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ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aerodynamics and Flight Mechanics

Doctor of Philosophy

INVESTIGATION OF NUMERICAL RESOLUTION REQUIREMENTS

OF THE EULERIAN STOCHASTIC FIELDS AND THE THICKENED

STOCHASTIC FIELD APPROACH

by Mark Anthony Picciani

The stochastic fields approach is an effective way to implement transported Probability

Density Function modelling into Large Eddy Simulation of turbulent combustion. In

premixed turbulent combustion however, thin flame-like structures arise in the solution

of the stochastic fields equations that require grid spacing much finer than the filter

scale used for the Large Eddy Simulation. An investigation into numerical resolution

requirements is conducted through simulation of a series of one-dimensional stochastic

fields simulations of freely-propagating turbulent premixed flames. The investigation

involved various stochastic field simulations at different combustion regimes and numer-

ical resolutions. It was concluded that the conventional approach of using a numerical

grid spacing equal to the filter scale can yield substantial numerical error; specifically

towards the flamelet regime. However, using a numerical grid spacing much finer than

the filter length scale is computationally-unaffordable for most industrially-relevant com-

bustion systems. A Thickened Stochastic Fields approach is developed in this thesis in

order to provide physically and numerically-accurate solutions of the stochastic fields

equations with reduced compute time compared to a fully resolved simulations. The

Thickened Stochastic Fields formulation bridges between the conventional stochastic

fields and conventional Thickened-Flame approaches depending on the sub-filter com-

bustion regime and numerical grid spacing utilised. One-dimensional stochastic fields

simulations of freely-propagating turbulent premixed flames are used in order to obtain

a criteria for the thickening factor required as a function of relevant physical and nu-

merical parameters, and to obtain a model for an efficiency function that accounts for

the loss of resolved flame surface area caused by applying the thickening transformation

to the stochastic fields equations. The Thickened Stochastic Fields formulation is tested

by performing LES of a laboratory premixed Bunsen flame. The results demonstrate

that the Thickened Stochastic Fields method produces accurate predictions even when

using a grid spacing equal to the filter scale.
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〈ỸCO2〉 and oxygen mass fraction 〈ỸO2〉 at various axial locations compar-
ing the the effect of different flame sensors with TSF for the F3 Flame . . 145

5.25 Radial distributions of the time-averaged carbon dioxide mass fraction
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Chapter 1

Introduction

Fossil fuel combustion currently provides more than 85% of the worlds primary energy

needs [1]. Even with the current research effort into low carbon energy technology and

fuels, it is anticipated that combustion systems will continue to be the primary source

of energy globally [2]. Additionally, regulations imposed by governments (such as the

Euro 6 legislation [3]) are placing increasingly stringent restrictions on air quality emis-

sions (CO, NOx, UHC, etc) and greenhouse gases (CO2), while also requiring increased

efficiency and energy output from these systems. In order for combustion technology to

support the global energy and transport demand and meet emission regulations, overall

process improvements need to be made. The most promising way for combustion design

to achieve these concurrent objectives is through: (1) novel fuel blends, including low

net-CO2 bio-fuel derived components; and (2) new combustion technology that increases

the thermal efficiency of an engine by allowing the engine to operate at higher pressure.

Higher pressure combustion intensifies reaction and thus a similar thermal output can

be obtained under fuel-lean conditions. This increases fuel efficiency and can reduce the

quantity of combustion generated air quality emissions.

Optimisation of power generation devices for increased efficiency and to reduce emissions

to within the established regulations is driving combustor design towards increasingly

extreme operating conditions. Being able to fine tune combustor geometry and com-

bustion conditions requires fundamental knowledge into the processes and physical be-

haviour of these systems. Historically, experimentation has been the primary method to

obtain understandings of combustion systems. Experiments are beneficial for their lack

1
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of assumptions on physical flow processes and for their relative ease in obtaining high

level information. However, uncertainties are often introduced when more detailed mea-

surement techniques are employed. For example, in Particle Image Velocimetry (PIV),

errors can be introduced due to random noise and the correlation algorithms used to

reconstruct the velocity vectors [4]. Assumptions are often made in regards to the seed

particles namely that, 1) the seed density is sufficient for the PIV correlation algorithm,

and 2) that the seed particles follow the flow without slip. Therefore, obtaining accu-

rate and detailed information about specific physical flow processes can be challenging

and requires careful configuration of the experiment. With the increasing complexity of

flow systems, repeated testing of large scale combustors can quickly become extremely

expensive and time consuming especially when conducting parametric investigations of

combustors.

With the increase in computational power, many industries have adopted Computational

Fluid Dynamics (CFD) as a tool in their design process. CFD is relatively easy to

implement and is cost effective compared to detailed experimental investigations. It

can provide a multi-scale level of detail and flow visualization that experiment is unable

to provide. However, it can be limited in its predictive capability due to the use of

numerical models often derived for case specific conditions. Additionally, for reacting

flows, simplified assumptions are often made to model species diffusion and chemical

reactions. The use of simplified chemical mechanisms to describe reaction pathways

that may include thousands of elementary chemical reactions may not always be suitable.

Due to this drawback of CFD, industry tends to combine use of both experiment and

CFD in the design process.

CFD involves solving fluid flow equations though established numerical algorithms and

procedures. There are three main approaches for simulation of turbulent reacting flow:

Reynolds Averaged Navier Stokes (RANS), Large Eddy Simulation (LES) and Direct

Numerical Simulation (DNS). DNS is the most accurate of the approaches used to solve

turbulent reacting flows and involves the solution of the equations of fluid flow using

enough resolution to accurately capture all the length and time scales of turbulence

and the flame. DNS therefore avoids the need for turbulence models and only requires

physical models for transport, thermodynamic, and chemical kinetic properties of the

fluid. As a consequence of the spatio-temporal resolution required, DNS simulations

are plagued by their sometimes prohibitive computational cost. The resulting data
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from these simulations, are invaluable since they provide fundamental information on

physical processes necessary to identify, derive, and test models for use in lower fidelity

modelling approaches. However, full resolution simulations are not yet feasible for most

engineering and industrial applications. Thus, lower fidelity modelling approaches are

typically used.

The more computationally feasible options are RANS and LES. In RANS a solution

is sought by temporally averaging the governing equations of DNS. The nature of this

time-averaging process means that turbulent fluctuations are not resolved and require

modelling. In LES, the governing equations are spatially filtered. Any turbulent struc-

tures larger than the characteristic filter width are resolved by the simulation and only

the small scale turbulent structures (below the filter width) are modelled. In many

combustion applications, LES predictions are superior to RANS. However, for both

methods, two key challenges in the modelling of turbulent combustion are: 1) Impor-

tant processes and diffusion effects in flames occur at scales which are not resolved in

either method; 2) Flame interaction with the turbulent flow needs to be modelled. The

reduction in computational overhead allows RANS and LES methods to be applied to

engineering scale applications, but comes with the penalty of greater reliance on mod-

elling. Specifically, modelling is required for the unresolved turbulent transport and the

filtered/ensemble-averaged chemical source term.

1.1 Combustion

Combustion can be considered a temperature-dependant, exothermic process between a

fuel and oxidant, that releases the bond energy within molecules to produce heat and

light. There are two classifications of combustion:

• Non-premixed Combustion or diffusion flames: In Non-premixed Combus-

tion, combustion is dependant on the mixing between the fuel and oxidiser which

are introduced separately. Deep in the respective components the mixture is ei-

ther too rich or too lean for chemical reaction to occur. The flame is present in

regions around stoichiometry where the mixture composition and temperature are

sufficient to sustain chemical reaction. Removal of either stream terminates the

combustion process. This property makes non-premixed combustion a very safe
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combustion mechanism. It has been studied extensively and can be seen in many

everyday applications such as furnaces and diesel engines. The principle drawback

of this combustion is that it typically produces high temperatures. When coupled

with air as the oxidiser, it can lead to increased levels of pollutants such as NOx.

• Premixed Combustion: In premixed combustion, the fuel and oxidiser are thor-

oughly mixed to form a flammable mixture prior to combustion. As such, a flame

can develop anywhere in the mixture where there is an ignition source. Practically,

this is a much more dangerous mechanism than non-premixed combustion. Many

everyday applications exist for premixed combustion such as port fuel injection

spark ignition engines, and gas turbine engines. The benefit of this regime of com-

bustion over non-premixed combustion is that the stoichiometry of the flame can

be controlled to generate the appropriate post flame conditions. More attractively,

premixed flames can operate in fuel lean conditions leading to lower flame tempera-

tures that reduce the formation of NOx. Lean Premixed combustion is a promising

approach for many industrial applications such as large scale gas turbines and aero

engines. While premixed combustion can provide benefits for combustion systems,

there remain some challenges in its safe implementation into future designs due to

the inherent instability caused by the strong coupling between molecular diffusion

and chemical reaction.

1.1.1 Premixed Combustion Overview

The nature of premixed flames having both oxidiser and fuel mixed prior to ignition

gives rise to a different flame structure and combustion mechanisms compared to non-

premixed combustion. In non-premixed flames, combustion is sustained by the active

and continuous mixing of oxidiser and fuel. Comparatively, in a premixed flame, due to

the premixed nature of the reactants, combustion can be self-sustaining.

When ignition occurs in a premixed flame, chemical reaction causes the release of heat

and the rapid conversion of reactants to products. This generates (and steepens) thermal

and scalar gradients. As a consequence of these sharp gradients, premixed flames are

characterised by an interface of finite (measurable) thickness that separates reactants

and products (or unburnt and burnt states). The thickness of this interface is known as

the flame thickness.
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1.1.1.1 Laminar Flame Structure and Thickness

The structure of premixed laminar flames is shown in Figure 1.1. It can be divided

into four principle zones. In the Inert zone, the fuel and oxidiser are homogeneously

mixed at a relatively cool temperatures and no chemical reaction occur. In the Pre-

heat zone, thermal diffusion from the reaction zone causes the fresh unburnt reactants

to be heated while remaining chemically inert. Additionally, combustion products and

radicals from the post flame region diffuse towards the Inert zone. The third zone is

a very thin layer called the Reaction Zone. This zone is dominated by low activation

energy chemical reactions and production of intermediate chemical species (such as CO,

CH3, etc.). The result is large temperature and species concentration gradients through

this region. The thickness is often denoted δr and is termed the reaction zone thickness.

In the final region, the Post Flame zone (or the Oxidation zone), slow recombination of

radicals occurs to form the final combustion products (such as H2O and CO2 atoms).

The oxidation zone thickness is typically much larger than the reaction zone thickness

as the chain terminating reactions are typical quite slow [5].
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Figure 1.1: Schematic of premixed laminar flame structure.
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Flame Thickness

There are various definitions of flame thickness (see [6] for a review). The total flame

thickness
(
δt
)

is measured by the distance which the temperature varies from 1.01Tu to

0.99Tb where the subscripts u and b denote unburnt and burnt mixtures respectively.

Due to the slow recombination reactions taking place in the oxidation zone (and the

resultant long temperature tails), this measure of flame thickness tends to produce a

very large estimations of flame thickness.

A second definition is known as the diffusion thickness and is defined as

δ =
Dth

sL
, (1.1)

where Dth is the thermal diffusivity, and sL is the laminar flame speed. Although quite

simple to compute once the flame speed is known, it may be too approximate and

depends highly on the value of thermal diffusivity which changes through the flame.

A more appropriate (and widely used) measure of thickness is based on the temperature

profile and is known as the thermal thickness (δL) and is given by

δL =
Tb − Tu
|∇T |max

, (1.2)

where |∇T |max is the maximum temperature gradient through the flame.

Under certain assumptions (i.e adiabatic, simple chemistry, and equal molecular diffu-

sivities), a premixed flame can also be characterised though a progress variable, c. It is

constructed through

c =
T − Tu
Tb − Tu

or
Y − Yu
Yb − Yu

, (1.3)

where Y is a mass fraction or sum of mass fractions of major reactants and/or product

species. The most restrictive condition placed on the choice scalars defining a progress

variable is that the resultant progress variable must vary monotonically between the

burnt and unburnt states. As such, radicals present within the reaction zone are often

not used to define it. With the correct choice scalar(s), the progress variable describes

the unique thermo-physical state of any point through the flame.
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Under the aforementioned assumptions, the progress variable can also be used to define

a flame thickness in a similar form to temperature.

δc =
1

|∇c|max
. (1.4)

In DNS simulations, accurate simulation of premixed flames requires resolution of the

chemical processes that occur within (and through) the thin flame structure. When

a combustion model is used, the laminar flame thickness is often used as an input for

turbulent combustion models. Therefore, accurate predictions of the flame thickness

is essential as it can be used as an a priori tool to establish initial numerical grid

requirements that may be required within the simulation or provide accurate closure for

turbulent combustion models. Poor resolution of chemical processes through the flame

can lead to substantial errors in the simulations as will be discussed in Chapter 4.

Flame Speed

The steep thermal and scalar gradients generated by chemical reaction shown above

drives diffusion of these quantities to the deficient side of the interface. For example,

thermal diffusion from the hot side of the interface towards the cooler, unburnt reactants

side, gradually increases the temperature of the unburnt reactants in the vicinity of

the reaction zone leading to the generation the Pre-heat zone. At the same time, the

higher temperature of the fresh reactive mixture leads to the initiation of chemical

reaction. This feedback of chemical reaction and scalar diffusion is continuous, and

eventually balances. This continuous process results in the incremental displacement,

or propagation, of the interface towards the fresh reactant mixture. The speed at which

this interface propagates is known as the laminar flame speed (sL).

Through asymptotic analysis, analytical expressions have been developed (see for ex-

ample [7]) for calculating the laminar flame speed. These analytical expressions rely on

simplifications of physical processes such as simplified single step irreversible chemistry,

and a unity Lewis number (Le = α/D) i.e equal thermal diffusivity α and molecular

diffusivity D. However, these analytical expressions generally exhibit a dependency on
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thermal diffusion and chemical reactions and follows that

sL ∝
√
DthKr (1.5)

where Dth is the thermal diffusivity and Kr is the reaction rate coefficient of a simpli-

fied chemical reaction. The reaction rate coefficient is most often represented by the

Arrhenius Law.

Kr = ApT
n exp

(−Ea
RuT

)
, (1.6)

where Ea is the activation energy, Ru is the universal gas constant, T is the temperature,

n is the temperature exponent, and Ap is the pre-exponential factor.

The laminar flame speed is known to depend on the unburnt mixture composition, tem-

perature, and pressure. The mixture composition is usually expressed as an equivalence

ratio which represents the deviation from stoichiometric conditions

φ = s
YF
YO

, (1.7)

where s is the stoichiometric ratio, YF is the fuel mass fraction, and YO is the oxidiser

mass fraction. When the equivalence ratio is φ < 1 the mixture is said to be lean (excess

oxidiser) and when φ > 1 the mixture is said to be rich. An example of the dependency

of the laminar flame speed on these properties is shown in Figure 1.2.
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Figure 1.2: Variation of laminar flame speed of iso-Octane as a function of equivalence
ratio, temperature, and pressure as obtained from analytical functions of [8]
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The decrease of laminar flame speed with increasing pressure shown in Figure 1.2 arises

from the increased diffusion resistance at elevated pressures. The much stronger de-

pendence of the flame speed on initial temperature arises from the highly non-linear

dependence of reaction rate on temperature shown in Equation 1.6.

1.2 Turbulence Overview

In most practical applications of combustion, the presence of turbulence is very common.

Turbulent flows are characterised by vortical motions of varying scales. The majority

of the energy is contained in the larger scales and is transferred to the smallest scales

where it is eventually dissipated into heat. This transfer of energy is known as the energy

cascade and is illustrated in Figure 1.3.
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Figure 1.3: Representative turbulent kinetic energy spectrum for homogeneous tur-
bulence

The majority of the turbulent kinetic energy (TKE) is contained in the Integral Range

which has a characteristic length-scale (the integral length scale, LT ) which is normally

problem dependant. These large turbulent structures contain the majority of turbulent

kinetic energy which is on the order of u′(LT )2 (where u′ is characteristic velocity of the

turbulent scale). In general, the largest turbulent structures may be anisotropic, and

are influenced by boundary conditions of the flow. The velocity and length scales in this
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range are often used to define a turbulent Reynolds number

ReT =
u′(LT )LT

ν
, (1.8)

where ν the kinematic viscosity. This quantity indicates the ratio between turbulent

inertial and laminar viscous forces, and gives an indication to the range of scales in the

turbulent field under investigation.

The Inertial Range is where the energy transfer between scales takes place, independent

of viscous effects. Large unstable eddies break up into smaller structures and transfer

their kinetic energy. If an equilibrium between local input of kinetic energy from the

large scales and dissipation (ε) from the small scales is assumed, the kinetic energy at

any scale within this range is given by the Kolmogorov Law [9]

E(κ) ∝ Cε 2
3κ
−5
3 . (1.9)

The dissipation rate (ε) of an eddy characterises the rate at which the energy is trans-

ferred from the large to the small scales. It is estimated by the ratio of the eddy’s

kinetic energy and turnover time. With the dependency of the integral scale dropped

(u′(LT ) = u′), ε can be expressed by

ε =
u′2

τT
=
u′3

LT
. (1.10)

The behaviour in the Inertial Range has not been proven analytically, however, it has

been demonstrated experimentally and numerically in a wide range of flow conditions as

seen in Figure 1.4. This assumption of constant dissipation in the inertial range provides

a useful method to relate turbulent characteristics at different scales and is used as a

base assumption in the derivation of turbulence models. For example, within the inertial

sub-range, the velocity at some arbitrary scale, Ls, can be related to the integral scale

quantities through

us = uT

(
Ls
LT

)(1/3)

(1.11)

Finally, the Dissipation Range is where the majority of the TKE of the flow is dissipated

by the smallest scales due to viscous effects. Kolmogorov argued that all anisotropy of

the large scales is lost during the cascade process, and that after certain threshold
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the turbulent scales are locally isotropic, uniquely determined by ε and the kinematic

viscosity, ν. Using dimensional analysis, Kolmogorov [10] defined expressions for the

scales at which inertial and viscous forces balanced. Known as the Kolmogorov scales,

they characterise the smallest turbulent motions in a flow. The Kolmogorov length-scale

(η), velocity (uη), and turnover times (τη) can be defined as

η =

(
ν3

ε

) 1
4

, (1.12)

uη = (νε)
1
4 , (1.13)

τη =
(ν
ε

) 1
2
, (1.14)

respectively.

Figure 1.4: Turbulent kinetic spectrum depicting the energy dissipation trends pro-
posed by Kolmogorov [11].

1.2.1 Turbulent Premixed Flames

When considering practical combustion configurations such as gas turbine combustors

or internal combustion engines, turbulence is nearly always present and it interacts with
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the flame by wrinkling and stretching it. Turbulence of different length and velocity

scales (and consequently time-scales) in a field will interact uniquely with a flame of a

given thermo-physical configuration leading to deviations from the characterising lami-

nar relationships given above.

To aid in describing the influence of turbulence on a laminar flame, a regime diagram

(shown in Figure 1.5) was developed by [12, 13]. This diagram provides a rough a priori

characterisation of the turbulent flame and can indicate whether the turbulent flame

exhibits thin, “sheets-like” or distributed reactions zones. Knowledge of the combustion

regime provides useful information for the selection of combustion models to be used in

simulations as combustion models are usually developed for specific combustion regimes

and may not be applicable to others.

Broken Reaction Zones

Wrinkled Flamelets

Corrugated Flamelets

Thin Reaction Zones

Ka=100

Ka=1

D
a=

1

R
e
T =1

10−1

1

10

102

103

104

u
′ /
s L

10−1 1 10 102 103 104

LT /δL

Figure 1.5: Premixed combustion regime diagram

This diagram is assembled and navigated through comparison of the relative magni-

tude of the various chemical and turbulent scales (time, length, and velocity) and non-

dimensional numbers:

• The Damköhler number is the ratio of turbulent and chemical time-scales given

by

Da =
τT
τc

=
LT
δL

sL
u′
, (1.15)
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where τT is the characteristic turbulent time-scale and τc is the chemical time-scale

defined as

τc =
δL
sL
. (1.16)

Very small values of (Da) indicate that turbulent mixing is faster than chemi-

cal processes; combustion in the small Da regime is thus reaction rate limited.

Conversely, for very large Da, the reaction rate timescale is much smaller (faster

reaction rates) than the mixing, and therefore the rate of reaction is limited by

turbulent mixing and the subsequent diffusion of scalars; the high Da regime is

mixing limited.

• The Karlovitz number (Ka) is the ratio of the Kolmogorov and chemical time

scale

Ka =
τc
τη

=
δ2
L

η2
, (1.17)

where τη and η are the Kolmogorov time-scale and length-scale respectively. This

non-dimensional quantity compares the influence of chemistry to the smallest (Kol-

mogorov) turbulent scale. With the assumption that sLδL/ν = O(1) [14], the

Karlovitz number can be recast in terms of the integral scale quantities as

Ka =

(
u′

sL

)3/2( δL
LT

)1/2

. (1.18)

• With the expressions for Karlovitz number and Damköhler, an alternative expres-

sion for the turbulent Reynolds number can be developed as

ReT =

(
u′

sL

)(
LT
δL

)
= Ka2Da2. (1.19)

Within the regime diagram, four distinctive combustion regimes can be identified. Each

combustion regime can be summarised as follows:

• Laminar Regime: Indicated by the lower left hand corner, this regime is char-

acterised by the turbulent Reynolds number being less than unity and represents

where the flame is completely laminar in nature.

• Flamelet Regime:
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– Wrinkeled Flamelet: Combustion in this regime is characterised by the

turbulent scales being smaller than the Gibson length-scale, or where u′ < sL.

Consequently, the turbulence lacks sufficient energy to significantly deform

the flame. Laminar flame propagation is dominant.

– Corrugated Flamelet: This regime is characterised by a higher turbu-

lence intensity than the wrinkled flamelet regime. Any structures possessing

turnover velocities greater than the laminar flame speed (u′ > sL) will be able

to deform and wrinkle the flame.

