 10 and 11) 

show that the buckling resistance of these beams having same mass enhances with the 

increase of b/d ratio of the beam section i.e., a wide flanged beam performs better. In this 

case, the beam section with highest b/d ratio ( 0.175, 0.150)b d   outperformed the other 

sections in terms of axial load and end moment buckling capacity.  
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Table 8: Critical axial force i

crP  for buckling of end moment preloaded cantilever 

composite I-section beam with  
3

  lay-up for all walls under preloaded end moments 

0

cr

M

M
 

Fiber Angle   (degree) 

0 15 30 45 60 75 90 

0.0 5.1552 4.0337 1.4082 0.4551 0.2562 0.2141 0.2068 

0.1 5.0673 3.9833 1.3930 0.4504 0.2536 0.2119 0.2046 

0.2 4.8156 3.8341 1.3476 0.4362 0.2456 0.2052 0.1982 

0.3 4.4289 3.5912 1.2725 0.4126 0.2324 0.1942 0.1875 

0.4 3.9399 3.2625 1.1683 0.3799 0.2140 0.1787 0.1726 

0.5 3.3767 2.8572 1.0361 0.3380 0.1905 0.1591 0.1535 

0.6 2.7603 2.3849 0.8771 0.2872 0.1620 0.1352 0.1304 

0.7 2.1055 1.8551 0.6924 0.2277 0.1285 0.1072 0.1034 

0.8 1.4228 1.2762 0.4837 0.1598 0.0903 0.0753 0.0726 

0.9 0.7193 0.6557 0.2524 0.0838 0.0474 0.0395 0.0381 

 

 

 
Fig. 10: Variation of buckling loads of composite I-section beams having the same cross 

section with different sectional parameters subjected to different end moment preloading 
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Fig. 11: Variation of end critical moment loading causing buckling of composite I-section 

beams having the same cross section with different sectional parameters subjected to different 

axial preloads 

 

3.2.5. Buckling of a simply supported box-section composite beam subjected to axial and 

end moment loadings 

In this section a simply supported composite box section beam subjected axial and end 

moment loading is considered. The beam is assumed to be of span l = 8 m with flanges of 

width of b=100 mm, and depth of the webs d = 200 mm. The analyses conducted focus on the 

interactions between the axial and end moment loadings in a similar manner as shown in the 

previous sections. It is assumed that laminated sections are of  
2

  lay-up, with each ply 

assumed to be 1.25 mm thick, and assuming the following normalised elastic material 

properties: E1/E2=25, G12/E2=0.6, G13=G23 =G12, 12=0.25. Table 9 presents the variation of 

the non-dimensional critical end moments causing buckling of the box section beams 

subjected to axial preloads. Similarly, it is observed for all axial preloading values that i

crM

increases with the increase of   from 0 to 150 while i

crM  decreases monotonically as   

increases from 150 to 900. Also, Table 10 presents the variation of the non-dimensional 

critical axial load for the buckling of the box section beams when subjected to preloaded end 

moments. The table shows that the value of i

crP  decreases monotonically with the increase of 

  for all moment preloading values. 

 

 

3.2.6. Buckling of a simply supported optimized box-section beam subjected to axial and 

end moment loading 

Similar to the previous example, the behaviour of a 8 m long composite box-section beam 

is investigated considering four different values of flange width (b) and web height (d), while 

maintaining the same cross-sectional area and section wall thickness for all four cases. In this 

case, a fixed ply orientation ( 
2

60 ) is used for the all the laminated section walls where 

each ply is 1.25 mm thick and assuming the following normalised elastic properties: 

E1/E2=25, G12/E2=0.6, G13=G23 =G12, 12=0.25.  
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The variation of critical axial load for the buckling of the four different box-beam cases 

when subjected to varying preload end moments is shown in Fig. 12. In the same way, Fig. 

13 presents the variation of critical end moments causing buckling of the four different box-

beam cases when subjected to varying levels of axial preloading. Fig. 12 shows that the 

resistance in terms of axial buckling load capacity of the beam with square section 

( 0.200, 0.200)b d   is superior over rectangular beams sections having same cross-sectional 

area. The buckling load capacity is found to deteriorate with the increase of aspect ratio of the 

cross-section. This is due to the buckling characteristic of box-section beams which undergo 

lateral buckling in the weakest direction. It is found to be different for I-section beams (Figs. 

