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Railway is an energy-efficient means of transport and it is also an important solution to 

traffic congestion. However, the noise and vibration problems caused by railways attract 

more and more attention now. One particularly severe problem is curve squeal noise, which 

is an intense tonal noise that arises in tight curves under certain running and environmental 

conditions. The mechanism behind this squeal noise is still the subject of controversy. Two 

causes have been proposed over the last several decades: falling friction and mode coupling. 

The first one supposes that a decrease of the friction coefficient with increasing lateral sliding 

velocity occurs and this is equivalent to introducing negative damping into the system, which 

then feeds energy into the system. In the mode coupling phenomenon, coupling occurs 

between the vibration in two different directions and energy can be transferred between them. 

In this thesis, firstly, these two mechanisms are explored by using an existing curve squeal 

model to predict the curve squeal in both the frequency domain and the time domain. This 

model is improved by including a track model based on mass-spring systems, which is more 

physical and easier to use in the time domain. The results show that both falling friction and 

mode coupling can lead to instability. Also, the inclusion of the rail dynamics is found to 

play an important role in the generation of curve squeal. Moreover, it is found that the 

inclusion of wheel rotation in the model affects the results for different wheels to different 

extents. To illustrate the findings in terms of wheel mode coupling and wheel-rail coupling 

instability from this model, several further studies are then performed. 

A two-mode model is developed to assess the respective roles of the mode-coupling and 

falling-friction instability mechanisms in the generation of curve squeal. Different pairs of 
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modes from different wheels are considered. A parametric study is performed including 

investigation of the effect of the adhesion coefficient, contact angle, lateral offset of the 

contact point, wheel damping and friction curve slope. Two basic features are found to be 

characteristic of the wheel vibration in the presence of mode coupling. The first is a 

frequency shift meaning that the squealing frequency can be different from the natural 

frequency of the corresponding wheel mode. The second is a phase difference between the 

vibration in vertical and lateral directions. Previous wheel vibration measurements are used 

to give a qualitative comparison with the model to identify these features. 

To study the effect of rail dynamics on curve squeal, the rail is firstly modelled as an infinite 

beam over a continuous elastic foundation. In contrast with the wheel, it is not characterised 

by vibration modes. Results show that the presence of the rail plays a role in the instability. 

Various effects are then considered that may change the resonant behaviour contained in the 

rail dynamics. These include the effect of varying the rail pad stiffness, the influence of the 

periodic support of the rail, reflections between multiple wheels on the rail, rail cross-section 

deformation and the inclusion of rail cross mobility. Finally, a reduced model is developed 

to identify the essential elements of the dynamic behaviour of the rail that can cause 

instability. In this model, a single wheel mode is included and the rail is represented as a 

mass, a spring or a damper. It is found that it is not necessarily the introduction of ‘modes’ 

in the rail that causes the wheel modes to couple with the rail; instead the equivalent mass 

and/or damper behaviour of an infinite rail is the origin of a wheel-rail coupling phenomenon. 

Finally, a laboratory measurement is performed by modifying an available machine 

originally designed to perform pin-on-disc friction measurements. By using a 1:5 scale 

model of a railway wheel, squeal noise is observed at two different frequencies.  During the 

measurements the wheel is stationary and is set in the vertical plane while the rotating disc 

lies in the horizontal one. The axis of the wheel is tangent to the rotating disc. Lateral force 

and wheel vibration in radial and axial direction are recorded. From the vibration data it is 

found that the response of the wheel in the vertical and lateral directions are almost in phase 

and that the squealing frequencies is always almost coincident with a natural frequency of 

the wheel. For the friction, a mild falling trend can be observed when the sliding velocity 

increases. For sliding velocities below 0.15 m/s the peak axial vibration velocity is found to 

be equivalent to the velocity of the rotating disc at the contact point. These observations 

suggest that stick-slip and/or falling friction can be responsible for the squealing in this test-

rig while there is no evidence of mode coupling in this specific situation. 
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1 Introduction  

1.1 Background  

Railways are generally acknowledged to be an environmentally-friendly means of transport 

with the potential to operate with considerably less pollution, energy use and CO2 emissions 

per passenger-km than road or air [1]. Moreover, due to their high capacity and efficiency, 

railways are a very important solution to traffic congestion. However, the expansion of 

railways can cause noise and vibration problems, which can become an important issue as it 

can cause annoyance and discomfort to the residents.  

Railway noise can be generated by two main mechanisms [1]: 1) structural vibration, in 

particular due to the wheel/rail contact; 2) aerodynamic fluctuations due to the air turbulence 

when wind flows over solid objects. Aerodynamic noise is only a dominant source of noise 

from high-speed trains moving at speeds of 300 km/h and above. For most trains running 

below this speed, the wheel/ rail rolling contact is the main noise source [2]. In [3], 

Thompson and Jones divided wheel/rail contact noise into three main categories: 1) Rolling 

noise, the main source of noise from railway operations, generated by unevenness of the 

wheel/rail running surfaces. 2) Impact noise, generated by the wheel running over 

discontinuities at rail joints, dipped welds, points and crossings, or wheel flats. 3) Curve 

squeal noise: a high amplitude tonal noise, which often occurs when a train or tram negotiates 

a tight curve. This curve squeal noise is the topic of this thesis. It is probably the most 

annoying type of noise produced by the railway system due to its tonal nature and its high 

noise levels. In a recent review paper [4], it has been described as ‘unpredictable’ and more 

‘chaotic’ rather than ‘deterministic’. 

When a rail vehicle negotiates a sharp curve the leading wheelset of a bogie or vehicle 

exhibits a considerable yaw angle relative to the running direction, leading to a lateral sliding 

velocity at the wheel-rail contact [5]. The sliding velocity normalised by the running velocity 

is termed the creepage and has components in all three directions (two translations and one 

rotation), with each component giving rise to a friction force (creep force) [6]. This force is 

considered to be the main cause of curve squeal noise [4]. 

Through decades of study, two mechanisms for curve squeal have been proposed associated 

with the lateral creep force. Originally, curve squeal was associated with the ‘falling friction’ 

mechanism. In this mechanism, the friction force is considered to be dependent on the sliding 
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velocity of the wheel-rail contact (see Figure 1-1(a)). If the magnitude of friction force 

reduces as the sliding velocity increases, it is equivalent to introducing negative damping 

into the system. This then can feed energy into the wheel-rail system and make it unstable. 

More recently, a number of authors have proposed an alternative mechanism based on ‘mode 

coupling’ which can also generate squeal in the presence of constant coefficient of friction. 

This can be explained using a model shown in Figure 1-1(b). The mass is held by two linear 

springs 𝑘𝑘1  and 𝑘𝑘2 ; 𝑘𝑘𝐻𝐻  represents the vertical contact stiffness. In this case, from the 

equations of motion, it can be found that vertical force fluctuations influence the lateral force, 

but not vice versa, leading to an asymmetric stiffness matrix, which can give instabilities [4]. 

More detailed explanations of this model can be found in Chapter 3. Both mechanisms have 

been studied by many researchers both theoretically and experimentally. These previous 

studies are reviewed in the next section. 

  

(a) (b) 

Figure 1-1. Falling friction and mode coupling. 

1.2 Literature review 

1.2.1 Theoretical studies 

To understand the mechanisms behind curve squeal, many theoretical models have been 

proposed in the last few decades and the solution methods can be divided into frequency 

domain and time domain approaches. For frequency domain approaches, two methods have 

been utilized in the stability analysis of the curve squeal models. They are eigenvalues 

analysis and the Nyquist criterion [7]. In time domain models, the nonlinearities of the 

system can be taken into account. Details of these studies and their contributions are given 

in the following.  
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1.2.1.1 Falling friction mechanism  

Von Stappenbeck [8] was the first to propose that the main mechanism for the generation of 

curve squeal was lateral sliding of the wheel across the rail, which occurs when a bogie with 

two or more rigid axles runs in a curve (see Figure 1-2). The wheels on the front axle tend 

to run out of the curve, but those on the trailing axle try to run into the curve. This curving 

behaviour will also be introduced in more detail in Chapter 2. Von Stappenbeck [8] observed, 

by measurements, that the high sound pressure levels of squealing noise can be associated 

with the natural frequencies of the wheel and squeal was found to  occur at the front inner 

wheel of a bogie. 

 

Figure 1-2. A railway bogie in a curve. 

Rudd [9] described three possible mechanisms for squeal noise, which are: 1) the differential 

longitudinal slip between the inner and outer wheels; 2) wheel flange rubbing; 3) wheel/rail 

lateral ‘crabbing’, i.e. lateral creepage. However Rudd discounted the first two of these three 

possibilities, and believed that the lateral creepage at the wheel/rail contact is the main reason 

to induce squeal noise. At large creepage, the magnitude of the friction force decreases with 

increasing sliding velocity (see Figure 1-1(a)). Rudd showed that this results in a negative 

damping effect which then feeds energy into the system. Based on an assumed relationship 

between the friction force and the sliding velocity, Rudd developed a simple squeal model 

to study the stability of the wheel vibration and to predict the squeal noise level. According 

to this model, the falling friction mechanism causes unstable vibration of a single wheel 

mode. Oscillations grow up to a limit cycle defined by the non-linearities in the creep forces. 

Rudd’s model was also adopted by van Ruiten [10] to investigate the squeal noise of trams. 

Yokoi and Nakai [11-13] studied the generation mechanism of frictional noise in dry friction 

experimentally and theoretically. In their experiments, a steel disc representing the wheel 

was fixed in the centre of an axis and it was resting on a steel rod with a square section. This 

rod represented the rail and when the rod was moving in the lateral direction of the disc/rod 

contact, squeal noise was generated. Although different sizes of rod and different contact 
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loads were applied, the results showed that the dominating frequencies of squeal were 

usually at the frequency of axial modes of the disc with three, four and five nodal diameters. 

These modes were found to have low damping. In their theoretical study, by developing the 

governing equations of the frictional vibration of the disc and performing an eigenvalue 

analysis, the stability of the disc was discussed under different conditions. It was also found 

both experimentally and theoretically that squeal only occurred for a specific range of 

contact positions and the occurrences of squeal increased with increasing contact load. 

In a review paper, Remington [14] described the state of knowledge of railway curve squeal 

up to 1985. Based on Rudd’s model [9], he concluded that lateral creepage of the wheel was 

the most important cause for curve squeal noise and stated that flange contact was not 

believed to be a source of squeal noise. He suggested that a comprehensive analytical model 

of squeal was required to get a full understanding of the curve squeal problem. This should 

include the wheel dynamics, bogie dynamics in the curve and a detailed friction model.  

Since then, a number of increasingly complex models for curve squeal, consisting of various 

sub-models, have been published. 

Schneider et al. [15] modelled the wheel as a disc with the finite element (FE) method and 

obtained the self-sustained vibration of the wheel disc using a modal expansion technique. 

They used Kraft’s falling friction model [16] and solved the non-linear equations of motion 

in the time domain. From the frequency spectrum of the vibration velocity at the contact 

point, they showed that more than one frequency could be dominant in the limit cycle. It was 

also found that different wheel geometries could lead to different dominant frequencies. The 

sound pressure level and sound power were also obtained using a Rayleigh integral. 

Different wheel designs were considered and the acoustically optimal design of the wheel 

discs were then discussed. It was found that a type of wheel with a thicker wheel hub and 

web radiated a higher sound power level. 

Fingberg [17] extended the model of Schneider et al. [15] to use a detailed finite element 

model of the wheel, an equivalent modal model of the track and a boundary element model 

for the sound radiation from the wheel. The model was again solved in the time domain [16]. 

Simulation results showed that a limit cycle response was obtained and the dominant 

frequencies varied for different running velocities (see Table 1-1). This work was extended 

further by Périard [18] who also included the vehicle curving behaviour in the same time-

stepping calculation procedure as the squeal model. In his model, a finite element approach 

was used to model the rail dynamics and different empirical models of sliding friction were 

used to describe the decrease in creep force with increasing creepage. Périard compared the 
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results obtained using a rigid track to those with a flexible track; it was found that the track 

dynamics mainly affected the squealing noise at the entry and exit of the curve.  

Table 1-1. Predicted squeal frequency against running velocity obtained by Fingberg (reproduced 
from [17]). 

Velocity  
(m/s) 

Squeal frequency 
(Hz) 

2 260 
3-4 870 
5 1570 
6 1580 
7 1930 
8-11 260 
12 280 
13-14 840 
15-18 1400 
19-20 840 

Heckl et al. [19, 20] considered a model rig to simulate wheel lateral sliding and investigated 

models in both the frequency domain and time domain. In her model, the wheel was 

represented by a circular disc, which rolls on a turntable. The friction force was assumed to 

act at a single contact point. In the time domain, results showed two different responses: (1) 

simulations with a linear friction curve containing only a slip part led to unstable oscillations 

the amplitudes of which kept growing; (2) with a non-linear friction characteristic containing 

both a stick and a slip part, a limit cycle response was obtained and its amplitude determined 

the intensity of the squeal. The frequency of the limit cycle is determined by one unstable 

mode of the wheel or its harmonics.  In a frequency domain approach, the friction force was 

considered as a piecewise function with a falling part and by assembling the governing 

equation of the friction-driven wheel, the growth rate, frequency and amplitude of the wheel 

vibration were obtained for different damping loss factors. 

De Beer et al. [21-24] developed a frequency domain squeal model, which combines models 

of wheel dynamics, rail dynamics and contact dynamics. For the wheel and rail dynamics, 

mobilities obtained from the TWINS software [25] were used. For the contact dynamics in 

the vertical direction, a contact spring mobility was adopted, while in the lateral direction, 

Fingberg’s [17] friction force model, which includes a falling regime, was employed. To 

allow the frequency domain analysis, this needs to be linearized about a nominal working 

position. The Nyquist criterion was used to assess the stability of the system in the frequency 

domain. The wheel lateral contact position was found to be important in the generation of 

curve squeal; squeal was only found to occur when the contact position shifted to the field 

side of the wheel tread. This model appears to be the first in which the variation of the normal 

contact force as well as the lateral force was included in a curve squeal model. As discussed 
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above, this can potentially introduce mode-coupling phenomena. However, the authors did 

not discuss mode coupling in this paper. Monk-Steel and Thompson [26] extended de Beer’s 

model to include longitudinal and spin creepage as well as lateral creepage and normal load 

variations.  

Huang [27, 28] extended de Beer’s model to include all possible degrees of freedom at the 

wheel/rail contact. A self-excited feedback loop model was built to describe the relations 

between wheel-rail motions and contact forces. A finite element model of the wheel, an 

analytical rail model and a contact model based on Hertz contact were included in his model. 

The steady-state curving parameters were obtained from a preliminary vehicle dynamics 

model. He also implemented the wheel sound radiation model developed by Thompson and 

Jones [29]. For the friction model, the linear part of the creep force model was determined 

using Kalker's FASTSIM algorithm [30], which is a simplified theory for rolling contact 

problems. The falling function of the friction curve was based on Kraft’s formula [16]. Both 

frequency domain and time domain analyses were performed. A parametric study was 

carried out, which included varying values of steady-state creepage, contact position and 

contact angle. As in other models described so far only a single contact point between wheel 

and rail was considered. Based on Huang’s frequency domain model, Squicciarini et al. [31] 

studied the effect of a second contact point. Although in [14, 32] it was indicated that flange 

contact could suppress squeal, it was found that a second contact point on the wheel flange 

(or on the back of it) can play a role but it does not necessarily suppress the occurence of 

curve squeal. Two-point contact was also investigated in a time domain model in [33] and 

the results suggested that squeal in that two-point-contact case was because of wheel mode 

coupling. De Beer’s model was also adopted by Xie et al. [34]. They introduced a modified 

version of the Kalker's FASTSIM algorithm [30] developed by Giménez et al. [35] into a 

vehicle dynamics calculation package to obtain the wheel/rail contact properties. 

Liu and Meehan [36] developed a simple single-degree-of-freedom model for curve squeal. 

In this simple model, the vertical dynamics was not included. This means that mode coupling 

was not present and the only possibility of generating squeal noise would be the negative 

slope of the friction force relation. This model was used to explain the increase in sound 

level with increasing rolling speed and with increasing angle of attack found in a test rig. 

They also explained the generation mechanism of wheel squeal from the point of view of 

energy input per cycle of vibration. The same model was used again by Meehan and Liu in 

[37] to investigate the sensitivity of squeal noise to various means to reduce it. The results 

showed that the most important parameter is the lateral sliding velocity: only a 34% 
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reduction in lateral sliding velocity (or angle of attack) is required to achieve a 50% reduction 

of squeal vibration amplitude, corresponding to a 6 dB reduction in squeal noise. While the 

other parameters, including the modal damping, rolling velocity, creep curve parameters and 

contact parameters, all have an influence, larger percentage changes were required to obtain 

the same reduction in squeal vibration amplitude.  

1.2.1.2 Mode coupling mechanism 

More recently a number of authors have focussed on the mode coupling mechanism for curve 

squeal. This mechanism is another type of friction-induced vibration. It is sometimes also 

addressed as flutter and results in two modes of a system merging, under the action of an 

external non-conservative force, into a single unstable mode. In [38, 39], Hoffmann et al. 

developed a two-degree-of-freedom mass-belt model to explain this phenomenon. Two basic 

feature of mode coupling are presented in [38]. One is: a shift of frequency between the 

unstable frequency and the natural frequency of the two modes. The other one is: a phase 

lag between the vertical and lateral vibrations.  

Mode coupling is more widely adopted in brake squeal analysis [40]. In [41], North first 

attributed disc brake squeal to flutter instability. By using the complex eigenvalue approach, 

he found that two modes can couple under the influence of friction and the system becomes 

unstable. Flutter can also occur for wing profiles or suspension bridges, where the external 

force in this case is of aerodynamic nature [40]. More recently, mode coupling was also 

applied to curve squeal and a number of studies have been carried out to investigate it. 

Brunel et al. [42] performed a transient analysis of a wheel using an axi-harmonic finite 

element model. Two friction laws were considered based on measurements from Kooijman 

et al. [24], one with a falling characteristic and one with an increasing friction force. It was 

found that even the positive friction law could lead to a limit cycle solution, which the 

authors identified with the coupling of the normal and lateral dynamics of the wheel (which 

following the terminology used in brake-squeal they referred to as sprag-slip [43]). However, 

it was found that the falling friction characteristic led to much higher levels of squeal than 

the one with increasing friction force. 

In [32, 44], Chiello et al. developed a squeal model that considered tangential and normal 

contact forces, as well as axial and radial wheel dynamics. The friction law considered had 

a linearly decreasing regime at large creepages. Two possibilities for instability can exist 

according to the authors: one is the negative damping effect from the falling friction, the 

other is the asymmetry of the stiffness matrix. Both frequency and time domain analyses 
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were performed for a monobloc metro wheel. It was found that mode coupling was important 

at large lateral offsets of the contact point (but not at most values of offset) when the vertical 

dynamics was included. Time domain results showed that two modes can coexist in the limit 

cycle response if they are harmonically related (i.e. the natural frequency of the higher 

frequency mode is close to a higher harmonic of the lower frequency mode). Collette [45] 

investigated the influence of vertical dynamics and showed that, even with a constant friction 

coefficient, this could lead to unstable vibration. 

Glocker et al. [46] developed a squeal model with a flexible wheel and a rigid rail. The wheel 

dynamic properties were obtained from a finite element computation; a commercial multi-

body software was used to obtain values of contact position, nominal contact forces, 

direction and magnitude of nominal creep. A constant friction coefficient was considered as 

the authors stated that the squeal is expected to be insensitive to the slope of friction curve. 

The frequency domain results showed that the leading inner wheel was prone to squeal and 

reprofiling of the leading inner wheel was suggested as a means to eliminate squeal. 

However, this was not further explored by the authors. Time domain analysis was also 

carried out and a limit cycle response was obtained, the frequency of which was around 4 

kHz. 

In [47] Pieringer also found that squeal noise can occur with a constant friction coefficient. 

She built a detailed time-domain model for the dynamic wheel/rail interaction. In this model, 

vehicle and track were represented by impulse response functions derived from detailed FE 

models which only considered vertical and lateral dynamics. For the contact model, Kalker's 

exact theory [48] was implemented to obtain a transient, three-dimensional and nonlinear 

contact model. She used the rms (root mean square) value of the lateral contact force to 

characterise the relative instability. The influence of lateral creepage, friction coefficient and 

lateral contact position were studied. Results showed that these three could be key 

parameters for the occurrence of curve squeal. Squeal could be observed for a constant 

friction coefficient. The effect of wheel rotation was investigated by Pieringer et al. in [49] 

but the results shows the effect was insignificant. Based on Pieringer’s high-frequency 

wheel/rail interaction model [47], Zenzerovic [50, 51] developed an engineering time-

domain model and investigated the effect of lateral creepage, spin creepage, friction and 

wheel/rail contact position. 

Chen et al. [52] used commercial software to perform finite element complex eigenvalue 

analysis of a wheel in contact with a rail. However, in this model, the rail was only 5 m long 

and damping was assumed as zero, which was not a good representation of the infinite track. 
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The imaginary parts of the eigenvalues showed the merging of adjacent frequencies, which 

is a typical phenomenon seen in mode coupling. It was also found that the rail support 

stiffness had a significant effect on squeal in their case. The coefficient of friction needed to 

prevent curve squeal increased from 0.1 to 0.4 when the rail support stiffness was increased 

by 50%. 

Similarly, by making use of commercial finite element analysis software, Fourie et al. [53] 

developed a FE model for the wheel and rail and then performed complex eigenvalue 

analysis of the system. In their model, they considered a saturated longitudinal creepage in 

the absence of lateral creepage. The curve radius they considered is 1000m, which is 

consistent with the site at which they performed measurement. In contrast to [47] they 

explained that the wheel rotation, which can spilt the wheel natural frequencies into pairs, 

has an important effect on curve squeal. They showed that the doublet modes of the wheel 

circumferential mode with two nodal diameters can be coupled with each other. This wheel 

mode was also found to be predominantly unstable during the field measurement in [54]. 

1.2.1.3 Summary  

An overview of the previous theoretical studies of curve squeal is given in Table 1-2. They 

are classified according to whether rail dynamics and normal contact dynamics are included 

in the modelling, and whether frequency domain and/or time domain analysis is used in the 

approach.  
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Table 1-2. Summary of previous theoretical studies on curve squeal 
 Reference Inclusion of 

rail 
dynamics 

Inclusion of 
normal contact 

dynamics 

Frequency 
domain 

Time 
domain 

Falling 
friction 

Rudd [9] 
Van Ruiten [10] 

Schneider et al. [15] 
Liu et al. [36, 37] 

✖ ✖ ✖ ✔ 

Nakai et al. [11-13] ✖ ✖ ✔ ✔ 

Fingberg [17] ✔ ✖ ✖ ✔ 

Périard [18] ✔ ✔ ✖ ✔ 

Heckl et al. [19, 20] ✖ ✖ ✔ ✔ 

de Beer et al. [21-24] 
Monk-steel and 
Thompson [26] 
Xie et al. [34] 

Squicciarini et al. 
[31] 

✔ ✔ ✔ ✖ 

Huang [27, 28] ✔ ✔ ✔ ✔ 

Mode 
coupling 

Brunel et al. [42] 
 

✖ ✔ ✖ ✔ 

Koch et al.[32, 44] 
Collette [45] 

Glocker et al. [46] 
✖ ✔ ✔ ✔ 

Pieringer et al. [47, 
50] 

✔ ✔ ✖ ✔ 

Chen et al. [52] 
Fourie et al. [53] 

✔ ✔ ✔ ✖ 

In these studies, it was also found that the curve squeal noise is usually associated with wheel 

axial modes. These are summarized in Table 1-3. The wheel modes responsible for 

instability are identified by their approximate natural frequencies and by the number of nodal 

diameters 𝑛𝑛 and nodal circles 𝑚𝑚: (𝑛𝑛,𝑚𝑚). Radial and circumferential modes are identified as 

(𝑛𝑛, 𝑟𝑟) and (𝑛𝑛, 𝑐𝑐) modes [1]. This identification of wheel modes will be used throughout this 

thesis. 
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Table 1-3. Summary of responsible wheel modes for curve squeal from previous theoretical studies 
Reference Wheel modes (𝑛𝑛,𝑚𝑚) Frequency 

Schneider et al. [15] (3, 0)   
(5, 0)  
(6, 0)  

1.1 kHz 
2.8 kHz 
4 kHz 

Heckl et al. [19, 20] (2, 1)  
(3, 1)  

2.7 kHz 
6.5 kHz 

de Beer et al. [21-24] (2, 0) to (6, 0) Not given 

Huang [27, 28] (3 ,0) 1.1 kHz 

Brunel et al. [42] (2, 0) 
(3 ,0)  
(4, 0) 

1 kHz 
2 kHz 
3 kHz 

Koch et al.[32, 44] (3, 0) 1.1 kHz 

Glocker et al. [46] Coupling between 
(6, 0), (4, r) and (2, r) 

close in frequency,  
all around 4 kHz 

Pieringer et al. [47] 
 

(2, 0) 
(3, 0) 

Coupling between (7, 0) and (2, c) 

430 Hz 
1.1 kHz 

Both are around 5.2 kHz 

Fourie et al. [53] Doublet mode (2, c) due to wheel 
rotation 

4.2 kHz 

1.2.2 Measurements 

Many measurements of squeal noise have also been presented in literature. These can be 

divided into laboratory measurements and field measurements. In laboratory measurements, 

usually reduced scale test rigs are used and the vibration response of the discs can be 

measured. The contact forces can also be measured although they are usually averaged 

values over time and not the instantaneous ones. This is because the force measurement 

systems are influenced by the dynamics of the systems. In field measurements, usually sound 

or vibration data are obtained, but it is generally not possible to obtain information about the 

contact forces. 

1.2.2.1 Laboratory measurements 

De Beer et al. [22, 24, 55] developed a 1/3 scale twin disc test rig to measure the friction 

coefficient and to assess the presence of squeal. The rig consisted of a pair of discs, the 

‘wheel disc’ running on the ‘rail disc’. In these measurements, the ‘rail disc’ has a finite 

radius of curvature in the tangential direction, whereas for a real rail this radius is infinite. 
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The authors compensated for this effect by adjusting the lateral radius of curvature of the 

‘rail disc’. Also, thin steel plates were bolted onto the ‘rail disc’ to increase its damping. 

Sound pressure levels were measured. The measurement results showed that the occurrence 

of squeal noise was related to the falling of the friction coefficient. It was found that squeal 

occurred when the rolling contact angle was above 0.4˚ which is also the region where falling 

friction was found (see Figure 1-3), which corresponds to 0.7% lateral creepage. A frequency 

shift was also found in [55] but no explanation was given. 

 

Figure 1-3. Measured friction coefficient for stable and unstable creepage (from de Beer et al. 
[22]). 

Monk-Steel et al. [56] developed and modified de Beer et al.’s test rig to introduce a 

longitudinal creepage. For a longitudinal creepage of 2% the level of lateral creep force was 

reduced and the shape of the lateral friction curve was modified so that the falling regime 

only developed at higher values of yaw angle (in this case above 1° or a creepage of 1.7%). 

The sound pressure level was also measured. It was found that in the presence of longitudinal 

creepage, the onset of squeal noise occurred at a yaw angle of 1.4°, whereas this critical yaw 

angle was only 0.4° without longitudinal creepage (see Figure 1-4). 
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Figure 1-4. Measured sound pressure level in the 1250 Hz one-third octave band at 0.5 m 

from the web of the wheel; - - + - - lateral creepage only; - - ○ - - with a longitudinal 

creepage of 0.02 (from Monk-Steel et al. [56]). 

Another 1/3 scale twin disc rig model was built by Hsu et al. [28]. In their measurement, the 

lateral creepage was adjusted by changing the yaw angle of one of the roller disc. The lateral 

force was measured using strain gauge bridges. The sound pressure level (SPL) results 

showed that when the rail roller had no additional damping, squeal noise occurred at a yaw 

angle of 1° (creepage of 1.74%), while this value becomes 0.45° (creepage of 0.79%) when 

damping was added to the rail roller. This finding was not explained but it could be related 

to mode coupling; the effect of damping on mode coupling will be discussed in Chapter 6. 

Huang [27] made use of the twin disc rig model from [28] to obtain new data. Three different 

surface conditions were considered: dry, watered and lubricated. It was found from the SPL 

measurements that the watered case did not significantly reduce squeal noise whereas in the 

lubricated case the squeal noise was eliminated. The friction coefficient data showed that a 

falling region was observed with both dry and watered cases; however, with the lubricated 

surface condition, no falling region was present. 

Koch et al. [32] developed a 1/4 scale test rig. This contained a single 1/4 scale wheelset on 

a very large roller on which the rail was mounted. The effect of rolling speed, wheel/rail 

lateral position, angle of attack and vertical load were investigated. It was shown that squeal 

noise occurred when the angle of attack was larger than 8 mrad (creepage of 0.8%). The 

sound pressure level was found to increase by 4-8 dB for a doubling of the rolling speed. 

The effect of vertical load was found to be negligible and the contact position was also 
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unimportant except for flange contact; no squeal was observed for flange contact. The effect 

of damping was investigated by adding 1/4 scale ring dampers to the test axle. A minimum 

damping loss factor for the wheel was found to prevent squeal noise, which was 3%. 

Importantly, from the measurement of lateral friction force, no falling regime was detected 

for either dry or watered cases. The authors assumed that this was due to the fact that the 

average friction was measured instead of the transient one. 

Another wheelset test rig was developed more recently by Jie et al. [57]. A negative slope of 

friction force characteristic was observed and squeal noise was detected when the yaw angle 

was larger than 0.7° (creepage of 1.2%). Four dominant frequencies were found in the sound 

pressure level spectra. These were compared with the measured driving point mobilities of 

the wheel and rail discs. Results showed that two of the four dominant frequencies matched 

the resonance frequencies of the wheel and rail discs while the other two were not found in 

the mobilities. This might be related with the frequency shift due to mode coupling or some 

of them are the higher harmonics. However, they only showed the axial mobility of the wheel 

and rail discs in the paper. 

1.2.2.2 Field measurements 

Van Ruiten [10] reported squeal measurements on trams at different sites with different 

wheel types in the Netherlands. The squeal frequency was found to occur in the 500 Hz, 

1250 Hz and 2500 Hz one-third octave bands. These corresponded to wheel axial modes 

with 2, 3 and 4 nodal diameters. In most cases, the squeal was attributed to the inside of the 

curve. It was also observed, for only one tram type, that differences in the track structure 

affected the squeal measurement results. This could either be due to the change in track 

dynamics or the change of curving conditions. However no further discussion of this effect 

from the track structure was given. 

Merideno [58] reported a squeal problem in a 25 m radius tramway line in Spain. The 

squealing frequency was found to be in the frequency range 780-800 Hz and was associated 

with the wheel axial mode with 2 nodal diameters. 

A study at a new line in London, UK, was described in [4]. Measurements were performed 

in two curves with the same trains. At the first curve, the squeal was found at 800 Hz 

(corresponding to a circumferential mode) and at 1.2 kHz, 2.3 kHz and 4 kHz (axial modes 

with 3, 4 and 6 nodal diameters). On the second curve, the squeal was found at 7.25 kHz and 

9.4 kHz. The corresponding wheel modes were either radial modes with 8 and 10 nodal 

diameters or axial modes with 9 and 11 nodal diameters, as in each case the natural 
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frequencies are close to the squeal frequencies found in the measurement. The close 

proximity of pairs of modes could also suggest mode coupling is likely.  

Glocker et al. [46] measured squeal noise at both sides of a tight curve with 200 m radius. 

In their measurements, 83 regular train passages of a total of 3085 train passages were 

identified as squealing. To identify the wheels responsible for squeal, the noise intensity and 

rail acceleration levels taken at the inside and outside of the curve were compared. As a 

result, they found that in 62 of these 83 passages, the squeal noise occurred at the inside of 

the curve; in 32 of these 62 squeal events, the squealing wheel was the leading inner wheel 

of the leading bogie of the driving trailer. Squeal noise was also observed at the outside of 

the curve although it was less frequent. The frequency of the squeal noise was 4 kHz; higher 

harmonics at 8 and 12 kHz were also observed. Some frequency shift was observed but it 

was attributed to Doppler effect and not to mode coupling. 

Vincent et al. [59] carried out field measurements at two different sites. One was performed 

with a metro bogie running on a curve with 75 m radius. The wheels were monobloc with 

low damping. For different running speeds (10, 20, 30 and 40 km/h), it was shown that the 

highest noise level was always associated with the front inner wheel. The squealing 

frequencies were identified with three wheel modes: axial modes with 2, 3, and 4 nodal 

diameters. The other field measurement was conducted on a 60 m radius tramway with trams 

with resilient wheels. The rails of this tramway were grooved rails and equipped with anti-

squeal welded strips. The results showed that, for both the motor bogie and the trailing bogie, 

squeal occurred at the front inner wheel for a lower running speed, but the rear outer wheel 

of the trailing bogie squealed at higher speeds. It was also found from this tramway 

measurement that all wheel axial modes between 𝑛𝑛 = 3 and 9 nodal diameters were excited 

when the tram passed the test curve, although only one mode was predominant at any one 

time. 

Corradi et al. [60] performed a curve squeal measurement on a tramway curve with 17.5 m 

radius. The track was fitted with grooved rails and the wheels were resilient wheels which 

have relatively high damping. The results showed that both inner and outer wheels were able 

to squeal. Interestingly, one of the dominant squeal frequencies was at 1.5 kHz which did 

not correspond to any of the wheel modes. This squealing frequency was about 80 Hz higher 

than the closest wheel mode. This frequency shift can be an evidence of mode coupling. The 

measurements reported in [62] have been made available for this thesis and will be analysed 

further in Chapter 1. 
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Fourie et al. [54] measured squeal noise on a curve with 1000 m radius with a freight train 

service. They found that the squealing noise comes from the trailing inner wheel of some 

bogies under empty wagons, where the lateral creepage was very small but the longitudinal 

creepage exceeded the creep saturation. They associated the squeal frequencies with the 

doublet modes due to wheel rotation. The modes responsible were: a radial mode with 6 

nodal diameters, a circumferential mode with 2 nodal diameters and a radial mode with 7 

nodal diameters. 

Anderson et al. [61, 62] summarised field measurements carried out in Australia for both 

passenger and freight traffic. They proposed that curve squeal noise can be divided into three 

categories. 1) “Friction controlled”: this type of squeal noise was relatively moderate and 

was generated by approximately 10% of passing stock. Top-of-rail friction modifiers can 

efficiently reduce this squeal noise. Additionally, it was also affected by the environmental 

conditions, which makes this squeal noise vary randomly. 2) “Steering controlled”: this type 

of squeal noise was severe and associated with about 2% of passing stock. Poor steering was 

usually observed. Top-of-rail friction modifiers had little effect on this squeal noise. 3) 

“Systemic”: this type of squeal noise involved a large proportion of passing stock. The 

underlying effects could involve one or both of the friction controlled and steering controlled 

types. However, this classification scheme was based more on mitigation measures than on 

the mechanisms of squeal. 

Curley et al. [63] carried out a seven month measurement campaign on a curve with 290 m 

radius. They applied friction modifiers and lubrication at this test site to determine their 

effect. Friction modifiers are usually used to reduce or eliminate the falling friction 

characteristic without reducing the level of friction too much. Lubrication is used to reduce 

the friction levels and hence it is usually applied to the rail gauge corner or wheel flange to 

ensure the safe running of the train [1]. The results showed that lubrication had a better effect 

on reducing squeal noise than top-of-rail friction modifiers. It was also found that using the 

friction modifier or the lubrication at only the inner rail gave no benefit. This indicated that 

at this test site, curve squeal noise was caused at the outer rail. 

Jiang et al. [64] reported squeal noise measurements at a curve with 284 m radius used for 

freight traffic. At this test site, it was found that the lateral vibration level of the outer rail 

was about 20 dB higher than that of inner rail, which indicated that the squeal noise was 

mostly associated with the outer rail. The angle of attack was also measured in this study 

and it was found that the magnitude and likelihood of squeal appeared to increase with 

increasing angle of attack. In [65], Jiang et al. showed more measurement data and proposed 
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that mode coupling could be responsible for the squeal noise measured at this site. This was 

due to the observation of a phase difference between vertical and lateral rail vibration, which 

is a typical feature of mode coupling. More recently, data collected in a three-year period 

using a wayside condition monitoring system at a curve with 300 m radius was presented by 

Jiang et al. [66]. This system recorded the noise level, angle of attack, lateral position and 

running speed of the trains. It was found that freight trains generated more severe squeal 

than passenger trains and the likelihood of squeal increased with increasing angle of attack 

but it was also found that, even at large angles, not every wheel squealed. 

1.2.2.3 Summary 

Both test rigs and field measurements have their own difficulties and limitations. Test rigs 

are usually produced at reduced scale and hence the dynamic behaviour is different from the 

one in traffic. The contact patch is also smaller and the normal load may not be representative. 

Sound or vibration data can be obtained in field measurements but friction measurements 

directly associated with squeal are not present in the literature. Adhesion curves measured 

in the field are usually determined for traction and not for lateral creepage [4]. Moreover, in 

both test rigs and field measurements it would not be easily possible to distinguish in the 

measured data between mode coupling and falling friction mechanisms unless some 

characteristic features of these mechanisms can be found in the measured results. 

The laboratory measurements and field tests are summarized in Table 1-4 and Table 1-5 

(Table 1-5 is reproduced from [4]). The critical yaw angle or lateral creepage is the value at 

which the friction starts to decrease. It can be seen from Table 1-4 that only in [32] was the 

falling regime of friction not detected. In this case, the critical yaw angle or lateral creepage 

listed is the corresponding value at which the squeal noise occurs. From Table 1-5, it can be 

seen that curve squeal can occur for different types of train and both inner and outer wheel 

can squeal. Also, it can be found from both laboratory and field tests that the squealing 

frequency is usually over 1 kHz, and mainly corresponds to wheel axial modes.  

Both laboratory measurements and field measurements were also reviewed in [4]. It was 

concluded that although many measurements of adhesion coefficient for both longitudinal 

and lateral creepage have shown the existence of a falling region, mode coupling cannot be 

excluded and the two mechanisms may coexist during curve squeal. Moreover, it is unclear 

whether the friction laws that are measured quasi-statically apply for high frequency small 

amplitude motions. 
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Table 1-4. Summary of laboratory measurements of curve squeal 

Reference Testing setup and 
scale 

Friction  Critical yaw 
angle /lateral 
creepage 

Frequency 

 

Wheel modes 

[21-24] 1:3 scale twin disc Falling  0.3° / 0.5%  1150 Hz 

1200 Hz 

n/a 

[56] 1:3 scale twin disc Falling 1° / 1.7% n/a n/a 

[27, 28] 1:3 scale twin disc Falling 0.2° / 0.35% 1094 Hz (2, 0) 

[32] 1:4 scale twin disc no falling 
regime 

0.46° / 0.8% 1730 Hz (2 0) 

[36, 67-69] Reduced scale twin 
disc rig 

Falling 0.3° / 0.5% 1100 Hz 

 

(3, 0) 

[57] Reduced scale twin 
disc 

falling 0.7° / 1.2% 1990 Hz,  

3980 Hz 

n/a 
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Table 1-5. Summary of field measurements of curve squeal [4]. 
Train type  reference Curve 

radius 
 

Frequency Wheel modes Wheel  

Tram [10] n/a 500 Hz,   
1250 Hz,  
1600 Hz 

(2,0),  
(3,0),  
(4,0) 

Inner 

[59]  60 m 1200-8100 Hz (3,0)-(9,0) Leading 
inner 

[60] 17.5 m 1500 Hz (3,0)+(3,𝑟𝑟) 
(frequency shift 

observed) 

Inner and 
outer 

[58] 25 m 800 Hz (2,0) n/a 

Suburban [59] 75 m 450 Hz,  
1100 Hz,   
2000 Hz 

(2,0), 
(3,0),  
(4,0) 

Leading  
inner 

[4] 180 m 800 Hz,  
1200 Hz,  
2300 Hz,  
4000 Hz 

(0, 𝑐𝑐),  
(3,0),  
(4,0),  
(6,0) 

n/a 

[46] 200 m 4000 Hz (6,0) with 
(4,𝑟𝑟)+(2,2) 

(frequency shift 
observed) 

Leading 
inner 

Freight train [54] 1000 m 4000-5000 Hz (2,𝑐𝑐), (6,𝑟𝑟), (7,𝑟𝑟) 
(frequency shift 

observed) 

Trailing 
inner 

[64] 284 m 1000-3000 Hz n/a Outer 

1.2.3 Mitigation measures 

A number of mitigation measures for squeal noise have been proposed and tested in the 

literature. These are summarised in this section. They include wheel damping treatments, 

lubrication, friction modifiers, rail damping treatments, modified curving behaviour and 

modified rail profiles. 