• Thin reaction zones: In this reaction regime, the majority of the turbulence

scales wrinkle the flame. The largest turbulent scales possessing a turnover time

of τt < τc (Da < 1) will act to increase transport and thicken the thermal layer

(or preheat zone) to a scale on the order of their size, transporting heat and mass

ahead of the flame. Smaller turbulent scales will be small enough to penetrate

the thickened thermal layer. Additionally, the smaller turbulent structures may

begin to strain and deform the inner layer (reaction zone). As Ka is increased,

mass transfer begins to be governed more by turbulent diffusion than molecular

diffusion.

• Broken reaction zones: In this reaction regime, turbulent motions may enter

the inner layer increasing the distribution of heat and radicals to the preheat zone.

Turbulent Flame Speed

As a result of the wrinkling of the flame, its total surface area increases. This results in

an increase in the volumetric consumption rate of reactants through the flame, and thus,

an increase its propagation speed from a laminar to a turbulent speed (sT ). Attempts

at deriving analytical expression for the change in flame speed due to turbulence have

generally resulted in expressions of the form [6]:

sT
sL
≈ 1 +

u′

sL
, (1.20)

which simply highlight the general principle that premixed flame propagation is en-

hanced by turbulent motions. However, the increase in turbulent flame speed with
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turbulent fluctuation is not indefinite. It has been shown (example in [15]) that for pro-

gressively increasing turbulence intensities, an upper limit on attainable turbulent flame

speed exists. At very large turbulent intensities, the turbulent flame speed becomes a

function of the turbulent length-scales only. This is known as the “bending” effect.

For a turbulent flame in the flamelet regime (or for small u′ and where LT � δL), only

the larger scale turbulent structures influence the flame structure. These larger struc-

tures convolute the turbulent flame increasing its total surface area, but leave the inner

(laminar-like) structure of the flame unaffected. As a consequence, the local flame sur-

face elements of the flame roughly propagate at the laminar flame speed. This behaviour

is illustrated in Figure 1.6. Damköhler [16] was the first to propose this behaviour and

suggested that in this regime, the turbulent flame speed was dictated by turbulent fluc-

tuations sT ∼ u′. This is known as Damköhler hypothesis. As such, it can then be stated

that in this particular combustion regime, the turbulent flame speed is proportional to

the total flame surface area as
sT
sL
∝ AT

A
, (1.21)

where AT is the turbulent flame surface area and A is the projected frontal (or mean)

area of the flame brush. This ratio of areas is known as the flame wrinkling factor.

Development of analytical expression for this ratio still remains an active area of research.

The derived expressions are normally a function of characteristic turbulence or flame

describing parameters such as u′, LT , Le, sL etc.

1.3 Thesis Motivation

The choice of combustion model used in a particular numerical simulation of turbulent

reacting flow generally requires a priori knowledge of the combustion regime i.e. non-

premixed or premixed and the various regimes therein described in Section 1.2.1. This

is simply due to fundamental assumptions and inherent limitations in their derivations.

For example, flamelet based models [18, 19] (for Ka. 1) take advantage of the fact that

the reaction zones are substantially thinner than turbulent scales. It is therefore assumed

that the relatively undisturbed inner structure of the turbulent flame can be represented

by an ensemble of many “flamelets” whose properties can be represented by laminar

flames. Moving away from this regime towards the broken reaction zones (Ka> 1),
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sL

sT

sL

sL

AT

A

Figure 1.6: Turbulent flame speed definition in the flamelet regime - The total tur-
bulent flame surface AT and mean area A are shown along with the laminar (sL) and

turbulent (sT ) flame speeds. Image modified with permission from [17].

the increasing aerodynamic strain and interaction of turbulence with the reaction zone

relaxes the assumption of laminar-like inner flame structure resulting in flamelet methods

becoming less applicable and thus requiring a different modelling approach.

Aside from the study of fundamental flame physics, an objective of numerical combus-

tion research is the advancement of modelling potential though relaxation of current

modelling limitations and by broadening the regimes of applicability of the existing

models. This direction is primarily being driven by the desire to have increasingly com-

plex combustion systems that may exhibit a variety of combustion conditions. In fact,

most practical combustion systems do not fall within a specific, well defined premixed

or non-premixed combustion regime that the models were designed for, adding to the

complexity of numerical modelling. For example, depending on their operating mode,

Gasoline Direct Injection (GDI) engines have operating conditions that vary between

non-premixed and premixed combustion, and across varying combustion regimes within

premixed combustion itself [20]. Gas turbine combustors often exhibit flamelet-like com-

bustion, but with the drive for increased operating pressures, reduced emissions, and

increased power output, their operating point can oscillate between flames that exhibit

flamelet and distributed flame behaviour. The need to capture such a vast range of

potential operating points encroaches on the limits of current modelling capability and

cannot be accurately captured by any single model. Simulation at any specific condition

may require different modelling approaches.
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There are very few models that have the potential to cope with the complex conditions of

modern and future combustors, and even within these models, drawbacks and limitations

still exist. Models that use one point statistical descriptions of the turbulent flow, such

as the probability density function (PDF) framework of Pope [21], are often better suited

for the modelling of complex combustion environments primarily due to their general,

regime independent formulation. A major attraction of PDF methods is that through

their derivation, they are free from supposed flame structure. The method inherently

provides a model-free closure for the chemical reaction rates regardless of combustion

regime, and thus, the chemical reaction rates are computed directly. As such, reaction

rate dependant phenomena such as quenching and pollutant production are inherently

captured within the methodology.

Despite the apparent generality of PDF methods, the trade-off of using this methodology

is that they can be much more computationally expensive compared to regime specific

models such as flamelet methods [19] or Artificially Thickened Flame (ATF) [14, 22].

Additionally, a particular challenge in the use of PDF methods is simulation of premixed

flamelet combustion. In practical premixed reactive flow simulation, the flame normally

resides entirely below the numerical grid and many of the physical processes that drive

flame propagation (namely scalar mixing, molecular diffusion, and chemical reaction) are

unresolved. Even if chemical reaction is solved directly, it remains necessary to model the

molecular mixing or micro-mixing process within PDF methods. Although reasonably

well established, the modelling of the micro-mixing process remains the primary focus

of PDF modelling research.

To address the issue of computational expense of PDF methods, simplified solution

strategies have been developed. Historically, Lagrangian Monte Carlo methods have

been used as a solution strategy for the PDF framework (for example [21]). Recently

an Eulerian solution methodology known as the stochastic fields method has emerged

having first been introduced by Valiño [23, 24] and then by Sabl’nikov [25]. Some of the

benefits of the Eulerian methodology over the Lagrangian particle methodology is the

ease of numerical implementation, and ability to use conventional numerical techniques

in their solution.

In the context of premixed combustion, stochastic fields has been applied to a variety of

combustion configurations (outlined in Section 3.3.4) of which very few have encroached
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on the flamelet combustion limit. The logical progression to broaden the validated regime

of applicability of the method (and to increase its appeal for widespread industrial use) is

to apply stochastic fields to flamelet-combustion configurations. However, as mentioned

previously, regardless of the solution strategy employed (Lagrangian or Eulerian) the

primary challenge with simulations in this regime remains in determining an adequate

closure for the micro-mixing process. To date, premixed stochastic fields simulations

have employed relatively simple models for the micro-mixing process and it is unknown

if these models are applicable in the flamelet regime in their current form. It is therefore

necessary to determine if extending stochastic fields to simulate flamelet combustion

would require alternative closures.

Aside from the existing (micro-mixing) modelling challenges of flamelet combustion ex-

hibited by both Eulerian and Lagrangian approaches, an additional aspect of the stochas-

tic field method which is not present in the Lagrangian framework are the discretisation

errors. As in all Eulerian methods, the numerical accuracy of the solution depends on

the numerical techniques employed to represent the linearised governing equations. A

challenge with modelling premixed combustion is the broad range of the magnitude of

scalar gradients generated by turbulence and chemical reaction. These gradients must

be sufficiently resolved if introduction of numerical errors is to be avoided and correct

results (to the level of accuracy of the model) are to be obtained.

For cases with high turbulence intensity (large Karlovitz numbers), turbulent diffu-

sion acts to broaden scalar gradients and can reduce the difficulty in resolving them

sufficiently. The resolution of scalar gradients becomes more challenging in flamelet

combustion due to dominance of chemical reaction. With increasingly flamelet like con-

ditions (or increasing Damköhler number), scalar gradients further steepen with the

most stringent requirements being the resolution of a laminar flame. Therefore, prior to

investigating the necessity/benefit of different micromixing closures with the stochastic

fields method, the more fundamental issue of resolution requirements and impact on

numerical accuracy across the different regimes of turbulent premixed combustion must

be addressed. Due to its relative infancy compared to other modelling approaches, a

thorough investigation of its limitations and numerical implications of its use have not

been reported in academic literature. The primary focus of this work is then:
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1. To develop understanding of the numerical resolution requirements of the stochas-

tic field method through simplified and fundamental numerical simulation across

a range of premixed combustion conditions.

2. To provide potential avenues for increased computational efficiency and accuracy

through formulation and validation of a regime-independent LES-stochastic field

methodology that remains numerically accurately across all regimes of premixed

combustion.

1.4 Thesis Outline

In this Chapter, a brief introduction to concepts of premixed combustion and turbulence

required in this work was presented. Chapter 2 will present the governing equations of

fluid flow along with various modelling strategies and closures required for their im-

plementation. More emphasis will be placed on LES as it is the modelling approach

used in this work. Chapter 3 presents the turbulent combustion modelling approaches

used in this thesis and details the current state of the stochastic field method along

with a detailed overview of the different formulations and open questions regarding the

method. The final section of Chapter 3 presents the numerical modelling strategy used

in this work. Chapter 4 will demonstrate the current capabilities and limitations of the

stochastic field method and illustrate a one- and three-dimensional numerical investiga-

tion into the numerical resolution requirements. Chapter 5 will build on the conclusions

of Chapter 4 and present a numerical framework to mitigate the demanding resolution

requirements in the practical use of the stochastic field methodology. Finally, in Chapter

6, the thesis will be concluded with an outline for future work.





Chapter 2

Governing Equation and

Numerical Formulation

2.1 Fluid Flow

The evolution of a continuum fluid flow over space and time is described by a set of non-

linear, partial differential equations. The non-linearity of these equations arises from the

convective transport of momentum, energy and chemical species. Although analytical

solutions exist, they are restricted to specific flow conditions and simplified configura-

tions. In more general cases, there do not exist an analytical solutions and therefore

numerical solution methods have been employed to solve them. The numerical methods

involve discretisation of the equations over a finite set of points within the computational

domain. The proceeding equations describe the evolution of a vector/scalar field in a

Cartesian coordinate system expressed in Einstein summation notation.

2.1.1 Mass Conservation Equation

The conservation of mass states that no matter can be created or destroyed. The evo-

lution of the mass field is given by

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2.1)

21
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where t is time, xi is the i − th spatial coordinate, ui is the velocity component in the

i− th direction, and ρ is the density.

2.1.2 Momentum Conservation Equation

Newton’s second law states that the rate of change of momentum of a system is equal

to the body and surface forces acting on it. The momentum balance can be written as,

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+
∂σij
∂xj

+ ρgi. (2.2)

The above equation relates the rate of change of momentum and convective transport

to the gravitation acceleration gi, and the forces given by the viscous stress tensor σij

and hydrostatic pressure p. For a compressible Newtonian fluid, the components of the

stress tensor can be expressed as

σij = µ

(
∂uj
∂xi

+
∂ui
∂xj
− 2

3

∂uk
∂xk

δij

)
, (2.3)

where µ is the dynamic viscosity of the mixture which is mainly a function of composition

and temperature, and δij is the Kronecker delta. The first and second terms represent

the isotropic and deviatoric component of the stress tensor respectively. Combining

Equation 2.2 and 2.3

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂uj
∂xi

+
∂ui
∂xj
− 2

3

∂uk
∂xk

δij

)]
+ ρgi. (2.4)

The complete set of momentum equations in the three coordinate directions are known

as the Navier-Stokes equations. Combined with Equation 2.1, they fully describe flow

of single component Newtonian fluids.

2.1.3 Species Conservation Equation

When considering reacting flows, in addition to Equations 2.1 and 2.4, additional equa-

tions describing the evolution of individual chemical species must be solved. The tem-

poral evolution of the mass fraction, Y , of species α is

∂

∂t
(ρYα) +

∂

∂xi
(ρYαui) = − ∂

∂xi
(ρYαVαi) + ρω̇α, (2.5)
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where Yα is the mass fraction of the chemical species α, Vαi is the i − th component

of diffusion velocity, and ω̇α is the chemical source term representing the net rate of

production/consumption of a species due to chemical reaction. Global mass conservation

requires that
Nα∑

α=1

YαVαi = 0. (2.6)

The calculation of the diffusion velocities involves inverting an N2 matrix at every point

in space at each instant. This is too computationally demanding for many practical

simulation applications. Instead, approximations are often used such as the Hirschfelder

and Curtiss [6, 26] approximation, given by

VαXα = −Dα
∂Xα

∂xi
, (2.7)

where Xα is the mole fraction of species α, and Dα is its diffusion coefficient into the

mixture. With the assumption of negligible spatial variation in molecular weight and

with the relation between mole and mass fraction

Yα = Xα
Wα

W
, (2.8)

where Wα is the species molecular weight, and W the mixture molecular weight, the

diffusion flux can be expressed as

YαVαi = −ρDα
∂Yα
∂xi

. (2.9)

With unequal species diffusivities, the outstanding issue with this approximation is

that it does not satisfy global mass conservation when the diffusion coefficients are

not identical. One solution to mitigate this issue is to add a correction velocity, Vci, to

Equation 2.9 to enforce mass conservation. Another technique is to apply a correction

only to a single species (usually nitrogen in simulations with air) that ensures global

mass conservation. However, in the current work, equal species diffusivities is assumed

and mass is inherently conserved. More details on correction velocity treatment can be

found in [6].
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Substituting Equation 2.9 into Equation 2.5 yields the final form of the chemical species

transport equation

∂

∂t
(ρYα) +

∂

∂xi
(ρYαui) =

∂

∂xi

(
ρDα

∂Yα
∂xi

)
+ ρω̇α. (2.10)

In this formulation, diffusion of species due to temperature gradients (Soret Effects)

have been neglected.

2.1.4 Energy Conservation Equation

Depending on the measure of energy employed, the form of the conservation equation

takes different forms. For the various definitions and conservation equation forms, re-

fer to [6]. The static enthalpy is comprised of a sensible component and a chemical

component through

h =

∫ To

T
CpdT +

N∑

α=1

Yα∆hf,α, (2.11)

where To is a reference temperature (usually taken as 298.15K), ∆hf,α is the enthalpy

of formation of species α. With the common assumption of thermally perfect fluids, the

specific heat of the mixture, Cp, is given by

Cp =

N∑

α

YαCpα (T ) , (2.12)

where Cpα is the specific heat of the individual species.

The energy balance equation can be written as

∂

∂t
(ρh) +

∂

∂xi
(ρhui) =

∂p

∂t
+ τij

∂ui
∂xi

+ q̇ − ∂qi
∂xi

. (2.13)

where q̇ is a source term (radiation, spark, etc.), the first and second term on the RHS

represents the temporal evolution of pressure, and viscous heating respectively. In low

Mach number flows, they can be neglected [27]. The enthalpy flux qi in the last term on

the RHS is given by

qi = −λ ∂T
∂xi

+ ρ

N∑

α=1

hαYαVα. (2.14)

The first term represents heat diffusion by Fourier’s Law and the second represents

enthalpy flux generated by diffusion of species with different enthalpies. λ is the thermal
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conductivity of the mixture and is calculated through imposition of a mixture Prandtl

number

λ =
µCp
Pr

. (2.15)

Additionally, the second term on the RHS of Equation 2.14 is zero for equal species

diffusivities. Thus, Equation 2.14 becomes

qi =
−µ
Pr

∂h

∂xi
. (2.16)

With all the assumptions and neglecting of terms for low Mach number formulations,

the final form of the enthalpy equations is

∂

∂t
(ρh) +

∂

∂xi
(ρhui) =

∂

∂xi

[
µ

Pr

∂h

∂xi

]
+ q̇. (2.17)

2.1.5 Equation of State

The equation of state provides the final equation required to close the system of equations

fully describing fluid flow. It relates the local composition, temperature, and pressure

to the density. In this work, an ideal gas is assumed and thus, the equation is

ρ =
PWmix

RuT
, (2.18)

where P is the pressure, T is the temperature, Ru is the universal gas constant (8.315

kJ/kmol-K), and Wmix the molecular weight of the mixture determined through

1

W
=

Nα∑

k=1

Yk
Wk

, (2.19)

where Wk is the species molecular weight.

2.2 Turbulence Modelling

The three main methods of computationally evaluating the governing equations pre-

sented in Section 2.1 are Direct Numerical Simulation (DNS), Reynolds Averaged Navier

Stokes (RANS), and Large Eddy Simulation (LES). RANS and LES introduce models



26 Chapter 2 Governing Equation and Numerical Formulation

for some or all turbulent processes, and they reduce numerical effort needed in the sim-

ulation. The main advantage of the modelling approaches of RANS and LES is the

flexibility to simulate a specific application with a reduced computational effort, while

choosing the amount of detail to be modelled. In the following section the three main

approaches for simulating turbulent flow will be described along with their advantages

and disadvantages, with the most emphasis being be placed on LES.

2.2.1 Direct Numerical Simulation (DNS)

DNS aims to resolve all scales of turbulence: from the large integral scales to the small

Kolmogorov scale. Since all scales are resolved, no modelling of any turbulent scale is

necessary. However, as a consequence, very fine computational meshes are required in

order to capture the resolve these small scales whose size follow the relationship given

in Section 1.2 as
Lt
η

= Re3/4 (2.20)

Since for industrially applicable turbulent flows, Reynolds numbers can be on the order

of 105 ∼ 106, the scales requiring full resolution will be very small. The number of grid

points for a three dimensional computational grid would therefore need to be on the

order of Re9/4. This means for a Reynolds number of 105, the number of computational

cells would be on the order of 2× 1011. In addition to spatial resolution, DNS requires

adequate temporal resolution. As the time-step should be such to resolve the smallest

characteristic timescale, a large number of iterations is usually required to complete a

simulation.

For reactive flows the computational cost increases further. First, the use of detailed

chemical mechanisms increases the number of scalar transport equations that need to

be solved. The spatial requirements also increase as the reaction zone (in the premixed

flames for example) needs to be resolved with sometimes up to 20 grid points. Finally,

the chemical time-scales become the limiting time-scale requiring resolution and usually

limit the time-step by several orders of magnitude compared to chemically inert DNS.

Coupled together, the total computational requirement to simulate a moderate Reynolds

number reacting flows for a short time can be prohibitive with the current available

computing power. Therefore, the applications for DNS are limited to low Reynolds
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flow with extremely simple geometries. Apart from the tremendous computational cost

required by DNS, it is the most accurate form of simulating turbulent flows. It is

often used to validate academic test cases, or to provide data for the development and

validation of lower fidelity turbulence modelling methods.

2.2.2 Reynolds Averaged Navier-Stokes

Reynolds Averaged Navier-Stokes (RANS) is the oldest simulation approach and the

most commonly used for simulating industrial applications. The main difference between

RANS and DNS is the manner in which they solve the flow. In DNS the turbulent flow

field is fully resolved and transient. The premise behind RANS is to take advantage of

the statistical nature of turbulence and generate a solution of the temporally averaged

flow field.

The field variables can be decomposed into time averaged mean (φ) and fluctuating

components (φ′)

φ (x, t) = φ (x) + φ′ (x, t) . (2.21)

This methodolgy can be applied to time average the governing equation. However, this

process generates a number of unclosed terms e.g the Reynolds stresses
(
u′iu
′
j

)
; the core

challenge in the RANS methodology is providing a closure for this term.

The Reynolds stress term is closed by invoking a gradient transport hypothesis requiring

specification of a turbulent viscosity. There are three common approaches to model the

turbulent viscosity: Algebraic, one- and two- equation models. In the one equation

model of Spalart-Allmaras [28], an additional transport equation for turbulent kinetic

energy (k) is solved. In the two equation models, in addition to k, the k − ε approach

[29] transports the energy dissipation rate (ε), and the k − ω approach [30] transports

the specific dissipation rate (ω). Algebraic models do not solve any additional equations

but use relatively simple algebraic expressions to link unknown quantities [31, 32].

The resolution of the Reynolds-averaged properties in RANS lends itself to having a

much coarser computational domain than DNS, making it more computationally af-

fordable. However, solving only the Reynolds-averaged properties provides limited in-

formation on turbulence and transient processes which may be significant in certain

applications such as combustion.
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2.2.3 Large Eddy Simulation (LES)

A compromise between accuracy and computational cost between the two extremes of

fully resolved DNS and mean flow modelling of RANS is Large Eddy Simulation (LES).

The premise of LES is to filter the flow field by applying a predetermined filter of width,

∆, to the governing equations.

This filtering procedure operates as a low-pass (wavenumber) filter. It removes the ex-

plicit integration of smaller turbulent scales (higher wavenumber) while the large scale

turbulent structures are fully resolved. This process is depicted in Figure 2.1 for different

size filters. The result of the filtering process on the governing equations is a three di-

mensional, time-dependant solution. However, similar to RANS, the filtering procedure

results in the generation of unclosed Reynolds stress terms that require modelling.

Resolved Sub-filter
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Figure 2.1: Resolved and sub-filter ranges on the turbulence spectrum for different
filter sizes. κ∆ represents the filter size specific cut-off wavenumber

It is suggested that the filter used be selected such that 80% of the turbulent kinetic

energy is resolved [11]. As such, the filter width usually lies in the inertial range of

turbulence where it is generally accepted to be isotropic allowing for simplified closures

of the Reynolds stresses compared to the RANS framework. The modelling of the small,

unresolved, turbulent scales comes from relations known as sub-filter scale models (SFS)

which act as small scale turbulence models for the flow. In Figure 2.1, since ∆1 > ∆2,

the use of ∆2 results in a more physically resolved flow field. A larger portion of the
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turbulent scales are resolved and a smaller portion of turbulent scales require modelling

with the SFS models.