10 and 11) as they undergo lateral-torsion buckling where a wide flange beam (lower d/b 

ratio) is beneficial. On the other hand, Fig. 13 shows that the rectangular beam section having 

the highest aspect ratio (d/b) ( 0.125, 0.275)b d   provides the highest resistance for end 

buckling moment and this behaviour is just opposite to that of I-section beam (Fig. 11).  

 

 

Table 9: Critical buckling moment i

crM  of a simply supported composite box-section 

beam with  
2

 lay-up in all section walls and subjected to different axial preloads 0 crP P  

0

cr

P

P  

Fiber Angle   (degrees) 

0 15 30 45 60 75 90 

-0.8 226.70 348.48 226.18 102.07 61.31 48.37 45.14 

-0.6 213.47 328.47 213.24 96.23 57.81 45.60 42.56 

-0.4 199.44 307.17 199.46 90.02 54.07 42.66 39.81 

-0.2 184.41 284.30 184.65 83.34 50.06 39.49 36.86 

0.0 168.14 259.46 168.56 76.08 45.70 36.05 33.65 

0.2 150.20 232.01 150.76 68.05 40.88 32.25 30.09 

0.4 129.92 200.87 130.56 58.93 35.40 27.93 26.06 

0.6 105.94 163.96 106.59 48.12 28.91 22.80 21.28 

0.8 74.82 115.91 75.37 34.03 20.44 16.12 15.05 

 

 

Table 10: Critical axial buckling load i

crP  of a simply supported composite Box-section 

beam having  
2

  lamination for all walls and subjected to different end moment preloads

0 CRM M  

0

cr

M

M
 

Fiber Angle   (degree) 

0 15 30 45 60 75 90 

0.0 44.4808 35.0107 12.2659 3.9677 2.2344 1.8671 1.8033 

0.1 44.0305 34.6596 12.1432 3.9280 2.2120 1.8485 1.7853 

0.2 42.6802 33.6066 11.7751 3.8090 2.1450 1.7924 1.7312 

0.3 40.4320 31.8519 11.1616 3.6106 2.0333 1.6991 1.6410 

0.4 37.2893 29.3962 10.3028 3.3329 1.8769 1.5684 1.5148 

0.5 33.2567 26.2402 9.1986 2.9758 1.6758 1.4004 1.3525 

0.6 28.3404 22.3849 7.8492 2.5394 1.4301 1.1950 1.1541 

0.7 22.5476 17.8317 6.2545 2.0236 1.1396 0.9523 0.9197 

0.8 15.8866 12.5820 4.4147 1.4285 0.8045 0.6722 0.6492 

0.9 8.3672 6.6374 2.3298 0.7539 0.4246 0.3548 0.3426 
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Fig. 12: Variation of buckling loads of composite box-section beams having the same 

cross section with different flange widths (b) and web heights (d) and subjected to different 

levels of preload end moments 

 

 

 
Fig. 13: Variation of critical end moment causing buckling of composite box-section 

beams having the same cross section with different flange widths (b) and web heights (d) and 

subjected to different levels of axial preloading 

 
4. CONCLUSIONS 

A new technique for the buckling analysis of thin-walled composite beams subjected to 

axial forces and end moment loading has been presented. The new technique is based on one-

dimensional beam element formulation that helped to improve the computation efficiency 

significantly in contrast with a typical full-blown three-dimensional finite element model 

using solid or shell elements. The proposed model is valid for thin-walled open and closed 

section beams, and is especially well-suited for the analysis of the load response and buckling 

behaviour of composite beams displaying complex mode interactions. The formulation is 

general, includes axial deformation, torsion, bi-axial bending and transverse shear 

deformation as well as out of plane cross-sectional warping. The cross-sectional matrices of 
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the beams are derived analytically and includes all the possible couplings between the 

abovementioned modes of deformation. The effect of shear deformation of the beam section 

walls is included in the formulation, which typically demands a C0 continuous finite element 

formulation for the bending deformations of the beam element coupled with transverse shear 

deformations. Previous attempts [16-18] to include cross-sectional warping effects within the 

framework of C0 continuity have displayed susceptibility to shear locking problems, which 