1.2.3.1 Wheel damping treatments 

There are several types of wheel damper that are commercially available, including tuned 

absorbers, constrained layer treatments, ring dampers and resilient wheels [4]. Figure 1-5 

shows examples of these wheel damping treatments [4]. 
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 (b) 

wheel 

damping 
layer 

constraining 
plate 

 (c) 

             

 

Figure 1-5. Examples of wheel damping treatments [4]: (a) tuned absorbers; (b) constrained layer 
damping; (c) ring dampers; (d) resilient wheel. [4] 

In [70], Brunel el al. explained the mechanism of the attenuation of squeal noise by using 

ring dampers. These are a simple way to increase the wheel damping by inserting a metallic 

ring into a groove under the wheel rim. The finite element method was adopted and results 

showed that the frictional contact of the ring in the groove dissipated energy.  According to 

the authors, the measured noise attenuation can be from 5 dB to 10 dB in some transit 

applications after using this ring damper. However, in some cases, this solution was less 

efficient. The efficiency varies even for similar wheels at different sites. 

Bühler and Thallemer [71] reported some results of applying wheel tuned absorbers. In one 

case, it was found that the application of the absorber eliminated the squeal noise with 

dominant frequencies between 2 and 8 kHz, while for another case with dominant frequency 

at 700 Hz, the absorber did not work. This was not explained by the authors, but it could be 

that the damping limit was not achieved in terms of either mode coupling or falling friction 

mechanism. This will be explored in Chapter 6 of this thesis.  

Marjani and Younesian [72] studied theoretically the effect of shunted piezoelectric patches 

on the suppression of squeal noise as a means of introducing damping. The frequency of the 

shunt circuit was tuned to be the same as the dominant squeal frequency. Results showed 

that a resonant shunt circuit was more effective when adding the damping at a specific 

frequency, but a resistance shunt circuit had better performance, in terms of the increase in 

damping, in a broadband frequency range. However, the effect of these patches on curve 

squeal was not directly presented. 

Merideno et al. [58] also developed a damper system which was applied to eliminate squeal. 

This was described as a tuned constrained layer damper (CLD) treatment but in fact 
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resembles typical tuned absorber systems. A significant reduction of the sound pressure level 

was achieved when a proper design of damper was used to damp the wheel modes 

responsible for squeal. 

1.2.3.2 Lubrication and friction modifiers 

Eadie et al. [73-75] reported some applications of top-of-rail friction modifiers applied by a 

trackside applicator. This friction modifier can provide material with positive friction 

characteristics between the wheel and the rail. At the same time the friction level decreased 

and is maintained in the range of 0.35±0.05. The positive friction slope can in theory 

suppress the squeal noise induced by the negative damping effect. Field tests at different 

sites showed that this friction modifier is an effective way to reduce curve squeal noise and 

it can also provide a good reduction of corrugation growth rates in curves. 

Curley et al. [63] carried out some field tests of various top-of-rail friction modifiers and 

gauge face lubrication, which were applied in a curve with 290 m radius where freight trains 

always squealed. After several months of monitoring, it was found that only gauge face 

lubrication of the outer rail could eliminate the squeal noise, whereas squeal noise was not 

affected when top-of-rail friction modifiers were applied to the inner rail. 

Corradi et al. [60] investigated the squeal noise in a sharp tramway curve in Milan. They 

found that water lubrication of the contact could completely prevent the squeal noise from 

occurring. However, although not reported in the paper, it was found that the squeal noise 

appeared again when the rail started to dry [4]. In addition, tram drivers also communicated 

that, according to their experience, the most severe and frequent squealing events usually 

happened just after the track had been washed by the rain and was drying1. 

Liu and Meehan [36, 67-69] used a twin-disc test rig to carry out a series of experimental 

studies of curve squeal. The measured sound pressure level was found to increase with 

increasing rolling speed and angle of attack. It was also found that a higher relative humidity 

can make the squeal more likely. The negative slope of the friction force characteristic was 

no longer observed after the application of an oil-based friction modifier and instead a 

positive slope was measured. This friction modifier was beneficial for reducing the sound 

pressure level, but it did not completely eliminate the squeal noise. Two possible 

explanations were given. First, the friction force measured by the authors was the averaged 

1 Personal communication from the authors. 
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value of force over time whereas if it was measured instantaneously the negative slope may 

still exist.  Second, another possibility mentioned by the authors was mode coupling. 

1.2.3.3 Rail damping and track dynamics 

Rail dampers, consisting of a tuned mass-spring absorber system installed on each side of 

the rail, are an efficient way to reduce rolling noise by increasing the track decay rate [76]. 

However, this treatment only modifies the point mobilities of the track to a minimal extent 

and it is therefore not expected to modify the occurrence of curve squeal. It may slightly 

affect the overall noise level as it reduces the average rail vibration. If found to be effective 

for squeal it could be a more attractive solution than measures that must be applied to whole 

vehicle fleets. 

In [4], Thompson et al. reported that rail dampers were installed at a site in London. Some 

reduction of the squeal noise level and occurence was found. However, because friction 

modifiers were also applied in this curve prior to the application of rail dampers, the effect 

of the rail dampers was uncertain. Nevertheless, the longer duration squeal events were 

reduced after the application of the rail dampers. 

Jiang et al. [77] found that curve squeal noise was more severe for track with concrete 

sleepers than with timber sleepers. This indicated that the track dynamics may play an 

important role in curve squeal noise. The authors compared the track decay rate, the dynamic 

gauge and the point mobility of the two types of tracks. They claimed that the timber sleeper 

track was more flexible and thus can increase the dynamic gauge, which may change the 

contact conditions of the wheel and rail. They also found that the track mobility with concrete 

sleepers had a sharper resonance. The track decay rates were higher for timber sleepers in 

the squeal frequency range (above 1 kHz in this case). 

1.2.3.4 Curving behaviour, rail profiles  

Curve squeal usually occurs in tight curves as the bogie cannot align the wheels tangentially 

to the rail. Hence, improving the curving performance to make the wheel roll radially in the 

curve can reduce the squeal noise or even eliminate it. 

In [61, 62], Anderson et al. found that at some sites certain freight trains were the main 

source of squeal due to poor steering. This was caused by ineffective centre-bowl lubrication 

leading to high angle of attack. By improving the centre-bowl lubrication the squeal was 

eliminated. 
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Bruni et al. [78] gave an extensive survey of control and monitoring for railway vehicle 

dynamics. They introduced the concepts of ‘actuated solid wheelset’ and ‘actuated 

independently rotating wheels’. These can improve the vehicle curving behaviour while 

maintaining the vehicle stability. They also introduced control strategies for curving and the 

idea of ‘perfect curving’. These can be achieved by controlling the yaw angles or by 

minimizing the longitudinal creep. 

Elbers and Verheijen [79] introduced the effect of asymmetrical rail profiles on squeal noise. 

This was tested in a 200 m radius curve. It was found that the average sound pressure level 

was 3 dB lower after applying the design although the number of squeal events was not 

reduced. A second test was also performed with the same profile. In this case the rail head 

of the inner rail had also been impregnated with tungsten carbide. It was found that the squeal 

events were reduced from 74% to 26% and the average sound pressure level was reduced by 

4 dB. 

1.3 Objectives and layout of this thesis 

The aim of this thesis is to provide a better understanding of the mechanism of curve squeal. 

It has been shown in the previous section that two mechanisms for curve squeal have been 

proposed in the literature but usually they have been studied separately. Moreover 

insufficient attention has been paid to the role played by the track dynamics. Hence, the 

objectives of this work are set below: 

1) To develop a track model based on modal superposition and use it in the time domain part 

of the existing curve squeal model developed by Huang [27]. 

2) To investigate the role of the Coulomb friction coefficient, friction characteristics and rail 

dynamics by making use of the existing curve squeal model.  

3) To assess the respective roles of the mode-coupling and falling-friction instability 

mechanisms in curve squeal by developing a reduced modal model. 

4) To investigate the role of rail dynamics under constant friction force.  

5) To design a laboratory measurement to verify the features of mode coupling or falling 

friction. 

In order to meet these objectives, this thesis consists of the following chapters: 
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The curving behaviour of a free wheelset and a bogie are presented in Chapter 2. This will 

present how lateral sliding motion arises at the contact when the train is curving. The normal 

and tangential contact models adopted in the thesis are introduced in this chapter. 

Chapter 3 explains three different friction-induced instability mechanisms by making use of 

simple mass-on-belt models. Stick-slip, falling friction and mode coupling are illustrated in 

this chapter. 

In Chapter 4 an existing curve squeal model is first described and then an equivalent track 

model, based on modal analysis of multi-degree-of-freedom (mdof) mass-spring systems, is 

developed and implemented in the curve squeal model. 

By making use of this curve squeal model, Chapter 5 presents a parametric study using both 

the frequency domain and the time domain versions of the model. The effects of the friction 

coefficient, friction curve characteristics and rail dynamics are analysed. By comparing the 

results, phenomena associated with mode coupling and the importance of rail dynamics are 

observed and highlighted. 

Chapter 6 describes the development of a reduced modal model of wheel-rail contact systems. 

By making use of this model, the respective roles of mode-coupling and falling-friction 

mechanisms are investigated. A parametric study is performed in this chapter and basic 

features of mode coupling are shown. Some qualitative comparisons with field 

measurements of wheel acceleration during squeal are also presented. 

In Chapter 7, both the Nyquist criterion and eigenvalue analysis approach are used to 

investigate the effect of rail dynamics. Various effects are considered that may introduce 

additional resonant behaviour into the rail dynamics. Also, by means of a reduced model, 

the main characteristics of the rail dynamics that can result in squeal are assessed. 

A simple measurement campaign performed by adapting an existing pin-on-disc rig is 

presented in Chapter 8 and squeal noise is observed on a scaled wheel. It is deduced from 

the measurement results that falling friction or stick slip are the mechanisms behind this 

squeal case. 

Finally, Chapter 9 summarises the conclusions obtained from this thesis; some 

recommendations for future work are also given. 

1.4 Original contributions 

The main original contributions in this thesis can be summarised as follows: 

24 

 



1) An existing curve squeal model is improved by developing and implementing an 

equivalent model for track dynamics. This equivalent track model is based on modal analysis 

of a multi-degree-of-freedom (mdof) mass-spring model and can be used in both time and 

frequency domain calculations for curve squeal. 

2) Different origins of the instability of the system are observed by making use of the updated 

curve squeal model. They are falling friction, wheel mode coupling, and wheel/rail coupling. 

The effects of wheel rotation and rolling velocity are investigated. 

3) A two-mode model is developed which can be used to assess mode-coupling and falling-

friction mechanisms together. Parametric studies are performed including varying the 

adhesion coefficient, contact angle, lateral offset, wheel damping, and friction curve slope. 

The frequency shift and phase difference are observed from the simulation results of this 

model, which are two important indicators for mode coupling. 

4) A field measurement from reference [60] is used to make qualitative comparisons with 

the results from the two-mode model. Available data have been re-analysed during this work 

to highlight the presence of frequency shift and phase difference.   

5) A reduced model is developed to study the effect of rail dynamics on curve squeal. It is 

shown that the rail can play an important role in curve squeal by means of a form of coupling 

between the rail dynamics and a single wheel mode. However, it is not necessarily by 

introducing ‘modes’ in the rail that wheel modes can couple with the rail; instead the mass 

and/or damper behaviour of an infinite rail is responsible for wheel-rail coupling. 

6) Laboratory measurements results suggested that falling friction or stick slip is responsible 

for the squealing in this measurement. The findings from these measurements give more 

evidence about the characteristics to distinguish the falling friction and mode coupling. 
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2 Railway curving behaviour and rolling contact 

The wheels of railway vehicles are usually joined by a rigid axle to form a wheelset and two 

such wheelsets are mounted in a frame known as the bogie. When a train is travelling in a 

curve, the wheels cannot pass through the curve freely and instead the wheelset exhibits a 

non-zero angle of attack to the rail and consequently there is a lateral sliding velocity at the 

wheel-rail contact. This lateral sliding motion, causing a lateral creep force, is believed to be 

the main cause of curve squeal noise. 

This chapter starts by describing the curving behaviour of a free wheelset and a bogie and 

then defines the creepage. It is explained how the lateral creepage arises during curving. 

Vertical and lateral models of the wheel-rail contact are also presented, which will be used 

in the subsequent chapters. 

2.1 Curving behaviour 

2.1.1 Curving of a free wheelset 

A wheelset consists of two wheels connected by an axle. The running surface of a train wheel 

has an approximately conical geometry to keep the train's motion aligned with the track. 

Schematic views of a single wheelset running on a curved track are shown in Figure 2-1. 

 

Figure 2-1. Radial steering of a free wheelset with conical profiles in a curve 

It can be seen that, to achieve radial steering, i.e. the wheelset axis pointing towards the 

centre of the curve, the outer wheel needs to roll a longer distance than the inner wheel. This 
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will balance the difference in the lengths of the rails that the wheels roll over. For such free 

rolling the ratio of the radii between outer and inner wheels must satisfy [5]: 

𝑅𝑅𝑦𝑦𝑜𝑜𝑡𝑡
𝑅𝑅𝑖𝑖𝑛𝑛

=
𝑅𝑅 + 𝑙𝑙
𝑅𝑅 − 𝑙𝑙

 (2-1) 

where 𝑅𝑅𝑦𝑦𝑜𝑜𝑡𝑡 and 𝑅𝑅𝑖𝑖𝑛𝑛 are the rolling radii of the outer and inner wheels, respectively, 𝑙𝑙 is half 

the lateral distance between the points of contact of the wheels with the rails and 𝑅𝑅 is the 

curve radius. 

For conical profiles: 

𝑅𝑅𝑦𝑦𝑜𝑜𝑡𝑡 = 𝑟𝑟0 + 𝛿𝛿0𝑢𝑢𝑦𝑦; 

𝑅𝑅𝑖𝑖𝑛𝑛 = 𝑟𝑟0 − 𝛿𝛿0𝑢𝑢𝑦𝑦 
(2-2) 

where 𝑟𝑟0 is the nominal wheel radius, 𝑢𝑢𝑦𝑦 is the lateral displacement of the wheelset, and 𝛿𝛿0 

is the conicity of the wheel (see Figure 2-2 as an example for the outer wheel). 

 

Figure 2-2. Outer wheel rolling radius when running in a curve. 

Substituting Eq.(2-2) into Eq.(2-1), the lateral displacement of the wheelset can be obtained 

as: 

𝑢𝑢𝑦𝑦 =
𝑟𝑟0𝑙𝑙
𝛿𝛿0𝑅𝑅

 (2-3) 

If this lateral displacement is achieved exactly, the unconstrained wheelset will curve freely 

by running along the equilibrium rolling line.  

2.1.2 Curving of a bogie  

According to the observation by Stephenson [5], the free wheelset will exhibit a kinematic 

oscillation when running on a straight track instead of running stably (see Figure 2-3). To 

solve this problem, railway vehicles are mounted on bogies; these usually consist of two 
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wheelsets connected by a rigid frame [5] to ensure the stability. However, this also makes 

the curving behaviour of a bogie with two wheelsets differ from the ideal steering.  

 

Figure 2-3. Kinematic oscillation of free wheelset on a straight track (from [5]). 

If, the bogie is assumed to have a rigid frame, the wheelsets are fixed in the longitudinal 

direction of this frame.  The attitude of the bogie in plan view is shown in Figure 2-4. It can 

be seen that the two axles are constrained and they cannot take up a radial position in the 

curve. This will make the wheelsets exhibit a considerable angle of attack (yaw angle of the 

wheelset relative to the rail). In practice, the wheelsets and vehicle are connected by vertical 

suspension springs while in the lateral and longitudinal directions the wheelsets and the 

frame are also connected by suspensions including springs and dampers. These are intended 

not only to stabilise the tendency of the wheelsets to oscillate but also to facilitate the motion 

of the vehicle in curves [5]. 

 

Figure 2-4. Plan view of a rigid bogie in a curve. 

There are a number of factors that can affect the attitude of a two-axle vehicle or bogie in a 

curve. These mainly include the curve radius, the cant deficiency2, and the speed of the 

vehicle [5]. The attitudes of a bogie in a curve for different speeds and radii are shown in 

Figure 2-5. At low speed and in a small radius curve, the leading wheelset moves outwards 

in the curve whereas the trailing wheelset moves inwards. Hence the outer wheel of the 

leading wheelset and the inner wheel of the rear wheelset tends to have flange contact. When 

the speed is increased (or the curve radius is increased), the rear wheelset tends to move 

2 Cant deficiency is present when a vehicle's speed on a curve is greater than the speed at which the components 
of wheel to rail force are normal to the plane of the track. The amount of cant deficiency is expressed in terms 
of required superelevation to be added in order to bring the resultant force acts normal to the plane of the track. 
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outwards. Therefore, the angle of attack of the leading wheelset in a small-radius curve is 

larger than it is in a larger-radius curve [1]. 
  

(a) 

 ( ) 

(b) 

Figure 2-5. Plan view of a bogie in a curve: (a) low speed/small radius; (b) high 

speed/large radius. 

A wheelset with a non-zero angle of attack cannot run straight ahead; due to the constraint 

of the flange it will roll around the curve. Hence a lateral sliding velocity exists especially 

at the inner wheel (see Figure 2-4). It is believed that this lateral sliding velocity is the main 

cause of curve squeal noise [1]. 

2.2 Creepages 

As defined by Johnson [80], rolling is a relative angular motion between two bodies in 

contact about an axis parallel to their common tangent plane (see Figure 2-6). In the contact 

frame, the contact surfaces ‘flow’ through the contact zone with tangential velocities in the 

longitudinal (𝑥𝑥) and lateral (𝑦𝑦) directions (𝑣𝑣𝑥𝑥 and 𝑣𝑣𝑦𝑦). The bodies may also have angular 

velocities about the normal (𝑧𝑧) direction (𝜔𝜔𝑟𝑟𝑟𝑟). If the tangential velocities of the two bodies 

are unequal, i.e. 𝑣𝑣𝑥𝑥,1 ≠ 𝑣𝑣𝑥𝑥,2 and/or 𝑣𝑣𝑦𝑦,1 ≠ 𝑣𝑣𝑦𝑦,2, the rolling motion is accompanied by sliding. 

If the angular velocities about the 𝑧𝑧 direction of the two bodies are unequal, i.e. 𝜔𝜔𝑟𝑟𝑟𝑟,1 ≠

𝜔𝜔𝑟𝑟𝑟𝑟,2, the rolling motion is accompanied by spin. For rolling without sliding or spin, the 

motion is called ‘pure rolling’.  
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Figure 2-6. Rolling contact surface of two elastic bodies. 

The relative velocities or spin of the two bodies normalised by the rolling velocity, which is 

the average absolute velocity of the two bodies, are defined as the creepage. Specifically, the 

longitudinal, lateral and spin creepages are defined as: 

𝛾𝛾𝑥𝑥 =
𝑣𝑣𝑥𝑥,1 − 𝑣𝑣𝑥𝑥,2 

𝑉𝑉0
, 𝛾𝛾𝑦𝑦 =

𝑣𝑣𝑦𝑦,1 − 𝑣𝑣𝑦𝑦,2 
𝑉𝑉0

, 𝛾𝛾𝑟𝑟𝑟𝑟 =
𝜔𝜔𝑟𝑟𝑟𝑟,1 − 𝜔𝜔𝑟𝑟𝑟𝑟,2 

𝑉𝑉0
 (2-4) 

where 𝑉𝑉0  is the rolling velocity and 𝛾𝛾𝑥𝑥 , 𝛾𝛾𝑦𝑦 , 𝛾𝛾𝑟𝑟𝑟𝑟  are the longitudinal, lateral and spin 

creepages respectively. 

The longitudinal and lateral creepages are dimensionless whereas the spin creepage has a 

dimension of 𝑚𝑚−1. 

In the context of wheel-rail contact (see Figure 2-7), the longitudinal, lateral and spin 

creepages can be written as: 

𝛾𝛾𝑥𝑥 =
𝑣𝑣𝑥𝑥𝑤𝑤 − 𝑣𝑣𝑥𝑥𝑟𝑟 

𝑉𝑉0
, 𝛾𝛾𝑦𝑦 =

𝑣𝑣𝑦𝑦𝑤𝑤 − 𝑣𝑣𝑦𝑦𝑟𝑟  
𝑉𝑉0

, 𝛾𝛾𝑟𝑟𝑟𝑟 =
𝜔𝜔𝑟𝑟𝑟𝑟𝑤𝑤 − 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟  

𝑉𝑉0
 (2-5) 

where the subscripts 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 represent the directions and the superscripts 𝜁𝜁 and 𝑟𝑟 represent 

wheel and rail respectively.  

 

Figure 2-7. Velocities and creepages in the wheel/rail contact. 

Although these creepages can all exist, it can be found from literature that the lateral 

creepage is usually associated with curve squeal [4]. As introduced in Section 2.1.2, when a 
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bogie is travelling in a curve, an angle of attack can arise; this will then result in a relative 

lateral velocity between the wheel and rail (see Figure 2-4). According to Eq. (2-5), this 

relative velocity normalized by the rolling velocity is the lateral creepage. Hence, the lateral 

creepage is approximately equal to the angle of attack. 

2.3 Rolling friction 

First sliding friction is introduced as shown in Figure 2-8. It is a body resting on the ground. 

The normal force 𝐹𝐹𝑁𝑁 cancels out the gravity force of the body. The applied force 𝐹𝐹𝑒𝑒𝑥𝑥𝑡𝑡 tends 

to move the body. The static friction force 𝐹𝐹𝑠𝑠 is equal in magnitude and opposite in direction 

to the external force until the maximum possible friction force between two surfaces is 

reached, which is the product of the coefficient of static friction and the normal force 𝜇𝜇𝑠𝑠𝐹𝐹𝑁𝑁. 

Therefore, when there is no sliding, the friction force can have any value from zero up to the 

maximum friction force 𝜇𝜇𝑠𝑠𝐹𝐹𝑁𝑁. If the friction force becomes larger than the limit of the static 

friction, sliding motion occurs. At this point, the friction force is static friction. It is 

recognised that static friction coefficient 𝜇𝜇𝑠𝑠  is usually larger than the dynamic friction 

coefficient 𝜇𝜇𝑑𝑑 (see Figure 2-9) and both are assumed to be independent of velocity according 

to the Coulomb friction law [81]. 

 

Figure 2-8. A block moving. 

 

Figure 2-9. Static friction and dynamic friction. 
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For a rolling wheel, the wheel and rail are not rigid and under the contact of two elastic 

bodies, a deformation in the contact area exists. This deformation is fundamental to rolling 

friction [81]. In the contact area, there is local slip before gross sliding occurs. This 

phenomenon is named micro-slip or micro-displacement [82]. At this micro-slip stage, there 

are areas of both adhesion and slip in the contact area. This is shown in Figure 2-10. When 

entering the contact area, the surface particles of the wheel and rail lock together and move 

towards the rear; this front zone is the adhesion area. In the trailing zone of the contact area, 

where surface particles leave the contact area, a slip region occurs. The friction force usually 

grows gradually with increasing creepage and finally reaches its saturation value, where 

gross sliding occurs (see dashed line in Figure 2-11).  

 

Figure 2-10. Slip and adhesion area in wheel-rail contact 

 

Figure 2-11. Creep force with micro-slip and saturation. 

In analysing the parameters that influence the friction force in rolling, Stribeck demonstrated 

experimentally that the coefficient of friction in different bearings is dependent on the sliding 

velocity under gross sliding and it drops continuously with increasing small velocity [83]. 

He presented the friction-velocity curves, which are called “Stribeck curves” [84], of 
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different bearings including journal bearings, plain bearings and roller bearings. The results 

show a similar trend as Figure 2-12. It can be seen that the friction first decreases with 

increasing sliding velocity and then increases at higher velocities.  

 

Figure 2-12. A typical Stribeck curve 

In general, the friction between the wheel and rail is a combination of “micro slip” and a 

Stribeck curve (see solid line in Figure 2-11). However, friction depends on a number of 

factors. These can include molecular adhesion, surface roughness, deformation, temperature, 

etc. Hence, there is no universal friction-velocity function, and instead the relation is 

application-dependent and can vary under different conditions [85]. Different friction 

models used for curve squeal will be introduced in the next section.   

2.4 Contact models 

2.4.1 Normal contact model 

The wheel-rail normal contact can be modelled approximately with Hertz contact theory [1]. 

This theory is based on some assumptions such as: 

1) The contact surfaces can be represented by constant radii of curvature.  

2) The strains are small and within the elastic limit. 

3) Each body can be considered as an elastic half-space, i.e., the area of contact is much 

smaller than the dimensions and the characteristic radius of each body. 

4) The surfaces are continuous and non-conforming. A non-conforming contact is one in 

which the shapes of the bodies are sufficiently dissimilar that, under zero load, they only 

touch at a point (or possibly along a line).  

5) The two bodies are in frictionless contact.  

The results are presented here, which can also be found in [1].  
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Assuming the wheel has radii of curvature 𝑅𝑅𝑤𝑤  in the rolling direction and 𝑅𝑅𝑤𝑤𝑡𝑡  in the 

transverse direction, the rail has radius 𝑅𝑅𝑟𝑟 in the rolling direction and transverse radius 𝑅𝑅𝑟𝑟𝑡𝑡, 

an effective radius of curvature of the surface in contact is: 

1
𝑅𝑅0

=
1
2
�

1
𝑅𝑅𝑤𝑤

+
1
𝑅𝑅𝑤𝑤𝑡𝑡

+
1
𝑅𝑅𝑟𝑟

+
1
𝑅𝑅𝑟𝑟𝑡𝑡

� (2-6) 

In the wheel-rail contact area, the semi-axes 𝑎𝑎 in the rolling direction, the semi-axes 𝑏𝑏 in the 

transverse direction, and the normal approach 𝑢𝑢0 are given by: 

𝑎𝑎 = 𝜎𝜎1 �
3𝑁𝑁0𝑅𝑅0

2𝐸𝐸′
�
1/3

 (2-7) 

𝑏𝑏 = 𝜎𝜎2 �
3𝑁𝑁0𝑅𝑅0

2𝐸𝐸′
�
1/3

 (2-8) 

𝑢𝑢0 =
𝜉𝜉

2𝑅𝑅0
�

3𝑁𝑁0𝑅𝑅0
2𝐸𝐸′

�
1/3

 (2-9) 

where 𝑁𝑁0 is the normal load and 𝐸𝐸′ is the plane strain elastic modulus defined as: 

𝐸𝐸′ =
𝐸𝐸

1 − 𝜐𝜐2
 (2-10) 

in which 𝐸𝐸 is the Young’s modulus and 𝜐𝜐 is the Poisson’s ratio. Both bodies are assumed to 

have the same elastic properties. 

The parameters 𝜎𝜎1, 𝜎𝜎2 and 𝜉𝜉 given by: 

𝜎𝜎1 = �
2𝑔𝑔2𝐄𝐄(𝑒𝑒)

𝜋𝜋
�
1/3

 (2-11) 

𝜎𝜎2 = �
2𝐄𝐄(𝑒𝑒)
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where 𝐊𝐊 is the complete elliptic integral of the first kind, 𝐄𝐄 is the complete elliptic integral 

of the second kind, 𝑔𝑔 is the ratio of 𝑎𝑎 and 𝑏𝑏, i.e. 𝑔𝑔 = 𝑎𝑎
𝑏𝑏
, and 𝑒𝑒 = 1 − 1/𝑔𝑔2. 

An intermediate parameter, 𝜃𝜃, is defined by: 

cos 𝜃𝜃 = −
𝑅𝑅0
2
�

1
𝑅𝑅𝑤𝑤

−
1
𝑅𝑅𝑤𝑤𝑡𝑡

+
1
𝑅𝑅𝑟𝑟

−
1
𝑅𝑅𝑟𝑟𝑡𝑡

�   

It is used to obtain 𝜎𝜎1, 𝜎𝜎2 and 𝜉𝜉 using a pre-calculated table (see e.g. [1]). 

It can be seen from Eq.(2-9) that the relationship between the normal approach and the 

normal load is non-linear. In order to apply the model in a frequency-domain analysis, this 
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expression is linearized for small displacement amplitudes about a nominal approach 

distance 𝑢𝑢0 or normal load 𝑁𝑁0. Thus the reciprocal of vertical contact stiffness 1/𝑘𝑘𝐻𝐻 is: 

1
𝑘𝑘𝐻𝐻

=
𝑑𝑑𝑢𝑢0
𝑑𝑑𝑁𝑁0

=
𝜉𝜉
2
�

2
3𝐸𝐸′2𝑁𝑁0𝑅𝑅0

�
1/3

 (2-14) 

According to [86], the contact between two static bodies has a compliance in the transverse 

direction. The transverse contact stiffness is given by: 

1
𝑘𝑘𝐿𝐿

=
𝜒𝜒
𝑘𝑘𝐻𝐻

 (2-15) 

where 𝜒𝜒 is a value between about 1 and 1.4, given by: 

𝜒𝜒 ≈ 1 +
𝜐𝜐

1 − 𝜐𝜐
�

1
4

+
1
𝜋𝜋

tan−1 𝑔𝑔�
1/3

 (2-16) 

where 𝜐𝜐 is Poisson’s ratio and 𝑔𝑔 is equal to 𝑎𝑎/𝑏𝑏 for the stiffness in the longitudinal direction 

or 𝑏𝑏/𝑎𝑎 for the lateral direction. 

The Hertz normal contact model may not be accurate at flange contact. This is because the 

flange’s thickness and the radius of curvature at the gauge corner are of the same order of 

magnitude as the contact length [87] and half space assumption is not satisfied. Also, in 

Hertz normal contact model, the surface roughness is not included, which could change the 

geometry of the contact surfaces.  

2.4.2 Tangential contact model 

2.4.2.1 Saturation of creepage 

The wheel-rail contact requires a rolling friction model. This is different from the Coulomb 

friction model in which the friction force is independent of velocity. Under rolling contact, 

the friction force (or creep force) is a function of the relative speed between the wheel and 

rail, i.e. creepage. The creepage describes the overall relative motion of the wheel and rail 

(normalised by the rolling velocity), while in the contact patch both slip and stick may exist. 

With increasing creepage, the adhesion zone reduces. When the slip zone covers the whole 

contact patch, saturation of the creep force is achieved [1].  

Kalker has given a detailed survey of rolling contact theories in [6]. Two of them will be 

introduced here and will be used in the calculations in later chapters. One is an approximate 

model by Vermeulen and Johnson [88], which considers longitudinal and lateral creepage 

but without spin creepage. According to Vermeulen and Johnson [88], the tangential force 

𝐹𝐹𝑖𝑖 can be formulated as: 
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𝐹𝐹𝑖𝑖 = �𝜇𝜇0𝑁𝑁0 �Г𝑖𝑖 −
1
3
Г𝑖𝑖2 +

1
27

Г𝑖𝑖3�    𝑓𝑓𝑓𝑓𝑟𝑟 Г𝑖𝑖 < 3

𝜇𝜇0𝑁𝑁0                                         𝑓𝑓𝑓𝑓𝑟𝑟 Г𝑖𝑖 > 3
 (2-17) 

where 𝜇𝜇0 is the Coulomb friction coefficient, 𝑁𝑁0 is the normal force, 𝐹𝐹𝑖𝑖 is the longitudinal 

or lateral creep force and Г𝑖𝑖 is a normalised creepage given by: 

Г𝑖𝑖 =
𝐺𝐺𝐶𝐶𝑖𝑖𝑖𝑖𝑎𝑎𝑏𝑏
𝜇𝜇𝐹𝐹0

𝛾𝛾𝑖𝑖     𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2 (2-18) 

in which 𝑎𝑎 and 𝑏𝑏 are the semi-axis lengths of the contact patch, 𝛾𝛾𝑖𝑖 is the creepage in the 

longitudinal or lateral direction, G is the shear modulus of the wheel and rail material 

(assumed identical) and 𝐶𝐶𝑖𝑖𝑖𝑖 is the creep coefficient which is tabulated by Kalker [6]. 

The other one is given by Kalker. He gave three exact theories in [89, 90], but these theories 

require a large amount of computation time. Thus he developed a numerical method called 

FASTSIM [30] based on his simplified theory [91]. In FASTSIM, Kalker replaced the elastic 

half-space, which is assumed in the exact theory CONTACT [89, 90], by a bedding of 

uncoupled springs. Also, the displacement difference between wheel rand rail in one point 

is assumed proportional to the surfaced traction in the same point and independent of the 

surface traction in all other points [87]. 

This algorithm offers a quick approach to calculate the total tangential forces in rolling 

contact from given creepages (including spin) and is now widely used. In this algorithm, the 

elliptical contact area is divided into independent parallel longitudinal strips with equal 

width and each strip is divided equally into the same number of elements. The traction on 

each element can be calculated from the averaged deformation of this element and a series 

of equivalent springs.  

The adhesion coefficient 𝜇𝜇(𝛾𝛾)  is defined as the ratio of lateral or longitudinal force to 

normal force. After the creep force reaches the full saturation regime, the absolute value of 

the lateral adhesion coefficient is equivalent to the friction coefficient 𝜇𝜇0 (which may be 

velocity dependent). Figure 2-13 shows a comparison of adhesion coefficient against 

creepage calculated using these two methods, neglecting the longitudinal and spin creepage. 

It can be seen that they are in good agreement. The parameters used are shown in Table 2-1.  
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Table 2-1. Parameters for non-dimensional friction curves by FASTSIM and Vermeulen and 
Johnson formula. 

Parameters Symbol (units) Value 

Normal contact force 𝑁𝑁0 (kN) 62 

Longitudinal semi-axis of contact ellipse a (mm) 5 

Lateral semi-axis of contact ellipse b (mm) 5 

Shear modulus G (Pa) 8.1×1010 

Coulomb friction coefficient 𝜇𝜇0 0.4 

Kalker’s coefficient C22 3.699 

Number of elements in each strip in FASTSIM 𝑁𝑁𝑥𝑥 30 

Number of strips in FASTSIM 𝑁𝑁𝑦𝑦 20 

 

Figure 2-13. Comparison of friction curves calculated by FASTSIM and Vermeulen and 
Johnson formula for parameters in Table 2-1, FASTSIM without longitudinal and spin 

creepage, Vermeulen and Johnson’s formula. 

2.4.2.2 Falling friction at large creepages 

It is recognized that the ‘dynamic’ or ‘sliding’ friction coefficient is smaller than the ‘static’ 

one. Usually when the creepage exceeds the saturation point, the friction coefficient 

decreases in magnitude with increasing creepage [1], see Figure 2-11. 

Different falling functions at large creepage have been developed in previous studies. In [9], 

Rudd gives a model as: 

𝜇𝜇(𝛾𝛾) = 𝜇𝜇0
𝛾𝛾
𝛾𝛾0
𝑒𝑒(1− 𝛾𝛾

𝛾𝛾0
) (2-19) 
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where 𝜇𝜇(𝛾𝛾) is the adhesion coefficient, 𝜇𝜇0  is the maximum friction coefficient, 𝛾𝛾0 is the 

creepage for this maximum friction coefficient and 𝛾𝛾 is the creepage. This falling model was 

compared with measurement results performed by Remington [14] using a test rig and good 

agreement was found. 

Périard [20] considered two friction laws in his study. They were obtained from an overview 

of various laws given by Kragelskii [92]. One is from Poiré and Bochet and has the form of: 

𝜇𝜇 = 𝜇𝜇0
1

1 + 0.03𝑣𝑣
 (2-20) 

The other one is from Galton and has the form of: 

𝜇𝜇 = 𝜇𝜇0
1 + 0.018𝑣𝑣
1 + 0.03𝑣𝑣

 (2-21) 

where 𝑣𝑣 is the sliding velocity. 

These two friction laws, Eq. (2-20) and (2-21), are empirical laws obtained by performing 

experiments with a train wheel sliding over a rail at a very large sliding velocity.  

Kraft [16] proposed a semi-analytical expression as: 

𝜇𝜇0(𝑣𝑣) = 𝜇𝜇0�1 − 0.5𝑒𝑒−0.138/|𝑣𝑣| − 0.5𝑒𝑒−6.9/|𝑣𝑣|� (2-22) 

This model was used by Schneider et al. [15] and Fingberg [17].  

Huang [27] developed a heuristic formula for the falling friction in sliding, which is: 

𝜏𝜏(𝛾𝛾) = 1 − 𝜆𝜆𝑒𝑒−𝜅𝜅/|𝜆𝜆| (2-23) 

where  𝜏𝜏 is the falling function which is used to account for the falling characteristics for 

large creepage, 𝜅𝜅 is the saturation coefficient, 𝛾𝛾 is the creepage, and 𝜆𝜆 is the falling ratio 

defined as: 

𝜆𝜆 =
𝜇𝜇0 − |𝜇𝜇𝑑𝑑(𝛾𝛾)|𝛾𝛾→∞

𝜇𝜇0
   (2-24) 

where 𝜇𝜇𝑑𝑑 is the dynamic friction coefficient.  

Figure 2-14 gives a comparison of friction curves from the different models given above. 

The rolling velocity is assumed to be 10 m/s for each case, and the static friction coefficient 

is set as 0.4. In particular, for Rudd’s model in Eq. (2-19),  𝛾𝛾0 = 0.009 and 𝜇𝜇0 = 0.4; for 

Huang’s model in Eq. (2-23), 𝜆𝜆 = 0.5 and 𝜅𝜅 = 0.05. It can be seen from Figure 2-14 that 
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the two friction laws used by Périard (Eq. (2-20) and Eq. (2-21)) change very little in this 

creepage range. Rudd’s model has a much steeper slope than others. Huang’s model gives a 

steeper slope than Kraft at small creepage but at high creepage his friction curve tends to a 

constant value. Here, rolling is included in Rudd’s model with the adhesion regime at small 

creepage while the other curves represent only sliding friction. 

 

Figure 2-14. Comparison of friction or adhesion coefficients from different models of a wheel on a 
rail for a rolling velocity of 10 m/s. Rudd (𝛾𝛾0 = 0.009, 𝜇𝜇0 = 0.4); Huang (𝜆𝜆 = 0.5, 𝜅𝜅 = 0.05). 

In this thesis, Huang’s falling function Eq. (2-23) will be adopted for those cases involving 

falling friction. Figure 2-15 shows the friction curves obtained based on FASTSIM together 

with the falling part from Eq. (2-23) with different combinations of 𝜆𝜆 and 𝜅𝜅. It can be seen 

that the falling ratio  𝜆𝜆  mainly influences the friction curve at large creepages, whereas the 

saturation coefficient 𝜅𝜅 has an effect at small creepages. Other parameters are the same as 

shown in Table 2-1. 

0 0.01 0.02 0.03 0.04 0.05

Creepage

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
dh

es
io

n 
co

ef
fic

ie
nt

Rudd

Poiré and Bochet

Kragelskii
Kraft

Huang

40 

 



 

Figure 2-15. Friction curves with different combinations of 𝜆𝜆 and 𝜅𝜅. Solid line: 𝜆𝜆 = 0, 𝜅𝜅 =

0.005; dashed line: 𝜆𝜆 = 0.2, 𝜅𝜅 = 0.005; dotted line: 𝜆𝜆 = 0.4, 𝜅𝜅 = 0.005; dash-dot line: 

𝜆𝜆 = 0.2, 𝜅𝜅 = 0.05. 

2.5 Summary 

The lateral sliding motion of the wheel on the rail is considered to be the main cause of curve 

squeal noise. This chapter shows how this lateral sliding occurs when a train negotiates a 

curve, by introducing the curving behaviour of a free wheelset and a bogie. The definition 

of creepage is also introduced and applied to wheel-rail contact. The difference between 

static and dynamic friction is explained and will be used in the next chapter to explain stick-

slip phenomena. The wheel-rail contact models in vertical and lateral directions are also 

presented. The Hertz contact model [1] is used in the vertical direction and Kalker’s 

FASTSIM [6] is applied for the lateral direction.

-0.1 -0.05 0 0.05 0.1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Creepage

A
de

si
on

 c
oe

ffi
ci

en
t

41 

 





 

3 Friction induced vibration and instability 

Curve squeal noise is usually attributed to friction-induced instability. In this chapter, to 

assist in the interpretation of the mechanisms of different friction-induced instabilities, 

simple mass-on-belt models are introduced and different friction models are considered to 

represent each type of instability. These are: stick-slip, falling friction and mode coupling. 

The equations of motion for these different systems are shown and then the stabilities of 

these systems are investigated with different methods.  

3.1 Stick-slip with constant dynamic and static friction 

coefficient 

The simple model shown in Figure 3-1 will be studied first to explain the ‘stick-slip’ 

phenomenon. In this model a mass 𝑚𝑚1 is resting on a belt that moves with a velocity 𝑉𝑉𝑏𝑏. The 

mass is restrained by a spring with stiffness 𝑘𝑘1 and damping 𝑐𝑐1. In this single-degree-of-

freedom model the mass can only oscillate in the horizontal direction described by the 

coordinate 𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡. In this model, the dynamic friction coefficient 𝜇𝜇𝑑𝑑  is assumed to be smaller 

than the static friction coefficient 𝜇𝜇𝑠𝑠. This friction model is shown in Figure 2-9. Both the 

dynamic and static friction coefficients are assumed as constant values [1] and, as an 

example, they are set equal to 0.4 and 0.3, respectively. 