Since LES requires filters to (at least) be in the inertial range, the computational grids

can be coarser than than DNS but are more refined than RANS. This enables LES to

simulate more complex, higher Reynolds number flows for a lower computational cost

than that of simulating a similar flow with DNS.

Filtering

The process of filtering involves convolution of a filter function G, with some arbitrary

function f(x). In LES, the procedure of separating the resolved large scale structures

and filtering out the small scales requires a low pass filtering operation to be conducted

on the governing equations through convolution with some arbitrary filter function. The

result of this operation is a set of equations describing spatially filtered values. A more

complete overview of the filtering operation can be found in Garner et al. [33].

The filtering operation of a quantity, φ, is given by

φ (x, t) =

∫ +∞

−∞
φ
(
x′, t

)
G
(
x− x′,∆

)
dx′, (2.22)

where in a similar manner to the Reynolds decomposition, a decomposition can be

obtained for the filtered value as

φ = φ+ φ′, (2.23)

where φ′ represents the sub-filter fluctuation.

In LES, there are two filtering approaches. With the explicit filter, the filtering process

is conducted as an additional step in the solution procedure. The filter type (shape

and size) are determined a priori and can be independent of the computational mesh.

The second approach is an implicit filtering method. In this method the computational

grid (and discretisation operators) act as the filter. The primary difference between

the explicit and implicit filtering methods is the explicit dependence on the numerical

grid spacing (∆ = ∆x) for the implicit filtering technique. The differences between the

explicit and implicit filters are shown schematically in Figure 2.2. For the explicit filter,

an arbitrary number of computational cells is chosen for illustrative purposes.
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∆x ∆x ∆x ∆x ∆x ∆x ∆x

Explicit Filter Implicit Filter

Figure 2.2: One-dimensional schematic comparing explicit and implicit filter.

To illustrate the implications of the different filtering methods, a simplified example can

be given for the case of a filtered linear advection equation of an arbitrary scalar, φ:

∂φ

∂t
= −u∂φ

∂x
+ Tsfs(∆), (2.24)

where in the above equation, Tsfs(∆) represents a sub-filter term that accounts for

unresolved scales on the evolution of the filtered scalar. Its magnitude is shown to be

dependant on the size of the filter width. If this equation is discretised on an arbitrary

numerical grid through Taylor expansion with a first order upwind scheme, the result is

∂φ

∂t
= −uφ

n
i − φ

n
i−1

∆x
+ Tsfs(∆) +O(∆x). (2.25)

Ignoring any influence of temporal discretisation that would be required to evolve the

filtered scalar in time, truncation (or numerical) error has been introduced (O(∆x)) due

to the discrete approximation of the continuous spatial derivatives on a finite numerical

grid. To varying degrees, these truncation errors can manifest themselves as artificial

diffusion or dispersion errors [34]. In order to reduce the numerical error, higher order

discretisation schemes may be used, or the numerical grid spacing can be reduced.

Considering the explicit filtering method, reducing the grid spacing with a fixed filter

size reduces the truncation error leaving the magnitude of Tsfs(∆) unchanged. In the

case of implicit filtering, or ∆ = ∆x, any modifications to the grid spacing also changes
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the filter size. The new discretised equation then becomes:

∂φ

∂t
= −uφ

n
i − φ

n
i−1

∆x
+ Tsfs(∆x) +O(∆x), (2.26)

where the dependency of the sub-filter term has now been changed to the local numerical

grid spacing. With this filtering technique, changes in grid spacing influence both the

sub-filter modelling component and the truncation error concurrently. This difference is

shown in Figure 2.3. This figure shows that reducing ∆x by half leaves the overall size

of the explicit filter unchanged but reduces the implicit filter by the same amount.

∆x ∆x ∆x ∆x ∆x ∆x ∆x ∆x ∆x ∆x ∆x ∆x ∆x ∆x

Explicit Filter Implicit Filter

Figure 2.3: One-dimensional schematic comparing explicit and implicit filters with
refined numerical grid.

Recalling Figure 2.1, different filter sizes result in different physical resolution of the

simulation. Thus, the primary challenge with the implicit filtering technique is that

changes in numerical grid spacing modifies both physical and numerical resolution con-

currently; distinguishing between these two effects within a solution becomes difficult.

Nevertheless, due to: 1) the reduced computational cost of the implicit filtering method

over the explicit method, and 2) the fine numerical grid resolution and higher order

numerical schemes of modern LES, the implicit LES methodology is commonly used.

In the implicit filtering method, for irregular numerical grids, an effective filter width is

calculated by

∆ = (∆x∆y∆z)
1/3 . (2.27)
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With this, the implicit filter takes on a top-hat distribution given by

G
(
x− x′,∆

)
=





∏3
j=1

1
∆j

|x− x′| ≤ ∆
2

0, |x− x′| > ∆
2

(2.28)

where
∏3
j=1

1
∆j

corresponds to a volume averaging of the computational CFD cell.

Favre Filtering

In the case of variable density flows, to avoid treatment of density fluctuation that arise

due to filtering, a mass-weighting can be introduced. This procedure is known as Favre

filtering and is defined by

ρφ̃ (x, t) =

∫ +∞

−∞
ρφ
(
x′, t

)
G
(
x− x′,∆

)
dx′, (2.29)

and can also be written as

ρφ̃ = ρφ. (2.30)

Similarly, the decomposition of the density-weighted scalar into a filtered part and sub-

filter fluctuation yields

φ = φ̃+ φ′′. (2.31)

2.3 Filtered Governing Equations

The process of filtering the governing equations requires the use of three fundamental

filtering properties:

1. The filtering of a constant, yields the constant: b = b

2. Linearity of the filtering operator: φ+ ψ = φ+ ψ

3. For smoothly varying filter function - Commutation with differentiation:

∂φ

∂x
=
∂φ

∂x.
(2.32)
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With Favre filtering, due to the presence of density, the filtering operator does not

commute with differentiation as it does for conventional filtering. However, if density

variations are assumed small then the commutation property is assumed valid.

∂̃φ

∂x
≈ ∂φ̃

∂x
(2.33)

2.3.1 Filtered Continuity Equation

Assuming a smoothly varying, arbitrary filter function with fixed filter scale, the conti-

nuity equation (Equation 2.1) becomes

∂ρ

∂t
+

∂

∂xi
(ρui) = 0. (2.34)

Applying the Favre filter relation yields

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0. (2.35)

2.3.2 Filtered Momentum Equation

The filtered momentum equation can be written as

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+
∂σij
∂xj

+ ρgi. (2.36)

Applying the Favre filter relation yields

∂

∂t
(ρũi) +

∂

∂xj
(ρũjui) = − ∂p

∂xi
+
∂σ̂ij
∂xj

+
∂

∂xj
(σij − σ̂ij) + ρgi, (2.37)

where the hat is not a filter operator but denotes a quantity based on filtered values.

Thus, σ̂ij is the stress tensor based on Favre filtered values

σ̂ij = µ

(
∂ũj
∂xi

+
∂ũi
∂xj
− 2

3

∂ũk
∂xk

δij

)
. (2.38)

The unknown velocity correlation, ρũjui, can be decomposed as

ρũjui = ρũj ũi + τ̃ sgsij , (2.39)
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where τ̃ sfsij = ρũ′′i u
′′
j is the sub-filter stress tensor (Reynolds stresses) and requires mod-

elling. Following [35], (σij − σ̂ij) was shown to be at least an order of magnitude smaller

than τ̃ sfsij and is neglected.

The final unclosed form of the Favre filtered Navier-Stokes equations is

∂

∂t
(ρũi) +

∂

∂xj
(ρũj ũi) = − ∂p

∂xi
+

∂

∂xj

(
σ̂ij − τ̃ sfsij

)
+ ρgi. (2.40)

2.3.3 Filtered Species Conservation Equation

In the governing equation section above, the final form of the species transport equation

in Equation 2.10 and enthalpy transport in Equation 2.17 are similar. As such they can

be expressed in terms of a general reactive scalar φ as

∂

∂t
(ρφ) +

∂

∂xi
(ρφui) =

∂

∂xi

(
ρDα

∂φ

∂xi

)
+ ω̇. (2.41)

The filtered reactive scalar equation is given by

∂

∂t

(
ρφ
)

+
∂

∂xi

(
ρφui

)
=

∂

∂xi

(
ρDα

∂φ

∂xi

)
+ ω̇. (2.42)

The Favre filtered reactive scalar conservation equation can then be written as

∂

∂t

(
ρφ̃
)

+
∂

∂xi

(
ρφ̃ui

)
=

∂

∂xi

(
ρD

∂φ̃

∂xi

)
+ ω̇, (2.43)

where the filtered diffusion flux has been approximated by [6]

ρD
∂φ

∂xi
= ρD̂

∂φ̃

∂xi
, (2.44)

where D̂ is a representative diffusion coefficient based on the favre filtered thermo-

chemical state: molecular diffusion for species and thermal diffusion for enthalpy.

In a similar manner to the Navier-Stokes Equations, ρφ̃ũi can be decomposed as

ρφ̃ui = ρφ̃ũi + ρφ̃′′u′′i . (2.45)
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With substitution into Equation 2.43, the unclosed filtered species equation can be

written as
∂

∂t

(
ρφ̃
)

+
∂

∂xi

(
ρφ̃ũi

)
=

∂

∂xi

(
ρDα

∂φ̃

∂xi
+ ρφ̃′′u′′i

)
+ ω̇. (2.46)

2.3.4 Closures for Governing Equations

The filtering operation shown above resulted in the generation of unknown terms such

as the scalar fluxes: ρũ′′i u
′′
j , ρφ̃

′′u′′i , and ω̇α. As these terms cannot be directly calculated

from the flow field and they must be modelled.

2.3.4.1 Sub-filter Stress Modelling

The unclosed term pertaining to the filtered Navier-Stokes equation, ρũ′′i u
′′
j , is often

closed with an eddy-viscosity model. Eddy viscosity models makes use of the Boussi-

nesq approximation relating mean flow properties to turbulent stresses. Since at the

smallest scales of turbulence, turbulent kinetic energy is dissipated by viscous stresses,

the eddy-viscosity models approximates the sub-filter stress tensor (τ sfsij ) by a sub-filter

viscosity (µsfs). Generally, eddy viscosity models are computationally inexpensive and

have numerically stabilizing properties. The more popular eddy-viscosity model in LES

is the Smagorinksy model [36].

The sub-filter stress tensor is represented as

τ̃ij = µsfs

(
∂ũj
∂xi

+
∂ũi
∂xj
− 2

3

∂ũk
∂xk

δij

)
+

1

3
τkkδij . (2.47)

Substituting this equation into Equation 2.40 and using Equation 2.38 yields

∂

∂t
(ρũi) +

∂

∂xj
(ρũj ũi) = − ∂P

∂xi
+

∂

∂xj

[
(µ+ µsfs)

(
∂ũj
∂xi

+
∂ũi
∂xj
− 2

3

∂ũk
∂xk

δij

)]
+ ρgi,

(2.48)

where for low Mach number flows, the unknown trace of the sub-filter stress tensor is

absorbed into a pseudo-pressure term

P = p+
1

3
τkkδij . (2.49)
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The Smagorinksy model provides the sub-filter viscosity (µsgs) as

µsfs = ρCs∆
2
√

2S̃ijS̃ij , (2.50)

where Cs is the Smagorinksy constant, ∆ is the filter width, and S̃ij is the filtered rate-of

strain tensor given by

S̃ij =
1

2

(
∂ũj
∂xi

+
∂ũi
∂xj

)
. (2.51)

The Smagorinksy model generally gives good predictions of dissipation, but was shown

to be too dissipative in certain areas such as in transitional flow, flows with discontinu-

ities, and near walls. This is primarily associated with the Smagorinksy constant being

uniform in all regions of the flow. A more flexible approach is to dynamically calculate

the constant. The Dynamic-Smagorinksy model [37, 38] uses the scale similarity hy-

pothesis to infer information about the smallest resolved scales though a test-filtering

procedure which is then used to dynamically calculate the constant.

An additional method to bypass this excess dissipation was to neglect the SGS models

all together. This method is known as the Implicit Large Eddy Simulation (ILES).

ILES attempts to use the truncation error and the numerical viscosity generated by

numerical discretisation errors in place of the sub-filter viscosity model that the Classic

LES modelling uses [39]. This method however, has problems of its own. Its behaviour

depends on the numerical scheme used, more specifically, the spectral properties of the

truncation error generated. An example of such numerical formulations is available in

Thornber et al. [40].

2.3.4.2 Scalar Flux Closure

The chemical species interpretation of the Favre filtered reactive scalar transport equa-

tion (Equation 2.46) leads to the unclosed turbulent scalar flux, ρỸ ′′α u
′′
i . This term is

commonly modelled though a gradient transport assumption by

ρỸ ′′α u
′′
i = −ρµsgs

Sct

∂Ỹα
∂xi

, (2.52)

where µsgs is the turbulent viscosity provided by Equation 2.50 and Sct is the turbulent

Schmidt number. It should be mentioned that in weakly turbulent premixed flames, in
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the presence of heat release generated pressure gradients, counter-gradient diffusion has

been observed. Therefore, the standard gradient diffusion closure may not always be

applicable [6, 41].

2.3.4.3 Energy Equation Closures

For the enthalpy interpretation of Equation 2.46, the enthalpy flux is closed with a

gradient transport assumption in a similar form to the scalar flux term described above.

ρh̃′′u′′i = −ρµsgs
Prt

∂h̃

∂xi
, (2.53)

where PrT is the turbulent Prandtl number, and cp is the mixture specific heat at

constant pressure.





Chapter 3

Turbulent Premixed Combustion

Modelling and Numerical

Framework

3.1 LES Turbulent Premixed Combustion Models

The highly non-linear nature of the reaction source term means that composition and

temperature fluctuations have a substantial impact on the filtered reaction rate. There-

fore, simply evaluating the source term with filtered quantities can lead to substantial

errors in the predicted chemical source term. In general

ωα (Y , T ) 6= ωα
(
Y , T

)
, (3.1)

where Y is a mass fraction vector, T is temperature and ω̇α is the reaction rate appearing

in Equation 2.46. As such, the effect of sub-filter fluctuations on the closure of the filtered

reaction rate source term needs to be modelled.

An additional challenge in the modelling of turbulent premixed combustion is that under

certain numerical (and physical) configurations, the flame may exist entirely sub-filter.

This may not be strictly an issue if there are a sufficient number of computational cells

in a given filter width, however, in typical LES simulations the assumption that the filter

scale is equal to the numerical grid spacing (∆ = ∆x) results in a change from unburnt

39
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to burnt composition over a range of the order of one filter width. Poor resolution of

the gradient across the flame can lead to numerical diffusion, enhancing burning velocity

[41]. Even if the preheat zone is captured adequately, the reaction zone still requires

proper resolution which may not be possible for large filter widths. As this region can

be an order of magnitude smaller than the preheat zone, it places more stringent criteria

on the mesh/filter requirement for full resolution.

To help identify the turbulence-flame interactions that exist below the filter-scale (or

sub-filter combustion regime), the regime diagram shown in Figure 1.5 was modified

by Pitsch [41] to account for computational parameters replacing the integral length

scale parameters by those at thee LES filter-width, ∆. The updated figure is shown in

Figure 3.1
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Figure 3.1: Premixed combustion regime diagram

Where the numerical configuration of the LES simulation resides on this diagram influ-

ences the choice of combustion model that can/should be used as different models have

different inherent fundamental assumptions in their derivation. For details and reviews

of the available models refer to [6, 41–43] and references therein.

In the proceeding sections, an overview will be given for the Artificially Thickened

Flame (ATF) model, and probability density function methods (PDF). In this section,

more detail will be provided for the ATF model as elements of this model are used in
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Chapter 5 and a detailed discussion of PDF methods that are the focus of this thesis

will be presented in Section 3.2.

3.1.1 Artificially Thickened Flame (ATF)

The approach of the artificially thickened flame model is to accurately propagate a flame

on a coarse grid, and was first proposed by Butler and O’Rourke [44]. The unresolved

flame is thickened by a factor, F , to allow adequate flame resolution on typical LES grids

while maintaining the laminar flame speed. The thickening factor scales the unresolved

flame as

δ1
L = Fδ0

L, (3.2)

where δ1
l is the thickness of the thickened flame, δ0

L is the unthickened flame thickness,

and F is the thickening factor. F is determined by

F =
n∆x

δ0
L

, (3.3)

and is a function of the local numerical grid spacing, ∆x, and the desired number of

grid points across the laminar flame, n. This value of n is limited by the number of

grid points required to resolve all species (major and radicals) within the reaction zone.

The ATF model thickens the flame by increasing the diffusion coefficient of species and

temperature by the thickening factor, but maintains the laminar flame speed by reducing

the reaction rate by the same thickening factor. This behaviour can be illustrated

through Equation 3.4 where if a one-step reaction mechanism is employed for the reaction

rate constant, then

s1
L ∝

(
D1
thR

1
)

=∝
(
D0
thF

R0

F

)
= soL (3.4)

where the superscript “1” denotes the thickened properties.

The thickened species transport equation is given as

∂

∂t
(ρYα) +

∂

∂xi
(ρYαui) =

∂

∂xi

(
ρFDα

∂Yα
∂xi

)
+

1

F
ω̇α. (3.5)

In turbulent flows, the thickening procedure modifies how the flame interacts with tur-

bulence. This can be illustrated through the modification of the nominal Damköhler
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number
(
Da0

)
. From Equation 1.15, the modified Damköhler number becomes

Da1 =
LT
u′
s0
L

δ1
L

=
Da0

F
. (3.6)

Thus, with thickening comes a reduction in Da by the factor F . The consequence of

this is that the flame fronts become less sensitive to resolved scale turbulent motions

and more sensitive to strain effects.

With artificial thickening, turbulent scales smaller than FδoL no longer interact with the

flame and structures larger than FδoL may have a reduced ability to interact with it.

This artificial suppression of smaller scale wrinkling will modify the total flame surface

area of the flame influencing the resultant turbulent flame speed. To account for this,

the loss of flame surface wrinkling due to artificial thickening is counteracted by the

introduction of an efficiency factor E. Equation 3.5 becomes

∂

∂t
(ρYα) +

∂

∂xi
(ρYαui) =

∂

∂xi

(
ρFEDα

∂Yα
∂xi

)
+
E

F
ω̇α. (3.7)

The efficiency factor is a parameter that takes into account the effect of unresolved

turbulence on the flame by evaluating unresolved flame surface generation (or sub-filter

wrinkling). It is defined as

E =
Ξ(δ0

L)

Ξ(δ1
L)
, (3.8)

where Ξ(δ1
L) represents the sub grid scale wrinkling factor of the thickened flame, and

Ξ(δ0
L) represents the sub grid scale wrinkling factor of the unthickened flame. Various

authors [14, 22, 45] have proposed different algebraic models for computing this wrinkling

factor as functions of local thermo-physical properties such as u′, sL, and filter scale

Reynolds number Re∆.

Charlette et al. [14] adopted a power-law dependence of sub-grid wrinkling yielding a

sub-filter wrinkling factor of

Ξ =

(
1 + min

[
∆

δ0
L

,Γ

(
∆

δ0
L

,
u′∆
s0
L

, Re∆

)
u′∆
s0
L

])β
, (3.9)

where the effective straining function Γ is

Γ

(
∆

δ0
L

,
u′∆
s0
L

, Re∆

)
= [((f−au + f−a∆ )−1/a)−b + f−bRe ]−1/b, (3.10)
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and,

fu = 4

(
27Ck
110

)1/2(18Ck
55

)(
u′∆
s0
l

)2

, (3.11)

f∆ =

[
27Ckπ

4/3

110
×
((

∆

δ0
L

)
− 1

)]1/2

, (3.12)

fRe =

[
9

55
exp

(
−3

2
Ckπ

4/3Re−1
∆

)]1/2

×Re1/2
∆ , (3.13)

with

a = 0.60 + 0.20 exp[−0.1(u′∆/s
0
L)]− 0.2 exp[−0.01∆/δ0

L],

b = 1.4 (3.14)

In deriving their model, Charlette et al. [14] assumed that ∆/δ0
L � 1 however, with the

computational meshes of today, this criteria is not always satisfied and was relaxed in

the modification of Wang et al. [46]. The modified form of Equation 3.9 is

Ξ =

(
1 + min

[
∆

δ0
l

− 1,Γ

(
∆

δ0
L

,
u′∆
s0
L

, Re∆

)
u′∆
s0
L

])β
. (3.15)

Some attractive features of ATF are its relatively cheap computational cost, simple

implementation into codes, and the ability for chemistry to be evaluated directly from

Arrhenius rate expressions. Additionally, this modelling approach correctly recovers the

DNS limit in the case of decreasing filter size.

However, some of its drawbacks are that with complex chemical mechanisms producing

thin layers of combustion radicals, the thickening factor may need to be quite large.