have typically been circumvented by using the reduced integration technique which supresses 

the problematic terms related to shear energy. However, this affects the solution accuracy, 

including stress oscillations and other related issues due to inadequate integration of other 

terms of the strain energy of the structural system. Moreover, a consistent implementation of 

cross-sectional warping demands a C1 continuous formulation for the torsional deformation 

due to the appearance of second order derivatives of the torsional rotation (twist) in the strain 

vector. To overcome this in a C0 continuous formulation requires inclusion of fictitious nodal 

parameters that cannot be attributed any physical meaning [15]. To overcome these 

difficulties a C1 continuous formulation is adopted in this research, which includes full 

integration to achieve correct evaluation of the strain energy. The model proposed overcomes 

the crucial obstacles by adopting a different formulation for the coupled bending and shear 

deformations of the beam element which permits the use of full integration. The new 

modelling technique is used to solve numerical examples of thin-walled laminated composite 

beams having open (I) and closed (box) sections assuming different boundary conditions, 

laminated section wall stacking sequences, and different loading conditions. The results 

produced are thoroughly benchmarked and validated against analytical and numerical results 

available in literature, and it is shown that the proposed model performs very well in terms of 

both accuracy and computational efficiency. Finally, the new finite element is used to 

conduct extensive parametric studies to demonstrate the effect of varying different 

parameters on the buckling characteristics of composite thin-walled beams subjected to 

different loading scenarios involving the interactions between axial and end moment loads. It 

is anticipated that these new results can prove to be useful as benchmarks for future research 

in this area.   
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APPENDIX A 

The non-zero elements appearing in the upper triangle of the symmetric matrix [Cg] (Eq. 

(18)) are presented in their explicit form as follows (applicable for I and box sections).  
 

11 22

gP gPC C A  , gP

13 cos ( sin cos )C B A q r       

23 sin ( cos sin )gPC B α A q α r α    , 2 2

33 2 ( )gPC C rB A q r     

Where 
2 3( , , , ) (1, , , )

t

A B D F n n n dn   

APPENDIX B 

The non-zero elements appeared in the upper triangle of the symmetric matrix P

gF    and 

M

gF    (Eq. (18)) are presented in their explicit form as follows (applicable for I section, Fig. 

3(a)).  
 

322112211 dAAbAbFF ggP  , )2()2( 22211113 Bd/AbBd/AbF gP  , dBF gP

323   

 
 

and  
 

)5.0()5.0( 2221112211 BdAbBdAbFF gMMg  ,  

12/)25.0()25.0( 3

322

2

2211

2

1131 dADdBdAbDdBdAbF Mg  , 

24/)242/361832( 111

2

1

3

1

2

11

2

1133 FdDBdAdBbdAbbF Mg 

2 2 3 2

2 2 2 2 2 2 2 2 2          - 2 3 18 36 2 24 24b ( b dA b B d A d B dD / F ) /      

 

 

The non-zero elements appeared in the upper triangle of the symmetric matrix  P

gF  and  M

gF  (Eq. 

(18)) are presented in their explicit form as follows (applicable for box section, Fig. 3(b)).  
 

11 22 1 2 3 4

gP gPF F b( A A ) d( A A )     , 
13 2 1 2 12gPF bd( A A ) / b( B B )    , 

23 4 3 4 32gPF bd( A A ) / d( B B )    , 

3 2 2

33 1 2 1 2 3 4 1 2 3 412 4 4gPF b ( A A ) / bd ( A A ) / b d( A A ) / bd( B B B B )           
 

          3

1 2 3 4 3 412b( C C ) d ( A A ) / d( C C )       

and 

 

11 22 1 2 1 22gM gMF F bd( A A ) / b( B B )     , 

2 3

13 1 2 1 2 1 2 3 44 12gMF bd ( A A ) / bd( B B ) b( D D ) d ( A A ) /         , 

3 3 3 2

33 1 2 1 2 1 2 1 224 12 8 3 4gMF b d( A A ) / b ( B B ) / bd ( A A ) / bd ( B B ) /                 

           
1 2 1 23 2bd( D D ) / b( F F )     

dD/dADdBdAb/AbDdBdAb/AbF gP

3

3

322

2

222

3

211

2

111

3

133 12)25.0(12)25.0(12 