 
Figure 3-1. Schematic view of a restrained mass on a moving belt and forces acting on the mass. 

First the damping is neglected. The static friction force at the contact between the body and 

the belt, 𝐹𝐹 ≤ 𝜇𝜇𝑠𝑠𝑁𝑁0, initially causes the mass to move with the belt. As long as the friction 

force 𝐹𝐹 is sufficient to balance the reaction force exerted by the spring, 𝑘𝑘1𝑦𝑦tot, the mass 

moves with the belt. This is referred to the stick phase of the mechanism. The motion of the 

mass satisfies: 
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𝑦𝑦tot = 𝑉𝑉𝑏𝑏𝑡𝑡 (3-1) 

where 𝑡𝑡 is the time and the notation 𝑡𝑡𝑓𝑓𝑡𝑡 is used here for consistency with later sections. As 

the spring becomes extended, the friction force is eventually overcome by the opposing force 

of the spring, when 𝑘𝑘1𝑦𝑦tot = 𝜇𝜇𝑠𝑠𝑁𝑁0. Then the body slips relative to the belt and the friction 

coefficient drops to 𝜇𝜇𝑑𝑑. The equation of motion of the mass becomes: 

𝑚𝑚1�̈�𝑦tot + 𝑘𝑘1𝑦𝑦tot = 𝜇𝜇𝑑𝑑𝑁𝑁0 (3-2) 

The contact surfaces will continue to slip and the mass undergoes harmonic motion with 

natural frequency 𝜔𝜔0 = �𝑘𝑘1/𝑚𝑚1. When the relative velocity 𝑣𝑣𝑦𝑦0𝑠𝑠 = (�̇�𝑦tot − 𝑉𝑉𝑏𝑏) returns to 

zero, the contact surfaces regain adhesion and the system returns to the stick phase. 

Eq. (3-2) has a solution of the form: 

𝑦𝑦tot = 𝐴𝐴 sin�𝜔𝜔0(𝑡𝑡 − 𝜏𝜏)� +
𝜇𝜇𝑑𝑑𝑁𝑁0
𝑘𝑘1

 (3-3) 

for some constants 𝐴𝐴 and 𝜏𝜏. The velocity in the slip phase is then: 

�̇�𝑦tot = 𝐴𝐴𝜔𝜔0 cos�𝜔𝜔0(𝑡𝑡 − 𝜏𝜏)� (3-4) 

Assuming the start of the slip phase corresponds to 𝑡𝑡 = 0, and by using the initial condition 

𝑦𝑦tot(𝑡𝑡 = 0) = 𝜇𝜇𝑠𝑠𝑁𝑁0
𝑘𝑘1

 and �̇�𝑦𝑡𝑡𝑦𝑦𝑡𝑡(𝑡𝑡 = 0) = 𝑉𝑉𝑏𝑏, it can be found that: 

𝐴𝐴 =
𝑣𝑣0
𝜔𝜔0

�1 + 𝛽𝛽2   

where 𝛽𝛽 a non-dimensional parameter given by 

𝛽𝛽 =
(𝜇𝜇𝑠𝑠 − 𝜇𝜇𝑑𝑑)𝑁𝑁0
𝑉𝑉𝑏𝑏𝑚𝑚1𝜔𝜔0

   (3-5) 

It can also be found that the lag 𝜏𝜏  depends on 𝛽𝛽 . This non-dimensional parameter 𝛽𝛽 

determines the relative importance of stick and slip. 

Figure 3-2 shows examples of the stick-slip motion for three values of 𝛽𝛽. These are shown 

in the ‘phase plane’ in which velocity is plotted against displacement. The velocity is 

normalised by the belt velocity 𝑉𝑉𝑏𝑏 whereas the displacement is normalised by 𝑉𝑉𝑏𝑏/𝜔𝜔0. These 

results illustrate the formation of a ‘limit cycle’: a stable periodic motion that is reached from 

a variety of initial conditions. It is found that, for small values of 𝛽𝛽  the slip phase 
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predominates; the motion is close to elliptical on the phase plane and the oscillation 

frequency is close to the natural frequency. Conversely, for large values of 𝛽𝛽 the stick phase 

predominates. The oscillation frequency always is lower than the natural frequency.  

Figure 3-3 gives the velocity spectra for three different values of 𝛽𝛽 . The frequency is 

normalised by 𝜔𝜔0. The amplitude of velocity is normalised by 𝑉𝑉𝑏𝑏. It can be seen that the 

oscillation frequency becomes lower as the value of 𝛽𝛽 is increased. Higher harmonics are 

contained in the spectrum as the motion is not purely sinusoidal; this is often seen in squeal 

measurements. For railway applications, 𝛽𝛽 is usually in the range of 0.1 to 1 for a single 

wheel mode [1]. 

 

Figure 3-2. Phase plane plot for different values of 𝛽𝛽. 

 

Figure 3-3. Velocity spectra for different different values of 𝛽𝛽. 
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According to this model the instability occurs because of the difference between the static 

and dynamic friction coefficients. However if damping is included and is high enough to 

prevent the velocity returning to 𝑉𝑉𝑏𝑏, stick-slip can be eliminated. 

Figure 3-4 shows results for 𝛽𝛽 = 1 for three values of damping ratio 𝜁𝜁. It can be seen that 

for 𝜁𝜁 = 0.05, a limit cycle response is still obtained, and the amplitude is close to the case 

with zero damping. However, when the damping ratio reaches 0.1, the oscillation is 

suppressed. Therefore, there should be a critical damping ratio value between 0.05 and 0.1 

above which the unstable vibration can be eliminated. According to [1], the critical value of 

damping ratio can be approximated as:  

𝜁𝜁 ≅
𝛽𝛽2

4𝜋𝜋
 (3-6) 

The minimum damping ratio calculated by Eq.(3-6) is compared with the result of the 

numerical solution of the system in Figure 3-5. It can be seen that the approximate result 

from Eq.(3-6) matches well with the numerical result when 𝛽𝛽 is smaller than 1, but when 𝛽𝛽 

is larger than this, Eq.(3-6) produces an overestimate of the damping ratio required to 

overcome instability. 

From this stick-slip motion it can be demonstrated that the difference between the static and 

dynamic friction coefficients is the reason for the occurrence of stick-slip motion. It is a 

periodic oscillation with a frequency that is lower than the natural frequency of the system. 

Adding damping can eliminate this motion but a minimum value of damping needs to be 

exceeded. 
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Figure 3-4. Phase plane plot with different damping ratio for 𝛽𝛽 = 1. 

 

Figure 3-5. Minimum damping ratio required to prevent instability. , approximation for small 
values of 𝛽𝛽, —•—, numerical solution from damped stick-slip model. 

3.2 Falling friction mechanism 

3.2.1 Equation of motion 

Next, the same model will be used with a friction coefficient that varies with sliding velocity 

(see Figure 2-11). Consider again the model shown in Figure 3-1. Here, 𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 is the total 

displacement of the mass 𝑚𝑚1, and 𝑓𝑓𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 represents the friction force acting between the mass 

and the belt. 
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The governing equation of this mass-spring-damper system is: 

𝑚𝑚1�̈�𝑦𝑡𝑡𝑦𝑦𝑡𝑡 + 𝑐𝑐1�̇�𝑦𝑡𝑡𝑦𝑦𝑡𝑡 + 𝑘𝑘1𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 = 𝑓𝑓𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 (3-7) 

The sliding velocity between the mass and the belt is 

𝑣𝑣𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡𝑠𝑠 = �̇�𝑦𝑡𝑡𝑦𝑦𝑡𝑡 − 𝑉𝑉𝑏𝑏 (3-8) 

If the normal contact force between the mass and belt is 𝑁𝑁0, the sliding friction force acting 

on the mass can be obtained: 

𝑓𝑓𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 = 𝑁𝑁0𝜇𝜇(𝑣𝑣𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡
𝑠𝑠 ) (3-9) 

where the non-dimensional friction force 𝜇𝜇 includes a sign opposite to that of the sliding 

velocity. 

If the system is under equilibrium conditions, the mass has a velocity of �̇�𝑦𝑡𝑡𝑦𝑦𝑡𝑡 = 0. Thus, 

according to Eq.(3-8), the equilibrium sliding velocity 𝑣𝑣𝑦𝑦0𝑠𝑠  is related only to the velocity of 

the moving belt: 

𝑣𝑣𝑦𝑦0𝑠𝑠 = −𝑉𝑉𝑏𝑏 (3-10) 

Consequently, the equilibrium friction force 𝑓𝑓𝑦𝑦0 given from Eq.(3-9) is: 

𝑓𝑓𝑦𝑦0 = 𝑁𝑁0𝜇𝜇(𝑣𝑣𝑦𝑦0𝑠𝑠 ) (3-11) 

To balance the friction force, the spring 𝑘𝑘1 should stretch an equilibrium length 𝑦𝑦0 from its 

relaxed position, giving: 

𝑓𝑓𝑦𝑦0 = 𝑁𝑁0𝜇𝜇�𝑣𝑣𝑦𝑦0𝑠𝑠 � = 𝑘𝑘1𝑦𝑦0 (3-12) 

If there is a disturbance, which moves the mass away from its equilibrium position, the mass 

will start to oscillate. The displacement of the mass can be written as two parts. One is the 

equilibrium part 𝑦𝑦0 and the other is the dynamic part 𝑦𝑦: 

𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 = 𝑦𝑦0 + 𝑦𝑦 (3-13) 

The first and second derivatives of Eq.(3-13) give the velocity and acceleration of the mass: 

 �̇�𝑦𝑡𝑡𝑦𝑦𝑡𝑡 = �̇�𝑦  (3-14) 
�̈�𝑦𝑡𝑡𝑦𝑦𝑡𝑡 = �̈�𝑦 (3-15) 

Then, combining Eq.(3-8), (3-10), and (3-14) gives: 

𝑣𝑣𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡𝑠𝑠 = �̇�𝑦 − 𝑉𝑉𝑏𝑏  = 𝑣𝑣𝑦𝑦0𝑠𝑠 + �̇�𝑦 (3-16) 

From Eq.(3-16), it can be seen that the sliding velocity is the sum of an equilibrium part 𝑣𝑣𝑦𝑦0𝑠𝑠  

and a dynamic part �̇�𝑦. Also, the friction force can be written as the sum of an equilibrium 

part 𝑓𝑓𝑦𝑦0 and a dynamic part 𝑓𝑓𝑦𝑦 : 

48 

 



𝑓𝑓𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 = 𝑓𝑓𝑦𝑦0 + 𝑓𝑓𝑦𝑦 (3-17) 

Substituting Eq.(3-13), (3-14), (3-15), (3-16) and (3-17) into (3-7), gives the following result 

after the equilibrium parts are eliminated: 

𝑚𝑚1�̈�𝑦 + 𝑐𝑐1�̇�𝑦 + 𝑘𝑘1𝑦𝑦 = 𝑓𝑓𝑦𝑦  (3-18) 

According to Eq. (3-9), (3-12), (3-16), the following equations can be obtained: 

𝑓𝑓𝑦𝑦 = 𝑁𝑁0𝜇𝜇�𝑣𝑣𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡
𝑠𝑠 � − 𝑁𝑁0𝜇𝜇�𝑣𝑣𝑦𝑦0𝑠𝑠 � (3-19) 

𝑚𝑚1�̈�𝑦 + 𝑐𝑐1�̇�𝑦 + 𝑘𝑘1𝑦𝑦 = 𝑁𝑁0 �𝜇𝜇�𝑣𝑣𝑦𝑦0𝑠𝑠 + �̇�𝑦� − 𝜇𝜇�𝑣𝑣𝑦𝑦0𝑠𝑠 �� (3-20) 

3.2.2 Equivalent damping effect of friction force 

After deriving the equations of the system, this mass-on-moving-belt system can be 

described as a positive feedback loop, see Figure 3-6. The input of the loop is a dynamic 

friction force, the output is the vibration of the mass, which can give a feedback to the 

dynamic friction force (see Eq.(3-18), (3-19) and (3-20)).  

 

Figure 3-6. Positive feedback loop of mass-belt system. 

To study the stability of the mass-on-moving-belt system at one possible equilibrium sliding 

velocity 𝑣𝑣𝑦𝑦0𝑠𝑠 , the system can be linearized around this equilibrium point. Eq.(3-20) shows 

that only the dynamic friction force is nonlinear: 

𝑓𝑓𝑦𝑦 = 𝑓𝑓𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 − 𝑓𝑓𝑦𝑦0 = 𝑁𝑁0 �𝜇𝜇�𝑣𝑣𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡
𝑠𝑠 � − 𝜇𝜇�𝑣𝑣𝑦𝑦0𝑠𝑠 ��      (3-21) 

Thus, assuming small amplitudes and according to the first order term from the Taylor series, 

the dynamic friction force can be evaluated at the equilibrium point as: 

𝑓𝑓𝑦𝑦 ≈ �̇�𝑦
∂𝑓𝑓𝑦𝑦
∂�̇�𝑦

�
𝑣𝑣𝑦𝑦0𝑠𝑠

= �̇�𝑦𝑁𝑁0
∂𝜇𝜇
∂�̇�𝑦
�
𝑣𝑣𝑦𝑦0𝑠𝑠

   (3-22) 

The form of the dynamic friction force in Eq. (3-22) is similar to the definition of viscous 

damping in which the restoring force is proportional to the velocity. Therefore, the dynamic 

friction force can be written as: 

𝑓𝑓𝑦𝑦 = −𝑐𝑐e�̇�𝑦  (3-23) 

where 𝑐𝑐𝑒𝑒 is the equivalent damping coefficient defined as: 
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𝑐𝑐𝑒𝑒 = −𝑁𝑁0
∂𝜇𝜇
∂�̇�𝑦
�
𝑣𝑣𝑦𝑦0𝑠𝑠

  (3-24) 

which is the product of the normal force and the slope of the friction curve at the equilibrium 

point.  Substituting Eq.(3-23) into Eq.(3-18) gives: 

𝑚𝑚1�̈�𝑦 + (𝑐𝑐𝑒𝑒 + 𝑐𝑐1)�̇�𝑦 + 𝑘𝑘1𝑦𝑦 = 0 (3-25) 

Now, the stability of this system can be judged from the sign of the damping term (𝑐𝑐𝑒𝑒 + 𝑐𝑐1). 

If (𝑐𝑐𝑒𝑒 + 𝑐𝑐1) is positive, the damping will reduce the vibration energy, from a given initial 

condition, and make this system stable. According to Eq.(3-24), the equivalent damping can 

be either negative or positive depending on the sign of ∂𝜇𝜇
∂�̇�𝑦

, so the criterion of the stability can 

also be written as: 

� 𝑐𝑐1 ≥ 0, if 𝑐𝑐𝑒𝑒 > 0
     𝑐𝑐1 > −𝑐𝑐𝑒𝑒 , if 𝑐𝑐𝑒𝑒 ≤ 0 (3-26) 

In railway application, the sliding velocity �̇�𝑦 is: 

�̇�𝑦 = 𝛾𝛾𝑉𝑉0 (3-27) 

where 𝑉𝑉0 is the rolling velocity and 𝛾𝛾 is creepage. Hence Eq. (3-24) can be written  

𝑐𝑐𝑒𝑒 = −
𝑁𝑁0
𝑉𝑉0
∂𝜇𝜇
∂𝛾𝛾
�
𝛾𝛾0

 (3-28) 

where 𝛾𝛾0 is the steady state creepage.  

The minimum damping ratio 𝜁𝜁𝑒𝑒  required to stabilise the system can be calculated as 

𝜁𝜁𝑒𝑒 =
𝑐𝑐𝑒𝑒

2𝜔𝜔0𝑚𝑚
 (3-29) 

where 𝜔𝜔0 is the natural frequency. 

3.2.3 Self-excited vibration of a single wheel mode with falling 

friction 

3.2.3.1 Parameters 

The model shown in Figure 3-1 can be used to simulate the self-excited vibration of a single 

wheel mode. The parameters of the wheel mode used here are given in Table 3-1. This mode 

50 

 



is related to a mode considered in a later chapter (the 1102 Hz mode of Class 158 wheel in 

Chapter 5). It should be noticed that the belt velocity in Figure 3-1 does not represent the 

rolling velocity. It is instead equivalent to the equilibrium sliding velocity of the system (see 

Eq. (3-10). 

Table 3-1. Parameters of a single mode of the wheel 
Modal mass 78 kg 

Natural frequency, 𝜔𝜔0/2π 1102 Hz 
Damping ratio 0.0001 

Normal contact force, 𝑁𝑁0 42 kN 
Rolling velocity, 𝑉𝑉0 10 m/s 

The simplified creep force model proposed by Vermeulen and Johnson [88] is adopted (see 

Eq. (2-17) in Chapter 2). To introduce the falling regime, the heuristic formula, Eq. (2-23) 

and (2-24) in Section 2.4.2.2, proposed by Huang [27] is employed. 

The parameters used for the falling function are 𝜆𝜆 = 0.7, 𝜅𝜅 = 0.005; the friction curve 

applied is shown in Figure 3-7. The slope turning point is at 𝛾𝛾𝑐𝑐 = 0.004, which can be called 

the critical creepage. 

 

Figure 3-7. Friction law assumed in current section. 

3.2.3.2 Stable results 

As has been introduced in Section 3.2.2, if the steady state creepage is chosen below the 

critical creepage, the slope of the friction curve will be positive and lead to a positive 

damping effect. This, together with the structural damping, will stabilize the system. Figure 

3-8 shows an example of a stable response result for a steady state creepage 𝛾𝛾0 of 0.0001. In 
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this example, the mass starts with a disturbance at the initial point and it end up at the steady 

state, which has zero displacement and creepage of 0.0001 

 

Figure 3-8. Phase plane plot of a stable response (𝛾𝛾0 = 0.0001). 

3.2.3.3 Limit cycle response 

However, if the steady state creepage is larger than the critical creepage and the equivalent 

negative damping is larger than the structural damping, the system will be unstable.  

The motion trajectory of a limit cycle response is shown as a phase-plane plot in Figure 3-9. 

It can be observed that the motion ends with a limit cycle response. In addition, when the 

creepage becomes smaller than the critical creepage (area under the red line in Figure 3-9), 

the friction force tends to stabilise the system and this leads to distortion of the limit cycle 

curve. 
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Figure 3-9. Phase plane plot of a limit cycle response (𝛾𝛾0 = 0.01). 

3.2.3.4 Effects of damping ratio 

According to Section 3.2.2, if the structural damping ratio of the wheel is increased to be 

larger than the absolute value of the equivalent damping, the wheel should be stable. Figure 

3-10 shows the effect of increasing the damping ratio of the wheel. 

Four different damping ratios are considered. They are 0.0001, 0.001, 0.01, and 0.07. It can 

be seen from Figure 3-10 that, even if the damping ratio is increased from 0.0001 to 0.01, 

the system is still unstable. Moreover, the amplitudes of the limit cycle are very similar for 

all these three damping ratios. However, when damping ratio becomes 0.07, the system is 

stable. The slope of 𝜇𝜇 at steady state creepage 𝛾𝛾0 can be obtained from the friction curve 

used. The minimum damping ratio can be calculated From Eq. (3-28) and Eq. (3-29). After 

getting the slope of 𝜇𝜇 at the steady state creepage 𝛾𝛾0 from the friction curve it is found to be 

0.033.  
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 3-10. Phase plane plots of limit cycle responses with different damping ratios (for 𝛾𝛾0 =
0.005): (a) 𝜁𝜁 = 0.0001; (b) 𝜁𝜁 = 0.001; (c) 𝜁𝜁 = 0.01; (d) 𝜁𝜁 = 0.07. 

3.3 Mode coupling 

3.3.1 Equation of motion 

As discussed in Section 1.2, mode coupling is another type of friction-induced self-excited 

vibration. In [38, 39], Hoffman et al. developed a two-degree-of-freedom mass-belt model 

to explain the mode coupling instability. This two-degree-of-freedom model is briefly 

introduced here (see Figure 3-11). 
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Figure 3-11. Two-degree-of-freedom system on moving belt [38]. 

Figure 3-11 shows that the mass has two degrees of freedom 𝑥𝑥 and 𝑦𝑦. The belt is assumed 

to have a constant sliding velocity 𝑉𝑉0. By assuming a constant friction coefficient between 

the mass and belt, the friction force will be 𝜇𝜇𝑘𝑘3𝑦𝑦. Hence, the equation of motion of the 

system in Figure 3-11 is: 

�𝑚𝑚1 0
0 𝑚𝑚1

� ��̈�𝑥�̈�𝑦� + �𝑘𝑘11 𝑘𝑘12 − 𝜇𝜇𝑘𝑘3
𝑘𝑘21 𝑘𝑘22

� �
𝑥𝑥
𝑦𝑦� =  0   (3-30) 

where the elements in the stiffness matrix are:  

𝑘𝑘11 = 𝑘𝑘1 cos2 𝛼𝛼1 + 𝑘𝑘2 cos2 𝛼𝛼2 (3-31) 

𝑘𝑘12 = 𝑘𝑘21 = −𝑘𝑘1 sin𝛼𝛼1 cos𝛼𝛼1 − 𝑘𝑘2 sin𝛼𝛼2 cos𝛼𝛼2 (3-32) 

𝑘𝑘22 = 𝑘𝑘1 sin2 𝛼𝛼1 + 𝑘𝑘2 sin2 𝛼𝛼2 + 𝑘𝑘3 (3-33) 

The stiffness matrix in Eq. (3-30) is asymmetric and this can lead to instability [93]. The 

term 𝑘𝑘12 − 𝜇𝜇𝑘𝑘3 can introduce coupling between the normal and tangential dynamics. Thus 

when the normal displacement of the mass varies the tangential friction force will also 

change. 

3.3.2 Features of mode coupling 

In [38], the features of mode coupling were discussed by using a simple case. This will be 

briefly introduced again here with different parameters. 

In this case, 𝑚𝑚1 is assumed to be 50 kg, 𝑘𝑘1, 𝑘𝑘2, and 𝑘𝑘3 are assumed to be 1.8 × 108 N/m, 

2.5 × 109  N/m and 1.33 × 109  N/m, respectively. 𝛼𝛼1  and 𝛼𝛼2  are equal to 150° and 30°, 

repectively. These values are randomly choose here but it can give a squeal frequency around 

1 kHz (see calculations below) which is close to real application. 
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By performing eigenvalue analysis of this equation, the stability of this system can be 

investigated: a positive real part of one of the eigenvalues indicates instability. The 

imaginary part (frequency) and real part (growth rate) are plotted against the friction 

coefficient 𝜇𝜇 in Figure 3-12. It can be seen that the real part starts at 0 and, when 𝜇𝜇 becomes 

larger than 0.75, one of the real parts becomes positive and the other one becomes negative. 

For the imaginary part, when 𝜇𝜇 = 0, there are two modes with different frequencies. They 

become closer and closer with increasing friction coefficient and finally merge to a single 

value, in this case 1 kHz, which is not equal to neither of the frequencies of the two modes 

with 𝜇𝜇 = 0. This frequency shift is one of the basic features of mode coupling [38]. 

 

(a) 

 

(b) 

Figure 3-12. Real part (growth rate) and imaginary part (frequency) against the friction 
coefficient.  

Time domain analysis is performed here to study the vibration in vertical and lateral 

directions. Results are shown in Figure 3-13 for two different friction coefficients. One is 

0.7, which is just below 0.75 where the real part becomes positive and the other is 0.8 which 

is just above 0.75. 
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(a) 

 

(b) 

Figure 3-13. Time histories with (a) 𝜇𝜇 = 0.7 and (b) 𝜇𝜇 = 0.8; blue solid line: lateral direction; 
red dashed line: vertical direction. 

It can be seen that with 𝜇𝜇 = 0.7, the time domain results show repeated oscillations for both 

directions. A ‘beating’ phenomenon can be seen in Figure 3-13(a). When 𝜇𝜇 = 0.8, it can be 

seen that the system is unstable: the vibration in both directions keeps increasing. A phase 

difference between the velocities in the two directions exists. This is also a sign of coupling 

between the two directions [38]. This phase difference is necessary to transfer energy from 

one direction to the other one and generate the instability. 

The results here are not necessarily representative of a curve squeal situation but illustrate 

the phenomenon in a simplified manner. In railway curve squeal, coupling could occur 

between wheel modes or between wheel and rail modes. Damping is not included here but 

in [39, 94] this mass-on-belt model is used to investigate the effect of damping on mode 

coupling. In addition, this model will be applied to more specific curve squeal cases in 

Chapter 6 including a detailed parametric study. 

3.4 Summary 

In this chapter, three different friction-induced instabilities have been presented by making 

use of simple mass-on-belt models. These models are then used to explain the stick-slip 

phenomenon with different values of dynamic and static friction coefficients, the negative 

damping effect due to falling friction, and the mode coupling effect related to asymmetries 
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in the stiffness matrix. It is also shown that frequency shift, phase difference and beating can 

be observed in the vertical and lateral vibration in the presence of mode coupling. 
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4 A curve squeal model 

 In this chapter, the curve squeal model developed by Huang [27] is presented and extended. 

This model includes wheel dynamics, rail dynamics and contact dynamics. In the frequency 

domain, a self-excited vibration loop based on the mobilities of the wheel, rail and contact 

dynamics is established and then stability can be investigated using the Nyquist criterion 

[95]. In the time domain, state-space models of the wheel and rail dynamics are used and a 

step-by-step integration method (Runge-Kutta method [96]) is applied. The rail model in the 

time domain is updated with a newly developed track model, which is based on equivalent 

mass-spring systems. The modal parameters of these systems are obtained after curve fitting 

with the results from analytical models. From this a state-space model for rail dynamics can 

be developed which can be used in time domain calculations.  

4.1 Wheel dynamics 

The wheel is modelled by finite element method (FEM) analysis. This is used to provide the 

modal parameters including natural frequencies and mode shapes. Modal damping ratios are 

included according to prior experience [1] or from measurements of wheel mobilities, where 

available. Then, according to the superposition principle of modal summation [97], the 

frequency response function between a force at a location 𝑘𝑘 and the velocity response at a 

location 𝑗𝑗 can be found as: 

𝑌𝑌𝑖𝑖𝑘𝑘 = �
i𝜔𝜔𝜙𝜙𝑖𝑖𝑛𝑛𝜙𝜙𝑘𝑘𝑛𝑛

𝑚𝑚𝑛𝑛(𝜔𝜔𝑛𝑛2 − 𝜔𝜔2 + 2i𝜁𝜁𝑛𝑛𝜔𝜔𝜔𝜔𝑛𝑛)
𝑛𝑛

   (4-1) 

where 𝜙𝜙𝑖𝑖𝑛𝑛  is the modeshape of mode 𝑛𝑛  at location 𝑗𝑗 , 𝑚𝑚𝑛𝑛  is the modal mass, 𝜁𝜁𝑛𝑛  is the 

damping ratio of mode 𝑛𝑛 , 𝜔𝜔𝑛𝑛  is the angular natural frequency of mode 𝑛𝑛  and 𝜔𝜔  is the 

frequency of the external force.  

As an example, the cross-section of the wheel from a Class 158 multiple unit train is shown 

in Figure 4-1. The wheel is assumed to be clamped of the inner edge of the hub. The rigid 

body modes with non-zero natural frequencies of the wheelset are included but no axle 

modes are included. The wheel mobilities at the nominal contact point of the Class 158 wheel 

in different directions (as defined in Figure 4-2) are shown in Figure 4-5 to Figure 4-6. 

Indices 1, 2 and 3 are longitudinal, lateral and vertical directions, respectively. Indices 4, 5, 

6 are the rotations about the 1, 2, 3 directions, respectively. Rotation about the vertical 
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direction (index 6) is the spin direction. Various cross mobilities also exist but are not shown 

here. 

 

Figure 4-1. Cross-section of Class 158 wheel (radius 420 mm) 

 

Figure 4-2. Schematic diagram of the wheel/rail contact system and the reference frame: (a) 
reference frame; (b) wheel/rail contact system. 

 

Figure 4-3. Wheel mobility in the vertical direction. 
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Figure 4-4. Wheel mobility in the lateral direction. 

 

Figure 4-5. Wheel mobility in the longitudinal direction. 
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Figure 4-6. Wheel mobility in the spin direction. 

These mobilities of the wheel can be used in a frequency domain analysis of curve squeal. 

This frequency domain analysis model will be introduced in Section 4.3.2. For time domain 

analysis, however, a state-space model of the wheel is required. 

Consider a wheel with 𝑁𝑁 modes, 𝐽𝐽 input dynamic forces 𝐟𝐟w = �𝑓𝑓1𝑤𝑤,𝑓𝑓2𝑤𝑤,𝑓𝑓3𝑤𝑤, … ,𝑓𝑓𝐽𝐽𝑤𝑤�
T
 , and 𝐼𝐼 

output dynamic velocities 𝐕𝐕w = [𝑣𝑣1𝑤𝑤, 𝑣𝑣2𝑤𝑤, 𝑣𝑣3𝑤𝑤 , … , 𝑣𝑣𝐼𝐼𝑤𝑤]T. This can be represented by a state 

equation and an output equation,  

�̇�𝐖 = 𝐀𝐀𝑤𝑤𝐖𝐖 + 𝐁𝐁𝑤𝑤𝐟𝐟𝑤𝑤 (4-2) 

𝐕𝐕𝑤𝑤 = 𝐂𝐂𝑤𝑤𝐖𝐖 (4-3) 

where the state variable vector 𝐖𝐖 consists of the modal velocities �̇�𝑞i and the modal 

displacements 𝑞𝑞𝑟𝑟 of modes 𝑟𝑟 (1 to 𝑁𝑁) 

𝐖𝐖 = [𝑞𝑞1,̇  𝑞𝑞2̇ , … , 𝑞𝑞�̇�𝑁 ,𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑁𝑁]T (4-4) 

The system matrix 𝐀𝐀𝑤𝑤 is: 
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𝐀𝐀𝑤𝑤 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−2𝜁𝜁1𝜔𝜔1 0 ⋯ 0 | −𝜔𝜔1

2 0 ⋯ 0

0 −2𝜁𝜁2𝜔𝜔2 ⋯ 0 | 0 −𝜔𝜔2
2 ⋯ 0

⋮ ⋯ ⋱ 0 | ⋮ ⋯ ⋱ 0

0 0 ⋯ −2𝜁𝜁𝑁𝑁𝜔𝜔𝑁𝑁 | 0 0 ⋯ −𝜔𝜔𝑁𝑁
2

− − − − − − − − −

1 0 ⋯ 0 | 0 0 ⋯ 0

0 1 ⋯ 0 | 0 ⋯ ⋯ 0

⋮ ⋯ ⋱ 0 | ⋮ ⋯ ⋱ ⋮

0 0 ⋯ 1 | 0 0 ⋯ 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(4-5) 

where 𝜁𝜁𝑟𝑟 is the damping ratio of mode 𝑟𝑟 and 𝜔𝜔𝑟𝑟 is the natural frequency (in radians/sec) of 

mode 𝑟𝑟. The input matrix 𝐁𝐁𝑤𝑤 is used to transform the external forces into modal forces for 

each mode, while the output matrix 𝐂𝐂𝑤𝑤 sums the modal velocities of each mode into output 

velocities. Both matrices are formed of mode shapes as: 

𝐁𝐁𝑤𝑤 = [𝐂𝐂𝑤𝑤]T =  �

𝜙𝜙11 𝜙𝜙12 ⋯ 𝜙𝜙1𝑁𝑁 | 0 0 ⋯ 0
𝜙𝜙21 𝜙𝜙22 ⋯ 𝜙𝜙2𝑁𝑁 | 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ | ⋮ ⋮ ⋱ ⋮
𝜙𝜙𝐼𝐼1 𝜙𝜙𝐼𝐼1 ⋯ 𝜙𝜙𝐼𝐼𝑁𝑁 | 0 0 ⋯ 0

�

T

 (4-6) 

where 𝜙𝜙𝑖𝑖𝑟𝑟 is the mass-normalised modeshape of mode 𝑟𝑟 in the 𝑖𝑖 direction. For example, 𝜙𝜙12 

is the mass-normalised modeshape of the second mode in the 1 direction (i.e. longitudinal 

direction as defined in Figure 4-2). 

4.2 Rail dynamics 

4.2.1 Analytical rail model 

The dynamic behaviour of the track can be represented primarily by its frequency response 

functions (FRFs). Since the rail is quasi-symmetrical in its cross-section, four point FRFs 

and no cross FRF are adopted to describe the dynamic properties at the nominal contact 

position. These  FRFs are in the longitudinal, lateral, vertical and spin directions [27]. 

Different analytical models are adopted in this work for the rail response in different 

directions. The vertical vibration response was derived by Grassie in [98] by using a 

Timoshenko beam on a two-layer support. Wu and Thompson [99] derived a model for the 
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lateral vibration response of a railway track based on multiple beams. Lurcock [100] studied 

the longitudinal motion using a model of a rod on a single layer support. Spin motion of the 

rail was modelled for squeal analyses by Huang [27] using a Timoshenko beam model.  

In the analytical track models, either viscous or hysteretic damping models can be used. Of 

these two damping models, the hysteretic model can only be used in a frequency domain 

approach due to problems of causality if it is used in a time domain model. In the time 

domain, an equivalent track model based on mass-spring models will be derived in the next 

subsection, which is based on the rail dynamics with a viscous damping model. The 

difference between the rail dynamics obtained with these two damping models is introduced 

and the determination of the damping value for the viscous damping model is explained as 

follows. 

According to [1], the mobility of the track is only influenced by the damping around the cut 

on frequencies of various waves. Hence a suitable choice of viscous damping coefficient 𝐶𝐶 

can be obtained by equating it to the required hysteretic damping value at the corresponding 

cut-on frequency of waves in the rail. This means: 

𝑠𝑠(1 + i𝜂𝜂) = 𝑠𝑠 + i𝜔𝜔0𝐶𝐶 (4-7) 

where 𝑠𝑠 is the stiffness of the structure which corresponds to the different resonances of the 

system, and 𝜂𝜂 is the damping loss factor. Solving Eq.(4-7) gives 𝐶𝐶 = 𝑠𝑠𝑠𝑠
𝜔𝜔0

. This is the equation 

to get the equivalent viscous damping. However, for higher order bending waves in the rail 

this method is not valid. In this equation, 𝑠𝑠 is either ballast or pad stiffness and first two cut-

on frequencies are used to find the viscous damping for each of these components. 

The mobility of a UIC60 rail with continuous double-layer support is shown in Figure 4-7 

to Figure 4-10 for different directions. These graphs compare the results with the different 

damping models. For these results, a concrete sleeper and a soft rail pad are considered. The 

parameters used in the analytical models are listed in Table 4-1 and Table 4-2. The results 

show good agreement between these two damping models although there is some difference 

in the phase at low frequencies. For the viscous damping model, the phase always starts at 

90° while for hysteretic damping the low frequency value of phase is lower than this. 

In the vertical direction, the first and second peaks correspond to the vibration of the whole 

track mass on the ballast vertical stiffness and the vibration of the rail mass on the pad 

vertical stiffness, respectively. In the lateral direction, in [99] there are five cut-on 

frequencies. The first three correspond to the ballast lateral stiffness, pad lateral stiffness and 
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the rotational stiffness of the pad. The fourth and fifth correspond to web bending waves of 

the rail. In this example (Figure 4-8) only four peaks are observed. This is because the pad 

stiffness here is lower, so that the first and second peaks in [99] become very close together 

here. In the longitudinal direction, the only peak corresponds to the pad longitudinal stiffness. 

The only peak in the spin direction corresponds to the transverse stiffness of the rail pads. 

 

Figure 4-7. Vertical point mobility of the track. 

 

Figure 4-8. Lateral point mobility of the track. 
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Figure 4-9. Longitudinal point mobility of the track. 

 

Figure 4-10. Spin point mobility of the track. 
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Table 4-1 Parameters used for track vertical mobility. 

 Description Value Units 

Rail 

Density 7860 kg/m3 

Young’s modulus 210 GPa 

Poisson’s ratio 0.3 / 

Shear coefficient 0.4 / 

Second moment of area 3.05×10-5 m4 

Cross-sectional area 7.60×10-3 m2 

Damping loss factor 0.02 / 

    

Pad 
Vertical stiffness 100 MN/m 

Damping loss factor 0.25 / 

    

Sleeper 
Sleeper spacing 0.6 m 

Sleeper mass (half) 162 kg 

    

Ballast 
Vertical stiffness 80 MN/m 

Damping loss factor 1.0 / 
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Table 4-2 Parameters for track mobility in lateral, longitudinal and spin directions. 

 Description Value Units 

Rail head 

Cross-sectional area 2.847×10-3 m2 

Second moment of area 1.264×10-6 m4 

Polar moment of area 1.625×10-6 m4 

Torsional moment of area 1.033×10-6 m4 

Half height 0.0195 m 

Rail foot 

Cross-sectional area 2.625×10-3 m2 

Second moment of area 4.921×10-6 m4 

Polar moment of area 4.988×10-6 m4 

Torsional moment of area 0.403×10-6 m4 

Half height 0.00875 m 

Rail web 

Cross-sectional area 2.166×10-3 m2 

Second moment of area 6.3×10-5 m4 

Half height 0.057 m 

Pad 

Lateral stiffness 13 MN/m 

Rotational stiffness 0.18 MNm/rad 

Longitudinal stiffness 13 MN/m 

Damping loss factor 0.25 / 

Ballast 

Lateral stiffness 60 MN/m 

Longitudinal stiffness 60 MN/m 

Damping loss factor 1.0 / 

 

This subsection together with Section 4.1 give the wheel and rail mobilities at the nominal 

contact point. However, in practice, under curving conditions, the contact point between the 

wheel and rail can differ from the nominal contact point. The translation and rotation 

matrices to transform the wheel and track dynamics at the nominal contact to the local 

contact point are provided in Appendix B.  

4.2.2 Equivalent mdof track model 

The analytical track models discussed above cannot be used directly in the step-by-step 

integration in the time domain due to their infinite length. In [101], it was shown that a 

simple system with a limited number of degrees can be used to represent an infinite track 

system. This method was also adopted in Huang’s work [27]. However, this approach 

involved a system identification technique with system constants obtained by a least-squares 

fit to the frequency response functions over the frequency range of interest, which gives a 

68 

 



poor agreement in high frequencies. Moreover, it is difficult to relate these system constants 

to the physical properties of the track. In [102], an alternative approach was used for the 

vertical track dynamics based on a multi-degree-of-freedom (mdof) mass-spring system (see 

Figure 4-11). 

This equivalent track model from [101] is adopted in this work. However, instead of 

expressing it in terms of physical parameters as in [101], modal parameters are used here. 

This will allow the model to have the same formulation as the wheel for use in a state-space 

formation for time domain calculations. 

 

Figure 4-11. A two-degree-of-freedom mass-spring system representing the vertical rail dynamics. 

According to the modal analysis method in [97], for a mdof system, the velocity at degree-

of-freedom (dof) 𝑛𝑛 due to a force at dof 𝑚𝑚 is: 

�̇�𝑋𝑛𝑛 = 𝐹𝐹𝑚𝑚� i𝜔𝜔
𝜙𝜙𝑖𝑖𝑛𝑛 𝜙𝜙𝑖𝑖𝑚𝑚

−𝜔𝜔2 + 𝜔𝜔𝑖𝑖2 + 2i𝜁𝜁𝑖𝑖𝜔𝜔𝜔𝜔𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (4-8) 

where 𝜔𝜔𝑖𝑖 is the natural frequency of the 𝑗𝑗𝑡𝑡ℎ mode, 𝜔𝜔 is the excitation frequency, and 𝜙𝜙 is 

the mass-normalised mode shape. 𝐹𝐹𝑚𝑚 is the external force at dof 𝑚𝑚. 

The driving point mobility is then: 

�̇�𝑋𝑛𝑛
𝐹𝐹𝑛𝑛

= � i𝜔𝜔
𝜙𝜙𝑖𝑖𝑛𝑛2

−𝜔𝜔2 + 𝜔𝜔𝑖𝑖2 + 2i𝜁𝜁𝑖𝑖𝜔𝜔𝜔𝜔𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (4-9) 

To use this formulation, the modal parameters must be derived by comparison or curve 

fitting with the mobilities calculated with the analytical models of the track.  

The mobilities from the analytical models, which are based on an infinite track, contain 

peaks at the cut-on frequencies of waves in the rail. According to the number of cut-on 

frequencies in the frequency range considered, the number of modes included in the 
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equivalent modal model can be defined. Their natural frequencies are chosen to be equal to 

the cut-on frequencies from the analytical model. A curve fitting method (lsqnonlin in 

Matlab) is used to obtain an appropriate combination of the other unknown parameters in 

Eq. (4-9).     