Additionally, with a constant thickening factor, unphysical alterations in heat and species

transport may occur away from the flame. To overcome this last issue, the Dynamically

Thickened Flame (DTF) approach [46, 47] may be used, or the use of flame sensors

[48, 49] to dynamically turn on thickening only in the presence of flames.
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3.2 Transported PDF Method

The Transported Probability Density Function (PDF) approach represents one of the

more advanced approaches for turbulent combustion modelling and works by solving

a transport equation for a joint-PDF. Its derivation is free from assumptions regarding

flame structure and it simulates the evolution of the one-point, one time PDF for a num-

ber (Ns) of conditioning variables. The conditioning variables may be the thermochem-

ical state variables (the scalar PDF approach) and can also include the velocity vector

(the joint-velocity-scalar PDF approach). A major advantage of the PDF approach is

the non-linear chemical source term appears in closed form in the instantaneous trans-

port equation of the PDF. This lack of pre-supposed flame structure makes it one of

the more promising candidates for modelling applications that may experience a wide

variety of combustion regimes. A comprehensive review PDF methods up to 2010 can

be found in [50]

3.2.1 Sub-filter Probability Density Function

Within the LES context, the sub-filter PDF represents the distribution of scalars within

a filter volume. For a single scalar φα, the one-point marginal PDF (Pα) is defined as

Pα = δ (ψα − φα) , (3.16)

where ψα represents the sample space of scalar φα, and δ is the Dirac-function. In com-

busting flows, multiple scalars (species and enthalpy) are commonly used as conditioning

variables. As such, the joint (fine grained [51]) PDF
(
F
(
ψ;x, t

))
of the entire set of

scalars ψ = [ψ1, ..., ψNs ] can be constructed as a product of the marginal PDF of each

scalar. This joint PDF is denoted as the joint-composition PDF and is given by

F
(
ψ;x, t

)
=

Ns∏

α=1

δ (ψα − φα(x, t)) . (3.17)

A similar filtering operation conducted on the on the governing equations in Section 2.2.3

can be applied to the PDF. Following [52, 53], a density weighting can also be introduced

to incorporate density variations. The result is a density weighted sub-filter density

function (FDF), P̃sfs
(
ψ;x, t

)
. The Favre filtering operation of the PDF takes on the
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form

ρP̃sfs
(
ψ;x, t

)
=

∫

V
ρF
(
ψ;x′, t

)
G
(
x− x′,∆

)
dV ′. (3.18)

This expression describes the probability of observing values of scalar in the interval

ψα < φα < ψα + dψ within a filter volume.

With the assumption of equal diffusivities, the exact filtered transport equation for the

joint composition FDF is given as [21, 52, 53]:

∂ρP̃sfs
∂t

+
∂ρũiP̃sfs
∂xi

− ∂

∂xi

[
Γ
∂P̃sfs
∂xi

]
+

Ns∑

α=1

∂

∂ψα

[
ρω̇αP̃sfs

]
=

∂

∂xi

[
ρu′′|ψP̃sfs

]

−
N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ

[(
µ

Sc

∂φα
∂xi

∂φβ
∂xi

∣∣∣∣φ = ψ

)
P̃sfs

]
, (3.19)

where spatial and temporal dependencies have been dropped for compactness. In Equa-

tion 3.19 Γ = ρD represents the total molecular diffusion coefficient. The first, second

and third terms on the L.H.S correspond to the temporal evolution of the sub-filter PDF,

the physical space transport of the sub-filter PDF due to the filtered velocity, and the

physical space transport of the sub-filter PDF due to molecular transport respectively.

The fourth term on the L.H.S changes the sub-filter PDF shape due to chemical reac-

tion (ω̇) and represents one of the core advantages of the PDF formulation; the chemical

source term appears in closed form. The terms on the R.H.S remain unclosed and re-

quire modelling. The first term on the R.H.S represents the sub-filter PDF transport

due to turbulent fluctuations (turbulent flux) and is commonly closed with a gradient

diffusion assumption [54] similar to Equation 2.52.

u′′|ψP̃sgs(ψ) = −µsgs
Sct

∂P̃sgs
∂xi

. (3.20)

If the PDF is conditioned on velocity, this term does not require modelling and appears

in closed form [55]. The last term on the R.H.S is the micromixing term and representing

the effect of molecular diffusion on the sub-filter PDF.

The challenges associated with this modelling strategy is that due to the high dimen-

sionality of the PDF equation (which is equal to the number of conditioning variables),

solving this equation directly using finite differencing techniques can be very expensive

and intractable for most practical applications. Additionally, the micromixing term
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requires modelling as closing this term requires information on composition gradients

which inherently are not available through single point PDFs. The latter point consti-

tutes the primary research challenge for PDF methods and will be discussed further in

Section 3.2.2.

Provided that the micro-mixing effects are modelled adequately (and that the PDF equa-

tion is solved accurately), in principle, the joint-scalar transported probability density

function approach is applicable in both Reynolds-Averaged (RANS) and Large-Eddy

Simulations (LES) across all modes of turbulent combustion – including the limiting

cases of non-premixed and perfectly-premixed combustion.

To ease the computational burden of solving Equation 3.19, less computationally expen-

sive solution methodologies have been proposed for approximating the PDF. Although

deterministic methods exist such as the Direct Quadrature Method of Moments (DQ-

MOM) closure [55, 56], the most popular approaches for approximating the PDF are

Monte Carlo approaches. Two types of Monte Carlo methods to solve PDF equation

can be found in literature: The Lagrangian Monte Carlo method, and Eulerian Field

Monte Carlo method.

The majority of transport PDF simulations to date have employed Lagrangian particle

Monte Carlo methods. In this method, the PDF is represented by an ensemble of La-

grangian particles that evolve according to stochastic ordinary differential equations that

are statistically equivalent to the PDF transport equation. The particles that evolve in

the computational domain are mesh free, and this mesh independence means discretisa-

tion errors commonly encountered in Eulerian based equations are almost non-existent.

Although Lagrangian approaches have the advantage of not introducing errors due to

discretisation of spatial gradients, errors are partially reintroduced by the interpolation

required to obtain the statistical moments in physical space [50]. The primary disadvan-

tage of this Lagrangian method arises in the potential large statistical error (or statistical

under-resolution). Due to the mesh independence a sufficient quantity of particles may

not always be present at a given spatial location for adequate/reliable calculation of

statistical moments such as the mean and variance. Additionally, as the local density is

obtained from an ensemble of the masses of the particles, sparsity of the particles may

lead to an oscillatory density field which may impact the stability of the simulation.
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In the stochastic field method, stochastic partial differential equations (SPDE) equivalent

to the transport PDF equation are solved. The resulting ensemble of these stochastic

fields represent the approximate PDF. The stochastic field method used in this work is

described in more detail in Section 3.3

3.2.2 Micromixing Modelling

In the PDF methodologies described above, the common challenge that exists between

both methods is obtaining closure for the last term on the R.H.S of Equation 3.19. This

term is commonly known as the “micromixing” term and represents the evolution of the

joint-PDF due to molecular diffusion. Modelling of this micromixing term is the core

research challenge in PDF modelling community.

This term can be considered to be comprised of 2 parts: the physical mixing process,

and the time-scale of the mixing [57]; both requiring modelling. The mixing model

determines how the PDF changes due to the mixing process, and the mixing frequency

closure determines how fast it changes. It has been shown that the choice of mixing and

frequency model are not independent [58] and varies for the given application [59, 60].

There exists a variety of different closures for how the PDF mixes. For a comprehensive

review up to 2015 of all the different closures, along with their underlying assumptions

and modification to address their shortcomings, refer to Celis and Figueira da Silva [60]

and the references therein. Here only the commonly employed Interaction by Exchange

with the Mean (IEM) [61] or the Linear Mean Square Estimation [62] is discussed as it

is the closure adopted in this thesis.

According to [11, 55, 63, 64], every micromixing model is required to exhibit a certain

set of physical and mathematical properties. These are:

• Conservation of means: The mixing process should not affect the mean composi-

tions

• Variance Decay: The variances should decay at the correct rate which implies the

scalar dissipation is captured correctly

• Boundness: scalar quantities should remain within their allowable regions
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In addition to the above fundamental properties, other less strict (but desirable) char-

acteristics are also outlined:

• Linearity and Independence [65]

– Linearity: The evolution equation for scalar properties should remain un-

changed when subject to linear transformation.

– Independence: The evolution of one scalar should not affect the evolution of

another (for interaction matrices, any non-zero off diagonal values will violate

this). If independence is satisfied so is linearity.

• Localness: The mixing model should mix locally in composition space (discussed

further in Section 3.2.3)

• PDF Relaxation: The PDF should relax to Gaussian distribution for statistically

homogeneous systems

• Inclusion of Re, Sc, and Da effects.

and more recently

• Dispersion-consistency [64]: At sufficiently high Reynolds numbers, the scalar field

is determined entirely by turbulence. Therefore, the scalar flux is unaffected by

molecular mixing and so should its rate of change.

Interaction by Exchange with the Mean

Aside from being one of the most widely used micromixing models it is also one of

the simplest and computationally inexpensive. In this model, the particle composition

relaxes towards the local mean composition over the scalar mixing timescale τφ. The

model is given as

N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ

[(
µ

Sc

∂ψα
∂xi

∂ψβ
∂xi

∣∣∣∣φ = ψ

)
P̃sfs

]
=

ρ

τφ

Ns∑

α=1

∂

∂ψα

[(
ψα − φ̃α(x, t)

)
P̃ (ψ)

]
(3.21)
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Being a pair-wise exchange model, this micromixing model inherently satisfies the three

fundamental properties of mixing models. However, it is does not possess the localness

property, nor does it relax to a Gaussian. An alternative to the IEM is the Interaction

by Exchange with the Conditional Mean (IECM)[66]. This model was developed to

extend the IEM to satisfy the dispersion-consistency criterion. In the IECM variant, the

composition is relaxed towards the mean composition conditioned on velocity as well as

position.

3.2.3 High Damköhler Limit and Localness

In the case of high Damkohler number combustion, molecular transport and chemical

reaction are tightly coupled and combustion most often corresponds to the flamelet

regime. In this regime, fast reaction steepens scalar gradients giving rise to a reaction

sheet type combustion where reactants are rapidly converted to products [50]. Therefore,

if a mixing model is to capture mixing correctly, it must not violate how mixing occurs in

physical space; the composition field immediately neighbouring a fluid particle dictates

how it mixes. Since generally the composition fields are smooth, a spatial neighbourhood

corresponds to a neighbourhood in composition space. Therefore, if the mixing model

mixes locally in composition space, it can be deduced that it mixes locally in physical

space and is not in violation of the physical mixing process [55].

If non-local mixing models such as the IEM are used in the flamelet regime, un-physical

mixing can occur. For example, in non-premixed combustion, the thin reaction sheet

and non-local mixing could result in mixing of cold fuel and oxidiser across the reaction

zone without the composition evolving thorough the flame. This non-physical mixing at

very high Da was demonstrated for a non-premixed flame where in certain cases, using

a mixing model that did not possess the localness property led to quenching of the flame

[63, 64]. Similarly, in premixed combustion, there would be mixing of unburnt reactants

and burnt products without reaction which is not physical and can result in erroneous

flame speed calculations.

This mixing behaviour is in contrast to the lower Da regions (distributed reaction zones

in Figure 1.5) where it was shown by Correra [67] that at low Da, the choice of mixing

model is not as important. The difference between the IEM and other models such as

the Euclidean Minimum Spanning Trees (EMST) [63] or Modified Curl(MCD) [68] is
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insignificant due to finite rate of the chemical reactions and the dominance of turbulence

on mixing (turbulent dispersion theory [69]).

3.2.4 Mixing Time-scale

In addition to how particles are mixed, how fast also has an influence on overall influence

of the micromixing term. It is commonly assumed that the scalar mixing time-scale is

proportional the turbulence time-scale [70]

1

τφ
=
Cφ
τT
, (3.22)

where Cφ is a non-dimensional parameter known as the scalar-to-mechanical time-scale

ratio, and τT is the time-scale of the integral scale turbulent motions. Cφ that is often

assumed to have a value of 2.0. However, this value is not universal and has been

shown to also vary [71] depending on the application and micromixing model used. As

an example, in the RANS context, using the EMST for a premixed flame at a Da≈ 1,

Stöllinger and Heinz [59] illustrated that the appropriate value of Cφ was 12.

Choosing an optimal, value of for this coefficient is an ad hoc process. Various authors

[59, 71] have shown that by applying a non-constant Cφ, the results of simulations can

improve substantially when paired with mixing models that have previously shown to

cause un-physical results [63, 64, 72] with more traditional values of Cφ. This also helped

strengthen the conclusion that different micromixing models require different values of

Cφ. Although varying Cφ and determining it through trial and error is generally better

than assuming a constant incorrect value, it is quite time consuming, and can still

lead to poor results as burning modes and scale dependencies vary in space and time.

Various authors [57, 71] have proposed methods for generalising the calculation of Cφ

by considering local flow conditions in its calculation (such as composition, Reynolds

number) or by solving an additional transport equation for scalar variance. An interested

reader is referred to these works as detailing these models is outside the scope of this

thesis.

The large focus of research in development of micromixing models and expressions for Cφ

have been within the RANS-PDF community. The need for more accurate representation

of Cφ in RANS comes from the need to accurately represent scalar mixing by scales that
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are unresolved by the RANS methodology. It has been proposed that in LES, because

of the broader range of resolved turbulent scales, the representation of scalar mixing

provided by the traditional IEM micromixing model and mixing timescale closure and

may be adequate [73]; a conclusion confirmed in [74–76].

3.3 LES Stochastic Field Formulation

An alternative approach to the Lagrangian particle method, is the Eulerian stochastic

field (SF) method which was initially proposed by Valiño [23] and then Sabel’nikov

and Soulard [25] using a different approach. In this method, the joint scalar PDF is

constructed through an ensemble ofNf , Eulerian stochastic fields ζn (x, t) =
[
ζn1 , ..., ζ

n
Ns

]
.

The joint scalar PDF can be constructed as

F(ψ;x, t) =
1

Nf

Nf∑

n=1

Ns∏

α=1

δ [φα − ζnα(x, t)] . (3.23)

Through convolution of the joint scalar PDF with a filter function, the sub-filter PDF

defined in terms of stochastic fields can be obtained in a similar manner as Equation 3.18

The premise behind the stochastic field method is deriving stochastic partial differential

equations (SPDEs) that are stochastically representative/equivalent of the closed form

of the transported PDF equation.

∂ρP̃sfs
∂t

+
∂ρũiP̃sfs
∂xi

− ∂

∂xi

[
Γe
∂P̃sfs
∂xi

]
+

Ns∑

α=1

∂

∂ψα

[
ρω̇αP̃sfs

]
=

ρ

τφ

Ns∑

α=1

∂

∂ψα

[(
ψα − φ̃α(x, t)

)
P̃ (ψ)

]
, (3.24)

where the conditional turbulent flux and micromixing term in the unclosed equation

(Equation 3.19) were modelled with the gradient diffusion closure of Equation 3.20 and

the IEM model of Equation 3.21 respectively. In the above equation, Γe = ρ (D +Dt)

is the total diffusion coefficient.

The resultant SPDEs govern the evolution of a stochastic scalar field. Valiño [23] was

the first to propose a method of generating these SPDEs using an Itô interpretation of
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the stochastic integral, and Sabel’nikov and Soulard [25] using the Stratonovich inter-

pretation. In either interpretation, the resultant set of SPDEs represents the stochastic

3D evolution of a joint composition PDF and is purely Eulerian in nature. Each in-

dividual stochastic field does not represent a particular realization of a real field, but

instead, form a stochastic system equivalent to it - that is, moments arising from the

stochastic field equations will be identical to the modelled PDF transport equation of

Equation 3.24.

Stochastic fields is an attractive way to approximate a transported PDF for turbulent

reacting flows for a few reasons: It guarantees a density field that is continuous and

differentiable in space and it can exploit similar Eulerian solution methods and domain

decomposition schemes implemented for the momentum equations easing the implemen-

tation process into existing codes.

3.3.1 Itô Formulation

Using the Itô interpretation of Valiño [23] with the IEM (Equation 3.21) and gradient

diffusion closure, the stochastic field SPDEs evolve according to

ρdζnα = −ρũi
∂ζnα
∂xi

dt+
∂

∂xi

(
ρ(D +DT )

∂ζnα
∂xi

)
dt+ ρ

√
2 (D +DT )

∂ζnα
∂xi

dWn
i

− ρ

τsfs

(
ζnα − φ̃α

)
dt+ ρω̇α(ζn)dt, (3.25)

A fundamental assumption with this particular formulation is that the stochastic fields

are smooth on the scale of the filter width (they contain no hidden “sub-filter” scales)

and are thus fully resolved on the grid size level.

The first and second term on the R.H.S of Equation 3.25 represent physical space ad-

vection of the stochastic fields in physical space due to the filtered momentum fields and

spatial diffusion of the fields respectively. Interaction between the fields of a correspond-

ing scalar occurs due to the second last term on the R.H.S (or the micromixing term).

The Favre filtered values of the scalar φα required in this term is the mean of all the

stochastic fields of the corresponding scalar, α, obtained with

φ̃α = 〈ζα〉 =
1

Nf

Nf∑

n=1

ζnα . (3.26)
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The third term on the R.H.S represents the stochastic contribution to the SPDE and

includes an increment of a Wiener process (dW ) with zero mean and dt variance. The

stochastic term differs for every field and is independent of spatial location.

Each stochastic field satisfies the mass conservation and boundness of the scalar it repre-

sents because as the scalar tend to extrema, the gradients tend to zero and the stochastic

contribution vanishes. As the number of fields Nf → ∞, the filtered stochastic term

tends to zero [27] 〈
ρ
√

2 (D +DT )
∂ζnα
∂xi

dWn
i

〉
→ 0. (3.27)

With these aforementioned attributes, the stochastic fields are smooth on the scale of the

filter width, continuous and differentiable in space, and continuous but not differentiable

in time. A full derivation of the stochastic field SPDEs with the Itô interpretation can

be found in [23, 74].

3.3.2 Stratonovich Formulation

Sabel’nikov and Soulard [25] used the Stratonovich interpretation and derived a set of

SPDEs in the form

ρdζnα + ρũj
∂ζnα
∂xj

dt+
ρ

τsfs

(
ζnα − φ̃α

)
dt− ρω̇α

(
ζn
)

dt

= −ρ
(
ugj + udj

) ∂ζnα
∂xj

dt, (3.28)

where the terms on the L.H.S represent identical processes to those described above.

The terms arising from the Stratonovich interpretation are on the R.H.S. The first term

on the R.H.S (ugj ) represents a stochastic velocity and is defined as

ugj =
√

2 (D +DT ) ◦
dWn

j

dt
, (3.29)

where ◦ denotes the Stratonovich interpretation of the stochastic integral. The sec-

ond term (udj ) is a drift velocity udj and accounts for spatial variations of the diffusion

coefficient and is given by

udj =
1

2

∂

∂xj
(D +DT )− 1

ρ

∂

∂xj
[ρ (D +DT )] , (3.30)



54 Chapter 3 Turbulent Premixed Combustion Modelling and Numerical Framework

Unlike the formulation of Valiño [23], smoothness of the stochastic fields is not necessary

with this interpretation, however, at the scale of the filter width, both formulations are

smooth and the advantage of the less stringent smoothness restriction is quite minor.

Additionally, compared to Equation 3.25, as the number of fields Nf →∞, the filtering

of the stochastic contribution is non-zero [27]

〈
ρ
√

2 (D +DT )
∂ζnα
∂xi

dWn
i

〉
→ −ρ∂

2ζα
∂xj2

, (3.31)

and corresponds to a diffusion term.

Regardless of the different physical interpretations and mathematical approaches, it was

shown in [25, 50] that the two formulations are mathematically equivalent and both

are equivalent representations of Equation 3.19. In fact, [77] illustrated that the two

formulations produce very similar results. To date, the only known definite advantage

of the Stratonivich interpretation over the Itô is the ability to use implicit schemes

[27, 77].

3.3.3 Extension to Low Reynolds Number

The stochastic field formulations presented above were derived for high Reynolds number

flows. In [24], Valiño proposed modifications to the original 1998 formulation to ensure

consistency in the case of low Reynolds number. The desire was to obtain the correct

limiting behaviour of the sub-filter PDF that limit - that is, the stochastic fields should

become less stochastic as the turbulent diffusivity (DT ) tends to zero. This condition is

obtained in two separate cases:

1. In the case of laminar flow.

2. In the limit of fully a resolved flow field.

In the case of laminar flow, the stochastic fields should reduce exactly to the transport

equation that govern the evolution of the conditioning variable. In the case of a fully

resolved flow field, the flow is still turbulent, but all scales are resolved. As such, there

is no sub-filter turbulent transport or mixing. In both of these cases, the sub-filter

PDF should decay towards a Dirac. In the formulation given in Equation 3.25, this low
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(filter) Reynolds number limiting behaviour was not obtained due to the presence of the

molecular diffusion (D), in the stochastic term.

The modified formulation of the Itô formulated stochastic fields was achieved by decom-

position of the diffusion term in the PDF transport equation (Equation 3.19) through

substitution of Psfs by its definition in the Stochastic field sense (Equation 3.23). A

complete derivation can be found in [24, 78]. The decomposed PDF transport equation

is then

∂ρP̃sfs
∂t

+
∂ρũiP̃sfs
∂xi

+

Ns∑

α=1

∂

∂ψα

[
ρω̇αP̃sfs

]
=

−
N∑

α=1

∂

∂ψα

[
∂

∂xi

〈
ρ (D +DT )

∂̃ζα
∂xi

∣∣∣∣φ = ψ

〉
P̃sfs

]

+

N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ

[〈
ρDT

˜∂ζα
∂xi

∂ζβ
∂xi

∣∣∣∣ζ = ψ

〉
P̃sfs

]

+

N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ

[〈
ρD

˜∂ζα
∂xi

∂ζβ
∂xi

∣∣∣∣ζ = ψ

〉
P̃sfs

]

−
N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ

[〈
ρD

˜∂φα
∂xi

∂φβ
∂xi

∣∣∣∣φ = ψ

〉
P̃sfs

]
, (3.32)

The primary assumption in deriving the new stochastic field formulations is that, because

the stochastic fields are smooth at the resolved scales, their contribution is on the same

order as the mean gradients [24]. This relationship is expressed by:

N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ

[〈
ρD

˜∂ζα
∂xi

∂ζβ
∂xi

∣∣∣∣ζ = ψ

〉
P̃sfs

]
−

N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ

[〈
ρD

˜∂φα
∂xi

∂φβ
∂xi

∣∣∣∣φ = ψ

〉
P̃sfs

]

=

N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ



〈
ρD

˜∂φ′α
∂xi

∂φ′β
∂xi

∣∣∣∣φ = ψ

〉
P̃sfs


 . (3.33)

These terms roughly cancel out against the contribution of the fluctuating filtered scalar

gradients.
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Substitution of the relationship in Equation 3.33 into Equation 3.32 yields:

∂ρP̃sfs
∂t

+
∂ρũiP̃sfs
∂xi

+

Ns∑

α=1

∂

∂ψα

[
ρω̇αP̃sfs

]
=

−
N∑

α=1

∂

∂ψα

[
∂

∂xi

〈
ρ (D +DT )

∂̃ζα
∂xi

∣∣∣∣φ = ψ

〉
P̃sfs

]

+

N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ

[〈
ρDT

˜∂ζα
∂xi

∂ζβ
∂xi

∣∣∣∣ζ = ψ

〉
P̃sfs

]

−
N∑

α=1

N∑

β=1

∂2

∂ψα∂ψβ



〈
ρD

˜∂φ′α
∂xi

∂φ′β
∂xi

∣∣∣∣φ = ψ

〉
P̃sfs


 , (3.34)

In the PDF transport equation given above, the IEM model is used to close the last term

on the R.H.S. In this case however, the micromixing model is related to the sub-filter

part of the scalar dissipation compared to the previous formulation where it modelled

both the resolved and sub-filter contributions.