Taking the vertical point mobilities of the track as an example, Figure 4-12 shows a 

comparison between the rail vertical mobility of the analytical model and a modal model 

with two modes. From the analytical model, it can be seen that there are two peaks at 80 Hz 

and 300 Hz, which are also chosen as the natural frequencies in the modal model. These two 

models match well up to 1 kHz, but at higher frequency the agreement is less good. This is 

because, for an infinite track, energy is carried away from the driving point at high frequency 

due to free wave propagation along the rail. Consequently the mobility of a Timoshenko 

beam behaves like a damper and it tends to a phase of 0 and a constant magnitude at high 

frequency, whereas the modal model tends to a phase of −𝜋𝜋/2  and a slope of 1/𝜔𝜔 , 

equivalent to a mass.  

In order to get a better match at high frequency, an additional spring/damper set together 

with a small mass is included in series with the mass/spring model, see Figure 4-13. This 

can be considered as adding an additional mode to the system; its natural frequency is set 

equal to 20 kHz which is beyond the frequency range considered in the current study. 

 

Figure 4-12. Comparison of track vertical mobility between analytical model and modal model 
with two degrees of freedom. 
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Figure 4-13. Mass-spring equivalent representation for track vertical mobility including additional 
mode. 

The mobility of this new system can be written as: 

�̇�𝑋1
𝐹𝐹1

= � i𝜔𝜔
𝜙𝜙𝑖𝑖12

−𝜔𝜔2 + 𝜔𝜔𝑖𝑖2 + 2𝑖𝑖𝜁𝜁𝑖𝑖𝜔𝜔𝜔𝜔𝑖𝑖
+ i𝜔𝜔

𝛹𝛹2

−𝜔𝜔2 + 𝛺𝛺2 + 2i𝜔𝜔𝜁𝜁0𝛺𝛺

2

𝑖𝑖=1

 (4-10) 

where 𝛹𝛹  is the mass-normalised mode shape of the additional mode, 𝛺𝛺  is its natural 

frequency and 𝜁𝜁0 is the damping ratio of the additional mode. With this additional mode, it 

can be seen from Figure 4-14 that the model shows a better fit to the analytical model at high 

frequency. Table 4-3 gives the parameters used in the modal model. 

 

Figure 4-14. Comparison of track vertical mobility between analytical model and modal model 
with additional mode. 

10
1

10
2

10
3

10
-6

10
-5

M
ag

ni
tu

de
(m

/s
N

)

10
1

10
2

10
3

-90
-45

0
45
90

Frequency(Hz)

P
ha

se
(ra

di
an

s)

 

 

analytical model
modal model (2 dof)
modal model (3 dof)

71 

 



Table 4-3 Parameters used in modal model for track vertical mobility. 

Parameters of modal model 
without additional mode 

𝜔𝜔1/2𝜋𝜋 𝜔𝜔2/2𝜋𝜋 𝜙𝜙1 𝜙𝜙2 𝜁𝜁1 𝜁𝜁2 

80 Hz 300 Hz 0.03 0.14 0.26 0.39 
       

Parameters of additional 
mode 

𝛺𝛺/2𝜋𝜋 𝛹𝛹 𝜁𝜁0    

20000 Hz 4.48 18.47    

The equivalent mdof models for the longitudinal and lateral directions are shown in Figure 

4-15 and Figure 4-16. These are obtained with a similar method. The parameters are listed 

in Table 4-4 and Table 4-5. It should be mentioned that, for the spin direction, see Figure 

4-17, the modal model cannot match the results very well at high frequency as the mobility 

in the spin direction increases with increasing frequency. 

 

Figure 4-15. Comparison of track lateral mobility between analytical model and modal model. 
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Table 4-4 Parameters used in modal model for track lateral mobility. 

Parameters of modal model 
without additional mode 

𝜔𝜔1/2𝜋𝜋 𝜔𝜔2/2𝜋𝜋 𝜔𝜔3/2𝜋𝜋 𝜔𝜔4/2𝜋𝜋 

60 Hz 160 Hz 1327 Hz 3630 Hz 

𝜙𝜙1 𝜙𝜙2 𝜙𝜙3 𝜙𝜙4 

0.09 0.32 0.18 0.19 

𝜁𝜁1 𝜁𝜁2 𝜁𝜁3 𝜁𝜁4 

0.12 1.14 0.05 0.03 
 

    

Parameters of additional mode 
𝛺𝛺/2𝜋𝜋 𝛹𝛹 𝜁𝜁0  

20000 Hz 6.33 12.05  

 

 

Figure 4-16. Comparison of track longitudinal mobility between analytical model and modal 
model. 

Table 4-5 Parameters used in modal model for track longitudinal mobility 

Parameters of modal model 
without additional mode 

𝜔𝜔1/2𝜋𝜋 𝜓𝜓1 𝜁𝜁1 

90 Hz 0.03 0.29 
    

Parameters of additional 
mode 

𝛺𝛺/2𝜋𝜋 𝛹𝛹 𝜁𝜁0 

20000 Hz 5.46 66.11 
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Figure 4-17. Comparison of track spin mobility between analytical model and modal model (same 
legend with Figure 4-14). 

Table 4-6 Parameters used in modal model for track spin mobility 

Parameters of modal model 
without additional mode 

𝜔𝜔1/2𝜋𝜋 𝜓𝜓1 𝜁𝜁1 

95 Hz 0.24 0.40 
    

Parameters of additional 
mode 

𝛺𝛺/2𝜋𝜋 𝛹𝛹 𝜁𝜁0 

20000 Hz 40 20 

4.2.3 State-space model for track dynamics 

A state-space model of the rail is required for the step-by-step simulation in the time-domain 

calculation. After the equivalent mass-spring system has been built with the modal analysis 

method, a state-space model can be easily obtained for these mass-spring systems in four 

directions, vertical, longitudinal, lateral and spin. Each direction has a corresponding 

equivalent mass-spring model. 

Now consider a mass-spring system with N modes, one input dynamic force f , and I output 

dynamic velocities 𝐕𝐕𝑟𝑟 = [𝑣𝑣1𝑟𝑟 , 𝑣𝑣2𝑟𝑟 , 𝑣𝑣3𝑟𝑟 , … , 𝑣𝑣𝐼𝐼𝑟𝑟]T. Similar to the wheel in Section 4.1, this can 

be represented by a state equation and an output equation,  

�̇�𝐑 = 𝐀𝐀𝑟𝑟𝐑𝐑 + 𝐁𝐁𝑟𝑟f (4-11) 

𝐕𝐕𝑟𝑟 = 𝐂𝐂𝑟𝑟𝐑𝐑 (4-12) 
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where the state variable vector 𝐑𝐑  consists of the modal velocity �̇�𝑞𝑖𝑖 and the modal 

displacement 𝑞𝑞𝑖𝑖 of modes 𝑖𝑖 (1 to 𝑁𝑁) 

𝐑𝐑 = [𝑞𝑞1,̇  𝑞𝑞2̇ , … , 𝑞𝑞�̇�𝑁 , 𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑁𝑁]T (4-13) 

The system matrix 𝐀𝐀𝑟𝑟 is: 

𝐀𝐀𝑟𝑟 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−2𝜁𝜁1𝜔𝜔1 0 ⋯ 0 | −𝜔𝜔1

2 0 ⋯ 0

0 −2𝜁𝜁2𝜔𝜔2 ⋮ 0 | 0 −𝜔𝜔2
2 ⋯ 0

⋮ ⋯ ⋱ ⋯ | ⋮ ⋮ ⋱ ⋮

0 0 ⋯ −2𝜁𝜁𝑁𝑁𝜔𝜔𝑁𝑁 | 0 0 ⋯ −𝜔𝜔𝑁𝑁
2

− − − − | − − − −

1 0 ⋯ 0 | 0 0 ⋯ 0

0 1 ⋯ 0 | 0 0 ⋯ 0

⋮ ⋯ ⋱ ⋮ | ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1 | 0 0 ⋯ 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4-14) 

where 𝜁𝜁𝑖𝑖 is the damping ratio of mode 𝑖𝑖 and 𝜔𝜔𝑖𝑖 is the natural frequency (in radians/sec) of 

mode 𝑖𝑖. The input matrix 𝐁𝐁𝒓𝒓 can transform external forces into modal forces for each mode, 

while the output matrix 𝐂𝐂𝑟𝑟 sums modal velocities of each mode into external velocities. Both 

matrices are formed of mode shapes, for example for the 1 direction: 

𝐁𝐁𝑟𝑟  = [𝐂𝐂𝒓𝒓]T =  [𝜙𝜙11 𝜙𝜙12  ⋯𝜙𝜙1𝑁𝑁 | 0, 0⋯ 0 ]T (4-15) 

where 𝜙𝜙1𝑛𝑛 is the mass-normalised modeshape of mode 𝑛𝑛 in 1 direction. 

Four directions are considered here, so by assembling all these four mass-spring state-space 

models, the total system matrix 𝐀𝐀, input matrix 𝐁𝐁 and output matrix 𝐂𝐂 are given as follows: 

𝐀𝐀 =  

⎣
⎢
⎢
⎢
⎡𝐀𝐀𝟏𝟏𝟏𝟏

𝐫𝐫

𝐀𝐀𝟐𝟐𝟐𝟐
𝐫𝐫

𝐀𝐀𝟑𝟑𝟑𝟑
𝐫𝐫

𝐀𝐀𝟔𝟔𝟔𝟔
𝐫𝐫 ⎦
⎥
⎥
⎥
⎤
 (4-16) 

 𝐁𝐁 =  

⎣
⎢
⎢
⎢
⎡𝐁𝐁𝟏𝟏𝟏𝟏

𝐫𝐫

𝐁𝐁𝟐𝟐𝟐𝟐𝐫𝐫

𝐁𝐁𝟑𝟑𝟑𝟑𝐫𝐫

𝐁𝐁𝟔𝟔𝟔𝟔𝐫𝐫 ⎦
⎥
⎥
⎥
⎤
 (4-17) 
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𝐂𝐂 =  

⎣
⎢
⎢
⎢
⎡𝐂𝐂𝟏𝟏𝟏𝟏

𝐫𝐫

𝐂𝐂𝟐𝟐𝟐𝟐𝐫𝐫

𝐂𝐂𝟑𝟑𝟑𝟑𝐫𝐫

𝐂𝐂𝟔𝟔𝟔𝟔𝐫𝐫 ⎦
⎥
⎥
⎥
⎤
 (4-18) 

where the subscript 1 refers to the longitudinal direction, 2 to the lateral direction, 3 to the 

vertical direction and 6 to spin (also see Figure 4-2). The matrices 𝐀𝐀 , 𝐁𝐁  and 𝐂𝐂  can be 

obtained using the parameter values given in Section 4.2.2.  

4.3 Curve squeal model 

4.3.1 Time domain curve squeal model 

In this section, the time domain model developed by Huang [27] will be introduced. In his 

model, four degrees of freedom were considered, which are the longitudinal, vertical, lateral 

and spin directions. The reference frame and the indices for the different directions are 

shown in Figure 4-18.  

 

Figure 4-18. Forces and velocities at the wheel/rail contact frame: (a) wheel/rail contact system; (b) 
forces acting at the wheel and rail; (c) velocities of wheel and rail. 

In the vertical direction, there is no sliding because the wheel and rail are assumed to 

maintain contact. The dynamic approach of the wheel and rail in the vertical direction can 

be considered as the compression of the contact spring. Expressing this in terms of velocities: 

𝑣𝑣3𝑐𝑐 = �̇�𝑑3𝑐𝑐 = −��̇�𝑑3𝑟𝑟 − �̇�𝑑3𝑤𝑤� = −(𝑣𝑣3𝑟𝑟 − 𝑣𝑣3𝑤𝑤) (4-19) 

where 𝑣𝑣3𝑐𝑐  is the dynamic velocity of the vertical contact spring, 𝑑𝑑3𝑐𝑐  is the relative 

displacement of the vertical contact spring; 𝑑𝑑3𝑟𝑟 and 𝑑𝑑3𝑤𝑤 are the dynamic displacements of the 
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rail and wheel, respectively; 𝑣𝑣3𝑟𝑟 and 𝑣𝑣3𝑤𝑤 are the dynamic velocities of the rail and wheel, 

respectively. 

The vector of sliding velocities can be written as: 

⎣
⎢
⎢
⎡
𝑣𝑣1𝑠𝑠
𝑣𝑣2𝑠𝑠
𝑣𝑣3𝑠𝑠

𝑣𝑣6𝑠𝑠⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡
𝑣𝑣1𝑟𝑟
𝑣𝑣2𝑟𝑟
𝑣𝑣3𝑟𝑟
𝑣𝑣6𝑟𝑟⎦
⎥
⎥
⎤
−

⎣
⎢
⎢
⎡
𝑣𝑣1𝑤𝑤
𝑣𝑣2𝑤𝑤
𝑣𝑣3𝑤𝑤
𝑣𝑣6𝑤𝑤⎦

⎥
⎥
⎤

+ �

𝑣𝑣1𝑐𝑐
𝑣𝑣2𝑐𝑐
𝑣𝑣3𝑐𝑐
0

� (4-20) 

where  𝑣𝑣𝑖𝑖𝑟𝑟 and 𝑣𝑣𝑖𝑖𝑤𝑤 are the velocity of rail and wheel in 𝑖𝑖 direction. 𝑣𝑣𝑖𝑖𝑐𝑐 is the relative velocity 

of the contact spring in 𝑖𝑖 direction. 

The creepage vector is defined as: 

�
𝛾𝛾1tot
𝛾𝛾2tot
𝛾𝛾6tot

� =
1
𝑉𝑉0
�
𝑣𝑣1tot𝑠𝑠

𝑣𝑣2tot𝑠𝑠

𝑣𝑣6tot𝑠𝑠
� (4-21) 

where 𝛾𝛾𝑖𝑖tot are the total creepages in the respective directions. The total sliding velocities 

and corresponding creepages can be written as the sum of a steady-state part and a dynamic 

part: 

�
𝛾𝛾1tot
𝛾𝛾2tot
𝛾𝛾6tot

� =
1
𝑉𝑉0
�
𝑣𝑣10𝑠𝑠 + 𝑣𝑣1𝑠𝑠

𝑣𝑣20𝑠𝑠 + 𝑣𝑣2𝑠𝑠

𝑣𝑣60𝑠𝑠 + 𝑣𝑣6𝑠𝑠
� = �

𝛾𝛾10 + 𝑣𝑣1𝑠𝑠/𝑉𝑉0
𝛾𝛾20 + 𝑣𝑣2𝑠𝑠/𝑉𝑉0
𝛾𝛾60 + 𝑣𝑣6𝑠𝑠/𝑉𝑉0

� (4-22) 

where 𝑣𝑣𝑖𝑖0𝑠𝑠  and 𝛾𝛾𝑖𝑖0 are the steady-state sliding velocities and creepages, which are determined 

from the steady-state curving behaviour. 

The creep forces can be written as the product of the normal contact force and the 

corresponding adhesion coefficients (see Section 2.4.2): 

�
𝑓𝑓1tot
𝑓𝑓2tot
𝑓𝑓6tot

� = �
𝜇𝜇1(𝛾𝛾1tot,𝛾𝛾2tot,𝛾𝛾6tot,𝑓𝑓3tot)
𝜇𝜇2(𝛾𝛾1tot,𝛾𝛾2tot,𝛾𝛾6tot,𝑓𝑓3tot)
𝜇𝜇6(𝛾𝛾1tot,𝛾𝛾2tot,𝛾𝛾6tot,𝑓𝑓3tot)

� 𝑓𝑓3tot (4-23) 

�
𝑓𝑓10
𝑓𝑓20
𝑓𝑓60

� = �
𝜇𝜇1(𝛾𝛾10, 𝛾𝛾20,𝛾𝛾60,𝑁𝑁0)
𝜇𝜇2(𝛾𝛾10, 𝛾𝛾20,𝛾𝛾60,𝑁𝑁0)
𝜇𝜇6(𝛾𝛾10, 𝛾𝛾20,𝛾𝛾60,𝑁𝑁0)

� 𝑓𝑓30 

 
(4-24) 
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where 𝜇𝜇𝑖𝑖  is the adhesion coefficient, 𝑓𝑓𝑖𝑖tot is the total friction force, 𝑓𝑓𝑖𝑖0 is the steady-state 

friction force. The vertical contact force 𝑓𝑓3tot can be also regarded as a sum of a steady-state 

part 𝑁𝑁0 and a dynamic part 𝑓𝑓3: 

𝑓𝑓3tot = 𝑁𝑁0 + 𝑓𝑓3 (4-25) 

For the dynamic component of the vertical force 𝑓𝑓3, linearized Hertzian contact theory (see 

Section 2.4.1) can be applied for small amplitudes of displacement [1]. This can be expressed 

through the contact stiffness as: 

𝑓𝑓3 = 𝑘𝑘𝐻𝐻𝑑𝑑3𝑐𝑐 (4-26) 

where 𝑘𝑘𝐻𝐻 is the linearized Hertzian contact stiffness in the vertical direction. 

Hence, the dynamic friction force can be written as: 

�
𝑓𝑓1
𝑓𝑓2
𝑓𝑓6
� = �

𝑓𝑓1𝑡𝑡𝑦𝑦𝑡𝑡
𝑓𝑓2𝑡𝑡𝑦𝑦𝑡𝑡
𝑓𝑓6𝑡𝑡𝑦𝑦𝑡𝑡

� − �
𝑓𝑓10
𝑓𝑓20
𝑓𝑓60

� = 

�
𝜇𝜇1(𝛾𝛾1𝑡𝑡𝑦𝑦𝑡𝑡, 𝛾𝛾2𝑡𝑡𝑦𝑦𝑡𝑡,𝛾𝛾6𝑡𝑡𝑦𝑦𝑡𝑡,𝑓𝑓3𝑡𝑡𝑦𝑦𝑡𝑡)
𝜇𝜇2(𝛾𝛾1𝑡𝑡𝑦𝑦𝑡𝑡,𝛾𝛾2𝑡𝑡𝑦𝑦𝑡𝑡, 𝛾𝛾6𝑡𝑡𝑦𝑦𝑡𝑡,𝑓𝑓3𝑡𝑡𝑦𝑦𝑡𝑡)
𝜇𝜇6(𝛾𝛾1𝑡𝑡𝑦𝑦𝑡𝑡,𝛾𝛾2𝑡𝑡𝑦𝑦𝑡𝑡, 𝛾𝛾6𝑡𝑡𝑦𝑦𝑡𝑡,𝑓𝑓3𝑡𝑡𝑦𝑦𝑡𝑡)

� (𝑁𝑁0 + 𝑓𝑓3) − �
𝜇𝜇1(𝛾𝛾10,𝛾𝛾20,𝛾𝛾60,𝑁𝑁0)
𝜇𝜇2(𝛾𝛾10,𝛾𝛾20, 𝛾𝛾60,𝑁𝑁0)
𝜇𝜇6(𝛾𝛾10,𝛾𝛾20, 𝛾𝛾60,𝑁𝑁0)

�𝑁𝑁0 

(4-27) 

Eq.(4-27) is a nonlinear equation. Combining it with the state-space wheel and track models 

given in Sections 4.1 and 4.2, and the contact spring formulation in Eq. (4-26), the time 

domain squeal analysis can be carried out by using a step-by-step integration method. 

4.3.2 Frequency domain curve squeal model 

In this section, the frequency domain model developed by Huang [27] will be introduced.  

In the quasi-steady condition, the dynamic contact forces 𝑓𝑓𝑘𝑘  and velocities 𝑣𝑣𝑘𝑘  can be 

converted into the frequency domain by assuming harmonic motion at some frequency 𝜔𝜔. 

Thus, the dynamic components of the contact forces, wheel velocities, rail velocities, contact 

spring velocities, and sliding velocities can be written as: 

𝑓𝑓𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑒𝑒i𝜔𝜔𝑡𝑡, 𝑣𝑣𝑖𝑖𝑤𝑤 = 𝑉𝑉𝑖𝑖𝑤𝑤𝑒𝑒i𝜔𝜔𝑡𝑡, 𝑣𝑣𝑖𝑖𝑟𝑟 = 𝑉𝑉𝑖𝑖𝑟𝑟𝑒𝑒i𝜔𝜔𝑡𝑡, 𝑣𝑣3𝑐𝑐 = 𝑉𝑉3𝑐𝑐𝑒𝑒i𝜔𝜔𝑡𝑡,𝑣𝑣𝑖𝑖𝑠𝑠 = 𝑉𝑉𝑖𝑖𝑠𝑠𝑒𝑒i𝜔𝜔𝑡𝑡 (4-28) 

where 𝐹𝐹 and 𝑉𝑉 are the complex force and velocity amplitudes, the superscript 𝜁𝜁 represents 

the wheel, the superscript 𝑟𝑟 represents the rail, 𝑐𝑐 is for contact, and 𝑠𝑠 is for sliding. The 

subscript 𝑖𝑖 is for different directions, as shown in Figure 4-18. 
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Hence, the dynamic components of velocity of wheel, rail and sliding can be written as: 

⎣
⎢
⎢
⎡
𝑉𝑉1𝑤𝑤
𝑉𝑉2𝑤𝑤
𝑉𝑉3𝑤𝑤
𝑉𝑉6𝑤𝑤⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎡
𝑌𝑌11𝑤𝑤 𝑌𝑌12𝑤𝑤 𝑌𝑌13𝑤𝑤 𝑌𝑌16𝑤𝑤
𝑌𝑌21𝑤𝑤 𝑌𝑌22𝑤𝑤 𝑌𝑌23𝑤𝑤 𝑌𝑌26𝑤𝑤
𝑌𝑌31𝑤𝑤 𝑌𝑌32𝑤𝑤 𝑌𝑌33𝑤𝑤 𝑌𝑌36𝑤𝑤
𝑌𝑌61𝑤𝑤 𝑌𝑌62𝑤𝑤 𝑌𝑌63𝑤𝑤 𝑌𝑌64𝑤𝑤⎦

⎥
⎥
⎤
�

𝐹𝐹1
𝐹𝐹2
𝐹𝐹3
𝐹𝐹6

� (4-29) 

⎣
⎢
⎢
⎡
𝑉𝑉1𝑟𝑟
𝑉𝑉2𝑟𝑟
𝑉𝑉3𝑟𝑟
𝑉𝑉6𝑟𝑟⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡
𝑌𝑌11𝑟𝑟 𝑌𝑌12𝑟𝑟 𝑌𝑌13𝑟𝑟 𝑌𝑌16𝑟𝑟
𝑌𝑌21𝑟𝑟 𝑌𝑌22𝑟𝑟 𝑌𝑌23𝑟𝑟 𝑌𝑌26𝑟𝑟
𝑌𝑌31𝑟𝑟 𝑌𝑌32𝑟𝑟 𝑌𝑌33𝑟𝑟 𝑌𝑌36𝑟𝑟
𝑌𝑌61𝑟𝑟 𝑌𝑌62𝑟𝑟 𝑌𝑌63𝑟𝑟 𝑌𝑌64𝑟𝑟 ⎦

⎥
⎥
⎤
�

𝐹𝐹1
𝐹𝐹2
𝐹𝐹3
𝐹𝐹6

� (4-30) 

⎣
⎢
⎢
⎡
𝑉𝑉1𝑠𝑠
𝑉𝑉2𝑠𝑠
𝑉𝑉3𝑠𝑠

𝑉𝑉6𝑠𝑠⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡
𝑉𝑉1𝑟𝑟
𝑉𝑉2𝑟𝑟
𝑉𝑉3𝑟𝑟
𝑉𝑉6𝑟𝑟⎦
⎥
⎥
⎤
−

⎣
⎢
⎢
⎡
𝑉𝑉1𝑤𝑤
𝑉𝑉2𝑤𝑤
𝑉𝑉3𝑤𝑤
𝑉𝑉6𝑤𝑤⎦

⎥
⎥
⎤

+ �

𝑉𝑉1𝑐𝑐
𝑉𝑉2𝑐𝑐
𝑉𝑉3𝑐𝑐
0

� (4-31) 

where 𝑌𝑌𝑖𝑖𝑖𝑖𝑤𝑤 is the wheel mobility and 𝑌𝑌𝑖𝑖𝑖𝑖𝑟𝑟 is the rail mobility from force in the 𝑗𝑗 direction to 

response in the 𝑖𝑖 direction.  

the contact velocity can be expressed in terms of the contact spring mobility, which gives: 

𝑉𝑉𝑖𝑖𝑐𝑐 = Y𝑖𝑖𝑖𝑖𝑐𝑐𝐹𝐹𝑖𝑖 
(4-32) 

where the mobility of the contact spring can be found as: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 =
i𝜔𝜔
𝑘𝑘𝑐𝑐𝑖𝑖

 (4-33) 

where the contact stiffness in different directions 𝑘𝑘𝑐𝑐𝑖𝑖 can be found in Section 2.4.1. 

By substituting Eq.(4-29), (4-30), (4-33) into Eq.(4-31), the relationship between the sliding 

velocities and the mobilities is: 

⎣
⎢
⎢
⎡
𝑉𝑉1𝑠𝑠
𝑉𝑉2𝑠𝑠
𝑉𝑉3𝑠𝑠

𝑉𝑉6𝑠𝑠⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡𝑌𝑌11 𝑌𝑌12 𝑌𝑌13 𝑌𝑌16
𝑌𝑌21 𝑌𝑌22 𝑌𝑌23 𝑌𝑌26
𝑌𝑌31 𝑌𝑌32 𝑌𝑌33 𝑌𝑌36
𝑌𝑌61 𝑌𝑌62 𝑌𝑌63 𝑌𝑌64⎦

⎥
⎥
⎥
⎤
�

𝐹𝐹1
𝐹𝐹2
𝐹𝐹3
𝐹𝐹6

� (4-34) 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is the sum of the wheel, rail and contact spring mobilities. 

As there is no sliding velocity in the vertical direction: 

𝑉𝑉3𝑠𝑠 = 𝑌𝑌31𝐹𝐹1 + 𝑌𝑌32𝐹𝐹2 + 𝑌𝑌33𝐹𝐹3 + 𝑌𝑌36𝐹𝐹6 = 0 (4-35) 
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Then the vertical dynamic component of force 𝐹𝐹3  can be written in terms of the other 

components as: 

𝐹𝐹3 = − �
𝑌𝑌31
𝑌𝑌33

     
𝑌𝑌32
𝑌𝑌33

     
𝑌𝑌36
𝑌𝑌33

� �
𝐹𝐹1
𝐹𝐹2
𝐹𝐹6
� 

 
(4-36) 

Combining Eq. (4-34), (4-35) and (4-36) gives the relationship between the dynamic friction 

forces and the sliding velocities: 

𝐕𝐕𝐬𝐬 = 𝐆𝐆𝐅𝐅f (4-37) 

where 𝐕𝐕𝒔𝒔 is the sliding velocity vector, 𝐆𝐆 is a matrix of mobility and 𝐅𝐅f is the friction force 

vector. They are written as:  

𝐕𝐕𝐬𝐬 = [V1s V2s V6s]T 

 

𝐆𝐆 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑌𝑌11 −

𝑌𝑌13𝑌𝑌31
𝑌𝑌33

𝑌𝑌12 −
𝑌𝑌13𝑌𝑌32
𝑌𝑌33

𝑌𝑌16 −
𝑌𝑌13𝑌𝑌36
𝑌𝑌33

𝑌𝑌21 −
𝑌𝑌23𝑌𝑌31
𝑌𝑌33

𝑌𝑌22 −
𝑌𝑌23𝑌𝑌32
𝑌𝑌33

𝑌𝑌26 −
𝑌𝑌23𝑌𝑌36
𝑌𝑌33

𝑌𝑌61 −
𝑌𝑌63𝑌𝑌31
𝑌𝑌33

𝑌𝑌62 −
𝑌𝑌63𝑌𝑌32
𝑌𝑌33

𝑌𝑌66 −
𝑌𝑌63𝑌𝑌36
𝑌𝑌33 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝐅𝐅𝐟𝐟 = [F1 F2 F6]T 

(4-38) 
 
 
 
 

(4-39) 
 
 
 
 
 

(4-40) 

By assuming small dynamic quantities and ignoring the terms of second order, Eq.(4-27) can 

be linearized as: 

�
𝑓𝑓1
𝑓𝑓2
𝑓𝑓6
� =

𝑁𝑁0
𝑉𝑉0

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜇𝜇1
𝜕𝜕𝛾𝛾1

𝜕𝜕𝜇𝜇1
𝜕𝜕𝛾𝛾2

𝜕𝜕𝜇𝜇1
𝜕𝜕𝛾𝛾6

𝜕𝜕𝜇𝜇1
𝜕𝜕𝑓𝑓3

𝜕𝜕𝜇𝜇2
𝜕𝜕𝛾𝛾1

𝜕𝜕𝜇𝜇2
𝜕𝜕𝛾𝛾2

𝜕𝜕𝜇𝜇2
𝜕𝜕𝛾𝛾6

𝜕𝜕𝜇𝜇2
𝜕𝜕𝑓𝑓3

𝜕𝜕𝜇𝜇6
𝜕𝜕𝛾𝛾1

𝜕𝜕𝜇𝜇6
𝜕𝜕𝛾𝛾2

𝜕𝜕𝜇𝜇6
𝜕𝜕𝛾𝛾6

𝜕𝜕𝜇𝜇6
𝜕𝜕𝑓𝑓3⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡
𝑣𝑣1𝑠𝑠
𝑣𝑣2𝑠𝑠
𝑣𝑣6𝑠𝑠
𝑉𝑉0𝑓𝑓3⎦

⎥
⎥
⎤

+ �
𝜇𝜇1
𝜇𝜇2
𝜇𝜇6
� 𝑓𝑓3 

 
 

(4-41) 
 

 

where in the convention adopted for this thesis the adhesion coefficient 𝜇𝜇𝑖𝑖 is negative for a 

positive creepage (see Figure 2-15). 
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According to Eq. (4-28), the amplitude of the harmonic friction forces can be also written 

as: 

�
𝐹𝐹1
𝐹𝐹2
𝐹𝐹6
� =

𝑁𝑁0
𝑉𝑉0

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜇𝜇1
𝜕𝜕𝛾𝛾1

𝜕𝜕𝜇𝜇1
𝜕𝜕𝛾𝛾2

𝜕𝜕𝜇𝜇1
𝜕𝜕𝛾𝛾6

𝜕𝜕𝜇𝜇1
𝜕𝜕𝑓𝑓3

𝜕𝜕𝜇𝜇2
𝜕𝜕𝛾𝛾1

𝜕𝜕𝜇𝜇2
𝜕𝜕𝛾𝛾2

𝜕𝜕𝜇𝜇2
𝜕𝜕𝛾𝛾6

𝜕𝜕𝜇𝜇2
𝜕𝜕𝑓𝑓3

𝜕𝜕𝜇𝜇6
𝜕𝜕𝛾𝛾1

𝜕𝜕𝜇𝜇6
𝜕𝜕𝛾𝛾2

𝜕𝜕𝜇𝜇6
𝜕𝜕𝛾𝛾6

𝜕𝜕𝜇𝜇6
𝜕𝜕𝑓𝑓3 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡
𝑉𝑉1𝑠𝑠
𝑉𝑉2𝑠𝑠
𝑉𝑉6𝑠𝑠
𝑉𝑉0𝐹𝐹3⎦

⎥
⎥
⎤

+ �
𝜇𝜇1
𝜇𝜇2
𝜇𝜇6
� 𝐹𝐹3 

 
 

(4-42) 
 

 

The terms related to 𝐹𝐹3 can be brought together and then eliminated using Eq. (4-36), which 

then gives: 

𝐅𝐅f = 𝐇𝐇𝟏𝟏𝐕𝐕𝐬𝐬 +  𝐇𝐇𝟐𝟐𝐅𝐅f (4-43) 

where: 

𝐇𝐇𝟏𝟏 =
𝑁𝑁0
𝑉𝑉0

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜇𝜇1
𝜕𝜕𝛾𝛾1

𝜕𝜕𝜇𝜇1
𝜕𝜕𝛾𝛾2

𝜕𝜕𝜇𝜇1
𝜕𝜕𝛾𝛾6

𝜕𝜕𝜇𝜇2
𝜕𝜕𝛾𝛾1

𝜕𝜕𝜇𝜇2
𝜕𝜕𝛾𝛾2

𝜕𝜕𝜇𝜇2
𝜕𝜕𝛾𝛾6

𝜕𝜕𝜇𝜇6
𝜕𝜕𝛾𝛾1

𝜕𝜕𝜇𝜇6
𝜕𝜕𝛾𝛾2

𝜕𝜕𝜇𝜇6
𝜕𝜕𝛾𝛾6⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑣𝑣1𝑠𝑠

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑣𝑣2𝑠𝑠

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑣𝑣6𝑠𝑠

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑣𝑣1𝑠𝑠

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑣𝑣2𝑠𝑠

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑣𝑣6𝑠𝑠

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑣𝑣1𝑠𝑠

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑣𝑣2𝑠𝑠

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑣𝑣6𝑠𝑠⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 

(4-44) 
 

 
 

𝐇𝐇𝟐𝟐 = −

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜇𝜇1 + 𝑁𝑁0

𝜕𝜕𝜇𝜇1
𝜕𝜕𝑓𝑓3

𝜇𝜇2 + 𝑁𝑁0
𝜕𝜕𝜇𝜇2
𝜕𝜕𝑓𝑓3

𝜇𝜇6 + 𝑁𝑁0
𝜕𝜕𝜇𝜇6
𝜕𝜕𝑓𝑓3⎦

⎥
⎥
⎥
⎥
⎥
⎤

�
𝑌𝑌31
𝑌𝑌33

     
𝑌𝑌32
𝑌𝑌33

     
𝑌𝑌36
𝑌𝑌33

� (4-45) 
 

𝐅𝐅f = [F1 F2 F6]T (4-46) 

𝐕𝐕s = [V1s V2s V6s]T (4-47) 

By substituting Eq.(4-37) into Eq.(4-43): 

𝐅𝐅f = (𝐇𝐇𝟏𝟏𝐆𝐆 +  𝐇𝐇𝟐𝟐)𝐅𝐅f (4-48) 

which gives a self-excitation loop (see Figure 4-19). The open loop transfer function matrix 

is 𝐐𝐐 = 𝐇𝐇𝟏𝟏𝐆𝐆 + 𝐇𝐇𝟐𝟐. 
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Figure 4-19. Frequency domain feedback loop of wheel/rail contact system. 

After the open loop transfer function matrix 𝐐𝐐 is obtained, the generalised Nyquist criterion 

[95] can be used to analyse the stability. The closed-loop system will be stable if and only if 

the net sum of anti-clockwise encirclements of the critical point (-1/k, j0) by the set of 

eigenloci of the open-loop transfer function matrix (TFM) is equal to the total number of 

right-half plane poles of the TFM, where for negative feedback, 𝑘𝑘 = 1, and for a positive 

feedback as here, 𝑘𝑘 = −1. Since the open-loop system here (the dynamic response of the 

wheel/rail system in the absence of the feedback mechanism) is always stable, no pole of the 

open-loop TFM is located in the right-half plane, and the total number of right-half plane 

poles of the open-loop transfer TFM is zero. Thus, to ensure the closed-loop system is stable 

the eigenloci of the open-loop TFM must not encircle the critical point (1+j0) (positive 

feedback loop with 𝑘𝑘 = -1). The physical meaning of this criterion can be explained as: if 

the open loop frequency response has a gain greater than unity at the frequency giving an 

open loop phase lag of 0°, the force amplitude will grow due to the positive feedback.  

4.4 Summary 

In this chapter, a curve squeal model based on [27] has been presented. This model includes 

wheel dynamics, rail dynamics, and contact dynamics. The wheel is modelled using a modal 

basis obtained from the FE method. The frequency response (mobility) for different 

directions of an example wheel has been shown. The state-space model of the wheel has also 

been presented which can be used for purpose of time domain calculation.  

A new equivalent track model has been developed. This is based on the modal analysis 

method for mass-spring systems. According to the frequency response (mobility) from 

analytical models of the track dynamics, different numbers of dof are chosen for different 

equivalent track models in different directions. After obtaining the modal parameters for the 

equivalent track model using a curve fitting method, the state-space model can then be 

obtained and used in time domain calculation.  
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After the curve squeal model in [27] is updated, it will be used for a parametric study in next 

chapter to find out different mechanism for curve squeal. 

  

83 

 





5 Investigation on the origins of curve squeal  

In the previous chapter, the curve squeal model from [27] was presented and adapted by 

introducing a newly developed track model. In this chapter, this curve squeal model is used 

to illustrate the effect of three main factors: the value of the Coulomb friction coefficient, 

the friction characteristics (falling or constant) and the track dynamics (with rigid or flexible 

track). Both frequency and time domain analyses are performed to give a detailed 

comparison of the effects of these factors on instability and on the limit cycle. Additionally, 

the effects of wheel rotation and rolling velocity are also investigated in the frequency 

domain. 

5.1 Parameters and case descriptions 

5.1.1 Friction curves 

To see whether a constant friction coefficient can also lead to curve squeal, the two friction 

curves shown in Figure 5-1 are considered: these represent falling and constant friction in 

the saturation region. They are calculated according to Kalker’s FASTSIM algorithm [30], 

which is modified to include the falling part as shown in Eq.(2-24). Some other important 

parameters used to obtain these friction curves are listed in Table 5-1. 

 
Figure 5-1. Two friction laws used in this chapter.  
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Table 5-1. Parameters used for friction force calculation. 

Description and Name Value Units 

Coulomb friction coefficient 𝜇𝜇0 0.3 / 

Falling ratio 𝜆𝜆 in Eq. (2-23) �0.1 for with falling
0 for constant

 / 

Saturation coefficient 𝜅𝜅 in Eq.(2-24) 0.005 / 

Longitudinal creepage 0 / 

Spin creepage 0 / 

Longitudinal semi-axis of contact ellipse 𝑎𝑎 6.1 mm 

Lateral semi-axis of contact ellipse 𝑏𝑏 4.1 mm 

5.1.2 Case descriptions 

To study the roles of the friction coefficient, track dynamics and friction characteristics after 

saturation, five cases are considered which are described in Table 5-2.  For Cases I to IV, 

the friction coefficient is set to 0.3. Cases I and II are with falling friction; rail dynamics is 

included in Case I but not in Case II. Meanwhile constant friction is adopted for Cases III 

and IV, again with and without the rail dynamics respectively. Like Case IV, Case V also 

has constant friction and the rail is assumed to be rigid, but the Coulomb friction coefficient 

is increased to 0.7. 

The wheel and track considered are the ones introduced in Sections 4.1 and 4.2. The 

linearized vertical contact stiffness is calculated according to Section 2.4.1 and is equal to 

1.12 × 109 N/m for a normal load 62 kN. 

Some other important parameters used in these calculations are shown in Table 5-3. The 

wheel is assumed to be the right-hand wheel in a right-hand curve. For simplicity the contact 

position is assumed here to be located at the nominal wheel/rail contact point and the contact 

angle is set as -1.5° (it is always negative for the right wheel, see Figure 4-2) according to 

the wheel cross-section design. This is not necessarily representative of a train running 

around a curve but still can give insights into the stability of the system with different 

combinations of the parameters shown in Table 5-2. The effect of varying the contact 

position is studied in Chapter 6. 
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Table 5-2. Description of calculation cases. 

Case number Coulomb friction Falling friction (✔) or 
constant friction(✖) 

Include track (✔) or 
not (✖) 

I 0.3 ✔ ✔ 

II 0.3 ✔ ✖ 

III 0.3 ✖ ✔ 

IV 0.3 ✖ ✖ 

V 0.7 ✖ ✖ 

 

Table 5-3. Some input parameters and their values. 

Description Unit Value 

Normal force 𝑁𝑁0 kN 62 

Rolling velocity 𝑉𝑉0 m/s 10 

Lateral steady state creepage 𝛾𝛾2 / 0.025 

Longitudinal steady state creepage 𝛾𝛾1 / 0 

Spin steady state creepage 𝛾𝛾6 m-1 0 

5.2 Frequency domain analysis 

Frequency domain analysis is performed here to predict the potentially unstable frequencies. 

Figure 5-2 gives the Nyquist locus and Bode plot for Case I with falling friction and 

including the track. The unstable frequencies are marked by a ‘*’ in both the Nyquist plots 

and the modulus graph of the Bode plot.  

Before performing the calculations for other cases, the effect of the lateral and longitudinal 

contact spring is studied. It is found that adding the contact spring in these two directions 

has no effect. Hence for all calculations in this work, these two contact springs are omitted.  

The plots for other cases are shown in Figure 5-3 to Figure 5-5. To compare all these cases, 

the results are summarised in Table 5-4. In this table, the ‘wheel modes involved’ are the 

wheel modes corresponding to the unstable frequencies. These are verified by including only 

these wheel modes in the analysis to check whether the unstable frequencies remain: i.e. if 

any of the wheel modes identified are deleted, the corresponding unstable frequency will 

disappear.  

From the results shown in Table 5-4 and by analysing the mode(s) involved in the 

instabilities and considering whether the track is present or not, three different situations can 

be identified. They are the falling friction mechanism, coupling of pairs of wheel modes and 

coupling between the wheel and rail. These are discussed in more detail below.  
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Falling friction. It can be seen that both cases with falling friction can lead to instability (see 

Cases I and II). Only one wheel mode is responsible for each unstable frequency. Hence, 

these instabilities can be attributed to the negative damping effect induced by falling friction. 

In addition, most wheel modes involved are axial modes with zero nodal circles. This agrees 

with the results from many previous studies (see Table 1-3).  

Wheel modes coupling. Case V, which has a higher friction coefficient than Case IV, has 

two unstable frequencies at 178.2 Hz and 1982.0 Hz. More than one wheel mode is involved 

in both of these instabilities. This indicates that wheel mode coupling exists in this case (the 

track is not included). In Chapter 6, a more detailed discussion about wheel mode coupling 

will be given. It is also found in Case V that unstable frequencies are not at the peaks of  

modulus of the open loop transfer function (see Figure 5-5). 

Wheel/rail coupling. By comparing the results of Cases I and II in Table 5-4, it can be seen 

that with a falling friction characteristic, the unstable frequency at 150.5 Hz can be 

eliminated if the track is not included in this model. Also by comparing the results of Cases 

III and IV, it can be found that when rail is assumed to be rigid, the unstable frequencies in 

Case III no longer exist. This suggests that the rail dynamics is playing a significant role for 

these unstable frequencies. Moreover, only a single wheel mode is involved for each of these 

unstable frequencies. This means that these unstable frequencies are due to the coupling 

between a single wheel mode and the rail. This type of instability will be investigated further 

in Chapter 7. 

 

 

88 

 



  

(a) (b)  

Figure 5-2. Results for Case I: Stability analysis of model including rail dynamics in frequency 
domain: (a) Nyquist locus; (b) modulus of the open loop transfer function. ‘*’ unstable 

frequencies. 

  

(a) (b)  

Figure 5-3. Results for Case II: Stability analysis of model excluding rail dynamics in frequency 
domain: (a) Nyquist locus; (b) modulus of the open loop transfer function. ‘*’ unstable 

frequencies. 
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(a) (b)  

Figure 5-4. Results for Case III: Stability analysis of model including rail dynamics in frequency 
domain: (a) Nyquist locus; (b) modulus of the open loop transfer function. ‘*’ unstable 

frequencies. 

  

(a) (b)  

Figure 5-5. Results for Case V: Stability analysis of model including rail dynamics in frequency 
domain: (a) Nyquist locus; (b) modulus of the open loop transfer function. ‘*’ unstable 

frequencies. 
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Table 5-4. Summary of frequency domain analysis for Cases I to V. 

Case I 

 (falling friction /rail included) 

Unstable frequencies (Hz) 149.2 272.5 418.3 1102.0 1976.0 2951.0 3978.0 5032.0  

Loop gain 1.28 1.25 8.88 5.29 4.84 3.50 2.28 1.87  

Wheel modes involved (Hz) 149.4 272.5  418.3 1102.0 1976.2 2950.4 3977.4 5031.7  

(𝑛𝑛,𝑚𝑚) (1,0) (0,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)  

           

Case II 

(falling friction/ rigid rail) 

Unstable frequencies (Hz)  270.8 419.4 1102.0 1976.0 2951.0 3978.0 5032.0  

Loop gain  1.16 27.54 11.36 6.20 4.00 2.85 2.04  

Wheel modes involved (Hz)   272.5 418.3 1102.0 1976.2 2950.4 3977.4 5031.7  

(𝑛𝑛,𝑚𝑚)  (0,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)  

           

Case III  

(constant friction /rail included ) 

Unstable frequencies (Hz) 149.2  418.4 1102.0 1977.0 .    

Loop gain 1.23  5.22 3.44 1.55     

Wheel modes involved (Hz)  149.4  418.3 1102.0 1976.2     

(𝑛𝑛,𝑚𝑚) (1,0)  (2,0) (3,0) (4,0)     

           Case IV 

(constant friction / rigid rail) 
stable 

           

Case V 

(constant friction  /rail included ) 

Unstable frequencies (Hz) 178.6    1982.0     

Loop gain 1.76    1.58     

Wheel modes involved (Hz)  
10, 15 

149.4 
   

1959.4 

1976.2 
  

  

(𝑛𝑛,𝑚𝑚) 
Rigid 
modes 

(1,0) 
   

(2, r) 

(4,0) 
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5.3 Time domain analysis 

The time histories of the response of the wheel and rail in different directions can be obtained 

by using step-by-step integration. Figure 5-6 shows the time history results for the lateral 

direction for different cases. Case IV is not shown as it is stable and would simply show a 

decaying trend. In each figure, the above subplot is the creepage (lateral velocity normalised 

by the rolling velocity) against the time. The below one is the corresponding spectra and 

they are evaluated over the limit cycle region using an FFT (fast Fourier transform) with a 

rectangular window and frequency resolution 2 Hz.  
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(c) 

 
(d) 

Figure 5-6 .Time histories: (a) Case I; (b) Case II; (c) Case III; (d) Case V. 

The time histories for Case I show that a steady state response is obtained after 0.8 s. 

Moreover, it can be seen that for Cases I and III, the amplitude of vibration of the rail, when 

it is included, is much smaller than the response of the wheel. The ratio between the vibration 

amplitudes of the wheel and rail is about 9. The spectra show that, although several possible 

unstable frequencies were found in the frequency domain analysis, only one becomes 

dominant in the time domain. For Case I it is at 420 Hz which had the largest loop gain (but 

this is not always the case). Other peaks exist in the response spectrum and they are the 

higher harmonics of 420 Hz occurring due to non-linearities. The wheel vibration is close to 

sinusoidal at 420 Hz, showing the highest amplitude at this frequency, but the rail spectrum 

0 0.5 1 1.5 2
-0.05

0

0.05

Time (sec)

C
re

ep
ag

e

 

 
wheel rail sliding

10
1

10
2

10
3

-150

-100

-50

0

Frequency (Hz)

dB
 (r

e 
1 

m
2 s

-2
/H

z)

0 0.5 1 1.5
-0.02

0

0.02

0.04

Time (sec)

C
re

ep
ag

e

 

 
wheel sliding

10
1

10
2

10
3

-100

-50

0

Frequency (Hz)

dB
 (r

e 
1 

m
2 s

-2
/H

z)

93 

 



can be greater than that of the wheel at the higher harmonics or at the frequencies of the rail 

modes.  

The time histories for other Cases show similar characteristics. Meanwhile, it is found that 

the dominant frequency of the limit cycle can change when the rail is not included. For 

example, for Case II with a rigid rail, the dominant frequency is 1976 Hz whereas for Case 

I with a flexible track it is 420 Hz. Moreover, each of the dominant frequencies found here 

corresponds to one of those found in the frequency domain analysis in Table 5-4, although 

they are not necessarily the ones with the largest loop gain. For example, the largest loop 

gain in the frequency domain for Case II is 420 Hz whereas in the time domain analysis the 

dominant frequency of the limit cycle is 1976 Hz. 

Figure 5-6 only gives the vibration in the lateral direction. In fact the vibration in the vertical 

direction shows similar characteristics. It also grows gradually and finally a limit cycle 

response is achieved. However, some interesting results can be found by comparing the 

vibration in the two directions. Figure 5-7 shows a comparison of the vibration in the limit 

cycle in the two directions for Case I and Case V. It can be seen that for Case I, which has 

an unstable frequency due to falling friction, the responses in the two directions are almost 

in phase. Meanwhile, for Case V, where wheel mode coupling exists, there is a phase 

difference (77˚) between the vibration in the two directions. This phase difference is a feature 

of mode coupling and has been introduced in Section 3.3.2. Further discussion of this phase 

shift in mode coupling will be given in Chapter 6. 
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(a) 

 

(b) 

Figure 5-7. The close-up of the vibration at limic cycle in two directions: (a) Case I; (b) Case V. 

5.4 The effects of wheel rotation 

It was shown in Section 5.2 that in certain situations wheel mode coupling can lead to curve 

squeal (Case V). However, the wheel rotation has not been considered. In fact, when the 

wheel rolls along the track, the forcing point effectively moves around its circumference. 

This will make the natural frequencies of the wheel with one or more nodal diameters split 
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into pairs (these are also known as doublet modes) [103]. This section will investigate 

whether this splitting of wheel modes can affect the wheel coupling effect. 

The theory describing the wheel rotation effect is described in [1] and is summarised in 

Appendix C. Here the wheel is assumed to have a rolling velocity of 10 m/s. The mobilities 

of the wheel in the lateral and vertical directions including the wheel rotation are shown in 

Figure 5-8 and Figure 5-9. Compared with Figure 4-5 to Figure 4-6, the modes with one or 

more nodal diameters are separated into dual peaks according to Eq. (C.18). For example, 

the axial mode at 1976 Hz is split into two peaks at 1961 and 1991 Hz (see Figure 5-8). The 

(2, r) radial mode at 1959 Hz is split into two peaks at 1952 Hz and 1967 Hz (see Figure 

5-9). 

To study whether this splitting of wheel modes affects the curve squeal prediction, the 

procedure and parameters of Case V in Section 5.2 are adopted here, replacing the wheel 

mobility with the one including the effect of wheel rotation. This is described as Case VI 

here. The unstable frequencies are shown in Table 5-5. The results of Case V are listed again 

for comparison. It can be seen from Table 5-5 that the wheel rotation does have an effect on 

the curve squeal. One more unstable frequency appears compared with the case without 

wheel rotation. However, the two modes within each doublet do not couple with each other; 

instead one of the doublet modes at 1959 Hz is coupling with one of the other doublet modes 

at 1976 Hz and the other modes in each doublet form another pair. Without wheel rotation, 

the two modes at 1959 Hz and 1976 Hz are coupled. Hence, the wheel rotation is considered 

to have no significant effect for this case. 

 

Figure 5-8. Class 158 wheel mobility in lateral direction including effect of wheel rotation. 

10
2

10
3

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Frequency(Hz)

M
ag

ni
tu

de
(m

/s
N

)

1961 Hz 1991 Hz

96 

 



 

Figure 5-9. Class 158 wheel mobility in vertical direction including effect of wheel rotation. 

 Table 5-5. Frequency domain prediction with or without effect of wheel rotation. 

Case V 

(without wheel rotation) 

Unstable frequencies (Hz) 178.6  1982.0 

Loop gain 1.76  1.58 

Wheel modes involved (Hz) 10, 15 

149.4 
 1959.4 

1976.2 

(𝑛𝑛,𝑚𝑚) Rigid 
modes 

(1,0) 

 (2, r) 

(4,0) 
     

Case VI 

(including wheel rotation) 

Unstable frequencies (Hz) 179.2 1959 1993 

Loop gain 1.78 1.37 5.38 

Wheel modes involved (Hz) 149.4 
1952 

1961 

1967 

1991 

(𝑛𝑛,𝑚𝑚) (1,0) 
(2,r) 

(4,0) 

(2,r) 

(4,0) 

Another wheel is considered here to investigate the effect of wheel rotation. This is also a 

regional train wheel but has brake discs mounted on the wheel web. The cross-section is 

shown in Figure 5-10. The mobility of this wheel in two directions is shown in Figure 5-11 

and Figure 5-12, from which it can be seen that many of the modes are again split into two. 

For example, the axial mode at 3976 Hz splits into two peaks at 3954 Hz and 3999 Hz. The 

radial mode at 3963 Hz splits into two peaks at 3948 Hz and 3978 Hz. By using the same 

parameters as Case V and Case VI but with this different wheel, the curve squeal predictions 

in the frequency domain are given in Table 5-6 with and without effect of wheel rotation.  
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Figure 5-10. Cross-section of Coradia wheel (radius 420 mm). 

 

Figure 5-11. Coradia wheel mobility in lateral direction; blue solid line: without wheel rotation; red 
dotted line: with wheel rotation. 
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Figure 5-12. Coradia wheel mobility in vertical direction; blue solid line: without wheel rotation; 
red dotted line: with wheel rotation. 

Table 5-6. Frequency domain prediction with or without effect of wheel rotation for Coradia wheel. 

Coradia wheel 

(without wheel rotation) 
stable 

    

Coradia wheel 

(including wheel rotation) 

Unstable frequencies (Hz) 3955 3998 

Loop gain 1.46 4.30 

Wheel modes involved (Hz) 
3954 

3978 

3978 

3999 

(𝑛𝑛,𝑚𝑚) 
(4,r) 

(6,0) 

(4,r) 

(6,0) 

It can be seen from Table 5-6 that when wheel rotation is not included the result is always 

stable whereas there are two unstable frequencies when including wheel rotation. This shows 

that wheel rotation has a significant effect for this case. In addition, for the unstable 

frequency at 3955 Hz, the two responsible wheel modes are 3954 Hz (one doublet of the 

3976 Hz mode) and 3978 Hz (one doublet of the 3963 Hz mode). For the unstable frequency 

at 3998 Hz, the two responsible wheel modes are 3999 Hz (again one doublet of the 3976 

Hz mode) and 3978 Hz (one doublet of the 3963 Hz mode). Hence, the coupled wheel modes 

are not the doublets of one mode, but instead one of the doublets is coupled with one of 

another doublets. This is similar to the case above (Case V and Case VI). 

2000 2500 3000 3500 4000 4500 5000

Frequency (Hz)

10 -8

10 -6

10 -4

10 -2

M
ag

ni
tu

de
 o

f m
ob

ilit
y 

(m
/s

N
)

3963 Hz

3978 Hz
3948 Hz

99 

 



Hence, the results here indicate that the wheel rotation has a different effect on different 

wheels. Mode coupling can arise between modes of different doublets while the 

corresponding modes of the non-rotating wheel are not necessarily unstable. 

5.5 The effects of rolling velocity 

For all the cases calculated above, the rolling velocity is equal to 10 m/s. In this section, the 

effect of rolling velocity is investigated by changing it to 15 m/s and 20 m/s and then 

comparing the results to those above. Both non-rotating and rotating wheels are considered 

in this section.  

5.5.1 Non-rotating wheel 

First, a non-rotating wheel is adopted, which is again the Class158 wheel. To study whether 

the rolling velocity affects the curve squeal prediction, the procedure and parameters of Case 

I in Section 5.2 are adopted here but with different rolling velocities of 15 m/s and 20 m/s. 

For the cases with constant friction, it can be deduced from Eqs. (4-42) to (4-48) that the 

rolling velocity will not affect the results as the slope of friction curve is zero in Eq. (4-42). 

The frequency domain results are summarized in Table 5-7. When the rolling velocity is 

increased from 10 m/s to 15 m/s, only one unstable frequency at 272.5 Hz disappears while 

all other unstable frequencies remain. The loop gains reduce slightly with increasing rolling 

velocity. Hence, the rolling velocity is considered to have insignificant effect on curve squeal 

with this non-rotating wheel. 
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Table 5-7. Frequency domain prediction with different rolling velocity with a non-rotating wheel. 

Case I 

 (falling friction /rail 
included) with rolling 
velocity 10 m/s 

Unstable 
frequencies 
(Hz) 

149.2 272.5 418.3 1102.0 1976.0 2951.0 3978.0 5032.0 

Loop gain 1.28 1.25 8.88 5.29 4.84 3.50 2.28 1.87 

Wheel modes 
involved (Hz) 149.4 272.5 418.3 1102.0 1976.2 2950.4 3977.4 5031.7 

(𝑛𝑛,𝑚𝑚) (1,0) (0,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) 
          

Case I with rolling 
velocity 15 m/s 

Unstable 
frequencies 
(Hz) 

149.2  418.3 1102.0 1976.0 2951.0 3978.0 5032.0 

Loop gain 1.23  7.53 4.59 3.66 2.49 1.74 1.35 

Wheel modes 
involved (Hz) 149.4  418.3 1102.0 1976.2 2950.4 3977.4 5031.7 

(𝑛𝑛,𝑚𝑚) (1,0)  (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) 
          

Case I with rolling 
velocity 20 m/s 

Unstable 
frequencies 
(Hz) 

149.2  418.3 1102.0 1976.0 2951.0 3978.0 5032.0 

Loop gain 1.21  6.86 4.17 3.13 2.06 1.42 1.11 

Wheel modes 
involved (Hz) 149.4  418.3 1102.0 1976.2 2950.4 3977.4 5031.7 

(𝑛𝑛,𝑚𝑚) (1,0)  (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) 

 

5.5.2 Rotating wheel 

When wheel rotation is considered, the rolling velocity can affect the frequency split 

according to Appendix C. Hence, the effect of the rolling velocity under constant friction 

with a rotating wheel is investigated in this section. Case VI from Section 5.4 is adopted here 

but with the rolling velocity changing from 10 m/s to 15 m/s and 20 m/s.  The frequency 

domain results are summarised in Table 5-8. The natural frequencies of the doublet modes 

for some modes related with the unstable frequencies are given in Table 5-9. 

From Table 5-8 it can be found that the rolling velocity has an effect on the curve squeal 

with a rotating wheel. When the rolling velocity is 15 m/s, one more unstable frequency at 

3941 Hz appears compared with the results for 10 m/s. However, again the two modes within 

each doublet do not couple with each other; instead one of the doublet modes at 3915 Hz is 

coupling with one mode of the other doublet modes at 3977 Hz. When the rolling velocity 

is increased to 20 m/s, the unstable frequencies at 1954 and 3941 Hz disappear. This could 

be because of the change of the natural frequencies of the doublet modes at the corresponding 

wheel modes. 
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Table 5-8. Frequency domain prediction with different rolling velocity with a rotating wheel. 

Case VI 

(including wheel rotation) 

rolling velocity 10 m/s 

Unstable frequencies (Hz) 179.2 1959 1993  

Loop gain 1.78 1.37 5.38  

Wheel modes involved (Hz) 149.4 
1952 

1961 

1967 

1991 

 

(𝑛𝑛,𝑚𝑚) (1,0)    
      

Case VI  

with rolling velocity 

15 m/s 

Unstable frequencies (Hz) 180.1 1954 1999 3941 

Loop gain 1.80 3.35 6.53 2.21 

Wheel modes involved (Hz) 149.4 
1948 

1954 

1970 

1998 

3938 

3943 

(𝑛𝑛,𝑚𝑚) (1,0)    
      

Case VI  

with rolling velocity 

20 m/s 

Unstable frequencies (Hz) 181  2004  

Loop gain 1.83  3.63  

Wheel modes involved (Hz) 149.4 
 1974 

2006 

 

(𝑛𝑛,𝑚𝑚) (1,0)    

 

Table 5-9. The natural frequencies (in Hz) of the doublet modes with different rolling velocities. 

Natural frequencies (Hz) 

(n, m) 

10 m/s 15 m/s 20 m/s 

1959 

(2, r) 

1952 and 1967 1948 and 1970 1944 and 1974 

1976 

(4, 0) 

1961 and 1991 1954 and 1998 1946 and 2006 

3915 

(4, 1) 

3900 and 3930 3892 and 3938 3885 and 3945 

3977 

(6, 0) 

3954 and 4000 3943 and 4011 3932 and 4023 

 

5.6 Summary 

In this chapter, the curve squeal model presented in Chapter 4 is employed to perform 

frequency domain and the time domain analyses for an example wheel under different 

conditions. Results show that both falling and constant friction can lead to squeal due to 

different origins of the instabilities. Also, track dynamics can play an important role in curve 

squeal. Consequently three mechanisms have been identified: falling friction, wheel mode 

coupling and wheel/rail coupling. A more detailed investigation for the latter two 

mechanisms is performed in the next two chapters. 
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It is also found that inclusion of wheel rotation can have different effects on different wheels 

and can introduce instability where a non-rotating wheel may be stable. The effect of rolling 

velocity is found to have an influence on the curve squeal when a rotating wheel is 

considered. 
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6 Investigation of mode coupling effect based on a 

two-mode model 

As introduced in the literature review, wheel mode coupling is a possible mechanism for 

curve squeal in addition to the traditional falling friction mechanism. Moreover, in Section 

5.2 it has been shown that for Case V with constant friction and in the absence of track 

dynamics, instability still exist due to the coupling of two wheel modes. In this chapter, this 

mode coupling mechanism will be investigated by making use of a simplified two-mode 

model. This model is based on the model described in Section 3.3.1 (also in [38]). Different 

modes from different wheels are considered within this model. These wheels include a 

regional train wheel (Class 158 considered in Chapter 5), a wheel from a freight train and a 

resilient wheel from a tram. Parametric studies are performed including varying the adhesion 

coefficient, contact angle, lateral offset, and wheel damping. The effect of including falling 

friction is also studied. Some characteristics of the wheel response in the presence of the 

mode coupling instability are also presented. One is the frequency shift: the squealing 

frequency and the wheel natural frequency are different; the other is phase difference 

between the vibration in the axial and radial directions. Wheel vibration measurements of a 

squealing tram wheel [60] are analysed and qualitatively compared with the model to 

identify these features.  

6.1 Description of the wheel/rail interaction model 

The wheel is modelled through a modal approach; the modal parameters, i.e. mode shapes 

(𝜙𝜙𝑖𝑖) and natural frequencies (𝜔𝜔𝑖𝑖), are extracted from an axisymmetric finite element model. 

Modal damping ratios ( 𝜁𝜁𝑖𝑖 ) are included according to prior experience [1] or from 

measurements of wheel mobilities, where available (i.e. for the tram wheel). At the contact 

point the interaction with the rail is assumed to excite the wheel in two directions: normal 

and tangential to the contact plane; the other directions are ignored. The contact in the normal 

direction is represented by a linearized contact spring while the lateral forces are modelled 

through creep forces with saturation and a possible falling regime at high creepages, as 

described in Section 2.4.2. Figure 6-1 shows a schematic representation of the system as 

considered here. The physical coordinates x and y are used to represent the lateral and vertical 

directions, while 𝑡𝑡 and 𝑛𝑛 represent the directions tangential and normal to the contact plane, 

forming a coordinate system rotated by an angle 𝛼𝛼 with respect to x-y. In the context of 
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wheel-rail contact the angle 𝛼𝛼 represents the direction of the plane tangential to the wheel 

and rail surfaces at the contact point relative to the lateral direction. In this simplified model 

the track is not included; for simplicity it is assumed to be rigid throughout this chapter. The 

motion of the belt in Figure 6-1 represents the sliding velocity in the transverse direction on 

the wheel (not the rolling velocity). 
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Figure 6-1. Two degree-of-freedom system on moving belt and its analogue to wheel/rail system. 

For small amplitude vibration around the steady-state condition, the equations of motion in 

modal coordinates are: 

𝐈𝐈�̈�𝐪 + 𝐂𝐂𝑞𝑞�̇�𝐪 + 𝐊𝐊𝑞𝑞𝐪𝐪 = 𝚽𝚽T �
𝑓𝑓𝑥𝑥
𝑓𝑓𝑦𝑦
� = 𝚽𝚽T𝐑𝐑 �𝑓𝑓𝑡𝑡𝑓𝑓𝑛𝑛

� (6-1) 

where 𝐈𝐈 is the identity matrix; the modal damping matrix 𝐂𝐂𝑞𝑞 and modal stiffness matrix 𝐊𝐊𝑞𝑞 

are diagonal with diagonal terms equal to 2𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖 and 𝜔𝜔𝑖𝑖
2 respectively. 𝚽𝚽 is the mode shape 

matrix and 𝐑𝐑 represents a rotation matrix to transform the dynamic forces from directions 

tangential and normal to the contact  ( 𝑓𝑓𝑡𝑡  and 𝑓𝑓𝑛𝑛 ) into the x and y directions. This 

transformation can be found in Appendix B. The modal coordinate transformation is defined 

as 

𝐪𝐪 = 𝚽𝚽𝐓𝐓 �
𝑢𝑢𝑥𝑥
𝑢𝑢𝑦𝑦� 

(6-2) 

with 𝑢𝑢𝑥𝑥 and  𝑢𝑢𝑦𝑦 representing the dynamic displacements at the contact point in the 𝑥𝑥 and 𝑦𝑦 

directions.  

The forces in the right-hand term in Eq. (6-1) are themselves dependent on the displacement 

and velocity at the contact point. The system therefore does not consist of independent 

equations, despite being written in modal coordinates. It is required to solve the forcing terms 
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and will constitute the coupling between the modes considered and form a possible source 

of instability. 

In the normal direction 𝑛𝑛 , linearized Hertzian contact theory can be applied for small 

amplitudes of displacement [1]. The dynamic component of the normal force 𝑓𝑓𝑛𝑛  can be 

expressed through the contact stiffness as: 

𝑓𝑓𝑛𝑛 = −𝑘𝑘𝐻𝐻𝑢𝑢𝑛𝑛  (6-3) 

where 𝑢𝑢𝑛𝑛 is the dynamic displacement in the normal direction and 𝑘𝑘𝐻𝐻 is the linearized Hertz 

contact stiffness in the normal direction (see Section 2.4.1). 

The creep force is calculated as the product of the adhesion coefficient 𝜇𝜇 and the normal 

force 𝑁𝑁. In general the adhesion coefficient itself depends on both the sliding velocity and 

the normal load [26] but, in this simplified formulation, the dependence on the normal load 

is neglected. Hence, according to Eq. (4-41) the dynamic component of the creep force 𝑓𝑓𝑡𝑡 

can be found from 

𝑓𝑓𝑡𝑡 ≅ 𝜇𝜇(𝛾𝛾0)𝑓𝑓𝑛𝑛 +
𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

𝑁𝑁0
𝑉𝑉0
𝑣𝑣𝑡𝑡 (6-4) 

where the subscript 0 denotes the quasi-static quantities evaluated at the steady-state 

condition, 𝑉𝑉0 is the rolling velocity and 𝑣𝑣𝑡𝑡 is the sliding velocity in the tangential direction. 

Previous studies have shown that occurrence of squeal is dependent on the angle of attack 

(see e.g. [56, 66]). In this modelling approach, however, if a constant friction coefficient is 

considered and the angle of attack is large enough for the creep-adhesion curve to be in the 

saturated region, the actual value of the angle of attack is no longer important for stability. 

When including falling friction, the angle of attack is important in the whole creepage range 

as it affects the slope of the friction curve. 

Introducing a modal coordinate transformation, the dynamic force vector becomes: 

                   �
𝑓𝑓𝑡𝑡
𝑓𝑓𝑛𝑛
� = �

𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

𝑁𝑁0
𝑉𝑉

0
�𝑣𝑣𝑡𝑡 + �

�−𝜇𝜇�𝛾𝛾0�𝑘𝑘𝐻𝐻�
−𝑘𝑘𝐻𝐻

�𝑢𝑢𝑛𝑛

= �
𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

𝑁𝑁0
𝑉𝑉  0

0 0
�𝐑𝐑T𝚽𝚽�̇�𝐪+ �

0 −𝜇𝜇�𝛾𝛾0�𝑘𝑘𝐻𝐻
0 −𝑘𝑘𝐻𝐻

�𝐑𝐑T𝚽𝚽𝐪𝐪   

 

(6-5) 

Then the right hand term of Eq.(6-1) becomes: 
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𝚽𝚽𝐓𝐓 �
𝑓𝑓𝑥𝑥
𝑓𝑓𝑦𝑦
� = 𝚽𝚽T𝐑𝐑 �

𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

𝑁𝑁0
𝑉𝑉

 0

0 0
�𝐑𝐑T𝚽𝚽�̇�𝐪 +  𝚽𝚽𝐓𝐓𝐑𝐑 �0 −𝜇𝜇(𝛾𝛾0)𝑘𝑘𝐻𝐻

0 −𝑘𝑘𝐻𝐻
�𝐑𝐑T𝚽𝚽𝐪𝐪 

                  = 𝐂𝐂𝑞𝑞𝑞𝑞�̇�𝐪 + 𝐊𝐊𝑞𝑞𝐹𝐹𝐪𝐪 

 

(6-6) 

The overall linearized equation of motion can then be formulated as: 

𝐈𝐈�̈�𝐪 + �𝐂𝐂𝑞𝑞 − 𝐂𝐂𝑞𝑞𝑞𝑞��̇�𝐪 + �𝐊𝐊𝑞𝑞 − 𝐊𝐊𝑞𝑞𝑞𝑞�𝐪𝐪 = 0 (6-7) 

where the sizes of the matrices 𝐂𝐂𝑞𝑞, 𝐂𝐂𝑞𝑞𝑞𝑞, 𝐊𝐊𝑞𝑞, 𝐊𝐊𝑞𝑞𝑞𝑞 are 𝑁𝑁𝑚𝑚 × 𝑁𝑁𝑚𝑚 where 𝑁𝑁𝑚𝑚 is the number of 

modes considered in the model. Unless otherwise stated, for all calculations presented in this 

chapter, only two modes are considered and the effect of other modes is neglected. This 

simplification is verified in Section 6.4.5, where, for some of the cases analysed, the effect 

of including other modes is also investigated. When only two modes are included, 𝐊𝐊𝑞𝑞𝑞𝑞 and 

𝐂𝐂𝑞𝑞𝑞𝑞 can be expanded as: 

𝐊𝐊𝑞𝑞𝑞𝑞 = �
−𝜙𝜙𝑡𝑡1𝜙𝜙𝑛𝑛1𝜇𝜇(𝛾𝛾0)𝑘𝑘𝐻𝐻−𝜙𝜙𝑛𝑛12 𝑘𝑘𝐻𝐻 −𝑘𝑘𝐻𝐻𝜙𝜙𝑛𝑛2(𝜙𝜙𝑡𝑡1𝜇𝜇(𝛾𝛾0)+𝜙𝜙𝑛𝑛1)
−𝑘𝑘𝐻𝐻𝜙𝜙𝑛𝑛1(𝜙𝜙𝑡𝑡2𝜇𝜇(𝛾𝛾0)+𝜙𝜙𝑛𝑛2) −𝜙𝜙𝑡𝑡2𝜙𝜙𝑛𝑛2𝜇𝜇(𝛾𝛾0)𝑘𝑘𝐻𝐻−𝜙𝜙𝑛𝑛22 𝑘𝑘𝐻𝐻

� (6-8) 

 

𝐂𝐂𝑞𝑞𝑞𝑞 =

⎣
⎢
⎢
⎢
⎡ 𝜙𝜙𝑡𝑡12

𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

𝑁𝑁0
𝑉𝑉0

𝜙𝜙𝑡𝑡1𝜙𝜙𝑡𝑡2
𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

𝑁𝑁0
𝑉𝑉0

𝜙𝜙𝑡𝑡1𝜙𝜙𝑡𝑡2
𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

𝑁𝑁0
𝑉𝑉0

𝜙𝜙𝑡𝑡22
𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

𝑁𝑁0
𝑉𝑉0 ⎦

⎥
⎥
⎥
⎤
 (6-9) 

where the effect of the coordinate rotation, 𝐑𝐑, has been included by rotating the mode shapes 

instead of the forces as: 

𝚽𝚽𝐓𝐓𝐑𝐑 = �𝜙𝜙𝑡𝑡1 𝜙𝜙𝑛𝑛1
𝜙𝜙𝑡𝑡2 𝜙𝜙𝑛𝑛2

� (6-10) 

Here 𝜙𝜙𝑡𝑡1, 𝜙𝜙𝑡𝑡2 are the mode shapes of the first and second modes in the tangential direction, 

while 𝜙𝜙𝑛𝑛1, 𝜙𝜙𝑛𝑛2 are the corresponding mode shapes in the normal direction. 

Thus, the total stiffness matrix can be written as: 

𝐊𝐊tot = 𝐊𝐊𝑞𝑞 − 𝐊𝐊𝑞𝑞𝑞𝑞 = �𝐾𝐾11 𝐾𝐾12
𝐾𝐾21 𝐾𝐾22

� 
 

(6-11) 

with 
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𝐾𝐾11 = 𝜔𝜔1
2 + 𝜙𝜙𝑡𝑡1𝜙𝜙𝑛𝑛1𝜇𝜇(𝛾𝛾0)𝑘𝑘𝐻𝐻+𝜙𝜙𝑛𝑛12 𝑘𝑘𝐻𝐻 (6-12) 

𝐾𝐾12 = 𝑘𝑘𝐻𝐻𝜙𝜙𝑛𝑛2(𝜙𝜙𝑡𝑡1𝜇𝜇(𝛾𝛾0)+𝜙𝜙𝑛𝑛1) (6-13) 

𝐾𝐾21 = 𝑘𝑘𝐻𝐻𝜙𝜙𝑛𝑛1(𝜙𝜙𝑡𝑡2𝜇𝜇(𝛾𝛾0)+𝜙𝜙𝑛𝑛2) (6-14) 

𝐾𝐾22 = 𝜔𝜔2
2 + 𝜙𝜙𝑡𝑡2𝜙𝜙𝑛𝑛2𝜇𝜇(𝛾𝛾0)𝑘𝑘𝐻𝐻+𝜙𝜙𝑛𝑛22 𝑘𝑘𝐻𝐻 (6-15) 

6.2 Stability analysis 

There are several factors in Eqs. (6-11) to (6-15) that can affect the values of the upper and 

lower off-diagonal terms of the total stiffness matrix and therefore the stability of this system. 

These are the directions and the amplitudes of the rotated mode shapes, the directions of the 

friction forces, the value of the adhesion coefficient and the contact stiffness. Also, it can be 

seen from Eq. (6-9) that the slope of the friction characteristic 𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

 in the matrix 𝐂𝐂𝑞𝑞𝑞𝑞  can 

modify the total damping matrix �𝐂𝐂𝑞𝑞 − 𝐂𝐂𝑞𝑞𝑞𝑞�. 

The stability of the system is studied in this chapter by analysing the eigenvalues of Eq. (6-7). 

Instability occurs when one of the eigenvalues has a positive real part. 

Alternatively, the analytical expressions of the Routh–Hurwitz coefficients [94, 104] can be 

adopted to show how the different elements of the stiffness and damping matrix need to be 

combined together for the system to be unstable. The characteristic equation of the system 

under constant friction (i.e. 𝐂𝐂𝑞𝑞𝑞𝑞 = 𝟎𝟎) is: 

𝜆𝜆4 + (𝑐𝑐1 + 𝑐𝑐2)𝜆𝜆3 + (𝐾𝐾11 + 𝐾𝐾22 + 𝑐𝑐1𝑐𝑐2)𝜆𝜆2 + (𝑐𝑐1𝐾𝐾22 + 𝑐𝑐2𝐾𝐾11)𝜆𝜆 + 𝐾𝐾11𝐾𝐾22
− 𝐾𝐾12𝐾𝐾21 = 0 

(6-16) 

where λ are the eigenvalues of the system; 𝐾𝐾11,𝐾𝐾12 ,𝐾𝐾21,𝐾𝐾22 can be found from Eq. (6-12) 

to Eq. (6-15) while 𝑐𝑐1 and 𝑐𝑐2 are equal to 2𝜁𝜁1𝜔𝜔1 and 2𝜁𝜁2𝜔𝜔2 respectively. 

According to the Routh–Hurwitz criterion [94, 104], the system is stable if all the following 

coefficients are positive: 

𝐻𝐻1 = 𝑐𝑐1 + 𝑐𝑐2 (6-17) 

𝐻𝐻2 = 𝐾𝐾11𝑐𝑐1 + 𝑐𝑐12𝑐𝑐2 + 𝐾𝐾22𝑐𝑐2 + 𝑐𝑐1𝑐𝑐22 (6-18) 
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𝐻𝐻3 = (𝑐𝑐1𝐾𝐾11 + 𝑐𝑐12𝑐𝑐2 + 𝑐𝑐2𝐾𝐾22 + 𝑐𝑐1𝑐𝑐22)(𝑐𝑐1𝐾𝐾22 + 𝑐𝑐2𝐾𝐾11) − (𝑐𝑐1 + 𝑐𝑐2)2(𝐾𝐾11𝐾𝐾22
− 𝐾𝐾12𝐾𝐾21) 

(6-19) 

𝐻𝐻4 = 𝐾𝐾11𝐾𝐾22 − 𝐾𝐾12𝐾𝐾21
= 𝜔𝜔1

2𝜔𝜔2
2 + 𝜔𝜔1

2𝜙𝜙𝑡𝑡2𝜙𝜙𝑛𝑛2𝜇𝜇(𝛾𝛾0)𝑘𝑘𝐻𝐻 + 𝜔𝜔1
2𝜙𝜙𝑛𝑛22 𝑘𝑘𝐻𝐻

+ 𝜔𝜔2
2ϕt1𝜙𝜙𝑛𝑛1𝜇𝜇(𝛾𝛾0)𝑘𝑘𝐻𝐻 + 𝜔𝜔2

2𝜙𝜙𝑛𝑛12 𝑘𝑘𝐻𝐻 

(6-20) 

When at least one of the coefficients 𝐻𝐻𝑖𝑖 is negative, this system is unstable. It is clear that 

𝐻𝐻1 is always positive as the damping ratios of the two modes are positive. A necessary 

condition for 𝐻𝐻2  to be negative is that 𝐾𝐾11  and/or 𝐾𝐾22  are negative. However in railway 

applications they are usually positive for modes above 500 Hz. This can be illustrated as 

follows, if in Eq. (6-12), 𝑘𝑘𝐻𝐻 is assumed to be in the order of 109 N/m and 𝜇𝜇 is set to 1, the 

sign depends on the value of the mass normalised mode shapes in relation to the circular 

frequency squared. By means of the FE model it is found that the magnitude of the mass-

normalised mode shape at the contact point is less than 0.15 for all the modes of all the 

wheels analysed in this chapter. Given this constraint, 𝐾𝐾11 and 𝐾𝐾22 are positive above 500 

Hz. Following similar reasoning, 𝐻𝐻4 can be found to be always positive above 500 Hz.  

Hence, the stability of the system above 500 Hz is governed only by 𝐻𝐻3 and the system is 

unstable if: 

𝐾𝐾12𝐾𝐾21 < 𝐾𝐾11𝐾𝐾22 −
(𝑐𝑐1𝐾𝐾11 + 𝑐𝑐12𝑐𝑐2 + 𝑐𝑐2𝐾𝐾22 + 𝑐𝑐1𝑐𝑐22)(𝑐𝑐1𝐾𝐾22 + 𝑐𝑐2𝐾𝐾11)

(𝑐𝑐1 + 𝑐𝑐2)2  (6-21) 

The right-hand side of the above inequality can be simplified as:  

−𝑐𝑐1𝑐𝑐2(𝐾𝐾11 − 𝐾𝐾22)2 − 𝑐𝑐13𝑐𝑐2𝐾𝐾22 − 𝑐𝑐12𝑐𝑐22𝐾𝐾22 − 𝑐𝑐1𝑐𝑐23𝐾𝐾11
(𝑐𝑐1 + 𝑐𝑐2)2  (6-22) 

which is always negative. Therefore a necessary condition for instability is that 𝐾𝐾12 and 𝐾𝐾21 

have different signs. 

The stability of the system is then defined by any possible combination of the physical 

variables that satisfies Eq. (6-21). In particular, these variables are: (i) the mode shapes at 

the contact point, (ii) the natural frequencies, (iii) the damping ratios, (iv) the adhesion 

coefficient and (v) the contact stiffness. Eq. (6-21) can be used, as an alternative to the 

eigenvalue analysis, to study the stability of the system and can provide, in some cases, a 

clearer physical understanding of the problem; an example is shown below in Section 6.4.3. 
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However, in general, all five parameters play a combined role and need to be analysed 

together. 

6.3 Description of the cases studied 

Different pairs of modes from different wheels are considered as examples. As well as the 

wheel considered in Chapter 5 (Class158), a wheel from a freight train and a resilient wheel 

from a tram are also considered. Their cross-sections are shown in Figure 6-2. The FE model 

of regional train wheel and the resilient wheel are from previous studies [27, 31]. The FE 

model of the freight train wheel is developed here. ANSYS Finite Element (FE) software is 

used for the FE analysis. Only the cross-section is modelled and the element used here is 

Plane83, which is used for 2-D modelling of axi-symmetric structures with non-

axisymmetric loading. The translations for three degree of freedom (X, Y, and Z) are 

constrained at the inner edge of the wheel hub. The total element number is 591 and the 

element size is approximately 5 mm. To select the pairs of modes for use in the parametric 

study, some preliminary calculations have been performed by making use of the model 

introduced in Chapter 4.  

   

(a)  (b)  (c) 

Figure 6-2. Cross-sections for the wheels considered. (a) UK Class 158 regional train wheel for 
Case 1, radius 420 mm; (b) freight train wheel type BA319 for Case 2, radius 460 mm; (c) 

resilient tram wheel for Cases 3, 4 and 5, radius 330 mm. 

Five cases have finally been selected and they are summarised in Table 6-1. These are not 

the only possible unstable modes but are selected either because they were related to 

measured squealing frequencies (Cases 3-5) or are just taken as examples (Cases 1-2). There 

are some other unstable frequencies in these wheels which are due to the coupling between 
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rigid modes with low frequency modes. These are not discussed here. Case 1 is the pair of 

modes found to exhibit mode coupling in Chapter 4.4. Case 2 is formed of a pair of modes 

from a freight train wheel of type BA319. Cases 3, 4 and 5 consist of three different pairs of 

modes from the same resilient tram wheel. In these last three cases the Finite Element (FE) 

model developed and validated in [31] has been adopted and the modal damping ratios have 

been obtained from measurements, while the parameters representing the rubber elements in 

the FE model have been updated in [60] so that the natural frequencies and modal damping 

ratios could match those found in measured data. The radial and axial mobilities of this wheel 

up to 5 kHz at the nominal contact point are shown in Figure 6-3, in which the FE results 

(after model tuning) are compared with measured data. 