Using standard methods [23, 24, 27, 74], the stochastic field equations can be derived.

The modified evolution of the stochastic fields is then given by:

ρdζnα = −ρũi
∂ζnα
∂xi

dt+
∂

∂xi

(
ρ(D +DT )

∂ζnα
∂xi

)
dt+ ρ

√
2DT

∂ζnα
∂xi

dWn
i

− ρ

τsfs

(
ζnα − φ̃α

)
dt+ ρω̇α(ζn)dt. (3.35)

It can be seen that the new formulation is consistent with the desired low Reynolds

number limit. As turbulent diffusivity approaches zero, the stochastic term vanishes,

ζnα → φ̃α, and the stochastic fields reduce to the transport equation of the scalar that

ζ represents. However, this new formulation is also consistent in the high Reynolds

number limit. For sufficiency high Reynolds number, DT >> D, and both the 1998 [23]

and 2016 [24] formulations reduce to approximately the same form.

3.3.4 Stochastic Fields for Premixed Combustion

Following successful validation of the stochastic fields approach in a range of non-

premixed combustion scenarios [79–84], a smaller number of stochastic fields simula-

tions of premixed combustion have been reported. Using the 1998 formulation of [23],
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premixed stochastic fields simulations have been conducted for a low Reynolds number

swirl flame [75], a piloted Bunsen flame [85], and for a bluff body flames [86, 87]. To

date only a few studies [78, 88, 89] have been conducted with the modified stochastic

field equations provided by [24]. It was shown in [89] that for a laminar flame, the

non-vanishing stochastic term of the 1998 formulation led to incorrect flame predictions

compared to the simulations with the modified stochastic term. Similar results were

obtained in [88] for the very low Reynolds number Cambridge slot burner flame [90].

The numerical simulations of the rod stabilised V-flame showed that compared to ex-

periment, the 1998 formulation of stochastic fields led to a 54% over-prediction in flame

angle/burning velocity compared to an 18% over-prediction obtained with the modified

stochastic field formulation.

In general, the results of these simulations is encouraging for the application of stochas-

tic fields in the simulation of turbulent premixed combustion. More importantly, the

relatively good agreement with experiment within these simulations was obtained with

a micro-mixing model (the IEM) that was unchanged from the non-premixed modelling

efforts. The sensitivity of the choice of nominal Cφ in conjunction the IEM model was

investigated by Dodoulas and Navarro-Martinez [85] where it was observed that the

flame structure was not significantly altered through variation of this particular param-

eter. These results were similar to the conclusions of [76] using the Lagrangian particle

LES-PDF formulations of the same test case. These similar conclusions strengthen the

hypotheses that the effect of Cφ in LES is minor compared to the dependency observed

in RANS context [57, 71].

However, even with the lack of sensitivity seen for this modelling approach, the use of

the IEM micromixing model in premixed LES-PDF has not been rigorously justified to

extend to all premixed combustion regimes. Its preliminary (and continued) use in sim-

ulations generally arises from its computational convenience and a lack of application of

stochastic fields modelling to sufficiently flamelet-combustion dominated flames. Inves-

tigations of stochastic particle-based transported-PDF modelling in flamelet combustion

regimes suggest that turbulent flame predictions can be improved by applying alterna-

tive micro-mixing models that enforce localness [59, 63] and also account for preferential

molecular transport [91]. However, the necessity of these properties in the context of

stochastic fields LES is unknown as such models have not yet been adapted for use with

the stochastic fields approach. The relative success of the IEM in LES-PDF methods
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is speculated to be due to the increased resolved mixing and the smaller contribution

of sub-filter mixing [73]. However, the necessity for different closures for the micromix-

ing term may arise with application of stochastic fields LES to increasingly (sub-filter)

flamelet like premixed combustion conditions where scalar mixing would then be gov-

erned by increasingly unresolved scales (for example, simulation of a combustion device

at increasingly higher pressure). This increased scale separation between the resolved

and scalar mixing scales (similar to that of RANS) at these conditions will perhaps place

more stringent requirements on the choice of mixing and frequency models.

Within Monte Carlo simulations in general, ensuring an adequate sample size is nec-

essary to obtain an accurate and unbiased estimate of statistics quantities. Statistical

convergence was analysed in the introductory stochastic fields papers of [23, 25], how-

ever, these were under simplified conditions. A more practical investigation of the effect

of field number on SF-LES predictions was investigated in the context of 3D LES in

the work of [85]. They analysed statistical resolution by simulating a premixed Bunsen

flame [92] using 1, 4, and 16 fields with a fine grid resolution. It was shown that in-

creasing the number of fields generally improved the prediction of axial velocity in all

three flames simulated, although some discrepancies did exist at some locations. Most

of the species predictions also showed similar behaviour. Although no absolute conver-

gence was seen, it was suggested that using 8-16 fields was adequate. Here, absolute

convergence is defined as independence of the solution from any successive increase in

field number. This investigation provided an initial estimate for required field num-

ber to be used with stochastic fields but did not provide any specific dependencies to

field requirements at different premixed combustion conditions. Their conclusions are

not expected to be applicable across all turbulent premixed combustion regimes as the

number of samples required to reconstruct a discrete PDF will vary depending on its

shape (or variance). The sub-filter variance of a PDF is expected to vary depending on

the sub-filter combustion regime; a larger variance would generally require more fields

than that for PDF with smaller variance. To date, no explicit investigation into this

relationship has been conducted. In order to ensure that stochastic field simulations are

adequately resolved statistically, establishing field requirements as a function of different

(sub-filter) combustion regimes is necessary.

More fundamentally than statistical resolution, as stochastic fields is an Eulerian method-

ology, it is suspected that it may be susceptible to similar inherent modelling challenges
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associated with any Eulerian based premixed combustion modelling framework, namely;

numerical errors as a product of poor numerical resolution. Numerical resolution re-

quirements of the stochastic fields equations in premixed combustion LES have not been

discussed explicitly in academic literature.

Each stochastic field contains a reaction front that “resembles” a premixed flame. Strictly,

the reaction fronts in the stochastic fields are not required to correspond to actual flame

fronts in a physical flow, and therefore the term “reaction front” is used to avoid confu-

sion. In general, the combined effects of an exchange with the mean micro-mixing model

(that has the effect of drawing the fields towards their correspondingly thicker filtered

field) and an eddy-diffusivity model for the unresolved turbulent transport is to thicken

the individual stochastic fields. In the absence of unresolved turbulent transport, the

stochastic fields reaction front thickness should converge to the laminar flame thickness.

Conversely, the upper limit on reaction-front thickness would be in the case of perfect

mixing. In this case, the stochastic field reaction fronts will be equal to the ensemble

average of all the stochastic fields. Therefore, the thermal thickness of the stochastic

fields reaction fronts is expected to be bound by the thermal thickness of an unstrained

laminar premixed flame and the thermal thickness of the ensemble-averaged (RANS)

or resolved (LES) temperature field. From this, it can be concluded that the averaged

thickness of the reaction-front of individual stochastic fields is necessarily less than or

equal to the thickness of the ensemble average of all the stochastic fields.

In the context of LES, the average thickness of an individual stochastic field reaction

front is expected to depend on the effective filter length scale and the sub-filter combus-

tion regime. Karlovitz numbers much greater than unity (i.e. broken reaction zones)

have the effect of thickening instantaneous flame fronts [19]. Therefore, higher Karlovitz

numbers should also thicken the stochastic field reaction fronts, reducing numerical reso-

lution requirements. Conversely, the most stringent resolution requirements are expected

for low Karlovitz number flames that characterise combustion in the flamelet regime.

Although not the focus of their study, Advić et al. (using the modified stochastic field

formulation of [24]) briefly investigated the effect of spatial resolution on the stochastic

field predictions of a laminar flame. Their simulations showed a strong dependence of

the predicted flame speed on the different grid resolutions tested. This dependence is

expected however. Through analysis of Equation 3.35 in the limiting case of DT = 0, it

can be seen that this particular stochastic field formulation would reduce to a reactive
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scalar transport equation for each conditioning reactive scalar. Consequently, in order to

accurately predict the laminar flame correctly, the stochastic field will necessarily require

an adequate numerical grid resolution to do so. Although not strictly a stochastic field

simulation per se, this particular investigation by these authors confirms the necessity

for stochastic field simulations to have sufficient numerical resolution and provides a

requirement for numerical resolution of stochastic fields in the limiting case of a laminar

flame (Ka = 0); a resolution equivalent to DNS simulations.

Comparatively, the numerical grid requirement for the ATF [14, 22, 44, 45] is not as

strict, and it can better predict the correct laminar flame speed for a given numerical

grid spacing. In the ATF method (as discussed in Section 3.1.1), the scalar fields are

artificially thickened by a thickening factor F to sufficiently resolve all the scalar gra-

dients, reducing the magnitude of numerical errors introduced into the solution. The

insensitivity to the choice of numerical grid arises from the fact F is evaluated through

an a priori defined resolution of the laminar flame on the employed numerical grid. The

consequence is that coarse numerical grids can be used for turbulent flame simulation

and still preserve the correct flame speed in the case of a laminar flame.

As the numerical resolution requirements of stochastic fields are suspected to be depen-

dant on combustion regime, it is essential to establish an understanding of the impact

of numerical grid resolution on the predictive capability of stochastic fields across these

regimes and how any numerical error that arises from poor resolution is manifested. As

low Karlovitz number combustion is prevalent in most premixed combustion applications

(including spark-ignition engines and industrial gas turbines), the computational impli-

cations of applying stochastic fields to simulate these flamelet-like combustion regimes

needs to be established. It is not evident a priori whether a given grid spacing will be

sufficient to numerically resolve the individual stochastic fields in different combustion

regimes, and numerical resolution requirements need to be investigated numerically.
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3.4 Numerical Framework

The stochastic fields framework is implemented within the block-structured BOFFIN

(Boundary Fitted Flow Integrator) computational fluid dynamics code [85, 93]. The

code is a second order accurate finite volume method based on fully implicit low-Mach-

number formulation using a staggered storage arrangement. For the momentum equa-

tion convection term, an energy conserving discretisation scheme is used and all other

spatial derivatives are approximated by standard second order central differences. A

total variation diminishing (TVD) scheme is used for the convection terms in the scalar

conservation equations to ensure boundness.

The stochastic field equations are solved using a weak first order temporal approximation

with accuracy O
(√

∆t
)

based on the Euler–Maruyama scheme [94]. The chemical

source terms are solved using an in-house Newton method-based stiff solver.

3.4.1 Stochastic Fields Formulation

Due to the consistency in the low Reynolds number limit, in this thesis, the modified

stochastic field equations (Equation 3.35) of Valiño [24] is used. Traditionally, in stochas-

tic field simulations, filtered moments of scalars are obtained by ensemble averaging all

the instantaneous stochastic fields as in Equation 3.26. Subsequently, the filtered density

required in the LES momentum equations is obtained by

1

ρ
=

1

N

N∑

n=1

1

ρn
(3.36)

where ρn is the local density on field n determined from the equation of state for an

ideal gas.

For low number of samples, stochastic noise may have an impact of the stability of the

solution. Therefore, in this work, the SF formulation of Prasad [27] is adopted. In this

formulation, auxiliary species transport equations are solved for all α scalars. After

the stochastic fields are solved at a given time step, the auxiliary equation is advanced

with closure of the filtered chemical source term achieved through the ensemble of the

stochastic field reaction rates as:
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ω̇α(x, t) =
1

N

N∑

n=1

ω̇nα(x, t). (3.37)

The density required in the LES equations is then calculated by the equation of state

using the auxiliary species composition.

Included in the stochastic field formulation proposed by Prasad [27], is a scaling for the

mechanical-to-scalar time-scale ratio. It is given as:

Cφ = C0
φ

(
µL
µsgs

+ 1

)
, (3.38)

where C0
φ = 2. This scaling was derived to ensure low Reynolds number consistency

for the high Reynolds number stochastic field formulations used in [27]. It ensures the

correct limiting behaviour at both high Reynolds number, and laminar flow conditions.

In the limit of sufficiently large Reynolds number, µsgs >> µsgs and Cφ → 2. In the case

of laminar flow, µsgs → 0 and mixing becomes infinitely fast. The latter case has the

effect of removing any contributions of the stochastic term in the respective stochastic

field formulation. Although this behaviour is inherent in the modified stochastic field

formulation of Equation 3.35, this particular scaling is used nonetheless to scale Cφ at

states between these two extremes.

3.4.2 Wiener Term

The Wiener process (dW ) is determined by time-step increments dt1/2ηni where ηni is

the Wiener term increment of field n in the i− th coordinate direction. It is determined

by a weak first order approximation using a dichotomic random vector {−1, 1} [25,

94]. The algorithm of distributing Wiener term increments involves generating normally

distributed random numbers for the first half of the total number of fields. Depending

on the sign of the random number, the increment obtains the dichotomic vector value

corresponding to same sign; Negative signed random numbers are given a value of -1

and positive signed numbers, +1. Each field in the first half of the total number of fields

is assigned a complement in the second half which is offset by Nf/2. Thus, consistency

with the weak approximation in providing the correct mean and variance is achieved by

enforcing complementary fields to have opposite signs. As such, the number of fields is

restricted to an even number. In a final step, to avoid introduction of any correlation
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into the solution through consistent negative correlation of field complement, after the

initial distribution of Wiener term increments is complete, the distribution is randomly

shuffled.

3.4.3 Thermo-chemical Model

In this thesis, similar to the work of [46], premixed combustion kinetics are modelled

using a one-step reaction model for methane-air flames,

CH4 + 2O2 → CO2 + 2H2O. (3.39)

The fuel reaction rate is modelled by the Arrhenius law,

ω̇CH4 = A ·
(
ρYCH4

MCH4

)nCH4
(
ρYO2

MO2

)nO2

exp

(
− Ea
RT

)
, (3.40)

where T , YCH4 , YO2 , MCH4 , MO2 and R denote temperature, fuel and oxygen mass

fractions, corresponding molar masses and the universal gas constant, respectively. The

pre-exponential factor, the activation energy and the model exponents are A = 1.1×1010

(cgs), Ea = 20, 000 cal/mol, nCH4 = 1.0 and nO2 = 0.5. The use of such simple chemical

modelling is justified by the focus of the thesis on evaluation of the numerical resolu-

tion requirements of the stochastic fields approach, rather than assessing the physical

accuracy of the stochastic fields approach.

Temperature dependent thermodynamic properties are modelled with NASA polyno-

mials, and the mixture viscosity is modelled with Wilkes law. Due to the unity Lewis

number assumption in the stochastic fields formulation, the laminar Schmidt and Prandtl

numbers are both set equal to 0.7. These assumptions lead to a laminar flame speed

SL = 0.38 m/s, a thermal thickness δL = 0.408 mm, and a burnt gas adiabatic temper-

ature Tb = 2328 K in atmospheric and stoichiometric conditions.





Chapter 4

Numerical Requirements of the

Stochastic Field Approach

The grid spacing required in order to numerically resolve a reaction-diffusion front varies

depending on the numerical discretisation employed, the details of the chemistry and

transport models employed, and the numerical accuracy desired. For high-accuracy

simulation of premixed combustion with a detailed chemistry model, more than twenty

points may be required within each reaction-diffusion front. Whereas five points within

a reaction diffusion front may be taken as an absolute minimum requirement for less

accurate engineering simulations with simple (e.g. single-step) chemistry models [14].

Low-order numerical methods and TVD schemes used for some LES of turbulent reacting

flows can remain stable even when the governing equations are under resolved, providing

numerical diffusion that spreads the reaction fronts across multiple grid points.

In implicitly-filtered LES, the effective filter length scale used in modelling for the un-

closed sub-filter scale terms usually depends on the grid spacing. Previous stochastic

fields LES studies [75, 80–82, 85, 86] have all set the filter length scale equal to the grid

spacing (or the cube root of the cell volume as in Equation 2.27). As demonstrated in

Section 2.2.3, when the filter length scale depends on the grid spacing, the effects of nu-

merical resolution errors cannot be distinguished from scale-dependence of the sub-grid

modelling. Vreman et al. [95] investigated the effects of numerical error in non-reacting

LES by changing the filter scale independently from the grid spacing. For a fixed filter

scale they found significant differences in LES predictions between simulations with the

65
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grid spacing equal to either the filter scale or one half of the filter scale. They did

not proceed to refine the grid to the extent that grid-independence of the predictions

was demonstrated, presumably due to the computational expense of further refining the

three-dimensional grid. The approach of refining the numerical resolution while keeping

the filter length scale unchanged is also appropriate for assessment of numerical error and

resolution requirements in the stochastic fields equations and this approach is employed

in this section. Due to the computational expense of highly-resolved three-dimensional

stochastic fields simulations, the numerical resolution requirements are assessed across

a wide range of combustion regimes using a simple one-dimensional test case relating to

a stationary planar freely-propagating turbulent flame, before verifying the conclusions

from the one-dimensional study in a three-dimensional LES of a turbulent premixed

Bunsen flame and of a statistically planar flame propagating in decaying homogeneous-

isotropic turbulence.

The particular goal of this chapter is to establish the dependence of the non-dimensional

thickness of the reaction-fronts of individual stochastic fields on the combustion regime.

The approach adopted here is to solve the stochastic fields equations with a fixed filter

length scale, but to reduce the numerical grid spacing relative to the filter scale in

order to ensure that the individual stochastic fields are numerically resolved. From

this approach it is possible to ascertain a thickness of the individual stochastic fields,

and therefore determine under what conditions they are adequately resolved by a grid

spacing equal to the filter scale.

4.1 One-Dimensional Freely-propagating Turbulent Flame

The analysis undertaken for the one-dimensional test cases represents a planar flame

propagating through a medium with constant turbulence properties. The turbulence is

specified by two independent parameters: the RMS velocity fluctuation, and a turbulent

length scale. The results of the simulation may be interpreted either in the context of

RANS or LES. In either case, a model for the turbulent diffusivity and mixing time-

scale is required to close the stochastic field equations used in this study (Equation 3.35).

Details of the closures employed are discussed in the proceeding section.
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RANS

In the context of RANS, the planar turbulent premixed flame is statistically homoge-

neous in the directions orthogonal to the mean propagation direction. The model for

turbulent diffusivity takes on the form of an algebraic closure which resembles the form

of the k-equation closure given in [11]:

DT =
Cµu

′LT
ScT

, (4.1)

where ScT = 0.7 and Cµ = 0.09. The mixing frequency required for the micro-mixing

term is modelled by
1

τT
=
Cφu

′

LT
. (4.2)

LES

Large Eddy Simulation is inherently three-dimensional, however, in regions where the

local resolved flame front is thin relative to the curvature radius of the resolved flame

front, molecular and turbulent transport across the resolved flame front is approximately

one-dimensional in the direction normal to the local resolved flame surface. It is then

appropriate to consider the local propagation of the resolved flame front as locally similar

to the propagation of a planar turbulent flames subject to turbulence with properties of

the equal sub-filter scale turbulence.

The one-dimensional simulations in this context may be interpreted loosely as repre-

senting the transport along a line passing perpendicularly through a LES-resolved flame

front, assuming that the LES-resolved flame front propagation is quasi-steady and unaf-

fected by: other flame fronts, curvature, or resolved strain (except to the extent that the

resolved strain results in generation of sub-filter scale velocity fluctuations characterised

by u′∆). The sub-filter scale diffusivity and dissipation time scales required in Equa-

tion 3.35 are then modelled by Equation 4.1 and Equation 4.2, replacing the turbulence

length scale LT with the filter scale ∆, and the turbulent velocity u′ with the sub-filter

scale velocity fluctuation u′∆. According to these simple interpretations, the results of

an LES solution would converge to those of an unsteady RANS solution in the limit

where the filter scale approaches the integral length scale, however it should be noted
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that using a filter scale that is of the order of the integral scale violates the basic premise

that the LES filter scale should be in the inertial range.

The sub-models for the sub-filter scale turbulent diffusivity and dissipation time scale

that depend on a notional LES filter length scale ∆ and the corresponding sub-filter

scale velocity fluctuation u′∆ are

DT =
Cµ∆u

′
∆∆

ScT
, (4.3)

where ScT = 0.7 and Cµ∆ = 0.09. The mixing frequency is modelled by

1

τT
=
Cφu

′
∆

∆
. (4.4)

4.1.1 Turbulence Parameters - Estimation of u′

To close the above equations for turbulent diffusivity and mixing frequency in either

the RANS or LES context, a model is required for the RMS velocity fluctuations. To

obtain this, the turbulence parameters u′ and LT are first non-dimensionalised using the

laminar flame thermal thickness, δL, and the laminar flame speed, sL, in order to obtain

the filter-to-flame length scale ratio δL/∆, and the Karlovitz number [41]:

Ka2 =
u′3δL
s3
LLT

. (4.5)

In LES, the sub-filter scale RMS velocity is a function of the filter length scale ∆.

Here, conventional scaling arguments are used to estimate the dependence of u′∆ on ∆.