The mode shapes of the chosen modes and their vector representations at the nominal contact 

point are shown in Figure 6-4 to Figure 6-6. For Case 3 the presence of the rubber layer in 

the resilient wheel makes it more difficult to assign a simple description to the mode shape 

based on the numbers of nodal diameters and nodal circles. With the normalisation applied 

in the FE model, the modal masses of the selected modes are all equal to 0.5 kg. 

In all the calculations performed for this chapter, the wheel is assumed to be the left-hand 

wheel of a leading wheelset of a bogie, while the curve can be a left-hand or right-hand curve 

depending on whether the inner or outer wheel is considered. For the left-hand wheel, the 

contact angle is assumed to be always positive (see Figure 6-1) and the steady-state creepage 

is always positive for a right-hand curve and negative for a left-hand curve. 
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Table 6-1. Parameters of two-mode model used for different cases 

  (n,m) 
Natural 
frequency  
(Hz) 

Mode shape at 
nominal contact 
point 
(normal 
direction)  
(m) 

Mode shape at 
nominal contact 
point  
(axial direction) 
(m) 

Rotation 
mode shape 
about 
longitudinal 
direction 
(rad) 

Original 
Damping 
ratio 

Case 1 

Lower 
mode (2, r) 1959 5.4×10-2 -3.5×10-3 -3.1×10-1 1.0×10-4 

Higher 
mode (4, 0) 1976 6.2×10-3 -8.2×10-2 -6.2×10-1 1.0×10-4 

        

Case 2 

Lower 
mode (3, r) 1983 5.5×10-2 2.1×10-2 1.4×10-1 1.0×10-4 

Higher 
mode (1, 2) 1993 2.7×10-3 3.5×10-2 1.1×100 1.0×10-2 

        

Case 3 

Lower 
mode (4, 1) 2474 -6.8×10-2 -1.1×10-1 -9.5×10-1 4.2×10-3 

Higher 
mode 

n =1; 
See 
Figure 
6-3 

2536 1.5×10-2 7.9×10-2 3.5×100 5.9×10-3 

        

Case 4 

Lower 
mode (4, 0) 2223 8.1×10-2 -7.9×10-2 -6.0×10-1 5.0×10-3 

Higher 
mode (4, 1) 2474 -6.8×10-2 -1.1×10-1 -9.5×10-1 4.2×10-3 

        

Case 5 

Lower 
mode (3, 0) 1271 6.0×10-2 -1.0×10-1 -7.2×10-1 7.2×10-3 

Higher 
mode (3, 1) 1417 -8.7×10-2 -8.0×10-2 -6.4×10-1 1.2×10-2 

 

Figure 6-3. Tram wheel mobilities at nominal contact point: (a) axial direction; (b) radial direction. 
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(a) (b) (c) 

Figure 6-4. Mode shapes of Class 158 wheel (a) n=2 at 1959 Hz; (b) n=4 at 1976 Hz; (c) mode 
shape vectors for mode (a) and mode (b) at nominal contact point. 

 

   

(a) (b) (c) 

Figure 6-5. Mode shapes of BA319 freight wheel (a) n=3 at 1983 Hz; (b) n=1 at 1993 Hz; (c) 
mode shape vectors for mode (a) and mode (b) at nominal contact point. 
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(a) (b) (c) (d) (e) 

 

(f) 

 

(g) 
 

Figure 6-6. Mode shapes of resilient wheel (a) n=4 at 2476 Hz; (b) n=1 at 2536 Hz; (c) n=3 at 
1271 Hz; (d) n=3 at 1417 Hz; (e) n=4 at 2223 Hz; (f) mode shape vectors for modes (a), (b) and 

(e) at nominal contact point; (g) mode shape vectors for modes (c) and (d) at nominal contact 
point. 

6.4 Frequency-domain results from two-mode model 

Results from the frequency-domain model are shown in this section by evaluating the real 

part of the eigenvalues; positive values indicate instability. Results are presented as a 

function of the quasi-static adhesion coefficient 𝜇𝜇(𝛾𝛾0), as well as the lateral offset of the 

contact position 𝛥𝛥𝑥𝑥 , the contact angle 𝛼𝛼, the damping ratio 𝜁𝜁𝑖𝑖. Although these parameters 

are not completely independent of each other, they are assessed here independently to give 

a more complete overview of their effect on the stability of the system described in Eq. (6-7). 

A constant friction model is assumed throughout this section. 

(a) 

(b) 

y 

x 

(e) (c) 

(d) 

y 

x 
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6.4.1 Effect of the adhesion coefficient on stability and unstable 

frequency 

First, an example is presented for two cases to show the effect of the adhesion coefficient on 

the stability. For Case 1, a left-hand curve is considered (the wheel is the inner wheel) and 

the contact is assumed to be at the nominal contact point. Figure 6-7 shows the results. For 

an adhesion coefficient of 0.66 one of the two eigenvalues becomes positive and the system 

is unstable. The imaginary parts, when converted into Hz correspond to the frequency of 

oscillation, start at certain values related to the natural frequencies and become closer with 

increasing adhesion coefficient. The starting value of the imaginary parts are not the same 

with the natural frequencies because the presence of 𝑘𝑘𝐻𝐻 in Eq. (6-12). From the imaginary 

part of the eigenvalue, the corresponding unstable frequency is found to be 1986 Hz when 

𝜇𝜇 = 0.66. This has a good agreement with Case V in Section 5.2. 

  
Figure 6-7. Imaginary part and real part (growth rate) of eigenvalues for Case 1.  

For Case 5, the imaginary part and the real part of the eigenvalues of this system are shown 

in Figure 6-8 for a right-hand curve (the wheel is an outer one), with an offset of 20 mm and 

a contact angle of 20˚. Instability occurs for adhesion coefficients greater than about 0.6 

when the real part of one eigenvalue becomes larger than zero. The squealing frequency is 

predicted to be around 1470 Hz and varies slightly with adhesion coefficient. 

  

Figure 6-8. Imaginary part (frequency) and real part (growth rate) of eigenvalues for 

Case 5.  
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6.4.2 Combined effect of the adhesion coefficient and lateral offset 

In this section, the effect of varying the lateral contact position on the wheel is determined 

for a left-hand curve (the wheel is the inner wheel) with the contact point assumed to be on 

the wheel tread. For the different wheels, the range of offset values is different and varies 

according to the wheel section design while the contact angle is assumed to remain constant. 

Specifically, the contact angle is assumed to be 1.5˚ for Case 1, 2˚ for Case 2 and 3˚ for 

Cases 3, 4 and 5. The nominal contact point is defined as 0 mm in each case. A negative 

offset means that the contact point moves away from the flange; a positive offset means it 

moves towards the flange. 

The effect of varying the adhesion coefficient and the offset for those cases that show 

instability is presented in Figure 6-9 in the form of stability maps. The adhesion coefficient 

𝜇𝜇 is varied between 0 and 1. The stability maps are divided into stable and unstable areas by 

studying the sign of the real part of the eigenvalues of Eq. (6-7).  Instability can be found in 

Cases 1, 2 and 3. For Cases 4 and 5 the system was found to be stable for any contact position 

across the wheel tread so these are not shown here. For Cases 2 and 3, only positive offsets 

will give instability although there are other pairs of modes that are unstable for negative 

offsets. For Case 1, the instability can occur for offsets between -7 mm and 20 mm for 

sufficiently high µ. The minimum value of adhesion coefficient necessary for instability is 

found in Case 2 and is as low as 0.3 for an offset of 5 mm.  
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(a)  (b)  

 

(c)  

Figure 6-9. Stability maps for the inner wheel for contact on the tread.  Effect of the offset of the 
contact point from the nominal position and of the adhesion coefficient. (a) Case 1; (b) Case 2; 

(c) Case 3. 

6.4.3 Combined effect of the adhesion coefficient and contact angle 

To study the effect of the contact angle, the wheel is assumed to be traversing a right-hand 

curve (i.e. it is the outer wheel) and the contact point is assumed to be on the flange.  For 

simplicity, for the different cases, the offset is assumed to remain constant, with the contact 

position set in the middle of the flange, whilst the contact angle is varied between 0˚ and 90˚. 

Specifically, for Case 1 the lateral offset is 30 mm, for Case 2 it is 40 mm and for Cases 3, 

4 and 5 it is 20 mm. The rotation of the contact plane is implemented by means of a rigid 
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rotation from x-y to n-t coordinates as shown in Figure 6-10. Clearly, the range of rotations 

considered is exaggerated compared with railway applications but it allows the instability 

trends to be captured in a wider area.  

Again the adhesion coefficient 𝜇𝜇 is varied between 0 and 1. The corresponding stability 

maps are shown in Figure 6-10. Instability is found for Cases 2, 4 and 5. Cases 1 and 3 are 

always stable and are not shown here. In Case 2, instability extends over a range of contact 

angles between 22˚ and 66˚. There is also a small unstable area for contact angles between 

85˚ and 90˚ but the adhesion coefficient required for instability here is larger than 0.85. The 

unstable area is small for Case 4; squeal is predicted for small contact angles, below about 

20˚, and with adhesion coefficients above 0.76. Finally the pair of modes at 1.2 and 1.4 kHz 

(Case 5) can lead to instability for angles less than 30˚ with adhesion coefficients above 0.6. 

According to previous studies in literature review, curve squeal is often attributed to the 

inner wheels (see Table 1-5). However, the findings here suggest that the outer wheel may 

also squeal and mode coupling is a possible mechanism behind this phenomenon. The modes 

involved are not necessarily the same as for the inner wheel. 

A feature in defining the shape of the stability map is the orientation of the rotated/translated 

mode shapes with respect to the contact plane. In particular, when the mode shape of one of 

the two modes is parallel to the contact plane, one of the off-diagonal terms of the stiffness 

matrix will be equal to zero (see Eq. (6-13) and (6-14)). In this condition the system is always 

stable as the criterion in Eq. (6-21) cannot be satisfied. For example, for Case 2 (see 

Figure 6-10(a)), the system becomes stable when the contact angle approaches 69˚. From the 

mode shape shown in Figure 6-5(c), at this contact angle, the mode at 1983 Hz is parallel to 

the contact plane. This finding suggests that the wheel modes prone to have mode coupling 

should have significant modeshape components in both lateral and vertical directions (for 

example, see mode at 1271 and 1417 Hz in Figure 6-6). 

In the other situations considered, all the other system parameters are also playing an 

important role in defining stability and it is difficult to define a priori a set of necessary 

conditions that an unstable pair of modes should exhibit. 
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(a)  (b)  

 

(c)  

Figure 6-10. Stability maps for the outer wheel for contact on the flange.  Effect of the contact 
angle and of the adhesion coefficient. (a) Case 2; (b) Case 4; (c) Case 5. 

6.4.4 Effect of wheel damping 

Increased wheel damping is often proposed as a solution for curve squeal, although in 

practice it is not always found to be successful [4]. In this section, Cases 1 to 4 described in 

Section 6.3, are adopted to discuss the effect of changing the damping ratios of the two 

modes. In order to do this, for Cases 1, 2 and 3, contact on the wheel tread is considered and 

a single value of lateral offset within the corresponding unstable regions shown in Figure 

6-9 is chosen for each case. This is equal to 0 mm for Case 1, 8 mm for Case 2 and 10 mm 
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for Case 3. For Case 4, flange contact is considered and a single contact angle in the unstable 

region shown in Figure 6-10(b) is chosen, which is 10˚. 

First, the damping of the higher frequency mode is varied between 10−4 and 10−1 while the 

damping of the lower frequency mode is kept equal to the original value shown in Table 6-1. 

Figure 6-11 shows the corresponding stability maps. For Case 3, it can be seen that 

increasing the damping ratio of the higher frequency mode always has a beneficial effect in 

terms of the stability of the system. However, for Cases 1, 2 and 4, there is a range of 

damping ratios in which increasing the damping can make the system more unstable. 

When the damping ratio of the lower frequency mode is changed, it is found that, for Cases 

1, 3 and 4, the stability maps are similar to the corresponding ones in Figure 6-11. Hence 

they are not shown here. Only for Case 2 are there differences as increasing the damping 

ratio of the lower mode stabilizes the system (see Figure 6-12). The reason for this is that 

the original damping ratios of these two modes are considerably different, and the results in 

both Figure 6-11(b) and Figure 6-12 are calculated using the original damping for the mode 

that is not changed. Specifically, in Figure 6-11(b), when the damping of the higher 

frequency mode changes, the damping ratio of the lower frequency mode remains as 10−4, 

whereas in Figure 6-12, the damping ratio of the higher frequency mode remains as 10−2 

when the damping of the lower mode is changed. This, and other results in Figure 6-11, 

indicate that the instability is greater when the modes have very dissimilar damping ratios. 
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(a) (b) 

   

(c) (d) 

Figure 6-11. Effect of changing the damping ratio of the higher frequency mode. (a) Case 1, 
0 mm offset; (b) Case 2, 8 mm offset; (c) Case 3, 10 mm offset; (d) Case 4, contact angle 10˚. 
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Figure 6-12. Effect of changing the damping ratio of the lower frequency mode of Case 2. 

The effect of changing the damping of both modes simultaneously is shown in Figure 6-13. 

In this case, when the damping ratio of the higher frequency mode increases, the ratio of the 

two damping ratios (𝜉𝜉1/𝜉𝜉2) is kept constant. In Figure 6-13 the stable areas are always to the 

left of the corresponding lines. It can be seen that now the results for these four cases have 

the same trend. For values of damping below a certain limit, the stability of the system is not 

affected by changes in the damping ratios. This limit value is different for the different cases, 

being as low as 0.04% for Case 1 and almost 0.4% for Case 2. 

In summary, adding damping to the wheel does not automatically eliminate the possibility 

of curve squeal. If the mechanism responsible for the instability is mode coupling, as here, 

in the extreme case that the damping of a single mode is increased, the system can even 

become more unstable in certain situations. This behaviour has been observed previously by 

other authors and has often been described as the “destabilisation paradox”, see e.g. [105]. 

Even for a more realistic case where the damping is increased for both modes, a limit value 

needs to be exceeded for the added damping to have a significant effect in eliminating the 

instability. 
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Figure 6-13. Effect of damping (keeping the ratio between the two modes 𝜁𝜁1/𝜁𝜁2 constant). Solid 
line: Case 1, 0 mm offset; dashed line: Case 2, 8 mm offset; dotted line: Case 3, 10 mm offset; 

dash-dot line: Case 4, contact angle 10˚. 

6.4.5 Effect of other modes 

For all the cases considered so far, only pairs of modes have been selected. In this section, 

additional neighbouring modes are included in the model to verify whether this has an effect 

on stability. 

Figure 6-14(a) shows the stability map for Case 1 with different numbers of modes included. 

Here, ‘two modes’ corresponds to the original two coupled modes (1959 Hz and 1976 Hz) 

given in Figure 6-9(a). Then the modes at the following natural frequencies are added, one 

at a time: 1853 Hz, 2136 Hz and 2210 Hz. When the number of modes is increased from 2 

to 5, the unstable region is extended to slightly lower adhesion coefficients, but has a very 

similar shape. 

Similarly, Figure 6-14(b) shows the stability map with different numbers of modes for Case 

2. The added modes are: 1923 Hz, 2254 Hz, 2374 Hz. In this case the stability map is affected 

only slightly by the additional modes, although the trend is the opposite to the previous case, 

as the unstable area decreases when more modes are included in the system. Similar results 

can be found for other cases. It is therefore justified to use only two modes at a time in the 

current study of mode coupling. 
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(a)  (b)  

Figure 6-14. Stability map including different number of modes. (a) Case 1; (b) Case 2. 

6.5 Frequency domain analysis with presence of both 

falling friction and mode coupling 

Unlike previous section, this section introduce a falling friction in this two-mode model and 

will study falling friction and mode coupling together. 

If a falling region is introduced in the friction model, the effective damping of the system is 

modified by the friction force. With a single-mode model of the wheel, a limit value of the 

friction slope for stability can be calculated. According to [44], this can be found as: 

𝜕𝜕𝜇𝜇
𝜕𝜕𝛾𝛾0

=
2𝜔𝜔𝑖𝑖𝜉𝜉𝑖𝑖𝑉𝑉
𝑁𝑁𝛷𝛷𝑥𝑥𝑖𝑖

2  (6-23) 

where  𝛷𝛷𝑥𝑥𝑖𝑖 is the mass-normalised mode shape in the tangential direction of the 𝑖𝑖𝑡𝑡ℎ mode. 

However, for a two-mode system this simple estimate no longer applies. 

To show the effect of friction slope, Case 2 is considered here and the maximum friction 

coefficient 𝜇𝜇0 is set to equal to 0.4. The stability map with different friction slopes and 

contact angles is shown in Figure 6-15, with a close-up in Figure 6-15(b). The solid line 

shows the division between stable and unstable areas for the two-mode system. As shown 

already in Figure 6-10(a) the system with constant friction is unstable at this value of friction 

coefficient between about 48° and 64°. Figure 6-15 also shows the minimum friction slopes 

that would result in instability when each wheel mode is considered as a single degree of 
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freedom (dof) system (i.e. Eq. (6-23)) in the axial direction (dashed line and dotted line). For 

all the curves, the stable region is always below the corresponding line and the unstable 

region is above it. 

The line representing the limit value for the lower frequency mode (dashed line) crosses the 

line of stability of the whole system at around 45˚ and again at 65˚ whereas the line 

corresponding to the higher frequency mode (dotted line) never crosses the solid line. In the 

region above both the solid and dashed/dotted lines the system is considered to be unstable 

due to the negative slope of the friction curve. 

  

(a)  (b)  

Figure 6-15. Stability map with different contact angles and friction curve slopes for Case 2 with 
𝜇𝜇 = 0.4. (a) Stability map; (b) close-up. (Solid line: mode coupling; dashed line: lower frequency 

mode; dotted line: higher frequency mode). 

Three interesting areas can be identified between the continuous and broken lines. They are 

highlighted as ‘area 1’, ‘area 2’ and ‘area 3’ in the figure. Inside both area 1 and area 2, the 

two-mode system is stable, even although the slope of the friction curve is above the limit 

value of the lower frequency mode. However, inside area 3, the system is unstable due to 

mode coupling as the slope of the friction curve is below the limit value for the single mode. 

Nevertheless the shape of area 3 changes as the slope of the friction curve is increased which 

suggests that the negative slope is modifying the damping of the system, and consequently 

affecting the mode-coupling instability.  

Another example is shown in Figure 6-16. This corresponds to Case 5 with the maximum 

friction coefficient set to 0.8. As seen in Figure 6-10(c), for constant friction at this level this 

system is unstable between about 8° and 30°. Similar trends to the previous results can be 
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seen. Analogous results are also found for other cases and in general they can be summarized 

as follows. Sometimes the single dof approach indicates stability where the two-mode 

system is actually unstable due to mode coupling (e.g. area 3 in Figure 6-15 and Figure 6-16). 

For other combinations of parameters the single dof approach would give instability due to 

a negative damping term, but the two-mode system is actually stable (e.g. areas 1 and 2 in 

Figure 6-15, area 2 in Figure 6-16). In these cases the presence of an additional coupled 

degree of freedom stabilises the single dof instability. 

 

Figure 6-16. Stability map with different contact angles and friction curve slopes for Case 5 with  
𝜇𝜇 = 0.8 (solid line: mode coupling; dashed line: lower frequency mode; dotted line: higher 

frequency mode). 

6.6 Time-domain results for two-mode model 

In the frequency-domain analysis performed above, the friction force is linearized around 

the steady-state creepage. To include the nonlinearities of the friction force, in this section 

time-domain simulations are also carried out by using a step-by-step integration method 

(Runge-Kutta method [96]). This allows the nonlinearity to be fully considered and the limit 

cycle to be calculated. Case 5, based on the tram wheel modes, is adopted as an example for 

time-domain analysis. The wheel is represented by the same two modes only. First, a 

particular combination of friction coefficient and contact angle in the unstable region 

according to Figure 6-10 is chosen. Here, for this case, the contact angle and friction 

coefficient are chosen as 20˚ and 0.8 respectively. 
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Figure 6-17 shows the time-domain solutions for this two-mode system. It can be seen that 

the responses in both tangential and normal directions increase until the limit cycle is reached. 

The close-up of the limit cycle shows a phase difference (135°) between the responses in the 

two directions. The spectrum shows that the frequency of the limit cycle is at 1496 Hz. This 

is not equal to either of the natural frequencies of the two modes considered (i.e. 1271 Hz 

and 1417 Hz). The higher frequency peaks in the spectrum correspond to harmonics of this 

fundamental frequency appearing due to the non-linearity in the creep force. 

  

(a)  (b)  

Figure 6-17. Time-domain solution for Case 5 with angle of 20˚, friction coefficient of 0.8 and 
offset of 20mm. (a) Complete solution; (b) spectrum of the responses. solid line: tangential 

direction; dash line: normal direction. 

Next, the phase shift is investigated when both mode coupling and falling region are included. 

Again, Case 5 is adopted and three different combinations of contact angle and adhesion 

coefficient are used. A falling friction law is considered with different friction curve slopes 

at the steady-state creepage value.  

From the time-domain simulations, the phase difference in the limit cycle between the two 

directions is calculated by taking the Fourier transforms of the limit cycle responses. The 

results are shown in Figure 6-18. It can be seen that with larger slopes where falling friction 

is expected to dominate, the phase difference tends to 0˚. This is aligned with the results 

shown in Figure 6-16, where a slope of 2 or more was found to be above the single mode 

stability lines. In the absence of mode coupling, where a single (real) mode is responsible 

for squeal, the phase difference is expected to be zero. Figure 6-18(b) gives the squealing 

frequency from the limit cycle; it starts from around 1500 Hz and tends to the frequency of 
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the higher mode (1417 Hz) with increasing slope. In the absence of mode coupling the 

instability is due to negative damping and is associated with a single wheel mode. The 

presence of a phase difference and frequency shift are indicators of the presence of mode 

coupling although they do not exclude the influence of falling friction, as both mechanisms 

may be acting together, as illustrated in Section 6.5. 

 

(a) 

 

(b) 
Figure 6-18. Phase difference and squealing frequency with different friction slopes for Case 2: 

(a) phase difference; (b) squealing frequency. 

The examples shown in this chapter are all taken from an unstable region of the stability map 

(see Figure 6-9(c)); the response is unstable and builds up to a limit cycle. If the system is 

solved for input parameters taken from the stable areas the response decays with time. 

However, there are some combinations of input data, within the stable regions but close the 

unstable ones, which result in beating. This has been demonstrated in Section 3.3.2 using the 

model from [38] for the case of a two dof mass on a moving belt. 

6.7 Frequency shift and phase difference in a measurement 

campaign 

The tram wheel adopted in the calculations of Cases 3, 4 and 5 is an example of a resilient 

wheel used for trams. Field experiments have been presented in [60] with this type of wheel 

running on a curve with severe squeal noise problems. The selected test section had a very 

small radius of 18 m with grooved rails and ballasted track (see Figure 6-19); as a result the 

angle of attack was found to be around 2.5˚ [31] and it can be fully expected that the contact 

is in the saturated region. The wheel was fitted with accelerometers and the vibration in both 
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axial and radial directions on the wheel tyre was recorded. A detailed description of the 

measurements is given in [60]; this wheel was also used in [31] to study the effect of the 

presence of two-point contact on squeal noise. In fact it is likely that during running in the 

curve, both outer and inner wheels had two contact points. The outer wheel was in contact 

on the tread and flange whereas for the inner wheel the gauge side of the flange could touch 

the grooved rail head which was showing wear on its surface. Despite the study presented in 

[31], the effect of having two contact points during squeal is not yet fully understood and 

addressing it is beyond the scope of the present work.  

 

Figure 6-19. The tram running on the test curve for the measurements described in [60]. 

In [60], the authors only showed the whole time history data of the wheel vibration response 

during the test and its spectrogram, which was used to find the dominant frequency during 

the test. No further investigation were made. In this section, these measurement data were 

used again with more analysis. In addition to the spectrogram, the vibration responses of the 

measured wheel in two directions are compared and the squeal frequencies are also 

compared with the natural frequencies of the wheel modes. These can provide some useful 

understanding in analysing the possible mechanism behind curve squeal and results are 

presented here to allow a qualitative comparison with the simplified models described above. 

An example of the measured wheel vibration is shown in Figure 6-20. In this example the 

instrumented wheel was the front inner one and the tram running speed was 2.78 m/s. It can 

be seen that the wheel vibrates at a relatively high level in the time period from about 13 s 

to 25 s. From the spectrograms, it is found that there are two dominant frequencies for both 
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axial and radial directions. They are around 1.5 kHz and 2.5 kHz and these broadly 

correspond to the squealing frequencies in Cases 3 to 5 analysed above. 

A close-up plot of part of the acceleration signal from Figure 6-20 is shown in Figure 6-21 

along with the corresponding frequency spectra. The most important features of squeal are 

evident, with the vibration being intermittent, mono-tonal and of very high levels. The 

squealing frequency in this time window was at 2517 Hz, as shown in Figure 6-21(b). 

 

(a) 

 

(b) 

Figure 6-20. Measured wheel vibration acceleration and the corresponding spectrograms: (a) axial 
direction; (b) radial direction. 
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(a) 

 

(b) 

Figure 6-21. Wheel vibration measured during squeal at 2522 Hz. (a) Example of time history data 
(b) frequency spectrum. 

At around this frequency, this wheel has the two vibration modes included in Case 3 above: 

the first mode (2476 Hz) has 4 nodal diameters and is predominantly in the radial direction, 

but also with an important component in the axial direction; the outer rim rocks on the rubber 

layer (Figure 6-6(a)). At a slightly higher frequency (2536 Hz) there is a mode with one 

nodal diameter and a mode shape with the outer rim in torsion on the rubber layer (Figure 

6-6(b)). These two modes have been studied with the simplified approach in the sections 

above and it has been shown that for an offset of around +5 mm mode coupling instability 

can arise (Figure 6-9(c)).  
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(a) 

 
(b) 

Figure 6-22. Close-up of Figure 6-21. (a) Initial build-up (b) enlargement over a few vibration 
cycles to show phase lag between axial and radial directions. 

In addition, in Section 6.5 it was shown that another important feature of mode coupling is 

a phase lag between the radial and axial vibration. Figure 6-22 shows two additional close-

up plots of the vibration data presented in Figure 6-21. Clearly both directions are involved 

in the vibration and increase together in this region.  

An additional example showing a similar outcome is shown in Figure 6-23. The squealing 

frequency is 1515 Hz and does not correspond closely to any of the modes in Figure 6-3, the 

nearest modes being at 1271 and 1414 Hz. This has also been found in the modelling (Figure 

6-8). Moreover, again there is a phase lag of about 30˚ between the two directions that 

qualitatively resembles the one obtained with the model in Figure 6-17(a). 
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(a) 

 
(b) 

Figure 6-23. Wheel vibration during squeal at 1515 Hz. (a) time data and (b) frequency 
spectrum. 

The measurement data shown here therefore include two important characteristics of mode 

coupling: the squealing frequency is different from the natural frequencies of the modes 

involved and there is a phase lag between the radial and axial directions. Both features have 

also been found earlier in this chapter with the simplified model with constant friction by 

including only two modes. 

A further phenomenon that may be related to the presence of mode coupling in the 

measurement campaign is shown in Figure 6-24. In this case the interaction between two 

modes results in beating at about 15 Hz; the modes involved are the two at around 3750 Hz 

(see Figure 6-3). Both the time domain data and the frequency spectrum show the typical 

behaviour of beating. The amplitude changes periodically in time from one direction to the 

other one while a fine frequency spectrum, such as the one shown in the close-up in Figure 

6-24(b), reveals the presence of two distinct, but close, peaks (at 3707 and 3720 Hz 

respectively). In reference [38] this type of vibration was shown in the response of a two dof 

system characterised by a friction coefficient close to, but slightly smaller than, what is 

needed for instability. 
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(a) 

 
(b) 

Figure 6-24. Wheel vibration measured during squeal with the presence of beating at around 3.7 
kHz. (a) Time data (b) frequency spectrum. 

The wheel acceleration data from a number of pass-bys have been analysed statistically to 

determine the distribution of the squealing frequency and the phase difference between the 

axial and radial directions. Three main squealing frequencies were observed, at around 1.5, 

2.5 and 3.7 kHz as seen in Figure 6-20. The phase difference has been calculated at every 

oscillation period after applying a band-pass filter around the squealing frequency. Only 

those time windows with acceleration levels above 800 m/s2 (rms) have been selected to 

compute the phase difference. The average squealing frequencies were calculated over the 

same cycles and found to be 1489 Hz, 2514 Hz and 3713 Hz with standard deviations of 47 

Hz, 21 Hz and 48 Hz, respectively. 

A summary of the measured phase difference for these three squealing frequencies is shown 

in Figure 6-25. The horizontal axis represents the absolute value of the phase difference in 

degrees while the vertical axis indicates the number of times the difference occurs in a certain 

10˚ range. To obtain these results, three different pass-bys at 2.78 m/s have been considered. 

It can be seen that the phase difference can vary between 0˚ and 180˚ with the greatest 

tendency for the phase differences to be in the range between 10˚~40˚ and 120˚~160˚, 

especially for the squealing frequency of 1489 Hz. This broadly agrees with the results from 

the model in Figure 6-18 for small values of friction slope. 
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Figure 6-25. Phase difference for three squealing frequencies. 

The experimental results therefore show the same features as the model. The squealing 

frequencies of 1489 Hz and 2514 Hz are similar to those found in Section 6.4 and the non-

zero phase difference corresponds to that found for the case of mode coupling. There are too 

many uncertainties in the measurement campaign to allow a full quantitative comparison 

between the model and measurements. In particular, it was not possible to determine the 

actual friction coefficient or the exact contact position. Nevertheless, the evidence presented 

here gives additional indications that mode coupling is a possible mechanism behind curve 

squeal at least in some situations. 

6.8 Summary 

A two-mode model has been used to illustrate the mode-coupling mechanism, which can be 

a cause of curve squeal noise in addition to the traditional falling friction mechanism. This 

model can also be used to assess mode coupling and falling friction together. Different pairs 

of modes have been considered, including modes from a regional train wheel, a freight train 

wheel and a resilient tram wheel.  

By carrying out a parametric study using frequency-domain stability analysis, it has been 

shown that the offset of the contact point and the contact angle can both have an effect on 

the squeal noise. It is confirmed that both inner and outer wheels in the curve can result in 

squeal noise due to mode coupling. Moreover, it is shown that the modal damping ratio can 

play an important role. Increasing the damping of a single mode does not always have a 

beneficial effect on squeal noise and in some cases can actually make the system more prone 

to squeal. Increasing the damping of both modes simultaneously has no effect until a certain 

limit is reached. 

Frequency shift and phase difference are two basic features of mode coupling. In the 

literature review, it was shown that in [46, 60, 106], the authors observed a frequency shift 

in field measurements. However, only in [54] was mode coupling mentioned in relation to 
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this. A phase shift was only mentioned in [65] and it was observed in the vibration signal 

from the rail. In this chapter, frequency shift and phase difference are both observed by 

analysing the system in the presence of a mode-coupling instability. Some qualitative 

comparisons with field measurements of tramway wheel acceleration have also been 

presented. Measured data show similar characteristics to those that were attributed to mode 

coupling in the modelling, as both frequency and phase shift are detected in the wheel signals. 

This provides additional evidence that mode coupling can be a possible mechanism for curve 

squeal at least in some situations. 
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7 Effect of track dynamics on curve squeal under 

constant friction 

Although the rail plays an important role in the wheel/rail interaction, the track dynamics 

has been paid only limited attention in studies of curve squeal so far. Most previous models 

neglect the track dynamics or they include it without evaluating its role and importance.  

It was shown in Chapter 5 that the track dynamics potentially can play an important role in 

the occurrence of curve squeal. From Table 5-4, it can be found that the system can be 

unstable with only one wheel mode in the presence of track dynamics. In this chapter, the 

effect of the track is investigated with a reduced model and only constant friction is 

considered to exclude the negative damping effect due to the negative slope of the friction 

curve.  

The track is first modelled as an infinite beam over a continuous elastic foundation and, in 

contrast with the wheel, it is not characterised by any vibration modes. Various effects are 

then considered that may introduce additional resonant behaviour into the track dynamics. 

These include the rail pad stiffness, the periodic or continuous support of the rail, multiple 

wheels resting on the rail, the rail cross-section deformation and the rail cross mobility. 

Finally, a reduced model is developed to identify what aspects of the dynamic behaviour of 

the track can cause instability. In this model, only a single wheel mode is included and the 

track is represented as a mass, a spring or a damper. 

7.1 Curve squeal prediction with and without the rail using 

a mobility approach with reduced model 

7.1.1 Transfer function 

To simplify the problem and to exclude other factors, the open loop transfer function of the 

frequency domain model for curve squeal in Chapter 4, 𝐐𝐐 = 𝐇𝐇1𝐆𝐆 +  𝐇𝐇2, is simplified to 

have only two degrees of freedom: vertical and lateral directions. The effects of fluctuation 

of the normal force on the friction force is neglected (𝜕𝜕𝜇𝜇
𝜕𝜕𝑜𝑜

 in Eq.(4-45) are all zero). Hence, 

from Section 4.3.2, the transfer function under constant friction now becomes: 
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𝑄𝑄 = ±𝜇𝜇0
𝑌𝑌𝑉𝑉𝐿𝐿𝑤𝑤 + 𝑌𝑌𝑉𝑉𝐿𝐿𝑟𝑟

𝑌𝑌𝑉𝑉𝑉𝑉𝑤𝑤 + 𝑌𝑌𝑉𝑉𝑉𝑉𝑟𝑟 + 𝑌𝑌𝑉𝑉𝑉𝑉𝑐𝑐
  (7-1) 

where for a positive lateral creepage (right-hand curve), the plus sign is taken. 𝜇𝜇0 is the 

friction coefficient; 𝑌𝑌𝑤𝑤, 𝑌𝑌𝑟𝑟 and 𝑌𝑌𝑐𝑐 are the mobilities of the wheel, the rail and the contact 

spring. Indices 𝐿𝐿  and 𝑉𝑉  represent lateral and vertical directions; subscript 𝐿𝐿𝐿𝐿  represents 

lateral point mobilities, while 𝐿𝐿𝑉𝑉  indicates the coupling between the two directions; 

mobilities of this type are referred to as cross mobilities. The cross mobility for the contact 

spring, 𝑌𝑌𝐿𝐿𝑉𝑉𝑐𝑐 , is equal to 0.  

It can be seen that, with a constant friction coefficient, three factors can affect the transfer 

function. They are the value of the friction coefficient, the combined cross mobility between 

the lateral and vertical directions and the combined point mobility in the vertical direction. 

The lateral point mobility does not appear in the above equation. 

7.1.2 Frequency domain results 

The method of obtaining wheel and rail mobilities has been introduced in Chapter 3. Here, 

again, the Class 158 wheel is used. The track also has the same parameters as the one in 

Chapter 4; however in addition to the soft rail pad (vertical stiffness 100 MN/m) used in 

Chapter 4, a stiffer rail pad is also considered with vertical stiffness 600 MN/m. 

The vertical and cross mobilities of the wheel for frequencies up to 6 kHz are shown in 

Figure 7-1(a) and rail mobility and contact mobility are shown in Figure 7-1(b). The vertical 

contact mobility is obtained from the linearized Hertzian contact stiffness [1], which has the 

same value as used in Chapter 5, i.e. 1.12 × 109 N/m. The rail cross mobility is neglected 

in this section but will be considered in Section 7.2.4 using an alternative model. 
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(a) 

 
(b) 

Figure 7-1. The mobilities: (a) wheel vertical and vertical-to-lateral cross mobility, (b) rail and 
contact vertical mobilities. 

To evaluate stability, the Nyquist criterion [95] is again used and applied to Eq.(7-1). In the 

calculations presented in this section, the contact is assumed to be at the nominal position 

and the wheel is assumed to be the right-hand wheel of the leading wheelset of a bogie, on a 

right-handed curve. The Coulomb friction coefficient 𝜇𝜇0 is set to 0.3 and rolling velocity is 

assumed to be 10 m/s. 

When track dynamic properties are included, there are four unstable frequencies, as 

summarised in Table 7-1, for both soft and stiff rail pads. For the soft pad case, the results 

are almost identical to the results from Case III in Table 5-4. This means that the simplified 

transfer function Eq. (7-1) introduced in this chapter is acceptable. It is also found that the 
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pad stiffness only affects the loop gain by a small amount but does not change the unstable 

frequencies.  

Table 7-1. Summary of curve squeal prediction for the case including the track. 

Unstable 
frequencies (Hz) 

Stiff pad 150.3 418.2 1102.0 1977.0 

Soft pad 149.2 418.4 1102.0 1977.0 

Loop gain 
Stiff pad 1.14 5.61 4.43 1.58 

Soft pad 1.29 7.58 4.28 1.53 

Wheel modes involved (Hz) 149.4 418.3 1102.0 1976.2 

Mode shape (n, m) (1, 0) (2, 0) (3, 0) (4, 0) 

7.2 Introduction of additional features into the track 

dynamics 

The rail mobility considered so far corresponds to the response of an infinite beam over most 

of the frequency range, with two highly damped resonant peaks at low frequencies (see 

Figure 7-1(b)). In this section, various additional features are introduced into the track 

dynamics that can contribute additional resonant-like behaviour, in order to investigate their 

possible effects on the likelihood of instability. In each case only the track with the soft rail 

pad is considered. 

7.2.1 Effect of pinned-pinned resonance on curve squeal 

In practice, the track is not supported continuously but rather on discrete sleepers. This will 

result in a pinned-pinned resonance at around 1 kHz for the current parameters, at which half 

the bending wavelength corresponds to the support spacing [1].  Figure 7-2 shows a 

comparison of the rail mobility with continuous and discrete supports for excitation at mid-

span based on the model shown in [1]. It can be seen that the response is hardly affected by 

the discrete support at low frequencies, but a lightly damped resonant peak is observed at 

1072 Hz.  

To study whether this pinned-pinned resonance affects the curve squeal predictions, the same 

procedure described in previous section is adopted here by replacing the rail mobility with 

the one from the discretely supported rail. The unstable frequencies are shown in Table 7-2. 

By comparing these with the results from the continuous support, it can be seen that the 

results are almost identical. Only the loop gain is different, noticeably for the 1102 Hz mode 

which is closest to the pinned-pinned frequency. Hence, the addition of the pinned-pinned 

resonance does not significantly affect the curve squeal prediction results. 
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Figure 7-2. Comparison of rail mobility with continuous and discrete support. 

Table 7-2. Summary of curve squeal prediction results for different cases 

Unstable 
frequencies (Hz) 

Continuous support 149.2 418.4 1102.0 1977.0 

Discrete support 149.0 418.4 1102.0 1977.0 

Multiple wheels 149.0  418.4 1102.0 1977.0 

With cross-section 
deformation - 418.4 1102.0 1977.0 

Loop gain 

Continuous support 1.29 7.58 4.28 1.53 

Discrete support 1.28 7.49 5.74 1.53 

Multiple wheels 1.28 7.68 4.31 1.59 

With cross-section 
deformation stable 7.74 4.06 1.64 

Wheel modes involved (Hz) 149.4 418.3 1102.0 1976.2 

Mode shape (n, m) (1, 0) (2, 0) (3, 0) (4, 0) 

7.2.2 Effect of multiple wheels on curve squeal 

In the previous sections, to calculate the rail mobility, the presence of the other wheels on 

the rail has been neglected. In practice, there are multiple wheels rolling on the track which 

result in reflections of waves in the rail. In [107] Wu and Thompson have shown that, in the 

presence of multiple wheels, the point receptance of the rail fluctuates around that of the rail 

without additional wheels. These additional peaks are equivalent to additional modes in the 

rail which could increase the likelihood of mode coupling. 

For a track with a continuous support, the point mobility of the rail with multiple wheels on 

it can be written as [107]: 
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𝑌𝑌𝑤𝑤𝑟𝑟 =   𝑌𝑌𝑞𝑞𝑟𝑟 −�
[𝑌𝑌𝑟𝑟𝑟𝑟𝑞𝑞 (𝑧𝑧𝑛𝑛)]2

𝑌𝑌𝑤𝑤 + 𝑌𝑌𝑐𝑐 + 𝑌𝑌𝑞𝑞𝑟𝑟

𝑁𝑁𝑤𝑤

𝑛𝑛=1

 (7-2) 

where 𝑌𝑌𝑤𝑤𝑟𝑟 is the point mobility of the track with wheels on the rail, 𝑌𝑌𝑞𝑞𝑟𝑟 is the driving point 

mobility of the track without wheels, 𝑌𝑌𝑤𝑤 and 𝑌𝑌𝑐𝑐 are the mobilities of the wheel and contact 

spring, 𝑌𝑌𝑟𝑟𝑟𝑟𝑞𝑞 (𝑧𝑧𝑛𝑛) is the transfer mobility of the track at a distance 𝑧𝑧𝑛𝑛 from the forcing point 

(the location of  the 𝑛𝑛𝑡𝑡ℎ  wheel relative to the forcing point) and 𝑁𝑁𝑤𝑤  is the number of 

additional wheels considered.  