The assumption that ∆ is in the inertial range of the turbulence decay means that the

dissipation occurs at scales smaller than ∆. Within this region, the rate of sub-filter

turbulent kinetic energy dissipation ε∆ is independent of length-scale (or ∆) and can be

approximated equal to the Reynolds averaged turbulent kinetic energy dissipation rate

ε. As in Equation 1.10, the dissipation rate scales with

ε ∼ u′3

LT
, (4.6)

and therefore

ε∆ ∼
u′3∆
∆
. (4.7)
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Since in the inertial range we assume that ε∆ = ε, combining Equation 4.5, Equation 4.6,

and Equation 4.7, provides an estimate for the sub-filter scale RMS velocity as a function

of the filter length-scale and Karlovitz number,

u′∆ = sLKa
2/3

(
∆

δL

)1/3

. (4.8)

With the assmptions outlined in the previous section, the velocity fluctuations for the

RANS context can be obtained by simply replacing ∆ with LT .

The presented scaling argument provides a complete set of models for the parameters

appearing in Equation 3.35. The closures are not expected to be quantitatively accurate,

but will be used to demonstrate the behaviour of the stochastic fields under the various

conditions tested in the proceeding work.

4.1.2 Thermo-physical Configuration

For filter length scales in the inertial sub-range of the turbulence spectrum, from the

scaling analysis shown above, the filter scale Karlovitz number Ka∆ is equal to the

integral scale Karlovitz number, Ka∆ = Ka [14]. Since LES relies on selection of a

filter length scale in the inertial sub-range, the effect of choosing different ratios of

the filter length scale to laminar flame thickness (∆/δL) for simulation of a particular

turbulent flame regime can be investigated by fixing Karlovitz number and evaluating

the corresponding sub-filter scale velocity fluctuation as in Equation 4.8

The thermo-physical configurations chosen for this test case were selected to demon-

strate resolution requirements spanning different combustion regimes from the Corru-

gated Flamelet (Ka≈ 0.5), to Thin Reaction Zones regime (Ka≈ 50.0). The filter width

ratios were chosen to correspond to conditions similar to those expected in the 3D LES

simulations in the proceeding sections. Full details of the range of filter widths, Karlovitz

numbers, and stochastic field numbers used in the study are outlined in Table 4.1.

4.1.3 Performance Metrics

Of particular interest in this study is how the numerical resolution of the individual

stochastic fields affect the resolved flame front speed sT∆
, and thickness δc of the filtered
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Table 4.1: One-dimensional simulation thermo-physical configurations

Ka 0.5, 1, 5, 10, 20, 30, 40, 50

∆/δth 1, 2.5, 5.0

∆/∆x 1, � 1

Number of stochastic fields 512

δc∗

c̃

δc̃

ζ̃i

Figure 4.1: A schematic diagram showing the δc∗ thickness of the individual stochas-
tic fields progress variable profiles (dashed lines) and the δc̃ thickness of the resolved

progress variable field (solid line)

progress variable field, since both of these factors influence the overall turbulent flame

dynamics that would arise in a full 3D LES. In order to characterise the resolution

of the individual stochastic fields, the stochastic field reaction-front thickness for each

individual field is evaluated and ensemble averaged according to

δc∗ =

〈
1

|∇ζi|max

〉
; i ∈ 1, . . . , N. (4.9)

This process is illustrated in Figure 4.1. This quantity is referred to as the average

stochastic field thickness and will be used as a metric to define the resolution of a given

simulation configuration.

The turbulent flame speeds presented in the proceeding analysis are determined through

the global consumption rate given by the rate of conversion of products through the

turbulent flame brush.

ST = − 1

ρuYu,fA0

∫

V
ω̇FdV (4.10)

where ρu is the unburnt gas density, Yu,f is the fuel mass fraction in the unburnt gas,

and A0 is the flow cross sectional area.
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4.1.4 Numerical Configuration

The numerical domain was comprised of simple inflow-outflow boundary conditions at

the left and right boundaries respectively. An overly conservative isotropic grid spac-

ing was used to ensure that there was a minimal influence of numerical errors in the

simulations with the relatively low order numerical schemes used in the code. The grid

spacing was chosen such that at each test point there were at least 20 grid points within

an average stochastic field thickness for the “well-resolved”, stochastic fields solutions.

This grid spacing was deemed independent as the relative property change between suc-

cessive grid refinements was approximately ±0.05%. As a consequence of this, each of

the thermo-physical conditions tested employed a different number of grid points.

4.1.5 Results and Discussion

Freely-Propagating Turbulent Flame - RANS

The one-dimensional RANS model is applied to the freely-propagating turbulent pre-

mixed flame for a range of u′/SL and LT /δL, and the turbulent flame speed predictions

are reported in Figure 4.2 alongside DNS data of a freely propagating stoichiometric

methane-air flame of Nivarti and Cant [15].

Given the assumptions and simplifications of the one-dimensional simulations, the results

compare well with the DNS. The differences are expected to be because the closure for

the turbulent viscosity employed in these simulations is based on scaling arguments

only. For a more accurate representation of the turbulent viscosity, the pre-multiplying

coefficient could have been tuned with supplementary turbulent flame data.

Even though use of non-local mixing models is known to be inaccurate in Lagrangian

particle RANS-PDF modelling of premixed flames [57], the RANS-stochastic fields sim-

ulations using the IEM model successfully describes the correct premixed combustion

behaviour seen in the data of Nivarti and Cant [15] namely the onset of the “bending”

whereby the increase of turbulent flame speed saturates at higher u′/sL due to the lo-

cal saturation of flame surface density. In order be able to conclude definitively if the

bending effect occurs, larger values of u′/sL would need to be analysed.
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Figure 4.2: One-dimensional RANS stochastic fields results for freely-propagating tur-
bulent flame. Normalised turbulent flame speed (left) and normalised average stochastic
field thickness (right) versus u′/SL for LT /δL = 1, 2.5, 5. Results plotted along with

DNS data of Nivarti and Cant [15].

The relative success of non-local mixing models in the context of the stochastic fields

PDF implementation in premixed combustion applications may be that as the stochastic

fields are continuous in space, and a portion of the scalar dissipation process is accounted

for by the spatial diffusion term in the stochastic fields equation which is absent in

the Lagrangian-PDF formulation. As illustrated by Subramaniam and Pope [63], non-

local mixing is not physically representative of the true mixing process. Thus, non-local

micromixing models draw the composition into highly improbable regions of composition

space which can lead to errors in flame speed. The introduction of the coupling between

the spatial diffusion and reaction (representing a true physical process) in the stochastic

field formulation may draw the compositions in the stochastic fields solutions towards a

more physically-plausible composition manifold across the reaction front and, to varying

extents, counteract the (non-physical) influence of a non-local micromixing model.

In order to evaluate the resolution requirements of the stochastic fields equation, the

thermal thicknesses of the reaction fronts on the individual stochastic fields, δ∗c , are

evaluated as indicated in Figure 4.1 and ensemble averaged. The average thickness of

the RANS stochastic fields is presented in Figure 4.2, showing that the thickness reduces

towards the laminar flame thickness as u′/SL → 0. The thickness remains on the order of

the laminar flame thickness across a wide range of turbulence conditions for the smaller

filter width ratio. Resolution requirements in RANS simulations in general must be such

to resolve the large scale flow features that drive the integral scale turbulence (i.e. length

scales greater than LT ). However, when coupled with the stochastic fields approach that
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is seen to require resolution of scales close to the much smaller laminar flame thickness,

it is then necessary to dramatically increase grid resolution requirements when applied

to premixed combustion.

Freely-Propagating Turbulent Flame - LES

In the context of LES, in addition to the well-resolved flame speed and stochastic field

thickness distributions with changing turbulent conditions, the results are compared to

the commonly assumed LES filter scale of ∆ = ∆x. Here, the ∆ = ∆x results are

denoted as the coarse simulations.
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Figure 4.3: Normalised averaged stochastic field thickness variation with Ka for
∆/δL = 1, 2.5, 5. Legend applied to both figures.

Figure 4.3 shows the results for both coarse and well resolved simulations for the average

stochastic field thickness normalised by the laminar flame thickness (Figure 4.3a) and the

filter width used in the corresponding simulation (Figure 4.3b). Figure 4.3a shows that

for the well resolved simulations, the average thickness of the stochastic field reaction-

fronts is on the order of the laminar flame thickness at low Karlovitz numbers and

increases with Karlovitz number and filter length scale due to the increasing contribution

of sub-filter scale diffusivity. A similar trend can be seen for the coarse simulations,

however, the effect of numerical thickening is evident through large differences seen

between the well resolved and coarse simulations. Additionally, numerical errors are

highlighted from the large deviation of reaction front thickness compared to the laminar

flame thickness as the Karlovitz number tends to zero. In the absence of numerical
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errors, towards this limit, all cases should converge to a ratio of unity (or the laminar

flame thickness); a behaviour not experienced by setting ∆x = ∆.

Figure 4.3b on the other hand shows that if setting ∆x = ∆, the absolute minimum of

five grid points necessary within a reaction front (δc∗/∆x ≥ 5) in order to give acceptable

numerical resolution is not satisfied anywhere in the wide range of combustion conditions

tested. Additionally, the numerical effects on stochastic field reaction front thickness is

evident from the ∆x = ∆ results at low Karlovitz number. For the ∆/δL = 2.5, 5

cases, the reaction front thickness is sufficiently smaller than the filter width and thus,

numerical thickening acts to broaden the reaction front (or the scalar gradients) so that

they extend across at least twice the grid spacing. This is evident from the ∆/δL = 2.5, 5

cases converging to 〈δc∗〉/∆ ≈ 2 as Karlovitz number approaches zero.

An instantaneous output of the one-dimensional simulations is shown in Figure 4.4 to

help illustrate the behaviour seen in Figure 4.3. In this figure, ∆/δL = 1 at Ka=1 and

∆/δL = 5 at Ka=50 outputs are shown for both well-resolved and coarse simulations as

they represent the extreme conditions of those tested in the one-dimensional study.

From Figures 4.4a and 4.4b, it can be seen that for ∆/δL = 1 at Ka=1, both well-

resolved and coarse simulations produce similar stochastic field distributions. Although

still under-resolved by the definition of a minimum of 5 grid-points within a reaction-front

(see Figure 4.3b), the small grid spacing of the coarse simulation results in less visible

numerical spearing of the stochastic field reaction-fronts leading to average stochastic

field thickness similar to those of the well-resolved simulation. Figures 4.4c and 4.4d, on

the other hand, show the results for ∆/δL = 5 at Ka=50. These figures illustrate a more

obvious degradation in smoothness and stochastic field reaction-front resolution for the

coarse simulations. It can be seen that the large grid spacing (as a consequence of setting

∆x = ∆) numerically smears the stochastic field reaction-fronts over at least two grid

points, drastically increasing their thickness relative to the well-resolved simulations.

The numerical thickening of reaction fronts is an error that changes the physical pre-

dictions of the simulation in two main ways. First, the broadening of scalar gradients

is expected to affect the local propagation speed of the reaction fronts in the stochastic

fields. Second, the numerically-thickened reaction fronts are less susceptible to wrinkling

by the resolved turbulence leading to an under-prediction in the overall resolved flame

surface area.
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Figure 4.4: Example output of one-dimensional “LES” simulations for well-resolved
and coarse grid resolutions. Red line denotes the filtered scalar field, ζ̃.

Figure 4.5a shows the results of the filter scale turbulent flame speed where the effect

of the numerical thickening of scalar gradients is shown. For all filter width ratios

tested, the ∆x = ∆ cases result in varying degrees of over-prediction of sub-filter flame

propagation speeds with the deviation increasing with increasing filter-width ratio and

Karlovitz number. More importantly, as the Karlovitz number decreases to zero, the

∆x = ∆ simulations do not converge to sT∆
/sL = 1 meaning the laminar flame speed is

not recovered in these cases; a limiting behaviour that must be satisfied. Only the results

for ∆/δL = 1 show reasonable agreement which indicates that even with approximately

3 grid points within a reaction front (see Figure 4.3b), acceptable predictions of flame

speed may be obtained.
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Figure 4.5: Normalised sub-filter flame speed variation with Ka for ∆/δL = 1, 2.5, 5.
Legend applied to both figures.

The effect of the numerical thickening on the under-prediction of flame surface area and

its impact on consumption rate cannot be obtained directly from the one-dimensional

simulations but it can be estimated using established models for sub-filter scale flame

wrinkling in the context of Artificially Thickened Flame modelling [14, 22]. The efficiency

function developed by Charlette et al. [14] provides an estimate for the contribution to

flame surface area from turbulent motions below a particular length scale. Evaluating

this efficiency function for the reaction front thicknesses of the well-resolved and coarse

simulations, and taking their ratio, (Θ), gives an estimate for the proportion of the flame

surface area remaining after the numerical thickening. The impact of the loss of flame

surface area on burning rate due to numerical thickening is illustrated in Figure 4.5b by

multiplying the propagation speed data for ∆x = ∆ by Θ.

For clarity within Figure 4.5b, the adjusted flame speeds are only shown for the ∆/δL = 1

and 5 cases. The magnitude of the adjustment to the coarse flame propagation data

increases with increasing filter width due to the increase in numerical thickening asso-

ciated with larger filter widths for a given Karlovitz number. It can be seen that even

for a filter width of ∆/δL = 5, which is common in current laboratory scale flame sim-

ulations, an almost 50% increase in turbulent flame speed is observed. This indicates a

substantial proportion of flame surface area is neglected in stochastic fields when setting

∆ = ∆x.
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4.1.6 Comparison of Stochastic Field Formulation

In this sub-section, the two Itô stochastic field formulations presented in Section 3.3

are compared, namely the high-Reynolds number 1998 formulation [23] and the low-

Reynolds number 2016 formulation [24]. The purpose of this study is to analyse if the

two formulations yield different predicitons and under what combustion conditions this

might occur. This simplified investigation is performed as a necessary precursor to the

3D LES simulations in the proceeding section. It aims to help justify the choice of

stochastic field formulation to be used in the 3D LES and to understand if/how the

results of the simulation will be influenced by the inherent assumptions specific to a

formulation.

The comparison between the formulations is made by analysing the predictions of sub-

filter flame speeds over a range of filter widths and Karlovitz numbers. The flame speeds

are obtained in a similar manner to the simulations in Section 4.1.5, namely, an “LES” of

a one-dimensional freely-propagating turbulent flame. The numerical set-up is identical

to that outlined in the section above, however, additional simulations are conducted

with the high Reynolds number formulation of [23].
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Figure 4.6: Normalised sub-filter flame speed variation with Ka for ∆/δL = 1, 5
comparing stochastic field formulations

It can be seen from Figure 4.6 that for increasing Karlovitz number (which is analogous

to increasing Reynolds number for a fixed filter width), the results of both the formu-

lations at a given configuration yield similar values of normalised flame speed, with the

results of the ∆/δL = 5 simulations generally showing smaller deviations. These results
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are consistent with the high Reynolds number limiting behaviour of both formulations

outlined in Section 3.3 and in [24]. As the Karlovitz number decreases towards zero, the

predictions of the two formulations begin to diverge with the 1998 formulation consis-

tently over-predicting the flame speed. This over-prediction of the 1998 formulation over

the 2016 was also seen in the low Reynolds number rod stabilized V-flame simulated in

[88].

The coarse simulations in Figure 4.6a show almost identical evolutions of normalised

flame speed across all Karlovitz numbers. For the ∆/δL = 1 case, at Karlovitz number

of 0.5, the differences in flame speeds is approximately 3.1% while for the ∆/δL =

5 case it is approximately 2.2%. As the Karlovitz number increases, the differences

between the simulations decrease and converge (to less than 1%) at a Karlovitz number

of approximately 15 for ∆/δL = 1 and 3 for ∆/δL = 5. The relatively small differences

seen in these sets of simulation at low Karlovitz numbers can be attributed to the

increased numerical diffusion present at these coarse resolutions (see Section 4.1.5) and

increased (numerical) scalar dissipation as a consequence.

This differences exhibited with the coarse simulations between the 1998 and 2015 for-

mulation can also be seen by comparing the contributions of the Wiener term and

micromixing terms produced by both models for a given simulation. Figures 4.7 and

4.8 show instantaneous magnitudes for the Wiener term and micromixing terms for the

coarse simulations at a Karlovitz number of 1 and 50 respectively for different filter

widths. Figure 4.7 shows that even at a Karlovitz number of 1, for a larger filter width

(and thus larger Reynolds number) the contribution of terms is very similar for the 1998

and 2015 stochastic field formulations. Differences arise at the ∆/δL = 1 case which

helps explain the marginal differences in flame speed seen in this particular regime in

Figure 4.6. Figure 4.8 on the other hand, shows that at a Karlovitz number of 50, for

∆/δL = 1 and ∆/δL = 5, the contributions of the Wiener and micromixing terms are

effectively identical across the 1998 and 2015 stochastic field formulations.

For the well-resolved simulations in Figure 4.6b the general trends exhibited by the

coarse simulations remains the same except for larger deviation of flame speeds at larger

Karlovitz number with respect to the coarse simulations. The differences between the

two formulations at Ka=0.5 is 6% and 3.7% for ∆/δL = 1 and ∆/δL = 5 respectively.

The Karlovitz number of convergence of the two formulations remains very close to
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Figure 4.7: Instantaneous conditional magnitudes of the micromixing (left) and
Wiener (right) terms in Equation 3.35 of different fields for coarse simulations. Re-
sults shown for ∆/δL = 1 and ∆/δL = 5 at Ka=1. Magnitudes are conditioned on

ζ̃.
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Figure 4.8: Instantaneous conditional magnitudes of the micromixing (left) and
Wiener (right) terms in Equation 3.35 of different fields for coarse simulations. Re-
sults shown for ∆/δL = 1 and ∆/δL = 5 at Ka=50. Magnitudes are conditioned on

ζ̃.



Chapter 4 Numerical Requirements of the Stochastic Field Approach 81

those for the coarse simulations increasing from 15 to approximately 20 for ∆/δL = 1

and from 3 to approximately 5 for ∆/δL = 5. An increase that is likely an artefact of the

reduction of numerical errors. Through Equation 4.3, an effective turbulent viscosity

can be obtained for these Karlovitz numbers. Analysis shows that at these particular

Karlovitz numbers of convergence for both the ∆/δL = 1 and ∆/δL = 5 cases, the

turbulent viscosity is approximately two orders of magnitude greater than the molecular

viscosity. This dominance of turbulence results in the 1998 formulation [23] obtaining

a similar form to the 2016 [24] formulation. This justifies the similar predictions of the

two models and verifies the expected high-Reynolds number similarities between the two

formulations outlined in [24]. Similar to the coarse simulation, the magnitudes of the

contributions of the Wiener term and micromixing terms are shown in Figures 4.9 and

4.10. These figures show almost identical trends as those observed in Figures 4.7 and

4.8 and the conclusions remain the same.

Interestingly, the ∆/δL = 1 results for the well-resolved simulations shows an increase

in deviation from Ka=0.5 to Ka=1 (up to 10% from 6%), a trend not seen by any other

configuration tested. The reason for this decrease in deviation at Ka=0.5 from Ka=1

between the two formulations is likely due to the convergence of the two stochastic field

equations to the same functional form as Ka→ 0. This convergence of the functional

form of the two formulations is a result of the numerical framework (namely Cφ scaling

- Equation 3.38) used in this thesis. With this particular scaling, as Ka→ 0, Cφ → ∞
resulting in the dominance of scalar dissipation and the convergence of the stochastic

field equations to the perfect mixing limit. This results in the stochastic field equa-

tion, of either formulation, obtaining a functional form of a deterministic reactive scalar

transport equation (or the DNS limit - Equation 2.10). According to [24], this con-

vergence towards perfect mixing as Ka→ 0 is a necessary limit in the stochastic field

formulation in order to recover the laminar flame speed in the absence of (sub-filter)

turbulence. However, without adequate modification of Cφ, this limiting behaviour is

not inherent to the 1998 formulation as the stochastic term does not vanish in this limit.

Therefore, the use of this particular Cφ scaling in this numerical framework imposes this

low-Reynolds number limiting behaviour on the 1998 model making both formulations

consistent in the limit of Ka=0; a feature the scaling was designed to have [27]. That is,

both formulations will recover the correct laminar flame speed in the limit of Ka→ 0.

Therefore, what is seen in Figure 4.6b with the decrease in deviation from Ka=1 to
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Figure 4.9: Instantaneous conditional magnitudes of the micromixing (left) and
Wiener (right) terms in Equation 3.35 of different fields for well-resolved simulations.
Results shown for ∆/δL = 1 and ∆/δL = 5 at Ka=1. Magnitudes are conditioned on

ζ̃.
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Figure 4.10: Instantaneous conditional magnitudes of the micromixing (left) and
Wiener (right) terms in Equation 3.35 of different fields for well-resolved simulations.
Results shown for ∆/δL = 1 and ∆/δL = 5 at Ka=50. Magnitudes are conditioned on
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Ka=0.5 is the beginning of the “re-convergence” of the two formulations towards the

perfect mixing limit. In fact, for sufficiently small Karlovitz numbers, both formulations

yield a normalised flame speed of unity.

This investigation has shown that in both with the particular numerical framework used

here, in high- and very low-Reynolds number limits, the two formulations can produce

similar results that are consistent with the necessary limiting behaviour. What remains

an open investigation is understanding the differences between the two formulations at

moderate Reynolds number (or ∆/δL ≈ 1 and Ka≈ 1). However, the enforcing of the

low-Reynolds number limiting behaviour on the 1998 formulation through the micromix-

ing term suggest that with more appropriate micromixing modelling, the stochastic field

simulations of either formulation can produce similar results. Investigation into the

specific physical processes behind the differences at moderate Reynolds number (and

possible mitigations) is beyond the scope of this thesis and warrants further investiga-

tion.