The train geometry is chosen to represent a Class 158 regional multiple unit train. Only two 

bogies are considered, located at the adjacent ends of two carriages (see Figure 7-3). The 

wheels are numbered from 1 to 4 as shown in Figure 7-3. The dimensions shown are given 

by 𝑑𝑑1 = 2.6 m and 𝑑𝑑2 = 4.4 m. 

d1 d1d2

1 2 3 4

 

Figure 7-3. Wheel distances of a regional train Class 158. 

The excitation is assumed to be at wheel 3; other parameters are the same as those used in 

Section 7.1. The rail point mobilities obtained by including the other three wheels are shown 

in Figure 7-4. It can be seen that at low frequencies, where the track decay rate is high (see 

Figure 7-5), the rail mobility is almost unaffected by the wave reflection due to the additional 

wheels. Meanwhile, at higher frequencies, when multiple wheels are taken into account, the 

mobility fluctuates around the one without additional wheels. It can be also observed that 

the maximum fluctuation exists between about 600 and 1000 Hz. This is because the low 

decay rate in this frequency range. Above 1000 Hz, there are less fluctuation due to the 

isolation by the contact stiffness. 

The stability of the system is studied when the rail mobility used in Section 7.1.2 is replaced 

by the one that includes the effect of the other wheels, shown in Figure 7-4. The resulting 

unstable frequencies are summarised in Table 7-2 from which it can be seen that in the 

presence of the additional wheels, the predicted frequencies are the same and the loop gain 

changes only very little. This suggests that the effect on curve squeal of the fluctuations in 

the rail mobility due to the presence of other wheels is small and can generally be neglected 
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despite the additional peaks in the rail mobility. This also suggests that adding damping 

treatments to the rail, which could increase the track decay rate and hence suppress these 

additional peaks, would also not significantly affect curve squeal. 

 

Figure 7-4. The vertical rail point mobilities with and without multiple wheels on it. 

 

Figure 7-5. The track decay rate. 

7.2.3 Effect of rail cross-section deformation on curve squeal 

At high frequencies, the rail no longer behaves as a simple beam and cross-section 

deformation occurs [1]. In the lateral direction, web bending occurs above about 1.5 kHz. In 

the vertical direction, foot flapping motion starts progressively from above about 2 kHz, 

leading to a strong peak in the mobility at around 5 kHz. 
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To explore the effect of rail cross-section deformation, a waveguide finite element (WFE) 

model, based on the method developed by Nilsson and Jones [108], is adopted to calculate 

the rail mobilities. This method, also known as semi-analytical finite element (SAFE) or 

2.5D finite element, has been used previously in [109] to calculate the dynamic response of 

a rail and its sound radiation; it was also used by Pieringer [47]. 

The rail profile used here is again that of a UIC60 rail, and for simplicity only a single-layer 

support is considered in the WFE model. The FE mesh of the cross-section is shown in 

Figure 7-6. The shaded areas represent the rail pads which are constrained at their base. The 

rail and pad material properties used here are given in Table 7-3. The pad is assumed 

massless. The Young’s modulus used for the pad corresponds to a vertical support stiffness 

of 100 MN/m per pad, which is the same as that used in Section 7.1 for the soft pad.  

The driving point mobility at point A (rail head centre, see Figure 7-6) for this WFE model 

is shown in Figure 7-7. It is compared with the results from the Timoshenko beam model 

with a double layer support. The first peak in the WFE model corresponds to the rail 

bouncing vertically on the pad stiffness; the lower frequency peak is missing due to the 

omission of the sleeper in this model. At high frequencies, in the WFE model the response 

increases to a peak at around 5.4 kHz; this is due to foot flapping motion [1]. The cross 

mobility is zero in this case as the rail cross-section is symmetric about the centreline; it will 

be studied separately below. 

 
Figure 7-6. FE mesh of the rail cross-section. 
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Table 7-3. Material properties used for WFE model. 

 Rail Pads 

Young’s modulus 210 GPa 0.32 MPa 

Density 7860 kg/m3  - 

Poisson’s ratio 0.3 0.45 

Damping loss factor 0.02 0.25 

 

 

Figure 7-7. The vertical point mobility at the rail head centre. 

With this newly calculated rail point mobility, the stability analysis is carried out using the 

Nyquist criterion, as in the previous examples. The results are again presented in Table 7-2. 

Compared with the earlier results, the unstable frequency at 150 Hz disappears. This may be 

associated with a change in the track dynamic behaviour; in this frequency region the rail 

mobility has changed to become stiffness-controlled whereas previously the phase was close 

to 0. The other three unstable frequencies are almost identical and the loop gain only changes 

small amount. No additional unstable frequencies are introduced. Hence, the rail cross-

section deformation has a negligible influence on curve squeal when the excitation force is 

at the rail centre. 

7.2.4 Effect of rail cross mobility on curve squeal 

The rail cross mobility has been neglected in the beam model of Section 7.1.2. Moreover, 

the rail cross mobility is zero at the nominal contact point considered above in the WFE 

model. However Eq. (7-1) showed that the cross mobility of the rail can possibly play a role. 

In this section, the rail cross mobility is included by considering the contact to be at Point B 
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in Figure 7-6, which is 18.5 mm away from the rail centre; a contact angle of 3.5˚ is also 

introduced. The rail mobilities are again calculated using the WFE method [108]. 

The rail mobilities at point B are shown in Figure 7-8 for the input parameters in Table 7-3; 

these are shown in the vertical-lateral coordinate system. Due to the lateral offset the three 

mobilities show additional peaks representing the cut-on frequencies of higher order waves. 

In the lateral direction the first and second peaks (70 Hz and 220 Hz) correspond to the rail 

bouncing on the lateral and rotational stiffness of the pad, while the third and fourth peaks 

(1360 Hz and 3910 Hz) correspond to web bending waves [1]. Because of the coupling 

introduced by the lateral offset, the vertical mobility contains peaks at some of the cut-on 

frequencies of the lateral waves in addition to the two main cut-on frequencies associated 

with waves in the vertical direction: the vertical bending wave that cuts-on at 270 Hz and 

foot flapping at 5.4 kHz. 

To perform stability analysis, the wheel mobilities are also required at point B and should 

be expressed in the normal-tangential coordinate system. For simplicity the lateral offset of 

the wheel is kept the same as that of the rail, i.e. 18.5 mm.  

Two different cases are considered. First, the stability is evaluated by accounting for the two 

rail mobilities (normal 𝑌𝑌𝑁𝑁𝑁𝑁 and normal-to-tangential 𝑌𝑌𝑁𝑁𝑟𝑟) as obtained from the numerical 

model (Figure 7-8) after applying a rigid rotation. Second, the cross term 𝑌𝑌𝑁𝑁𝑟𝑟 is set to zero 

while 𝑌𝑌𝑁𝑁𝑁𝑁 is kept the same. Table 7-4 reports the unstable frequencies and loop gains in both 

cases. By comparing these results with the earlier ones, it can be seen that the instability at 

2 kHz disappears while the loop gain at the others reduces. This also occurs in the case where 

the rail cross mobility term is suppressed, indicating that the changes in the wheel and rail 

point mobilities and the wheel cross mobility due to the translation and rotation are 

responsible for this behaviour rather than the introduction of the rail cross mobility term. 

The only effect of introducing the rail cross mobility is the addition of a low frequency 

instability at 78 Hz. 
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Figure 7-8. The rail mobilities at point B. 

Table 7-4.Summary of curve squeal predictions with and without rail cross mobility.  

Unstable frequency (Hz) 78.2 418.3 1102.0 1977.0 

With no offset (from Table 5) Stable 7.74 4.06 1.64 

With offset 

(including rail cross mobility) 
1.60 1.64 1.26 Stable 

With offset 

(without rail cross mobility) 
Stable 1.64 1.26 Stable 

Wheel mode involved (Hz)  25 418.3 1102.0 1976.2 

Mode shape (n, m) Rigid modes (2, 0) (3, 0) (4, 0) 

7.3 A reduced model to represent wheel and rail dynamics 

It has been shown in the previous sections that, for a constant friction coefficient, curve 

squeal can occur with only a single wheel mode coupled to the rail vertical dynamics through 

the contact stiffness; the lateral rail mobility makes no contribution to the open loop transfer 

function. To give further insight into the role of the rail dynamics in the instability, a reduced 

model is presented here. A lumped parameter representation of this model is shown in Figure 

7-9. This system is mathematically equivalent to the model presented by Hoffmann et al. in 

[38]. The wheel and rail are simplified as single-mode systems and a contact spring is used 

to represent the contact force in the normal direction. The rail mode contains only vertical 

(or normal) motion whereas the wheel mode contains motion at some angle relative to the 

normal direction and can therefore be excited by the friction force as well as the normal force. 
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It is assumed that the mass-spring system representing the wheel is sliding to the right on the 

rail at a speed corresponding to the lateral sliding velocity during curving. 

 

Figure 7-9. Schematic of a reduced model for wheel and rail mode 

7.3.1 Equations of motion 

For the system shown in Figure 7-9 the equations of motion are: 

𝑀𝑀𝑤𝑤�̈�𝑢𝑤𝑤 + 𝐶𝐶𝑤𝑤�̇�𝑢𝑤𝑤 + 𝐾𝐾𝑤𝑤𝑢𝑢𝑤𝑤 = −𝐹𝐹𝑁𝑁 sin  𝜃𝜃 − 𝐹𝐹𝑜𝑜 cos  𝜃𝜃  (7-3) 

𝑀𝑀𝑟𝑟�̈�𝑢𝑟𝑟 + 𝐶𝐶𝑟𝑟�̇�𝑢𝑟𝑟 + 𝐾𝐾𝑟𝑟𝑢𝑢𝑟𝑟 = 𝐹𝐹𝑁𝑁 (7-4) 

where 𝑀𝑀, 𝐾𝐾, 𝐶𝐶  are the mass, stiffness and damping in each case, 𝑢𝑢 is the displacement, the 

subscripts 𝜁𝜁 and 𝑟𝑟 represent the wheel and rail, respectively. 𝐹𝐹𝑁𝑁 is the normal contact force, 

𝐹𝐹𝑜𝑜 is the friction force, 𝜃𝜃 is the angle between the direction of 𝑢𝑢𝑤𝑤 and the lateral direction. 

In the subsequent analysis, the rail will be represented by only one of the terms (mass, 

stiffness or damping) but all three are retained here for simplicity. 

The normal force 𝐹𝐹𝑁𝑁 and the friction force 𝐹𝐹𝑜𝑜 in the contact plane are: 

𝐹𝐹𝑁𝑁 = 𝑘𝑘𝐻𝐻(𝑢𝑢𝑤𝑤 sin 𝜃𝜃 − 𝑢𝑢𝑅𝑅) (7-5) 

𝐹𝐹𝑜𝑜 = 𝜇𝜇(𝛾𝛾0)𝐹𝐹𝑁𝑁 (7-6) 

Hence, writing the equations in matrix form gives: 

𝐌𝐌�̈�𝐮 + 𝐂𝐂�̇�𝐮 + 𝐊𝐊𝐮𝐮 = 0 (7-7) 

where the mass matrix 𝐌𝐌, damping matrix 𝐂𝐂 and stiffness matrix 𝐊𝐊 are given by: 
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𝐌𝐌 = �𝑀𝑀𝑤𝑤 0
0 𝑀𝑀𝑅𝑅

� (7-8) 

𝐂𝐂 = �𝐶𝐶𝑤𝑤 0
0 𝐶𝐶𝑅𝑅

� (7-9) 

𝐊𝐊 = �𝐾𝐾𝑤𝑤 + 𝑘𝑘𝐻𝐻 sin2 𝜃𝜃 + 𝜇𝜇0𝑘𝑘𝐻𝐻 sin 𝜃𝜃 cos 𝜃𝜃 −𝑘𝑘𝐻𝐻 sin 𝜃𝜃 + 𝜇𝜇0𝑘𝑘𝐻𝐻 cos 𝜃𝜃
−𝑘𝑘𝐻𝐻 sin𝜃𝜃 𝐾𝐾𝑅𝑅 + 𝑘𝑘𝐻𝐻

� (7-10) 

In can be seen from Eq. (7-10) that the friction force results in an asymmetric stiffness matrix 

which can lead to instabilities [38]. 

By assuming a solution of the form 𝐮𝐮 = 𝐮𝐮0exp (𝑠𝑠𝑡𝑡) , the characteristic equation of this 

system is found as: 

𝑀𝑀𝑤𝑤𝑀𝑀𝑅𝑅𝑠𝑠4 + (𝑀𝑀𝑤𝑤𝐶𝐶𝑅𝑅 + 𝑀𝑀𝑅𝑅𝐶𝐶𝑤𝑤)𝑠𝑠3 + (𝑀𝑀𝑤𝑤𝑘𝑘22 + 𝐶𝐶𝑅𝑅𝐶𝐶𝑤𝑤 + 𝑀𝑀𝑅𝑅𝑘𝑘11)𝑠𝑠2

+ (𝐶𝐶𝑤𝑤𝑘𝑘22 + 𝐶𝐶𝑅𝑅𝑘𝑘11)𝑠𝑠 + 𝑘𝑘11𝑘𝑘22 − 𝑘𝑘12𝑘𝑘21 = 0 (7-11) 

where 𝑘𝑘11, 𝑘𝑘12,𝑘𝑘21,𝑘𝑘22  represent the four elements of the stiffness matrix in Eq. (7-10). 

Eigenvalue analysis can then be performed by solving the characteristic equation Eq. (7-11); 

if one of the eigenvalues has a positive real part, the system can be unstable. 

7.3.2 Parameters 

Two wheel modes are chosen to be used here, one has a natural frequency of 418.3 Hz and 

the natural frequency of the other is at 1102.0 Hz. The modal parameters for these two modes 

(natural frequency 𝑓𝑓𝑛𝑛, modal displacements in axial and radial directions 𝜙𝜙𝑎𝑎 and 𝜙𝜙𝑟𝑟, modal 

mass 𝑚𝑚𝑤𝑤 and modal damping ratio ζ𝑤𝑤) and the corresponding equivalent parameters 𝑀𝑀𝑤𝑤, 

𝐾𝐾𝑤𝑤 and 𝐶𝐶𝑤𝑤 are listed in Table 7-5. These equivalent parameters are derived from the modal 

quantities as: 

𝑀𝑀𝑤𝑤 =
𝑚𝑚𝑤𝑤

𝜙𝜙𝑎𝑎2 + 𝜙𝜙𝑟𝑟2
;   𝐾𝐾𝑤𝑤 = (2𝜋𝜋𝑓𝑓𝑛𝑛)2𝑀𝑀𝑤𝑤;   𝐶𝐶𝑤𝑤 = 2𝜁𝜁𝑤𝑤�𝐾𝐾𝑤𝑤𝑀𝑀𝑤𝑤 (7-12) 
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Table 7-5. Modal parameters of a single wheel mode. 
 Description and Name  Value  Units 

  Mode 1 Mode 2  

Parameter 

for single 

wheel mode 

Natural frequency 𝑓𝑓𝑛𝑛 418.3 1102.0 Hz 

Modal mass 𝑚𝑚𝑤𝑤 0.5 0.5 kg 

Modal displacement in axial direction 𝜙𝜙𝑎𝑎 0.0809 0.0819 m 

Modal displacement in radial direction 𝜙𝜙𝑟𝑟 0.0019 0.0037 m 

Modal damping ratio 𝜁𝜁𝑤𝑤 0.0001 0.0001 / 

Equivalent 

parameters 

Mass 𝑀𝑀𝑤𝑤 76.4 74.5 kg 

Damping 𝐶𝐶𝑤𝑤 40.1 103.2 Ns/m 

Stiffness 𝐾𝐾𝑤𝑤 0.53× 109 3.57 × 109 N/m 

 𝜃𝜃 1.35 2.58 ˚ 

Although the rail is shown in Figure 7-9 as a mass-spring-damper system, its behaviour will 

be simplified here to that of solely a mass, a stiffness, or a damper separately. This means 

that three different cases are considered for each wheel mode, as shown in Table 7-6. The 

values of 𝐾𝐾𝑅𝑅 , 𝑀𝑀𝑅𝑅  and 𝐶𝐶𝑅𝑅  are determined to ensure that, for each case, the rail mobility 

amplitude is the same as the value in Figure 7-1(b) at the frequency of interest (418 Hz and 

1102 Hz), which are equal to 4.53×10-6 m/s/N and 9.83×10-6 m/s/N, respectively. The 

linearized Hertzian contact stiffness 𝑘𝑘𝐻𝐻 has the same value as used in Section 7.1.2, which 

is 1.12 × 109 N/m. 

Table 7-6. Parameters of mass-spring-damper system for rail 
  𝑀𝑀𝑅𝑅 𝐶𝐶𝑅𝑅 𝐾𝐾𝑅𝑅 

Stiffness case 
418 Hz 0 0 2.67 ×  108 N/m 

1102 Hz 0 0 1.53 ×  109 N/m 

Mass case 
418 Hz 39 kg 0 0 

1102 Hz 32 kg 0 0 

Damper case 
418 Hz 0 1.02 × 105 Ns/m 0 

1102 Hz 0 2.21 × 105 Ns/m 0 

7.3.3 Eigenvalue analysis results 

Considering the wheel mode at 1102 Hz, the eigenvalues for the three cases are calculated 

and shown in Figure 7-10 for friction coefficients 𝜇𝜇0 varying between 0 and 1. For the case 

in which the rail is represented by a stiffness, the real parts of the eigenvalues are always 

negative and the system is always stable. For the other two cases, the system can be unstable 
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and the real parts of the eigenvalues can become positive even with a very small friction 

coefficient (see Figure 7-10). 

The characteristic equation, Eq. (7-11), becomes a quadratic for the stiffness case. The roots 

are a complex conjugate pair of numbers with the same negative real part (see Figure 

7-10(a)); only the positive imaginary part is shown in Figure 7-10(a). When 𝑀𝑀𝑅𝑅 and 𝐶𝐶𝑅𝑅 are 

set to zero, 𝐾𝐾𝑅𝑅 and 𝑘𝑘𝐻𝐻 act as two springs in series; the whole system is still a single-mode 

system and cannot become unstable under the constant friction considered here. For 

comparison Figure 7-11(b) shows the eigenvalue of a system with a rigid rail which also 

shows a constant and negative real part. 

For the mass case, 𝐶𝐶𝑅𝑅 and 𝐾𝐾𝑅𝑅 are set to zero and 𝑀𝑀𝑅𝑅 is non-zero. This makes Eq. (7-11) a 

quartic equation. The roots (i.e. eigenvalues) are two pairs of complex conjugate numbers 

(see Figure 7-10(c), again only the positive imaginary parts are shown). The whole system 

becomes a two-mode system, equivalent to the one introduced in [38], and this can 

potentially become unstable due to mode coupling. From Figure 7-10(c), it can be seen that, 

when the friction coefficient becomes larger than 0.05, the real part of one of the eigenvalues 

can be positive although initially with very small values. 

For the damper case, 𝑀𝑀𝑅𝑅 and 𝐾𝐾𝑅𝑅 are set to zero and 𝐶𝐶𝑅𝑅 is non-zero; Eq. (7-11) becomes a 

cubic equation. One of the eigenvalues is a purely negative real number (the solid line in 

Figure 7-10(d)) while the other two form a pair of complex conjugate numbers with the same 

real part (the dashed line in Figure 7-10(d)). Only the positive imaginary part is shown here 

and it gives an unstable frequency at around 1100 Hz. The close-up figure shows that the 

real part of the complex number can become positive when the friction coefficient becomes 

larger than about 0.1. In this case the rail does not introduce another mode to the system, yet 

instability can still occur. 

The same calculations have been carried out with the wheel mode at 418.3 Hz; the results 

are shown in Figure 7-11. These are similar to the results of Figure 7-10 to wheel mode at 

1102 Hz. Again, the system is always stable when the rail is represented by a stiffness, 

whereas it can be unstable when the rail is represented by a mass or a damper. 

From this analysis it can be concluded that the mass and damping behaviour of the rail can 

induce coupling-type instabilities between the rail and the wheel. When the rail is 

represented by a mass, this is analogous to the mode-coupling already observed in the 

literature between pairs of wheel modes. For the case with the rail modelled as a damper, 

however, the situation is slightly different and it would be incorrect to call this instability 
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‘mode coupling’ as the damper representing the rail connected in series with the contact 

stiffness is not adding an additional mode. The importance of this damping-like behaviour 

of the rail has practical significance: as can be seen from the mobility in Figure 4-7, the rail 

behaves in reality like a damper for frequencies above 1 kHz, which is where curve squeal 

often occurs. the mobility has a constant modulus and a phase close to 0. 

In other applications it has been found that a single degree-of-freedom system moving at a 

constant speed over an infinite beam [110] could become unstable due to the interaction 

between its own vibration and the structural waves propagating along the infinite beam 

(‘radiation damping’). The calculations presented above show a similar phenomenon 

although treated from a different perspective and suggest that the damping-like behaviour of 

the rail could be the source of an instability mechanism behind curve squeal. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7-10. Eigenvalue results with 1102 Hz wheel mode: (a) rail represented as stiffness; 
(b) rigid rail; (c) rail represented as mass; (d) rail represented as damper. 
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 7-11. Eigenvalue results with 418.3 Hz wheel mode: (a) rail represented as stiffness; (b) 
rigid rail; (c) rail represented as mass; (d) rail represented as damper. 

7.3.4 Time domain analysis 

It has been shown for the mass and damper cases above that the reduced model potentially 

gives unstable response according to eigenvalue analysis. Time domain analysis can be used 

to evaluate the relative amplitude between the wheel and rail vibration and to study the 

behaviour in the limit cycle. The friction curve adopted here is based on a constant friction 

coefficient as shown in Figure 5-1 and the steady state creepage is set to 0.025. The time 
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domain results are obtained by numerically integrating Eq. (7-3) using a Runge-Kutta 

method. The FASTSIM routine is used to evaluate 𝜇𝜇(𝛾𝛾) at each integration step. 

Results are only calculated for the case in which the rail is modelled as a damper with the 

418.3 Hz wheel mode. It is found in Section 5.2, with a curve squeal model, for constant 

friction and including the rail (Case III in Section 5.2), this 418.3 Hz wheel mode is dominant 

in the time domain response (see Figure 5-6(c)).  

The results are shown in Figure 7-12 with the friction coefficient 𝜇𝜇0 set to 0.3. The solution 

reaches the steady-state condition after 1.1 s where the wheel and rail velocity amplitude are 

in a ratio of around 40. These results are very close to those shown in Figure 5-6(c). The 

squealing frequency is at 417 Hz and there is a 15˚ phase lag between wheel and rail 

velocities. Another feature of this simulation is that if 𝜇𝜇 is in the range between 0.1 and 0.2, 

although the eigenvalue analysis gives instability with a small positive real part, the time 

domain solution is mildly stable and/or results in a limit cycle after a much longer time. This 

is because that the real part (growth rate) of the eigenvalue is too small to make the system 

response achieve a limit cycle in a short time. 

Time domain results are not presented for the case in which the rail is modelled as a mass as 

this is an extreme case and it is not representative of the track in any situation. Results (not 

shown here) show exaggerated fluctuations of the normal load that would cause the total 

vertical forces to become negative. 
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(a) 

 

(b) 

 

(c)  

Figure 7-12. Time history results of case with the rail represented as a damper with 418.3 Hz wheel 
mode: (a) time domain solution; (b) close-up; (c) spectra of limit cycle. 

7.3.5 Stability map for a single wheel mode with simplified rail 

dynamics 
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𝑌𝑌𝑉𝑉𝑉𝑉 = 4.53 × 10−6 ×  �
𝑖𝑖𝜔𝜔

2𝜋𝜋 × 1102
�
𝛼𝛼

 (7-13) 

where 𝜔𝜔 is the angular frequency, and 𝛼𝛼 is in the range between -1 to 1.  

With this expression, the magnitude of the rail mobility will be always 4.53×10-6 m/s/N at 

1102 Hz, as in Figure 7-1(b). The slopes of the mobility, and the corresponding phase angle, 

are different for different values of 𝛼𝛼. Figure 7-13 shows the magnitude and phase of the 

mobility for five different values of 𝛼𝛼. When 𝛼𝛼 is equal to -1, 0 or 1, the rail dynamics are 

equal to those of a mass, a damper or a stiffness, as considered in Section 7.3.3. To study the 

stability of this system, the mobility approach is adopted to evaluate how the coefficient 𝛼𝛼  

affects the stability of the system. For the wheel, only the mode at 1102 Hz is included. 

 
(a)  

 
(b)  

Figure 7-13. Magnitude and phase of simplified rail point mobility with different values of 𝛼𝛼: 
(a) magnitude; (b) phase. 

Figure 7-14 shows the stability map of the system obtained by varying both 𝛼𝛼 and 𝜇𝜇0 for 

different values of the wheel damping ratio. The stable areas are always to the left of the 

corresponding lines. When 𝛼𝛼 is equal to -1 or 0, the system can be unstable with very small 

friction coefficient. However, when 𝛼𝛼 is equal to 1, it is always stable. These results agree 

with those given in Section 7.3.3. For other values of 𝛼𝛼, the system can be unstable although 

a high value of friction coefficient is needed when 𝛼𝛼 is close to 1.  

Increasing the wheel damping ratio stabilises the system, except for the case of 𝛼𝛼 = −1, in 

which the transition between stable and unstable areas is always at 𝜇𝜇 = 0.05; this is equal to 

tan𝜃𝜃 from the mode shape of the 1102 Hz wheel mode (compare the upper right term in 
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Equation (7-10)). This phenomenon is also found for the 418 Hz mode although not shown 

here. 

 

Figure 7-14. Stability map for different combinations of 𝛼𝛼 and 𝜇𝜇: solid line: 𝜁𝜁𝑤𝑤 = 0.0001; 
dotted line: 𝜁𝜁𝑤𝑤 = 0.001; dashed line: 𝜁𝜁𝑤𝑤 = 0.01. 

7.4 Summary 

The role played by the track dynamics in curve squeal has been investigated in this chapter. 

Attention has been focused on the situation with a constant friction coefficient. The track 

has been represented by various models of increasing complexity. Initially it is modelled as 

an infinite Timoshenko beam on a two-layer elastic foundation. It has been demonstrated 

that even with this track model single wheel modes can couple with the rail and give squeal. 

Subsequently, various effects have been considered that may introduce additional resonant 

behaviour into the rail dynamics. These include the effect of varying the rail pad stiffness, 

the influence of the periodic support of the rail, reflections between multiple wheels on the 

rail, and rail cross-section deformation. The effect of the rail cross mobility has also been 

explored. However, the results show that all these factors have little influence on the 

predicted curve squeal instabilities. 

By introducing a reduced model, in which the wheel and rail are represented by single-

degree-of-freedom systems, the main characteristics of the rail dynamics that can result in 

squeal are then assessed. It is shown that the mass and damping-like behaviour of the infinite 

rail are at the origin of the instabilities associated with wheel-rail coupling rather than any 

modal or pseudo-modal behaviour of the track. Curve squeal may occur for a single wheel 

mode even if the rail is represented by a damper, which is a close approximation to the real 
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behaviour of the track at high frequencies. This indicates that it is not necessarily the 

introduction of ‘modes’ in the rail that causes the wheel modes to couple with the rail; instead 

the equivalent mass and especially damper behaviour of an infinite rail is the origin of the 

wheel-rail coupling phenomenon. 

Although the number of the cases analysed is limited, thus not allowing for general 

conclusions, it is unlikely that the changes in the track dynamic parameters will affect the 

results and comments given before significantly. 
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8 Laboratory measurements  

8.1 Introduction 

Throughout this thesis it has been shown that mode coupling can be another possible cause 

for curve squeal noise in addition to falling friction. It has been demonstrated that, where 

this is the case, phase difference and frequency shift are important indicators of mode 

coupling. This has been observed from both numerical modelling and field test results. For 

the purpose of further investigating curve squeal instabilities, a laboratory measurement has 

also been designed and some simple tests have been performed. The initial aim of this test 

was to reproduce, in a controlled environment, a mode coupling instability on a scale model 

of a railway wheel. An available machine, originally designed to perform pin-on-disc tests 

[111], has been adapted to fit a 1:5 model of a railway wheel.  

Modal tests have first been performed on the free wheel and on the wheel resting on the disc. 

These are described in Section 8.2. The measurement set-up and results are presented in 

Section 8.3. A comparison between measurements and an equivalent model is shown in 

Section 8.4. 

The analysis of the experimental results presented in this chapter is focused around the 

following topics. (i) Is it possible from these tests to demonstrate whether the mechanism in 

this situation is mode coupling or falling friction? (ii) Is there phase shift between the axial 

and radial vibration response? (iii) At what frequency does wheel squeal occur and how does 

this differ from the natural frequency of the free wheel? 

8.2 Impact test of a wheel disc 

8.2.1 Measurement set-up 

Before the squeal test was carried out, impact tests of the wheel disc were performed to 

obtain its modal parameters. The wheel is in 1:5 scale (20 cm in diameter actual size). This 

wheel disc was used in [112] for rolling noise and railway squeal test rig measurement; in 

this case the wheel was set to roll on a circular track with a diameter equal to 3 m3. In the 

current set-up the wheel was clamped at the wheel hub on the vertical arm of the pin-on-disc 

3 This measurement rig is no longer available at the University Of Southampton. 
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machine using bolts and nuts (see Figure 8-1(a)). Two accelerometers (type: PCB 352C22) 

were fixed at point 1 to measure vibration in the radial and axial directions (see 

Figure 8-1(b)). Eighteen measured positions were chosen, as shown in Figure 8-1(b), with 

positions 1 to 16 evenly distributed around the circumference with a 22.5˚ angular interval. 

Three impacts were given for both axial and radial directions at points 1 to point 16. Positions 

17 and 18 are lateral along a radial line and only axial impacts have been carried out to help 

identify the nodal circles. The type of the hammer is PCB 086C03 with a steel tip. Time 

domain data were acquired with a PXI-4496 card and analysed separately in Matlab. 

 

(a) 

 

(b) 

Figure 8-1. Impact test set-up and the measurement points in the wheel disc. (a) wheel disc and 
rotating disc; (b) measured positions. 

164 

 



The time signals were post-processed and averaged by applying a Fourier transform to obtain 

the frequency response functions (FRFs). After the FRFs are obtained, a modal analysis 

software (developed in-house) was used to identify the modal parameters. This software is 

based on curve fitting the modal superposition equation and the measured FRFs. The 

superposition equation is [97]: 

𝑌𝑌𝑖𝑖𝑘𝑘 ≅��
i𝜔𝜔𝜙𝜙𝑖𝑖𝑛𝑛𝜙𝜙𝑘𝑘𝑛𝑛

(𝜔𝜔𝑛𝑛2 − 𝜔𝜔2 + 2i𝜁𝜁𝑛𝑛𝜔𝜔𝜔𝜔𝑛𝑛)�
𝑁𝑁

𝑛𝑛

 (8-1) 

where 𝑌𝑌𝑖𝑖𝑘𝑘 is the mobility between a force at location 𝑘𝑘 and the reponse at location 𝑗𝑗, 𝜙𝜙𝑖𝑖𝑛𝑛 is 

the mass-normalised modeshape of mode 𝑛𝑛 at location 𝑗𝑗, 𝜁𝜁𝑛𝑛 is the damping ratio of mode 𝑛𝑛, 

𝜔𝜔𝑛𝑛 is the angular natural frequency of mode 𝑛𝑛 and 𝜔𝜔 is the angular frequency. Residuals 

terms are not included in the analysis as the main goal was initially to identify the modes. 

However, the effect of the mass-like residual term is analysed separately below. 

8.2.2 Measurement results 

The measured driving point mobilities of the clamped wheel (at the hub) are shown in 

Figure 8-2. It can be seen that in the frequency range 1 kHz to 6 kHz, there are three axial 

modes at 1026 Hz, 2884 Hz, and 5428 Hz, which also have a small radial component. There 

is also a radial mode at 3838 Hz, the axial component of which is extremely small. From this 

mobility result, it can be deduced that mode coupling is not likely to exist for this wheel. 

This is because the important modes above 1 kHz only have a significant mode shape in one 

direction whereas according to the studies in Chapter 6 modes that are prone to couple with 

each other should have a significant component of the mode shapes in both directions. 

The modal parameters for the four important modes after curve fitting of the modal 

superposition equation are summarised in Table 8-1. The mode shapes for different modes 

are plotted in Figure 8-3 to Figure 8-6, where the dashed line indicates the undeformed wheel 

and the solid line is the deformed mode shape. The 𝑥𝑥 and 𝑦𝑦 coordinates are the components 

of radial modal displacements while the 𝑧𝑧 coordinate is the axial modal displacement. It can 

be seen that there are 2, 3, and 4 nodal diameters for the modes at 1026 Hz, 2884 Hz and 

5428 Hz respectively, while the mode at 3838 Hz is a radial mode with 2 nodal diameters. 

The modal parameters for the modes are summarised in Table 8-1, these will be used to 

represent the dynamic behaviour of this wheel in Section 8.4. 
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Figure 8-2. Measured driving point mobilities of the clamped wheel disc. 

 

  

Figure 8-3. The modeshape of the mode at 1026 Hz for 3-D view and top view: red dashed line: 
undeformed; blue solid line: deformed. 
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Figure 8-4. The modeshape of the mode at 2884 Hz for 3-D view and top view: red dashed line: 
undeformed; blue solid  line: deformed. 

  

Figure 8-5. The modeshape of the mode at 3838 Hz for 3-D view and top view: red dashed line: 
undeformed; blue solid  line: deformed. 
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Figure 8-6. The modeshape of the mode at 5428 Hz for 3-D view and top view: red dashed line: 
undeformed; blue solid  line: deformed. 

Table 8-1. Modal parameters from measurement. 
Frequency 

(Hz) 
(𝑛𝑛,𝑚𝑚) Modal mass 

(kg) 
Axial Mode 
shape (m) 

Radial mode 
shape (m) 

Damping ratio 

1026 (2, 0) 1 1.31 0.21 6.0 × 10−5 

2884 (3, 0) 1 0.97 0.18 1.5 × 10−4 

3838 radial 1 0.08 0.95 8.1 × 10−4 

5428 (4, 0) 1 0.98 0.22 1.5 × 10−4 

The impact test for the wheel suspended on elastic bungees and for the clamped wheel (at 

the hub) resting on the disc of the pin-on-disc machine were also performed to assess the 

effect of these different boundary conditions. For the wheel resting on the disc, the excitation 

point was selected to be at the top of the wheel, which is 180° from the contact point. The 

results are compared in Figure 8-7. It can be seen that for frequencies above 1 kHz, the 

results for the clamped wheel and the clamped wheel resting on the disc are almost the same. 

However, for this frequency range, two modes at 1183 Hz and 1917 Hz found for the free 

wheel no longer exist when the wheel is clamped. This is because the wheel is now 

constrained at the hub. The frequency of the radial mode at 3.8 kHz changes when the wheel 

is resting on the disc. 
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(a) (b) 

Figure 8-7. The comparison of wheel mobilities of clamped wheel, wheel resting on the 

disc and free wheel: (a) axial direction; (b) radial direction. 

8.3 Vibration test of the reduced scaled wheel on the 

rotating disc 

8.3.1 Measurement set-up 

The 1:5 scale wheel disc is clamped at the hub and located on a rotating disc as shown in 

Figure 8-8. The rotating disc is made of stainless steel and it lies in the horizontal plane 

whereas the wheel is in the vertical plane with its axis tangential to the rotating disc. Note 

that in this configuration the wheel is not rolling and the arrangement is intended to represent 

a situation where pure lateral sliding occurs. The rotating disc is driven by a motor and the 

rotating speed is controlled by an existing feedback algorithm implemented in LabVIEW. 

The angular velocity of the disc sets the amount of lateral sliding at the disc/wheel interface. 

The surface of the disc was cleaned before the test to make sure the surface contact condition 

is generally the same when the disc starts to rotate. The distance between the contact point 

and centre of the rotating disc is 10 cm. The normal load is the weight of the wheel plus the 

arm, which was measured to be 30.4 N and is therefore taken as the nominal normal load. 

The lateral force was measured using a force transducer (OBBS Bending Beam Load Cell) 

placed on the arm that connects the wheel hub to the rig frame. Because the transducer is 

fitted away from the contact point, its results can only be used in an average sense and cannot 
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give information on the local instantaneous contact force. The wheel vibration at the contact 

is measured in the vertical and axial directions using the same two accelerometers adopted 

for modal testing. A water pipe can be used to add water onto the rotating disc to create a 

watered contact condition between the wheel and the rotating disc. 

It is important to note that the vibration measurement designed here has a number of 

simplifications and assumptions: i) the wheel is not rolling; ii) only the lateral sliding 

velocity is known while the creepage is undefined; iii) the rail dynamics is not present; iv) 

the normal load fluctuation is not measured and only a constant nominal load is used to 

estimate the friction coefficient. For these reasons, this rig is not fully representative of a 

realistic case. However, the fundamental features of squeal can be captured to help 

understand and explore the effects of the different mechanisms behind curve squeal.  
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(a)  

                                   
(b) 

Figure 8-8. The measurement set-up of the wheel on the pin-on-disc machine: (a) front view; (b) 
side view 

8.3.2 Measurement results 

8.3.2.1 Vibration response data 

For entirely dry contact conditions squeal noise was not found. Instead, in this situation a 

low frequency rattling noise was always present, probably due to the flexibility of the rig 

frame. However, after applying some water at the contact area, squeal occurred. Two 

different squealing frequencies were found in two different sets of measurements. 
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• Series A: a constant thin film of water was always present on the rotating disc in the 

region in front of the contact area, and the rotating speed was varied between 

2.9 rev/min and 13.5 rev/min. In this configuration the wheel was squealing at 1 kHz. 

• Series B: as it was found that occasionally the wheel was starting to squeal at 2.9 kHz 

in this second series the wheel was forced to vibrate according to the mode at 2.9 

kHz. This was achieved by touching the wheel at the position corresponding to the 

nodal diameter of this mode. This position is marked in Figure 8-8 (a).  

For each series, an example of acceleration data in the time domain is shown in Figure 8-9 

and Figure 8-10. It can be seen that the acceleration amplitudes for Series B are higher than 

those for Series A. However, the velocity amplitude for both series at the same rotational 

speed are similar due to the different squealing frequency of the two series, as will be shown 

in the next section. 

 

Figure 8-9. An example of vibration time history for rotational speed of 6.8 rev/min from Series A 
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Figure 8-10. An example of vibration time history for rotational speed of 8.2 rev/min from Series B 

8.3.2.2 Friction data 

The lateral force measured by the force transducer is assumed to be equal to the average 

friction force. Some examples of the force time history are shown in Figure 8-11 and Figure 

8-12. They are from the same measurement series. A low-pass filter (Butterworth filter) has 

been applied to both examples with a cut-off frequency of 20 Hz and order of 2. To achieve 

this, first the butter function in Matlab is used to get the transfer function coefficients and 

then filtfilt function is used to get the output data after filtering. It can be seen that the force 

signal is noisy and that it is fluctuating during the measurement. This fluctuation can be 

because the fluctuation of the normal load in the measurement. In Figure 8-11 the rotational 

speed is 6.8 rev/min and this means the period of this rotating disc is around 9 s. It can be 

seen from Figure 8-11 that the lateral force also has a period of around 9 s. This means that 

similar values of lateral force always correspond to the same angular position on the disc. 

The same features can found in Figure 8-12 for a different rotational speed. 
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(a) 

 

(b) 

Figure 8-11. An example of lateral force time history for rotational speed of 6.8 rev/min for Series 
A: (a) original time data; (b) after applying low pass filter (20 Hz). 

 

 

(a) 

 

(b) 

Figure 8-12. An example of lateral force time history for rotational speed of 10.8 rev/min of Series 
A: (a) original time data; (b) after applying low pass filter (20 Hz). 
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8.3.3 Discussion 

8.3.3.1 Mechanism 

The spectra of the lateral acceleration in squeal window are shown in Figure 8-13 and 

Figure 8-14. It is found that the squealing frequency for Series A is at around 1 kHz, while 

for Series B the squealing frequency is about 2.9 kHz. Higher harmonics can be found due 

to nonlinearities. Similar results are found for other rotational speeds for each series of 

measurement. The squealing frequencies for each rotational speed are summarised in 

Table 8-2. The local sliding velocity can be calculated according to: 

𝑣𝑣 =
𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅2𝜋𝜋

60
𝑅𝑅𝑐𝑐 

where 𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅 is the rotational speed in rev/min and 𝑅𝑅𝑐𝑐 is the distance from the centre of the 

rotating disc to the contact position(𝑅𝑅𝑐𝑐 =0.1 m). 