4.2 Turbulent Bunsen Flame LES

In this thesis, the piloted turbulent premixed Bunsen flame of Chen et al. [92] was

simulated as this flame is well studied in literature. Prasad and Gore [96] used the FSD

concept in the RANS context and Pitch and De Legeneste [97] used a level-set approach

for LES. The majority of the simulations of this flame in the RANS context [57, 59, 71]

were conducted to analyse, develop, and testing micromixing models in the Lagrangian

PDF framework. This particular flame is attractive as a test case because this Bunsen

flame uses the same burner for three different nozzle exit velocities leading to varying lev-

els of turbulence-chemistry interaction. Therefore, with the same configuration, models

can be tested for a range of premixed combustion conditions. More recently, this flame

has been analysed in the context of LES for the composition FDF in the Lagrangian

particle framework [76], and Eulerian Stochastic Field framework [85].

The burner, shown in Figure 4.11, is comprised of a main jet stream of premixed stoi-

chiometric methane-air ejected from a nozzle of diameter D = 12[mm], surrounded by

a stabilizing laminar pilot stream of burnt stoichiometric methane-air combustion prod-

ucts estimated to have a velocity of Upilot = 1.32[m/s] following [85]. The details of
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Table 4.2: Global operating conditions of the three flames

Flame F1 F2 F3

Uj [m/s] 65 50 30

Re 52500 40300 24200

kc
[
m2/s2

]
12.7 10.8 3.82

Figure 4.11: Schematic of the Chen et al. [92] taken from [85]

the jet exit velocity (Uj) , Reynolds number Re, and centreline kinetic energy (kc) are

shown in Table 4.2. The composition of the jet and the pilot are given in Table 4.3. The

burner itself is surrounded by an axial co-flow of air at a velocity of Uair = 0.22[m/s]

and temperature of Tair = 298[K].

Table 4.3: Pilot Stream Composition

Species

YO2 5.00E-4

YH2O 0.1236

YCO2 0.15

YCO 7.800E-4

YH2 3.00E-5

YOH 1.20E-4

YN2 0.7247

Due to the cool burner surface, significant heat losses were reported and remains one

of the primary sources of uncertainty in simulating these flames. Consequently, pilot
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temperatures different from the adiabatic flame temperature of 2245[K] have been used:

1936[K] [91], 2005[K] [71, 76], and 1785[K] [57, 71, 85]. The latter corresponding to

losses up to 20%. In the present work, the pilot temperature is taken to be 1785[K].

The results of present simulation will be compared to the experimentally available data

which include radial profiles of the mean velocity, turbulent kinetic energy, mean and

variance of the temperature, and mean mass fractions of CH4, CO2, CO, O2, OH, and

H2O. The mass fractions were obtained using 2D Rayleigh Thermometry, and the one-

dimensional combined Raman, Rayleigh, and laser-induced predissociation fluorescence

technique. The published error in the measurements of the mean velocity is estimated

to be less than 1%, and the error of the mean temperature is expected to be less than

10%. The error in the measurements of minor species (CO, H2, OH) is within 20% to

25%, and the major is between 8% and 15% [92].

In addition to the mean flow parameters of the flame, Chen et al. [92] also provide

estimates of time and length scales at the centre of the nozzle. Details are given in

Table 4.4. The estimated Ka and Da numbers place these simulation in the thin reaction

zones regime as shown in Figure 4.12. However, as reported in Chen et al. [92], they

are quite approximate and change considerably within the flame.

Table 4.4: Estimate of timescales, Ka and Da of F1-F3 Flames. Additional data
available in [92]

Flame τc [ms] τt [ms] τη [ms] sL [m/s] u′ [m/s] δth [mm] δt [mm] Da Ka

F1 0.44 0.51 0.04 0.4 4.7 0.175 2.4 1.16 11

F2 0.44 0.65 0.06 0.4 3.7 0.175 2.4 1.48 7.33

F3 0.44 1.10 0.13 0.4 2.18 0.175 2.4 2.5 3.38

Numerical Setup

The computational domain used in these simulations has an axial length of x/D = 15

and transverse length of y/D = 15. Two different computational grids are used: a fine

grid characterised by 0.5 mm grid spacing at the inlet, and a coarse grid characterised

by 1.0 mm grid spacing at the inlet.

In addition to the coarse (∆x = ∆ = 1.0 mm) and fine (∆x = ∆ = 0.5 mm) simulations,

a third case is conducted which is denoted as the improved resolution case. The improved
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Figure 4.12: Location of F1-F3 flames on premixed regime diagram [85]

resolution case is characterised by a numerical grid spacing set to half the filter width

of the coarse simulation (∆x = 0.5 mm, ∆ = 1.0 mm). The purpose of this simulation

to reduce the influence of numerical errors from modelling errors present within the

stochastic fields framework in a similar manner to the work of Vreman et al. [95].

In all the simulations, the grids are Cartesian, with a uniform region of grid around the

inlet with transverse extent equal to twice the nozzle diameter. In the axial direction,

the grid spacing increases linearly. The turbulent inflow is modelled with the digital filter

based method of Klein et al. using the mean and RMS velocity profiles from [92] and

by assuming a constant integral length scale of 1.2mm. The velocity profiles imposed in

these simulations were obtained from experiment at x/D = 0.04 removing the necessity

to resolve the jet rim on the computational mesh.

A total of sixteen stochastic fields in the form of the 2016 Valiño formulation [24] (Equa-

tion 3.35) are used in the three-dimensional simulations. The 2016 formulation was cho-

sen to maintain consistency with the one-dimensional simulations, however, the choice of

formulation is not expected to influence the results of the proceeding simulations for the

following reasons: First, the numerical resolutions used in these 3D simulations are far

from those used in the well-resolved one-dimensional simulations. Comparing the coarse

and well-resolved, one-dimensional simulation results of Figure 4.6, the numerical resolu-

tion generally has a larger impact on the predicted flame speed compared to the choice of
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stochastic field formulation. Second, Stöllinger and Heinz [59] provided a estimation of

combustion regime along the T=1500K iso-surface for the F3 flame and illustrated that

the Karlovitz number was generally well above 1. From the results shown in Figure 4.6,

at higher Karlovitz numbers, the choice of formulation becomes inconsequential. Thus,

these two points together support the decision to use the 2016 formulation and that the

influence of the choice of stochastic field formulation will have a marginal impact on the

proceeding 3D LES solution compared to the overarching influence of numerical errors

that this particular LES is attempting to investigate.

In this thesis, only the F3 and F1 cases were simulated as they represent the extreme

conditions available for this series of flame. Each simulation for either flame was run

for a total of 18 flow-through times: eight for stabilization of the flow and to remove

transients, and ten for obtaining statistics. The convective velocity of the shear layer

was used to determine a flow-through time and was approximated through [98]

Uc = Ujet

(
1 + r

√
s

1 +
√
s

)
, (4.11)

where r = Ucoflow/Ujet and s = ρcoflow/ρjet. The convective velocity is approximately

21m/s for the F3 case and 41.5m/s for the F1 case leading to a flow-through time

of about 8.5ms and 4.3ms respectively. Therefore, the total simulation time was ap-

proximately 155ms and 78ms for the F3 and F1 cases respectively. The computational

time-step for the F3 and F1 cases are 4.6µs and 2.3µs respectively.

Due to the use of single-step chemistry and the omission of certain chemical species, the

pilot composition was modified from that outlined in [92] and is given in Table 4.5.

Table 4.5: Pilot Stream Composition

Species Chen et al. [92] Current Work

YO2 5.00E-4 5.00E-4

YH2O 0.1236 0.1236

YCO2 0.15 0.15

YCO 7.800E-4 -

YH2 3.00E-5 -

YOH 1.20E-4 -

YN2 0.7247 0.7259

The spatially-filtered momentum equations are closed with the constant-coefficient Smagorin-

sky model for the sub-filter scale turbulent stresses [36], with a constant (Cs) equal to
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0.09. The turbulent diffusivity is modelled assuming turbulent Schmidt and Prandtl

numbers of 0.7.

4.2.1 Flame Structure

An illustration of the instantaneous filtered temperature fields for an individual stochas-

tic field from the three simulations is shown as colour maps on a plane through the

burner centreline in Figure 4.13 for the F3 flame, and Figure 4.14 for the F1. A qualita-

tive analysis of these figures show that a stochastic field in the coarse simulation exhibits

less fine-scale structures than the other simulations. The colour maps of the improved

resolution and fine simulation on the other hand show arguably similar levels of wrin-

kling. Given that the LES filter widths between the coarse and improved resolution are

the same, the difference in observed wrinkling indicates this absence of finer scales is a

product of numerical diffusion and thickening of the instantaneous field reaction front.

The effect of numerical thickening is demonstrated by evaluating the inverse average

progress variable gradient magnitude of the stochastic fields conditioned on the progress

variable giving maximum heat release, 〈|∇ζc,(i)| | ζc,(i) = 0.68〉−1. For the F3 case, this

analysis determined that the inverse average progress variable gradient magnitude on

the stochastic fields for the coarse, improved resolution, and fine simulations are 2.68

mm, and 1.8 mm, and 1.71 mm respectively. For the F1 case, the average stochastic field

thicknesses are determined to be 3.5 mm, 2.3 mm, and 2.3 mm for the coarse, improved

resolution, and fine simulations respectively. The similar thicknesses of the improved

resolution and the fine simulations illustrate that the stochastic field thickness is set by

the numerical resolution, even with ∆ = 2∆x.

The larger average stochastic field thickness obtained for the F1 case is a product of

the increased turbulence intensity present in this particular flame. The consequence of

this increased average stochastic field thickness is an increase in the resolution of the

respective F1 and F3 simulations. For the F3 flame, the average number of grid points

in a stochastic field reaction front is on the order of 2.6, 3.6, and 3.4 for the coarse,

improved resolution, and fine simulations, while for the F1 the respective resolutions

were 3.5, 4.6, and 4.6. As such, from the one-dimensional investigation and analysis in

the preceding section, the improvement in resolution generates the expectation that, in

general, the results of the F1 simulations should be in better agreement with experiment.
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Figure 4.13: Instantaneous temperature field of an individual field from the F3 flame
LES with ∆x = ∆ = 1.0 mm (left),∆x = 0.5 mm & ∆ = 1.0 mm (mid), and ∆x = ∆ =

0.5 mm (right).

Figure 4.14: Instantaneous temperature field of an individual field from the F1 flame
LES with ∆x = ∆ = 1.0 mm (left),∆x = 0.5 mm & ∆ = 1.0 mm (mid), and ∆x = ∆ =

0.5 mm (right).

Reactive Scalar Distributions

For the F3 and F1 cases respectively, the radial variation of the time-averaged filtered

methane and oxygen mass fraction are shown in Figure 4.15 and Figure 4.17, and carbon

dioxide and water vapour in Figure 4.16 and Figure 4.18.

Overall, the scalar distribution shown for the F3 case in Figure 4.15 and 4.16 clearly

show an under predicted flame height with a substantial difference between the coarse,

and the improved and fine resolution cases, with the latter two showing almost identical

scalar predictions across all reactive scalars.

The methane and oxygen mass fraction in Figure 4.15, to varying extents, are under-

predicted across all simulations at every axial station. The oxygen mass fraction appears

to exhibit an excessive co-flow entrainment rate, however, the degradation in oxygen
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Figure 4.15: F3 radial distributions of the time-averaged methane mass fraction

〈ỸCH4
〉 and oxygen mass fraction 〈ỸO2

〉 at various axial locations. Symbols denote
experimental measurements.

mass fraction with radial (and axial) location is likely due simply to the incorrectly

predicted flame position. The similarity of the results between the different filter and

grid spacings in the near jet region at x/D = 2 is a product of the high turbulence

intensity in this region [57] compared to the downstream locations and to the increased

numerical resolution as a consequence of the thickening of the reaction front in this

region.

To a lesser extent, similar behaviour can be seen in the scalar distributions of the F1

simulations shown in Figure 4.17 and Figure 4.18, however, in this particular flame,

the under-prediction of the flame height is comparatively small. The methane mass

fraction distributions are predicted very well for all three simulations except for the final

station at x/D = 10.5 where a slight under-prediction is seen. Similarly, the oxygen

mass fractions are predicted well for small radial distances but progressively deviate

with increasing radial location.

Trends similar to those seen in the F3 simulations can be seen in the distributions of
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Figure 4.16: F3 radial distributions of the time-averaged carbon dioxide mass fraction

〈ỸCO2
〉 and water vapour mass fraction 〈ỸH2O〉 at various axial locations. Symbols

denote experimental measurements.

products for the F1 case in Figure 4.18. The water vapour mass fractions are predicted

very well across at all axial stations with the fine simulation slightly under-predicting at

r/D = 0.75 at the first axial station. A similar under-prediction can be seen at the same

axial location for carbon dioxide. However, the overall improved predictions of methane

and oxygen generally result in similarly good predictions of carbon dioxide. This under-

prediction of product mass fractions and a slight over-prediction of oxygen mass fraction

at the first axial station for the fine F1 simulation may elude to an excessive co-flow

entrainment rate.

The under-predicted flame height across both the F3 and F1 simulations can be largely

attributed to varying degrees of over-predicted reaction rate. This is identifiable by

deficient centreline distribution of reactants and excess centreline of products compared

to experiment. The excessive reaction rate is likely attributed to: (i) numerical errors

due to the linearisation of the stochastic field equations; (ii) sensitivity to the inlet

velocity and scalar fields imposed; (iii) accuracy of the stochastic field LES modelling.
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Figure 4.17: F1 radial distributions of the time-averaged methane mass fraction

〈ỸCH4
〉 and oxygen mass fraction 〈ỸO2

〉 at various axial locations. Symbols denote
experimental measurements.

The effect of numerical errors on the solution is evident from the differences observed

between the simulations with ∆x = 1mm and ∆x = 0.5mm. For a well resolved, un-

strained, freely propagating laminar flame simulation, the 1-step mechanism employed

in this study yields a laminar flame speed of 0.3825 m/s; close to the accepted value of

laminar flame speed of stoichiometric methane-air at 300K. However, at the numerical

grid resolutions present in these simulations, the laminar flame speeds are 1.3m/s and

0.7m/s for the ∆x = 1.0 and ∆x = 0.5 grid spacings respectively - a difference solely

influenced by increased numerical diffusion. Based on the well established idea that

numerical errors are a function of numerical grid spacing (for a given numerical order

of accuracy) the expectation would then be that the coarse simulation would have the

shortest flame height of all the simulations.
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Figure 4.18: F1 radial distributions of the time-averaged carbon dioxide mass fraction

〈ỸCO2
〉 and water vapour mass fraction 〈ỸH2O〉 at various axial locations. Symbols

denote experimental measurements.

In addition to numerical errors increasing diffusion rates, as mentioned in the previous

section, the increased numerical diffusion numerically thickens the flame and reduces

its ability to be wrinkled by resolved scale turbulence. It is evident that even with

the coarse simulations having almost double the laminar flame speed compared to the

fine simulation, the overall burning rate in these particular simulations is primarily

dominated by the generation of flame surface. This suppression of turbulent flame

surface area ultimately results in a reduced local turbulent flame speed for the coarse

simulation with respect to the more numerically resolved simulations.

Figure 4.19 shows radial distributions of normalised axial velocity for the F1 (Uo = 65.0

m/s) and F3 flame (Uo = 30.0 m/s). Compared with experiment, the normalised velocity

profiles for the F3 case exhibit a more obvious degradation in agreement with increasing
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Figure 4.19: Radial distributions of the time-averaged normalised axial velocity at
various axial locations for Flames F1 and F3. Symbols denote experimental measure-

ments.

radial distance from the centreline. At all axial stations, the improved and fine resolution

simulations are almost identical and over-predict the velocity to a greater extent than the

coarse. The F1 velocity distributions on the other hand show that all three simulations

produce almost identical results with a marginal over-prediction at the final axial station.

The sensitivity of the velocity field to the prediction of reactive scalar distribution can

be seen by the difference in velocity field predictions between the F3 and F1 flames,

however, it remains fairly weak. The primary observation is that under-prediction of

reactive scalars leads to over-predictions of axial velocity. This is because the location

of the flame front has a direct influence on the thermal expansion and acceleration

of combustion gases through the flame. Therefore, the primary contribution to the



96 Chapter 4 Numerical Requirements of the Stochastic Field Approach

over-prediction of axial velocity is suspected to be the over-predicted reaction rate (or

under-predicted flame height).

4.2.2 Influence of Stochastic Field Formulation

In Section 4.2, justification for the use of the 2015 stochastic fields formulation was

given on the basis of the expected combustion regime indicated by [59], and from the

one-dimensional simulations of Section 4.1.6 that illustrated that for the conditions ex-

pected in the Bunsen case being analysed, the differences between the models is likely

insignificant. Nevertheless, to verify these assumptions, the more flamelet-like flame, the

F3, was simulated with the 1998 formulation with the coarse, improved resolution, and

the well-resolved configurations to directly compare the two formulations. The objective

of this particular investigation is to assess if the choice of formulation influences the sim-

ulation predictions for the numerical configurations used in this thesis. The results for

the time-averaged methane mass fractions of both stochastic field formulations is shown

in Figure 4.20.
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Figure 4.20: Comparison of methane mass fraction 〈ỸCH4〉 distributions between the
1998 and 2015 stochastic field formulation for various filter and grid sizes.
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As expected, Figure 4.20 shows that the predictions of both models are effectively iden-

tical for all computational grids tested. The coarse simulation shows profiles that are

indistinguishable at all axial stations. For the fine and improved resolution simulations,

the results of both models are identical at the x/D = 2.5 station and, although neg-

ligible, a slight deviation of the profiles can be seen to grow with each downstream

axial station. This is due to the change of combustion regime to increasingly flamelet

like conditions with downstream location. This miniscule deviation at x/D = 8.5 may

suggest that towards the flame tip, the numerical combustion regime is beginning to

encroach on the limit of validity of the high-Reynolds number assumption that yields

similar functional forms of the 1998 and 2015 stochastic field models. If the combustion

regime were to become more flamelet-like than that experienced in the F3, then perhaps

a more distinguishable difference between stochastic field formulations would be visible.

Nevertheless, the results of these comparisons of stochastic field formulation confirms

that in this thesis, with the numerical configurations used, the results of the simulations

are independent of the choice of stochastic field formulation.

4.2.3 Sensitivity to Inflow Conditions

In addition to the effects of numerical diffusion on flame propagation speed mentioned

above, an additional influence on the flame height prediction are inlet boundary condi-

tion. In this particular case, as the physical boundary conditions have been taken as in

[85], the sensitivity to the numerical boundary conditions are analysed - specifically, the

prescribed turbulent integral length-scale.

A single (constant) integral length-scale used in these simulation equal to 1.2 mm in

the premixed jet portion of the burner which is approximately half the experimentally-

measured centreline value. A single value was used due to a limitation in the synthetic

digital turbulence generation method of Klein et al. [99] in that a spatially varying

integral length scale is not easily implemented into the method. With this limitation,

and since the experimentally measured integral length scale decreases in size from ap-

proximately 2.4 mm at the centreline to effectively zero at the jet boundary, a constant

(and approximate) midpoint value was used. The consequence of this assumed constant

integral length scale in the premixed jet is that the turbulent length scales in proximity

to the jet boundary are over-predicted. Implications of this over-prediction is that the
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Figure 4.21: F3 radial distributions of the time-averaged methane mass fraction

〈ỸCH4
〉 and turbulent kinetic energy at various axial locations for different inflow in-

tegral length-scales. Symbols denote experimental measurements. Symbols denote
experimental measurements.

larger turbulent scales in this region lead to an under-prediction of turbulent kinetic

energy dissipation rate since that is proportional to the ratio of estimated versus actual

integral length scale size. The consequence is then excessive turbulent kinetic energy at

the downstream locations. A secondary effect of the larger mixing length-scales in this

region is an an over predicted turbulent diffusivity leading to unrealistic mixing.

To investigate the sensitivity of the prescription of integral length scale on the solution,

additional simulations were conducted of the F3 flame using the coarse resolution. The

integral length-scale was increased (and kept constant) with velocity RMS distributions

kept the same between the different simulations. The results are shown in Figure 4.21.

From this figure, the turbulent kinetic energy is larger at all locations for a larger integral

length-scale. The effect of the larger integral length-scale is an even shorter flame height,

and radial species profiles that are more diffused. The relatively good agreement with

the experimental values of the coarse simulation with LT = 1.2 mm is therefore deemed

to be due to a better approximation of the average turbulent length scales across the
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inlet when used in the digital filter turbulence generation method with the coarser grid

spacing.

4.3 Statistically-Planar Premixed Flame

Numerical experiments in the form of DNS are often conducted as methods of creating/-

validating numerical models and investigating specific physical phenomenon that may

be difficult to determine experimentally. These numerical experiments involve greatly

simplified computational configurations due to their computational cost and to ensure

well defined boundary conditions. In the area of premixed turbulent combustion, these

computational experiments commonly take the form of a premixed flame embedded in

a turbulent field with the flame separating the domain into two parts; the reactant,

and the product side. The imposed turbulent conditions within these numerical experi-

ments vary depending on what is being investigated, but can range from maintained to

decaying isotropic turbulence.

The decaying turbulence configurations usually involve turbulence being introduced with

the fresh reactants through the domain inlet allowing the turbulence to decay spatially.

Because the flame propagates in the direction of the inlet, the position of the flame is

maintained at a specified location within the computational domain by modulation of the

inflow velocity. This particular configuration is beneficial for obtaining temporal statis-

tics as the simulations can theoretically be run indefinitely. However, a consequence of

this spatial evolution of turbulence is that any analyses of turbulence-chemistry interac-

tion requires knowledge of the conditions present at the location of the flame. Addition-

ally, if not controlled and initialised properly, this configuration may be susceptible to

development of flame speed instabilities due to the turbulent flame propagating into pro-

gressively higher intensity turbulence. A method to mitigate these drawbacks is to have

a turbulence field that evolves temporally and but remains spatially homogeneous. In

this configuration, no turbulence is introduced into the domain and the initial turbulent

field is allowed to decay in time. The flame does not remain stationary in this case and

propagates towards the reactant stream within the domain. Although reducing some of

the complexities associated with the introduction of turbulence through the inlet, this

configuration is limited to analysing temporally evolving flame behaviour; the length of

the simulations is dictated by the decay time of turbulence or the domain size.
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In the maintained turbulence configurations, turbulence is unnaturally forced to remain

at a specified condition [100]. The benefit of this configuration is that it is designed to

analyse flame-turbulence interaction at targeted turbulent conditions removing uncer-

tainty associated with local flame conditions and turbulence decay. The drawback is the

forcing routines are complex and can substantially increase the computational overhead

associated with already expensive DNS simulations.