For either of these two squealing frequencies, there is only a single wheel mode nearby.  

According to the impact test, the wheel mode (2, 0) at 1026 Hz is close to squealing 

frequency of the Series A measurements. For the squealing frequency of Series B, there is a 

single wheel mode (3, 0) at 2884 Hz nearby. Hence mode coupling seems not to be present 

in these measurements. Other alternatives are therefore falling friction or a simple stick-slip. 

The squealing frequency for each run are summarised in Table 8-2 and Table 8-3. By 

comparing the squealing frequencies (see Table 8-2 and Table 8-3) with the natural 

frequencies of the wheel, it is found that the frequency is almost the same as the natural 

frequency of the corresponding wheel mode. 

By looking at the close-up of the acceleration time histories, it can be seen that the vibration 

response in the axial and radial directions are always in phase (see examples in Figure 8-15).  

The phase shifts have been calculated and are shown in Table 8-2 and Table 8-3. They are 

calculated in a similar way as described in Section 6.7. The threshold of lateral vibration 

level to be considered as squealing is 100 m/s2  (rms) for Series A and 500 m/s2 (rms) for 

Series B. It can be seen that they are all close to 0˚ and this means that for these 

measurements, the phase shift is almost absent. In Chapter 6 it is also shown that phase shift 

is one of the characteristics of mode coupling and by introducing the falling friction, the 

phase shift tends to become 0 (or 180°) with increasing the slope of friction curve. 
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Figure 8-13. Spectrum of the lateral acceleration in a squeal window with rotational speed as 6.8 
rev/min of Series A 

 

Figure 8-14. Spectrum of the lateral acceleration in a squeal window with rotational speed as 8.2 
rev/min from Series B 
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(a) (b) 

Figure 8-15. An example acceleration time history with rotational speed 6.8 rev/min and its 
close-up from Series A: (a) acceleration time history; (b) close-up. 

Table 8-2. The average squealing frequency and phase difference of Series A. 
Rotational 

speed 
(rev/min) 

Sliding 
velocity 

at the 
contact 
(m/s) 

Average 
squealing 

frequency and its 
standard deviation 

(Hz) 

Difference 
between 

squealing 
frequency 

and the 1026 
Hz mode 

(Hz) 

Average phase 
difference and its 

standard 
deviation 
(degrees) 

Wheel axial 
velocity 

(m/s) 

2.9 0.030 1026.7 4.5 0.7 -0.08 1.50 0.026 

4.2 0.044 1026.2 0.8 0.2 0.01 0.40 0.038 

5.5 0.058 1027.2 1.0 1.2 -0.14 0.40 0.056 

6.8 0.071 1028.0 1.2 2.0 -0.16 0.25 0.064 

8.2 0.086 1026.6 1.4 0.6 0.02 0.03 0.071 

9.5 0.099 1026.7 0.4 0.7 0.18 0.23 0.090 

10.9 0.114 1028.0 3.3 2.0 -0.18 0.15 0.100 

12.2 0.128 1026.7 0.4 0.7 -0.35 0.24 0.118 

13.5 0.141 1026.7 4.4 0.7 0.21 0.19 0.130 

20.1 0.211 1027.3 0.9 1.3 -0.02 0.24 0.245 
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Table 8-3. The average squealing frequency and phase difference of Series B. 
Rotational 

speed 
(rev/min) 

Sliding 
velocity at 
the contact 

(m/s) 

Average 
squealing 

frequency and 
its standard 

deviation (Hz) 

Difference 
between 

squealing 
frequency and 
the 2884 Hz 
mode (Hz) 

Phase 
difference and 

standard 
deviation 
(degrees) 

Wheel axial 
velocity 

(m/s) 

4.2 0.044 2907.0 3.4 23.0 0.16 0.12 0.035 

5.5 0.058 2891.1 3.9 7.1 0.01 0.02 0.053 

6.8 0.071 2894.5 4.2 10.5 0.13 0.03 0.066 

8.2 0.086 2895.6 2.4 11.6 0.06 0.04 0.077 

9.5 0.099 2893.8 4.2 9.8 0.11 0.03 0.086 

10.9 0.114 2888.8 3.7 4.8 0.06 0.02 0.096 

12.2 0.128 2904.8 3.4 6.8 0.07 0.08 0.103 

13.5 0.141 2888.7 3.2 4.7 0.09 0.13 0.093 

26.8 0.281 2890.1 4.2 6.1 -0.04 0.25 0.086 

33.4 0.349 2889.8 3.9 5.8 0.21 0.04 0.083 

40.0 0.419 2898.0 4.9 14.0 0.12 0.05 0.071 

53.4 0.559 2892.6 4.4 8.6 0.14 0.05 0.060 

67 0.702 2901.6 2.1 7.6 0.20 0.04 0.060 

It has been seen that the acceleration amplitude is higher in the Series B measurement. To 

investigate the mechanism at the origin of these squealing events it is interesting also to 

compare the vibration velocity with the nominal sliding velocity. If the vibration velocity 

equals the sliding velocity, stick may occur and a stick-slip phenomenon may also be 

involved. The velocity is integrated from the acceleration after using a high pass Butterworth 

filter, in this case the cut-off frequency is 400 Hz for Series A and 1000 Hz for Series B. 

Three examples are shown in Figure 8-16 to Figure 8-18 for different rotational speed in 

different series of measurements. The horizontal line in these figures defines the estimate for 

rotational speed (sliding velocity) of each case. It can be seen from Figure 8-16 and Figure 

8-17 that with a low rotational speed, the maximum wheel axial velocity are very close to 

the sliding velocity but never exceeds it. Especially from Figure 8-16(b) it can be observed 

that in some cycles the maximum wheel velocity is just equal to the sliding velocity. This is 

a sign of stick slip which has been shown in Chapter 3. However, when the rotational speed 

becomes higher, the maximum wheel axial velocity are below the sliding velocity (see 

example in Figure 8-18).  
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(a) 

 

(b) 

Figure 8-16. Velocity after integration from acceleration with rotational speed 6.8 rev/min of 
Series A; (a) whole time history; (b) close-up of a few cycles. 

 

Figure 8-17. Velocity after integration from acceleration with rotational speed 8.2 rev/min of 
Series B 
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Figure 8-18. Velocity after integration from acceleration with rotational speed 40 rev/min of 
Series B 

For all the cases, the velocity vibration amplitude is estimated here according to 

|𝑣𝑣| =
|𝑎𝑎|
𝜔𝜔

 (8-2) 

where 𝜔𝜔 is the average squealing frequency and can be found in Table 8-2 and Table 8-3 

(in Hz), 𝑎𝑎 is obtained by multiplying √2 by the root-mean-square value of the acceleration 

data in each test. The vibration amplitudes in the axial direction are also shown in Table 8-2 

and Table 8-3. They are also plotted in Figure 8-19. 
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(b) 

Figure 8-19. Comparison of the sliding velocity and the maximum wheel axial velocity: (a) 
Series A; (b) Series B 

It can be found that when the sliding velocity is smaller than 0.15 m/s, the maximum wheel 

axial velocity is very similar to the sliding velocity. However, when the sliding velocity 

becomes larger than 0.15 m/s, the maximum wheel axial velocity is always smaller. 

According to the results in Section 3.1 for a mass-on-belt systems, in the stick-slip 

phenomenon, when the velocity of the mass becomes the same as the sliding velocity (belt 

velocity), it is in the stick phase. When the velocity of the mass is smaller than the sliding 

velocity, it is in the slip phase. The mass velocity will not exceed the velocity of the belt. 

The comparison of the sliding velocity and the maximum wheel axial velocity suggests that, 

with small sliding velocity, stick-slip may exist in these measurements.  

8.3.3.2 Friction coefficient 

In these measurements, the total static normal load (including the wheel and the arm) is 

30.4 N. From the measured lateral force, the average friction coefficient can be estimated. 

However, the dynamic normal load is not measured so this friction coefficient is only an 

approximate value. For each rotating speed, the friction coefficient is averaged during the 

measurement time. The friction curves for both series are then shown in Figure 8-20 with 

error bars (±standard deviation) included. It can be seen that the friction coefficient during 

the squealing time window for each sliding velocity fluctuates and the error bar is very large 

(around ±30% of the average value). A mild falling trend of the average friction coefficient 

with increasing sliding velocity can be observed.  
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Another approach is adopted here to reduce the effect of the slow fluctuations in the normal 

load. In this approach, only the time periods with a relatively steady lateral force are used to 

determine the friction coefficient. Specifically, for each rotational speed, two sets of data are 

chosen from the whole time window of the lateral force. They satisfy the following 

conditions, 

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑓𝑓 < 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 0.2(𝑓𝑓𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛), (8-3) 

𝑓𝑓𝑚𝑚𝑎𝑎𝑥𝑥 − 0.2(𝑓𝑓𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛) < 𝑓𝑓 < 𝑓𝑓𝑚𝑚𝑎𝑎𝑥𝑥  (8-4) 

where 𝑓𝑓𝑚𝑚𝑎𝑎𝑥𝑥 and 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and the minimum lateral forces in the time window 

for each rotational speed. This means that only the time windows corresponding to the lateral 

force close to the minimum, or the maximum value, are selected to calculate the friction 

coefficient. In other words this would correspond to using always the same angular sector 

on the rotating disc for the analysis. After this selection, the friction coefficient obtained is 

shown in Figure 8-21. It can be found that the error bar is smaller now but there is a large 

difference between the two average values. The difference between the maxima and minima 

are likely to be related to fluctuations in the normal load. 

Because the lateral force does not decrease in every case with increasing velocity and 

because the standard deviation is large, these friction force measurements are not conclusive.  

 

Figure 8-20. Friction-velocity curves of Series A and B 
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(a) 

 

(b) 

Figure 8-21. Friction-velocity curves of Series A and B after selection of the lateral force around 
minimum or maximum values. (a) Series A; (b) Series B. 

8.4 Comparison with simulation results 

8.4.1 Parameters  

The curve squeal model described in Chapter 4 is used here to investigate whether the two 

squealing frequencies observed in these measurements can be predicted with the modelling 

approach described in Chapter 4. Only the four modes listed in Table 8-1 are included to 

represent the wheel dynamics. The mobilities including only these four modes are shown in 

Figure 8-22. For radial direction, a mass term is also included to fit the first anti-resonance 

with the measurement. 

For the friction curve, only the falling regime after saturation is considered because in this 

measurement the wheel is not rolling. Therefore, the heuristic equation Eq. (2-23) is used to 

get the friction curve. Two combinations of the parameters in Eq. (2-23) as listed in Table 

8-4 are used to fit the two friction curves in Figure 8-20. The results are shown in Figure 

8-23 and Figure 8-24. Other parameters used in this curve squeal prediction are given in 

Table 8-5. The rail is assumed to be rigid. 
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(a) 

 

(b) 

Figure 8-22. The mobility of wheel including four modes only and its comparison with the 
measuremet of the clamped wheel: (a) axial direction; (b) radial direction. 

Table 8-4. The parameters for friction curves. 
 Coulomb friction 

𝜇𝜇0 
𝜆𝜆 in Eq. (2-23)   𝜅𝜅 in Eq. (2-23)   

Friction A for Series A 
measurement 0.26 0.25 0.005 

Friction B for Series B 
measurement 0.4 0.3 0.005 

 

Figure 8-23. Measured and theoretical friction curve A 
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Figure 8-24. Measured and theoretical friction curve B 

Table 8-5. Other parameters for prediction of curve squeal 
Parameters Values 

Normal load 34 N 

Rolling velocity 10 m/s 

Steady state creepage 0.02 

Wheel disc radius 10 cm 

8.4.2 Frequency domain results 

Two cases are calculated with these two friction curves. The Nyquist plot and bode plot for 

both cases are shown in Figure 8-25 and Figure 8-26. It can be seen that for the case with 

friction curve A only one unstable frequency, at 1076 Hz, appears, while for friction curve 

B, there are two unstable frequencies at 1078 Hz and 2877 Hz. The wheel modes responsible 

are 1026 Hz and 2884 Hz respectively. These agrees well with the measurements although 

the squealing frequencies are not exactly the same. 
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(a) 

 

(b) 

Figure 8-25. Stability analysis in frequency domain using friction curve A: (a) Nyquist locus; 
(b) modulus of the open loop transfer function. ‘*’ unstable frequencies. 

 

(a) 

 

(b) 

Figure 8-26. Stability analysis in frequency domain using friction curve B: (a) Nyquist locus; 
(b) modulus of the open loop transfer function. ‘*’ unstable frequencies. 

8.5 Summary 

In this chapter, a simple laboratory measurement has been designed. Various tests have been 

performed including impact tests on a reduced scale wheel and vibration tests for the wheel 

on a rotating disc. From the impact test, it is found that the modes are well separated and the 

modes above 1 kHz only have a significant mode shape in one direction. The vibration test 
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shows that two squealing frequencies are found; in both cases the frequency shift and phase 

shift are close to zero. A mild falling trend is observed from the friction force measurement. 

For sliding velocities below 0.15 m/s the peak vibration velocity is found to be equal to the 

velocity of the rotating disc at the contact point. It can then be deduced that stick-slip or 

falling friction are at the origin of squeal for these measurements, while there is no evidence 

of mode coupling. Both squealing frequencies found in the measurement are also predicted 

by making use of the frequency domain curve squeal model presented in Chapter 4. 
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9 Conclusions and recommendations for further 

work 

9.1 Conclusions 

This thesis aims at giving a better understanding of the mechanism of curve squeal. First an 

existing curve squeal model is adopted and updated. By making use of this model, frequency 

domain and time domain results are obtained and different origins of curve squeal are found. 

Subsequently, different theoretical and experimental studies are carried out to give a detailed 

investigation of these different possible mechanisms of curve squeal.  

The conclusions of this thesis can be summarised into four parts as below. 

9.1.1 The utilization of an existing curve squeal model with an update 

of the track model 

An existing curve squeal model has been improved by developing an equivalent modal 

model for the track dynamics. This equivalent track model is based on modal analysis of a 

multi-degree-of-freedom mass-spring system. This new track model is more physical and 

easier to apply in time domain calculations than the one used by Huang [27]. 

By making use of this curve squeal model, parametric studies are performed by varying the 

friction coefficient, presence of the track and friction characteristics at high creepage. The 

results show that there are different origins of the instability of the system. These can be 

described as falling friction, wheel mode coupling and wheel/rail coupling. Among these, 

falling friction can give instability in more situations and was accepted as the mechanism for 

curve squeal since 1970s, whereas mode coupling caught more attention in more recent years 

and is more widely adopted in other application areas. However, wheel/rail coupling has not 

been mentioned in previous studies. 

The effect of wheel rotation, which will make the natural frequencies of the wheel split into 

pairs, is found to affect the curve squeal of different wheels in different ways. Conversely 

including the lateral contact spring has no influence. The time-domain calculations show 

that the dominant frequency is not necessarily the one with the largest loop gain in the 

frequency domain. Moreover, the dominant frequency in the time-domain results can change 

depending on whether the track dynamics are included.  
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9.1.2 The respective roles of falling friction and mode coupling 

A two-mode model has been developed to illustrate the mode-coupling mechanism. 

Different pairs of modes have been considered, including modes from a regional train wheel, 

a freight train wheel and a resilient tram wheel.  

By carrying out a parametric study using frequency-domain stability analysis, it is shown 

that the lateral position of the contact and the contact angle can both have a large effect on 

the squeal noise stability. The results suggest that both inner and outer wheels in a curve can 

result in squeal noise due to mode coupling or falling friction under appropriate conditions. 

Moreover, it is shown that the damping ratio of the wheel modes can play an important role. 

Increasing the damping of a single mode does not always have a beneficial effect on squeal 

noise and in some cases can actually make the system more prone to squeal. Increasing the 

damping ratios of both modes simultaneously has no effect until a certain limit is reached. 

For the wheels studied here this limit is found to be between 0.04% and 0.4%. The effects 

of the negative-slope and mode-coupling mechanisms are investigated together and it is 

shown that the negative slope of friction curve corresponds to a change in structural damping 

in the mode-coupling mechanism. As a consequence, when comparing with the stability of 

a single vibration mode, in some situations instability occurs for smaller values of friction 

slope but in other situations at higher values. 

By analysing the system in the presence of a mode-coupling instability, it is demonstrated 

that a difference can exist between the squealing frequency and the natural frequency of the 

wheel modes. Moreover by studying the time-domain response, a phase difference between 

the vertical and lateral vibration is found to be a characteristic of mode coupling. If a negative 

friction slope is gradually included in the model this phase shift and frequency shift 

decreases and tends to vanish once the negative slope mechanism becomes dominant. 

Finally, some qualitative comparisons haven been made with field measurements of wheel 

acceleration during curve squeal. The measurement data include two important 

characteristics of mode coupling: the squealing frequency lies between two adjacent modes 

or above one of the modes and there is a phase lag between the radial and axial directions. 

Both features have also been found in the results of the simplified model by including only 

two modes.  
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9.1.3 Effect of track dynamics 

The role played by the track dynamics in the excitation of curve squeal has been investigated, 

with attention focused on the situation with a constant friction coefficient. The rail has been 

represented by various models of increasing complexity. Initially it is modelled as an infinite 

Timoshenko beam on a two-layer elastic foundation. It has been demonstrated that, even 

with this rail model, single wheel modes can couple with the rail and give squeal.  

Subsequently, the influence of various rail resonances has been investigated. Various 

features in the track can introduce wave reflections and/or ‘modes’ in the rail: discrete 

supports, the presence of additional wheels on the track, the rail cross-section deformation 

and the introduction of a lateral offset on the rail. These have been included in the squeal 

model but the results were found not to be significantly modified: the unstable frequencies 

that were found were still largely the same as those predicted with an infinite supported 

Timoshenko beam. 

Finally a reduced model is considered, in which the wheel and rail are each represented by 

single-degree-of-freedom systems. The rail vibration behaviour in the vertical direction is 

simplified to that of a mass, a spring, or a damper. For a mass or damper-like behaviour of 

the rail, the system was found to be unstable even with a very small friction coefficient. This 

indicates that it is not necessarily the introduction of ‘modes’ in the rail that causes the wheel 

modes to couple with the rail; instead the equivalent mass and especially damper behaviour 

of an infinite rail can be the origin of a wheel-rail coupling phenomenon.  

9.1.4 Laboratory measurement. 

A laboratory measurement is carried out and squeal noise is observed. First, the impact tests 

show that for the wheel adopted there are not two modes close to each other and the modes 

only have an important component of the mode shapes in one direction. This makes the 

wheel not prone to have mode coupling. Also the absence of frequency shift and phase 

difference also suggest that mode coupling is not present. In addition, the friction force 

shows a mild falling trend with increasing sliding velocity. These observations suggest that 

stick-slip and/or falling friction are at the origin for this squeal noise. 

9.1.5 Summing up 

This thesis explained three different mechanisms for curve squeal noise: falling friction, 

mode coupling, wheel/rail coupling. Among these, the third mechanism, i.e. wheel/rail 
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coupling, has never been mentioned before. The importance of the rail dynamics on the 

occurrence of curve squeal should be given more attention in the future. This may explain 

why the curve squeal noise is difficult to mitigate. Also, the characteristics of mode coupling 

are investigated. These are supported by both simulation and measurement results. This can 

give some indications for how to distinguish mode coupling and falling friction. 

  

9.2 Recommendations for future work 

Based on current work and previous studies, the suggestion for further work are given as 

below: 

1) Inclusion of longitudinal and spin creepages. In the work presented in this thesis, the 

longitudinal and spin creepages are not included. However, in some previous studies [26] 

[50, 51] [53], it was shown that the creepages in these two directions could affect curve 

squeal. The longitudinal and spin creepage can affect the friction curve or, for some specific 

curving conditions, they can even induce curve squeal. It is recommended to introduce 

longitudinal and spin creepage in curve squeal models and/or in simplified models to discuss 

the possible mechanism for curve squeal in these situations. 

2) Two-point contact. Except for the study in [31, 33], which considered the effect of two 

contact points, all other previous studies (including this thesis) only assumed a single contact 

point. Two contact points condition can occur during curving and can have an effect in 

exciting the radial direction. Both frequency domain and time domain models for two contact 

points can be developed. 

3) Effect of wheel wear. In the railway field, the wear of the wheel is a common 

phenomenon after long-term operation of the train. The radius can be reduced with 

reprofiling by up to 50 mm. As the wheel wears the mode shapes and natural frequencies 

will change. It has been shown that the coupling between wheel modes can lead to curve 

squeal.  The effect of the wheel wear on the mode coupling can be investigated. Different 

wheels at different degrees of wear can be considered to see how wheel wear affects the 

likelihood of curve squeal. 

4) Wheel rotation. It is found in this thesis that the wheel rotation can affect the curve squeal 

results and the rolling velocity which can change the split frequencies also has an influence. 

Some further studies can be performed. A reduced model like the one in Chapter 6 can be 

developed for including wheel rotation, which then can be more convenient to carry out 
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parametric studies. For example, different pairs of modes from different wheels can be 

considered to see which ones are prone to squeal when wheel rotation is included. 

5) Laboratory measurement. In the laboratory measurement designed in this thesis, the 

wheel is stationary. Also, mode coupling is not observed for this measurement with a specific 

wheel. It is suggested for future study that a rolling wheel is designed. Some more wheels 

can be tested to find a case with mode coupling and then try to identify the characteristics of 

mode coupling in a lab measurement. Moreover, the normal load should be measured, by 

using e.g. multi axial load cells or strain gauges on the wheel surface, to introduce the effect 

of the variation of the normal load, which will give a better measurement result for the 

friction force. The vibration velocity can be measured directly using laser vibrometers 

instead of obtaining it from integration of the acceleration data. 
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Appendix B.  Translation and rotation of wheel and track 

dynamics 

This section provides the translation and rotation matrices to transform the wheel and track 

dynamics at the nominal contact to the local contact point.  

The mode shape matrix of the wheel or the track can be defined as: 

𝛟𝛟 = �

𝜙𝜙11 𝜙𝜙12 ⋯ 𝜙𝜙1𝑁𝑁
𝜙𝜙21 𝜙𝜙22 ⋯ 𝜙𝜙2𝑁𝑁
⋮ ⋮ ⋱ ⋮
𝜙𝜙61 𝜙𝜙61 ⋯ 𝜙𝜙6𝑁𝑁

� (B.1) 

where 𝜙𝜙𝑖𝑖𝑛𝑛 is the modeshape of mode 𝑛𝑛 in the 𝑖𝑖 direction. 

Figure B.1 gives a schematic view of the transformation. The wheel tyre and rail head are 

both assumed not to deform. The original contact point is assumed to be at 𝑃𝑃0; it moves to 

𝑃𝑃1 by a translation (𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3), then rotates by an angle 𝜃𝜃.  

 

Figure B.1. Rigid transformation: translation from 𝑃𝑃0 to 𝑃𝑃1 and then rotatation about 𝑥𝑥-axis. 

Hence the relationship between the mode shape matrix at 𝑃𝑃0 , 𝛟𝛟𝑅𝑅0 , and the mode shape 

matrix at 𝑃𝑃1, 𝛟𝛟𝑅𝑅1, is: 

𝛟𝛟𝑅𝑅1 = 𝐓𝐓rot𝐓𝐓off𝛟𝛟𝑅𝑅0 (B.2) 

where the translation matrix 𝐓𝐓off and rotation matrix 𝐓𝐓rot are [27]: 
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𝐓𝐓off =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 | 0 𝑙𝑙3 −𝑙𝑙2
0 1 0 | −𝑙𝑙3 0 𝑙𝑙1
0 0 1 | 𝑙𝑙2 −𝑙𝑙1 0
− − − − − − −
0 0 0 | 1 0 0
0 0 0 | 0 1 0
0 0 0 | 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (B.3) 

𝐓𝐓rot =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 | 0 0 0
0 cos 𝜃𝜃 sin𝜃𝜃 | 0 0 0
0 − sin𝜃𝜃 cos 𝜃𝜃 | 0 0 0
− − − − − − −
0 0 0 | 1 0 0
0 0 0 | 0 cos 𝜃𝜃 sin𝜃𝜃
0 0 0 | 0 − sin𝜃𝜃 cos 𝜃𝜃⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 

(B.4) 

Similarly, the transformation can be written in terms of mobility as: 

⎣
⎢
⎢
⎡𝑌𝑌11

𝑅𝑅1 𝑌𝑌12𝑅𝑅1 ⋯ 𝑌𝑌16𝑅𝑅1

𝑌𝑌21𝑅𝑅1 𝑌𝑌22𝑅𝑅1 𝑌𝑌26𝑅𝑅1
⋮ ⋮ ⋱ ⋮
𝑌𝑌61𝑅𝑅1 𝑌𝑌62𝑅𝑅1 ⋯ 𝑌𝑌66𝑅𝑅1⎦

⎥
⎥
⎤

= 𝐓𝐓tot

⎣
⎢
⎢
⎡𝑌𝑌11

𝑅𝑅0 𝑌𝑌12𝑅𝑅0 ⋯ 𝑌𝑌16𝑅𝑅0

𝑌𝑌21𝑅𝑅0 𝑌𝑌22𝑅𝑅0 𝑌𝑌26𝑅𝑅0
⋮ ⋮ ⋱ ⋮
𝑌𝑌61𝑅𝑅0 𝑌𝑌62𝑅𝑅1 ⋯ 𝑌𝑌66𝑅𝑅0⎦

⎥
⎥
⎤
𝐓𝐓totT (B.5) 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is the mobility in the 𝑖𝑖 direction due to excitation at direction 𝑗𝑗 and 

𝐓𝐓tot = 𝐓𝐓rot𝐓𝐓off (B.6) 

 

  

198 

 



Appendix C.  The wheel mobility including effect of wheel 

rotation 

When a wheel rolls along the track with velocity 𝑉𝑉 , the force point moves around its 

circumference at an angular speed 𝛺𝛺 = 𝑉𝑉/𝑟𝑟0 as shown in Figure C.1. This will cause the 

natural frequencies to split into pairs when viewed from the forcing point. The theory of this 

effect will be given here based on [103]. 

 

Figure C.1 (a) coordinates with reference point fixed at forcing point, (b) coordinates with 

reference point fixed in wheel (from [1]) 

According to the modal analysis, the vibration displacement (at the point 𝑥𝑥 and time 𝑡𝑡) of 

the wheel can be approximated written as: 

w (𝑥𝑥, 𝑡𝑡) = �𝜓𝜓𝑟𝑟(𝑥𝑥)𝑞𝑞𝑟𝑟(𝑡𝑡)
𝑁𝑁

𝑟𝑟=1

 (C.1) 

where 𝑞𝑞𝑟𝑟  are the generalized coordinates of 𝑟𝑟𝑡𝑡ℎ  mode and 𝜓𝜓𝑟𝑟  is the normal modes of the 

static wheel. 𝑞𝑞𝑟𝑟 can be found from uncoupled modal equations: 

𝑚𝑚𝑟𝑟�̈�𝑞𝑟𝑟(𝑡𝑡) + 𝑐𝑐𝑟𝑟�̇�𝑞𝑟𝑟(𝑡𝑡) + 𝑘𝑘𝑟𝑟𝑞𝑞𝑟𝑟(𝑡𝑡) = 𝑄𝑄𝑟𝑟(𝑡𝑡) (C.2) 

where 𝑚𝑚𝑟𝑟 , 𝑐𝑐𝑟𝑟 , 𝑘𝑘𝑟𝑟  are the generalized mass, damping and stiffness. 𝑄𝑄𝑟𝑟(𝑡𝑡) are generalized 

forces corresponding to the mode shapes 𝜓𝜓𝑟𝑟. 

The generalized force depends on the time-varying boundary conditions: the force is a 

harmonic force with angular frequency 𝜔𝜔  and amplitude 𝑃𝑃  acting at the moving point 

(𝑟𝑟,𝜃𝜃, 𝑧𝑧) = (𝑅𝑅,𝛺𝛺𝑡𝑡, 𝑍𝑍). The force is thus taken as: 
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𝑃𝑃𝛿𝛿(𝑟𝑟,𝜃𝜃, 𝑧𝑧|𝑅𝑅,𝛺𝛺𝑡𝑡, 𝑍𝑍)𝑒𝑒i𝜔𝜔𝑡𝑡 = 𝑃𝑃
𝛿𝛿(𝑟𝑟 − 𝑅𝑅)𝛿𝛿(𝜃𝜃 − 𝛺𝛺𝑡𝑡)𝛿𝛿(𝑧𝑧 − 𝑍𝑍)

𝑟𝑟
𝑒𝑒i𝜔𝜔𝑡𝑡 (C.3) 

The 𝑟𝑟𝑡𝑡ℎ wheel mode is now classified by its number of nodal diameters and nodal circles 

(𝑛𝑛,𝑚𝑚). These wheel modes are specified as having even (cosine) and odd (sine) angular 

distributions. The mode shape can be divided into two sets of coordinates: type I, the axial 

and radial displacements and the rotation about the circumferential direction, and type II, the 

circumferential displacement and the other two rotations. Then for ‘even’ modes the full 

mode shapes 𝜓𝜓𝑚𝑚𝑛𝑛
𝑒𝑒  can be written as: 

𝜓𝜓𝑚𝑚𝑛𝑛
𝑒𝑒 (𝑟𝑟,𝜃𝜃,𝑦𝑦) = 𝜓𝜓𝑚𝑚𝑛𝑛

𝐼𝐼 (𝑟𝑟, 𝜃𝜃,𝑦𝑦) cos𝑛𝑛𝜃𝜃 + 𝜓𝜓𝑚𝑚𝑛𝑛
𝐼𝐼𝐼𝐼 (𝑟𝑟,𝜃𝜃,𝑦𝑦) sin𝑛𝑛𝜃𝜃 (C.4) 

while for the odd modes: 

𝜓𝜓𝑚𝑚𝑛𝑛
𝑦𝑦 (𝑟𝑟,𝜃𝜃,𝑦𝑦) = 𝜓𝜓𝑚𝑚𝑛𝑛

𝐼𝐼 (𝑟𝑟, 𝜃𝜃,𝑦𝑦) sin𝑛𝑛𝜃𝜃 − 𝜓𝜓𝑚𝑚𝑛𝑛
𝐼𝐼𝐼𝐼 (𝑟𝑟,𝜃𝜃,𝑦𝑦) cos𝑛𝑛𝜃𝜃 (C.5) 

where 𝜓𝜓𝑚𝑚𝑛𝑛𝐼𝐼  and 𝜓𝜓𝑚𝑚𝑛𝑛𝐼𝐼𝐼𝐼  consist of type I and type II coordinates, respectively. 

Then for even modes Eq. (C.2) can be written as: 

𝑚𝑚𝑚𝑚𝑛𝑛�̈�𝑞𝑚𝑚𝑛𝑛𝑒𝑒 (𝑡𝑡) + 𝑐𝑐𝑚𝑚𝑛𝑛�̇�𝑞𝑚𝑚𝑛𝑛𝑒𝑒 (𝑡𝑡) + 𝑘𝑘𝑚𝑚𝑛𝑛𝑞𝑞𝑚𝑚𝑛𝑛𝑒𝑒 (𝑡𝑡) = 𝑄𝑄𝑚𝑚𝑛𝑛𝑒𝑒 (𝑡𝑡) 

= �[𝐏𝐏𝛿𝛿(𝑟𝑟,𝜃𝜃, 𝑧𝑧|𝑅𝑅,𝛺𝛺𝑡𝑡, 𝑍𝑍)𝑒𝑒i𝜔𝜔𝑡𝑡]𝜓𝜓𝑚𝑚𝑛𝑛
𝑒𝑒 (𝑟𝑟, 𝜃𝜃, 𝑦𝑦)d𝑉𝑉

𝑉𝑉

 

= �𝐏𝐏𝐼𝐼𝜓𝜓𝑚𝑚𝑛𝑛
𝐼𝐼 (𝑅𝑅,𝑍𝑍) cos𝑛𝑛𝛺𝛺𝑡𝑡 + 𝐏𝐏𝐼𝐼𝐼𝐼𝜓𝜓𝑚𝑚𝑛𝑛

𝐼𝐼𝐼𝐼 (𝑅𝑅,𝑍𝑍) sin𝑛𝑛𝛺𝛺𝑡𝑡�𝑒𝑒i𝜔𝜔𝑡𝑡 

(C.6) 

where the force vector 𝐏𝐏 is also split into type I and type II  components. Similarly, for odd 

modes: 

𝑚𝑚𝑚𝑚𝑛𝑛�̈�𝑞𝑚𝑚𝑛𝑛𝑦𝑦 (𝑡𝑡) + 𝑐𝑐𝑚𝑚𝑛𝑛�̇�𝑞𝑚𝑚𝑛𝑛𝑦𝑦 (𝑡𝑡) + 𝑘𝑘𝑚𝑚𝑛𝑛𝑞𝑞𝑚𝑚𝑛𝑛𝑦𝑦 (𝑡𝑡) = 𝑄𝑄𝑚𝑚𝑛𝑛𝑦𝑦 (𝑡𝑡) 

= �𝐏𝐏𝐼𝐼𝜓𝜓𝑚𝑚𝑛𝑛
𝐼𝐼 (𝑅𝑅,𝑍𝑍) sin𝑛𝑛𝛺𝛺𝑡𝑡 − 𝐏𝐏𝐼𝐼𝐼𝐼𝜓𝜓𝑚𝑚𝑛𝑛

𝐼𝐼𝐼𝐼 (𝑅𝑅,𝑍𝑍) cos𝑛𝑛𝛺𝛺𝑡𝑡�𝑒𝑒i𝜔𝜔𝑡𝑡 
(C.7) 

By making use of  

𝑒𝑒i𝜔𝜔𝑡𝑡 cos𝑛𝑛𝛺𝛺𝑡𝑡 = (𝑒𝑒i(𝜔𝜔+𝑛𝑛𝛺𝛺)𝑡𝑡 + 𝑒𝑒i(𝜔𝜔−𝑛𝑛𝛺𝛺)𝑡𝑡)/2 

𝑒𝑒i𝜔𝜔𝑡𝑡 sin𝑛𝑛𝛺𝛺𝑡𝑡 = (𝑒𝑒i(𝜔𝜔+𝑛𝑛𝛺𝛺)𝑡𝑡 − 𝑒𝑒i(𝜔𝜔−𝑛𝑛𝛺𝛺)𝑡𝑡)/2i 

(C.8) 

(C.9) 

Eqs. (C.6) and (C.7) become: 
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𝑞𝑞𝑚𝑚𝑛𝑛
𝑒𝑒 = 𝑇𝑇𝑚𝑚𝑛𝑛

𝑒𝑒i(𝜔𝜔+𝑛𝑛𝑛𝑛)𝑡𝑡

2𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑+(𝜔𝜔)
+ 𝑇𝑇𝑚𝑚𝑛𝑛

∗ 𝑒𝑒i(𝜔𝜔−𝑛𝑛𝑛𝑛)𝑡𝑡

2𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑−(𝜔𝜔)
 

𝑞𝑞𝑚𝑚𝑛𝑛
𝑦𝑦 = −i𝑇𝑇𝑚𝑚𝑛𝑛

𝑒𝑒i(𝜔𝜔+𝑛𝑛𝑛𝑛)𝑡𝑡

2𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑+(𝜔𝜔)
+ i𝑇𝑇𝑚𝑚𝑛𝑛

∗ 𝑒𝑒i(𝜔𝜔−𝑛𝑛𝑛𝑛)𝑡𝑡

2𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑−(𝜔𝜔)
 

(C.10) 

 

(C.11) 

where ∗ denotes complex conjugate. 𝑇𝑇𝑚𝑚𝑛𝑛 and 𝑑𝑑± are given by: 

𝑇𝑇𝑚𝑚𝑛𝑛 = 𝐏𝐏𝐼𝐼𝜓𝜓𝑚𝑚𝑛𝑛
𝐼𝐼 (𝑅𝑅,𝑍𝑍) − i𝐏𝐏𝐼𝐼𝐼𝐼𝜓𝜓𝑚𝑚𝑛𝑛

𝐼𝐼𝐼𝐼 (𝑅𝑅,𝑍𝑍) 

𝑑𝑑± = 𝜔𝜔𝑚𝑚𝑛𝑛
2 − (𝜔𝜔 ± 𝑛𝑛𝛺𝛺)^2 + 2i𝜁𝜁𝑚𝑚𝑛𝑛(𝜔𝜔 ± 𝑛𝑛𝛺𝛺)𝜔𝜔𝑚𝑚𝑛𝑛 

(C.12) 

(C.13) 

where  𝜔𝜔𝑚𝑚𝑛𝑛 = �𝑘𝑘𝑚𝑚𝑛𝑛/𝑚𝑚𝑚𝑚𝑛𝑛 and 𝜁𝜁𝑚𝑚𝑛𝑛 = 𝑐𝑐𝑚𝑚𝑛𝑛/2𝜔𝜔𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛. 

Substituting these into Eq. (C.1) gives: 

w (𝑟𝑟,𝜃𝜃,𝑦𝑦, 𝑡𝑡) = ��𝛹𝛹𝑚𝑚𝑛𝑛(𝑟𝑟,𝑦𝑦)𝑇𝑇𝑚𝑚𝑛𝑛
𝑒𝑒i((𝜔𝜔+𝑛𝑛𝑛𝑛)𝑡𝑡−𝑛𝑛𝑛𝑛)

2𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑+(𝜔𝜔)
+ 𝛹𝛹𝑚𝑚𝑛𝑛

∗ (𝑟𝑟, 𝑦𝑦)𝑇𝑇𝑚𝑚𝑛𝑛
∗ 𝑒𝑒i((𝜔𝜔−𝑛𝑛𝑛𝑛)𝑡𝑡+𝑛𝑛𝑛𝑛)

2𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑−(𝜔𝜔) �
𝑚𝑚,𝑛𝑛

 (C.14) 

where 𝛹𝛹𝑚𝑚𝑛𝑛 = 𝜓𝜓𝑚𝑚𝑛𝑛𝐼𝐼 + 𝜓𝜓𝑚𝑚𝑛𝑛𝐼𝐼𝐼𝐼 . This consistes of two waves rotating in opposite directions with 

different frequencies, 𝜔𝜔 ± 𝑛𝑛𝛺𝛺. 

Transforming the response into the reference frame in which the force point is stationary, 

the coordinates are (𝑟𝑟, 𝜃𝜃′,𝑦𝑦) with 𝜃𝜃′ = 𝜃𝜃 − 𝛺𝛺𝑡𝑡 and now Eq. (C.14) becomes: 

w (𝑟𝑟,𝜃𝜃′,𝑦𝑦, 𝑡𝑡) = 𝑒𝑒i𝜔𝜔𝑡𝑡��𝚿𝚿𝑚𝑚𝑛𝑛(𝑟𝑟,𝑦𝑦)𝑇𝑇𝑚𝑚𝑛𝑛
𝑒𝑒−i𝑛𝑛𝑛𝑛′

2𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑+(𝜔𝜔)
𝑚𝑚,𝑛𝑛

+ 𝚿𝚿𝑚𝑚𝑛𝑛
∗ (𝑟𝑟,𝑦𝑦)𝑇𝑇𝑚𝑚𝑛𝑛

∗ 𝑒𝑒i𝑛𝑛𝑛𝑛′

2𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑−(𝜔𝜔)�
 

(C.15) 

Eq. (C.15) allows the mobility of the wheel 𝑌𝑌𝑖𝑖𝑘𝑘 to be determined, which is : 

𝑌𝑌𝑖𝑖𝑘𝑘(𝜔𝜔) = i𝜔𝜔��
𝜓𝜓𝑚𝑚𝑛𝑛𝑗𝑗(𝑟𝑟,𝑦𝑦)𝜓𝜓𝑚𝑚𝑛𝑛𝑗𝑗(𝑟𝑟0, 𝑦𝑦0)

2𝑚𝑚𝑚𝑚𝑛𝑛
�
𝜀𝜀𝑖𝑖𝑘𝑘𝑒𝑒−i𝑛𝑛𝜃𝜃′

𝑑𝑑+(𝜔𝜔)
+
𝜀𝜀𝑖𝑖𝑘𝑘∗ 𝑒𝑒i𝑛𝑛𝜃𝜃′

𝑑𝑑−(𝜔𝜔)
��

𝑚𝑚,𝑛𝑛

 (C.16) 

where the force is at 𝜃𝜃′ = 0 and the response at 𝜃𝜃′, and 

𝜀𝜀𝑖𝑖𝑘𝑘 = �
1
−𝑖𝑖
𝑖𝑖

      
If  j and k are both of type I or both of type II 

(C.17) If j is of type I and k is of type II 
If j is of type II and k is type I 

The denominators of Eq. (C.16) become zero when 𝑑𝑑± → 0. According to Eq. (C.13), this 

means 
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𝜔𝜔 = 𝜔𝜔𝑚𝑚𝑛𝑛 ∓ 𝑛𝑛𝛺𝛺 (C.18) 

These are the natural frequencies of the rotating wheel as seen from the excitation point. 
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