In this thesis, LES simulations of a statistically-planer premixed flame in temporally

decaying isotropic turbulence with no turbulent inflow are conducted. The specific ob-

jectives of these simulations are to compare numerical effects of different LES-stochastic

field configurations rather than analysing detailed combustion phenomena.

Thermo-Physical Configuration

The thermo-physical configuration of the LES simulations is given in Table 4.6 and

was chosen as a compromise between conditions representative of practical combustion

applications [101], and computational cost and volume of the desired number of com-

putations. The initial combustion regime under these conditions is characterised under

the thin reaction zones.

Table 4.6: Thermo-physical condition of the statistically-planar premixed flame

u′/SL LT /δL Ka ReT
7.88 10 7 682

It should be mentioned, that for certain thermo-physical conditions, thermo-diffusive

instabilities may exist [6]. Due to the Le = 1 assumption inherent to the numerical

formulation in this thesis, the turbulent flame examined will be thermo-diffusively stable

[102]. Hydrodynamic instabilities, however, may still be present.

The hydrodynamic instabilities are a result of thermal expansion across a planar flame.

However, these hydrodynamic instabilities are dominant in weakly turbulent flames.

Therefore, the initial stages of flame propagation in the proposed simulations are ex-

pected to be dominated by turbulence. However, as the turbulence intensity decays, the

influence of instabilities on flame propagation are expected to grow [103]. The extent

of their influence will be determined by the length of the simulation. If they develop,
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their presence will be manifested through rapid growth of the observable turbulent flame

speed.

Numerical Setup

The numerical configuration for these simulations corresponds to a premixed flame em-

bedded in a three-dimensional computational domain of decaying isotropic turbulence.

The longitudinal direction of the computational domain has a length Lx/δL = 120 and

the transverse directions Ly/δL = 60. As such there are approximately six integral-

length scales across the shortest length of the domain (Ly/LT = 6). The left and right

computational boundaries were inflow and outflow respectively, and all the transverse

boundaries were periodic. All the simulations were run for a total of four integral scale

eddy turnover times. A list of all numerical configurations tested is given in Table 4.7

Table 4.7: Numerical configurations examined for the statistically planar premixed
flame. Identifiers: (c) -coarse, (f) - fine

Case Lx × Ly × Lz ∆/δL ∆/∆x Nf

A 720× 360× 360 0.166 1 1

B c Nf 60× 30× 30 2 1 1,8,16

B f Nf 240× 120× 120 2 4 1,8,16,32

C c Nf 30× 15× 15 4 1 1,8,16,32

C f Nf 240× 120× 120 4 8 1,8,16,32,64

The simulations were initialised by first generating a turbulent velocity field for the

numerical grid of case A with S3D [104] using the Passot-Pouquet model spectrum

[105]. The initial velocity fields for cases B and C were generated by explicitly filtering

the velocity field of Case A with a top-hat filter. The width of the filter correspond

to the filter width required in the respective cases. Once filtered, the velocity field was

interpolated onto the different numerical grids for the corresponding filter width. No

interpolation errors are expected because the numerical grids of the coarse and fine cases

are integer multiples of one another and have corresponding nodes.

The initial thermo-chemical state of the turbulent simulations was generated by super-

imposing a premixed laminar flame solution (obtained with BOFFIN) within the filtered

turbulent velocity field. The initial premixed laminar flame profile was obtained using

the same numerical grid resolution of the corresponding case it was initialising. This

was done to avoid any transients in the initial stages of the simulation that may have



102 Chapter 4 Numerical Requirements of the Stochastic Field Approach

arisen due to the numerical spearing caused by imposing overly resolved laminar flame

solution on a coarser numerical grid.

For Cases B and C, the spatially-filtered continuity and momentum equations are closed

with the constant-coefficient Smagorinsky model for the sub-filter scale turbulent stresses

[36], with constant (Cs) equal to 0.09. The turbulent diffusivity is modelled assuming

turbulent Schmidt and Prandtl numbers of 0.7.

For the LES of Case A, the grid spacing of the computational mesh resulted in a reso-

lution of the Kolmogorov length-scale of η/∆x ≈ 1. Therefore, the turbulent diffusivity

is expected to be much smaller than the laminar viscosity. As such, in this particular

simulation, the turbulent viscosity was set to zero.

In the results presented, time is non-dimensionalised by the integral time scale, τ0,

based on the initial conditions given in Section 4.3. An instantaneous snapshot of each

simulation at a non-dimensional time of 2.5 is given in Figure 4.22 displaying the iso-

contour corresponding to a progress variable value of 0.68; the progress variable value

corresponding to the maximum reaction rate for the given thermo-chemical model used

in this study.

It can be seen that throughout all the simulations, similar large scale structures/features

appear to be captured across all the simulations to some extent. In comparing the specific

effects of the filter width, case C show noticeably less small-scale features compared to

case B, which is expected due to the larger filter width. For the coarse cases (∆ = ∆x),

the effect of numerical resolution can be seen by the less smooth rendering of the flame

surface features.

In Figure 4.23, a comparison of time-evolving flame characteristics are shown for cases

A, B f 32, and C f 64. Within this figure distinct phases of the flame evolution can be

identified. Up to a non-dimensional time of approximately 1.75, turbulence wrinkles the

initially flat flame surface and a transient phase can be seen. Eventually an equilibrium

is reached which can be identified through arrival at the global (peak) turbulent flame

speed. Finally, in the last phase, turbulence decays and the flame surface begins to

smoothen resulting in a slight decay of flame speed. From this decaying behaviour

of the final phase, it would appear that within the time interval simulated, the flame

remains hydro-dynamically stable.
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(a) Case B c 16 (b) Case B f 32

(c) Case C c 32 (d) Case C f 64

Figure 4.22: Iso-contours of c̃ = 0.68 for the various simulations at non-dimensional
time of 2.5

The time variation of characteristic thicknesses are shown in Figure 4.23a. Both the

evolution of the mean flame brush thickness and the stochastic field thickness show

excellent agreement between the stochastic field simulations at both filters widths. Of

particular interest are the results of the evolution of the mean stochastic field thickness.

It can be seen from this figure that the stochastic field thickness is weakly dependant

on the choice of filter width at this given thermo-physical configuration.

As expected, the effect of increasing the filter width is that the resolved turbulent flame

surface area (left plot in Figure 4.23b) progressively decreases with increasing filter
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Figure 4.23: Comparison of temporal evolution of cases A, B f 32, and C f 64.

width (this was shown qualitatively in Figure 4.22). However, this trend is also seen

with the turbulent flame speed predictions. The desire within the LES-SF framework

(and turbulent premixed combustion modelling in general) is that the predictions of

turbulent flame speed be filter-width independent. This would result in similar flame

speed predictions regardless of the resolved flame surface area. The differences seen

here between the various simulations would suggest the presence of errors and that the

sub-filter flame speed predictions are incorrect.

Achieving the objective that the model predictions be filter-scale independent relies

upon the stochastic field simulations being adequately resolved numerically, and all sub-

models closed accurately. Even though these particular stochastic field simulations have

improved numerical resolution over their ∆ = ∆x counterparts, they are not necessarily

free of numerical errors as is evident from the initial non-dimensional flame speed at

a non-dimensional time of zero (corresponding to a laminar flame) being greater than

unity. As such, these particular simulations may still be susceptible to some numerical

effects. The numerical effects being (to varying extents) suppression of resolved scale

wrinkling due to numerical smearing of gradients; a behaviour demonstrated in previous

sections of this chapter. However, given that these particular stochastic field simulations

are relatively well resolved (they have approximately one-third the resolution of the

well resolved LES), this numerical thickening effect is expected to be quite small in

comparison to the general effects of a larger turbulent diffusivity from the use of larger

filter widths.
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Taking into consideration that the numerical resolution between the stochastic field sim-

ulations of cases B f 32, and C f 64 are identical, the differences between the stochastic

field simulations alludes to the possibility of deficiencies within the the closures used

within stochastic field.

4.3.1 Effect of Numerical Resolution

To illustrate the sensitivity of stochastic field predictions on the numerical resolution,

a comparison between the temporal evolution of flame parameters for cases B c 16 and

B f 32 are shown in Figure 4.24, and cases C c 32 and C f 64 in Figure 4.25.
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Figure 4.24: Comparison of temporal evolution of cases B c 16, and B f 32

In general, case B c exhibits better qualitative agreement to case B f than C c does to

C f. This is attributed primarily to the increasing numerical errors present within the

simulations as the grid coarsens.

In previous sections, it was concluded that under-resolution leads to numerical thickening

of scalar gradients which reduces the ability for the resolved flame front to be wrinkled

by resolved scale turbulence. In this set of simulations, this effect can be seen by the

differences in resolved flame surface area between the coarse (c) and fine (f) grids cases

for a given filter width. The severity of the reduction provides an indication to the

degree of under-resolution present in the corresponding simulation.
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Figure 4.25: Comparison of temporal evolution of cases C c 32, and C f 64

Coupled with this reduction in resolved flame surface area is a modification to the

temporal evolution of turbulent flame speed. The reduced efficiency for small scale

turbulence to wrinkle the initially flat flame leads to slower development of the turbulent

flame. This is evident from the shorter development time seen for case B c than for case

C c.

In both cases B c and C c, the average stochastic field thickness can be seen to be

much larger than for the fine grid counterpart for the corresponding case. In both fine

grid cases, the resultant stochastic field resolution (δc∗/∆x) was approximately four.

The stochastic field thickness for the coarse grid cases have, on average, approximately

two grid points within a stochastic field reaction front. This resolution represents the

lower limit for premixed flames since it is a consequence of numerical discretisation that

there should be at least one partially-reacted point (two grid spacings) inside the flame.

These results indicate once again that the stochastic field reaction front thickness is

predominantly influenced by the numerical grid spacing; an observation also supported

by results for the one-dimensional flame analysis in Section 4.1 and from the Bunsen

Flame in Section 4.2.
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4.4 Conclusions

In this chapter, the sensitivity of the stochastic field method to the numerical grid spacing

was investigated through simulation of three different configurations: a one-dimensional

pseudo-turbulent freely propagating flame, a 3D LES of a piloted premixed laboratory

Bunsen flame, and a 3D LES of a freely propagating flame in decaying homogeneous

isotropic turbulence.

The one-dimensional simulations aimed to parametrise the stochastic field reaction front

thickness as a function of Karlovitz number, filter width, and numerical grid spacing.

Although a simplified study, it was shown that in grid independent simulations of pre-

mixed turbulent combustion, the reaction front thicknesses arising from the Stochastic

field solution can be on the order of the laminar flame thickness as the Karlovitz number

tends towards zero, irrespective of the filter width chosen.

Setting the filter scale equal to the grid spacing, as is common practice in LES, leads

to substantial errors in predicted flame speed when compared to the grid independent

simulations as a result of the numerical thickening of under-resolved scalar gradients.

A suspected consequence of the numerically-thickened stochastic fields reaction fronts

is that they are less susceptible to wrinkling by the resolved turbulence which would

result in an under-prediction in the overall flame surface area, and therefore turbulent

flame speed. However, the one-dimensional nature of the simulation made investigating

this impossible and was therefore only approximated using well established relations of

flame surface wrinkling models from the Artificially Thickened Flame Model. (and this

suggests the lost wrinkling more than compensates for the effect of numerical diffusion)

The three-dimensional LES of a laboratory turbulent premixed Bunsen flame confirmed

that the stochastic fields solution is not numerically accurate when the grid spacing

is equal to the filter length scale, but demonstrated that the velocity field solution is

relatively insensitive to further refinement of the numerical grid spacing compared to

the effect on the reactive scalar field.

It was also shown that the conclusions from the one-dimensional simulations on the effect

of numerical thickening of stochastic field reaction fronts on flame surface generation and

turbulent flame speed were correct. The simulation where the grid spacing was equal to
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the filter width produced a total turbulent flame speed that was lower than the improved

resolution case as a consequence of the suppression of flame surface generation.

In order to avoid uncertainties concerning the inflow conditions to be used within the

LES of the Bunsen flame, a three-dimensional LES of a freely propagating flame in

decaying homogeneous isotropic turbulence was conducted for different filter widths and

numerical resolutions. This set of LES simulations further confirmed the conclusions

drawn from the previous investigations within this chapter, specifically, the sensitivity

of the stochastic field solution to the numerical grid spacing. It also indicated possible

inaccuracy of the established closures (IEM and gradient transport) of the stochastic

field model.

Although the stochastic fields method is an attractive way to apply transported prob-

ability density function approach to turbulent reacting flows, the spatial resolution re-

quirements become very demanding when applied to turbulent premixed combustion.

The general requirement is that the grid spacing should be finer than the filter scale and

the same order of magnitude as the laminar flame thickness. This is impractical for many

industrial applications involving high pressure combustion. Techniques such as artificial

thickening should be considered in order to reduce the resolution requirements while re-

taining the key advantages of the stochastic fields method, or alternatively, approaches

such as AMR.



Chapter 5

The Thickened Stochastic Field

Approach

5.1 Introduction

In Chapter 4 it was shown that in order to solve the stochastic fields equations accurately

it can be necessary to have a numerical grid spacing finer than the LES filter length-

scale as flame-like structures may arise that are thinner than the filter scale. This

increased numerical resolution can substantially increase the oversell computational cost

required for a stochastic fields simulation, specifically, as the sub-filter Karlovitz number

approaches zero. Conversely, following the conventional practice of setting the LES

filter length-scale equal to the numerical grid spacing can lead to substantial numerical

error for two reasons. First, numerical diffusion caused by under-resolution changes the

local propagation speed of the reaction fronts in the stochastic fields solution. Second,

wrinkling of the reaction fronts by resolved turbulence is reduced because the numerical

diffusion increases the thickness of the fronts.

The Artificially Thickened Flame (ATF) approach [14, 22] (described in Section 3.1.1)

has been introduced as a means to ensure accurate numerical resolution of premixed

reaction fronts in LES. In the ATF approach, the governing equations for composition

and energy are modified in order to yield thicker reaction fronts that can be resolved

accurately on a given numerical grid. Importantly, the artificial thickening ensures

a predetermined number of grid-points sufficiently resolves (numerically) all reactive

109
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scalars. Without thickening, the poor resolution of these scalars may introduce numerical

errors into the solution whose magnitude is dependant on both the numerical grid and

numerical methods employed.

The consequence of the numerical thickening procedure artificially modifies the influence

of turbulence on (thickened) flame surface wrinkling dynamics. More specifically, the

thickening procedure acts as pseudo-filtering operation and removes the resolution/gen-

eration of small scale flame surface convolutions below the artificial thickening scale. In

order to compensate for this lost flame surface on the propagation speed of the resolved

flame front, an efficiency function model is employed. The efficiency function model

accounts for effects of un-resolved flame wrinkling on the overall burning rates, and the

quality of the predictions of the ATF approach depends on the accuracy of the efficiency

function modelling employed.

With this ability for the ATF approach to accurately resolve and propagate turbulent

flame fronts on arbitrary numerical grids, and the potentially prohibitive numerical res-

olution that is required in stochastic field simulation of premixed flamelet combustion,

the objective of this chapter is then to set out a new approach for stochastic fields-PDF

simulation that uses artificial thickening to ensure an accurate numerical solution on

an arbitrary numerical grid. The extent to which the thickened stochastic fields ap-

proach retains the ability of PDF methods to accurately describe turbulence-chemistry

interactions depends on the amount of thickening employed. In the case where numer-

ical resolution is sufficient, no thickening is applied and the standard stochastic fields

formulation is recovered.

5.2 Development of the Thickened Stochastic Fields (TSF)

Approach

The TSF approach is best introduced by first reviewing the formulation of the ATF

approach. Consider a reactive scalar transport equation:

ρ
∂Y

∂t
= −ρuj

∂Y

∂xj
+

∂

∂xj

(
ρD

∂Y

∂xj

)
+ ω̇(Y ), (5.1)
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where Y is the vector of species mass fractions and enthalpy, uj is the jth component of

the velocity vector, D is the laminar diffusivity (assumed equal for all species), and ω̇ is

the vector of chemical source terms.

5.2.1 The Thickened Flame Model

The ATF transport equations [22] are obtained by applying the transformation x′ = Fx

and t′ = Ft/E [22] to Eq. 5.1,

ρ
∂Y

∂t′
= −ρEvj

∂Y

∂x′j
+

∂

∂x′j

(
ρDEF

∂Y

∂x′j

)
+
E

F
ω̇(Y ), (5.2)

where the convection velocity vj is given by the solution of the similarly-transformed

Navier-Stokes equations [106]. Here, F and E denote the thickening factor and efficiency

function respectively. In most previous applications of the ATF approach, following

[14, 22], the thickened scalar transport equation Equation 5.2 has been coupled with un-

thickened LES making the assumption that Evj is equal to the resolved velocity from the

LES simulation ũj . The effect of F and E can be understood by considering the solution

of a stationary freely-propagating planar premixed flame (∂/∂t′ = ∂/∂t = 0). The flame

thickness given by Equation 5.2 is thickened by the factor F and the propagation speed

is faster by a factor E compared respectively to the flame thickness δL and flame speed

SL given by solution of Equation 5.1.

Thickening the species transport equations by factor F with E = 1 has the attractive

feature that numerical resolution requirements are reduced while laminar flame speeds

are unaffected. The turbulent flame speed, however, depends on the increase in flame

surface area caused by wrinkling of the flame front. The amount of wrinkling depends (at

least) on the ratio of turbulent velocity fluctuations to the laminar flame speed u′/SL,

and the ratio of the turbulence length scales to the laminar flame thickness, LT /δL.

Since thickening of a flame front reduces the degree to which turbulence will wrinkle it,

the efficiency function E is then used as a correction factor to account for un-resolved

flame wrinkling on the propagation speed of the resolved flame surface.

The various models used in the ATF approach for determining a function for E are

derived empirically from DNS data. Theoretically, the methods used to derive E in

the thickened flame context is generalised such that no assumption on premixed flame
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regime is made. As such, dominant physical processes at low and high Ka regimes (such

as preferential diffusion and flame stretch and strain) can be contained within the ATF

framework and the model for E to the extent that they are captured in the DNS data

used to derive it. For the efficiency function given in Equation 3.9, effects of stretch and

strain can be included by using laminar flame thickness (δL) and flame speeds (sL) that

account for these effects [107].

The efficiency function E is defined in [14, 22] as the ratio of the wrinkling factor, Ξ, of

the thickened and un-thickened flames,

ETF =
Ξ∆

(
u′∆,TF /SL,∆TF /δL

)

Ξ∆

(
u′∆,TF /SL,∆TF /FδL

) . (5.3)

The sub-filter wrinkling factor Ξ∆, is a parameter describing the ratio between the total

flame surface area present within a filter volume and its projection in the direction

normal to flame propagation [108]. It can also be defined in term of the ratio of the

sub-filter turbulent flame speed ST∆ and the laminar flame speed SL. The sub-filter

turbulent flame speed is local propagation speed of the reaction-front resolved by the

LES simulation[14]. Thus, the wrinkling factor can be expressed as:

ST∆

SL
=
Asfs
∆2

= Ξ∆. (5.4)

Modelling for the sub-filter flame wrinkling in the context of Thickened Flame modelling

has been proposed initially by Colin et al. [22] and Charlette et al. [14] as functions

of the non-dimensional sub-filter velocity fluctuations u′/SL and the non-dimensional

filter size ∆TF /δL. Here, ∆TF = FδL is the effective filter scale in the Thickened Flame

model. In general, the effective filter scale ∆TF implied by the Thickened Flame model

can be different from the filter length scale ∆ used in modelling of the LES momentum

equations. Thus, thickening the flame front by factor F reduces the non-dimensional

filter size to ∆/FδL. This results in a reduction in the sub-filter turbulent flame speed

by factor 1/E. This process is illustrated in Figure 5.1.



Chapter 5 The Thickened Stochastic Field Approach 113

X5Ít
5Å

ÌÅt

Ì½

ÌÅt

¾Ì½

1

Q|
ñ

5Å

W�
ÜÅ

|

¿�½

|

�½

Figure 5.1: The dependence of wrinkling factor ST∆/SL on ∆/δL and u′∆/SL, indi-
cating the reduction in Ξ∆ due to thickening by factor F .

5.2.2 The Thickened Stochastic Fields Model

The unmodified stochastic fields equation is given by Valiño et al. [24] as,

ρdζ
(i)

=− ρũj ·
∂ζ

(i)

∂xj
dt+

∂

∂xj

(
ρ(D +DT )

∂ζ
(i)

∂xj

)
dt+ ρ

√
2DT

∂ζ
(i)

∂xj
dWj(i)

− ρ

τT

(
ζ

(i)
− ζ̃
)

dt+ ρω̇(ζ
(i)

)dt. (5.5)

The thickened stochastic field equation is obtained by applying to Equation 5.5 the

same transformation that produces the ATF model: x′ = Fx, t′ = Ft/E, and, since

the Wiener increment vector dW has dimension
√
t, its transformation becomes dW′ =

√
F/EdW. This results in an equation of the following form:

ρdζ
(i)

=− ρEṽj ·
∂ζ

(i)

∂x′j
dt′ +

∂

∂x′j

(
ρ(D +D′T )EF

∂

∂x′j
ζ

(i)

)
dt′ + ρ

√
2D′TEF

∂ζ
(i)

∂x′j
dW ′j(i)

−
ρE
(
ζ

(i)
− ζ̃
)

Fτ ′T
dt′ +

ρEω̇(ζ
(i)

)

F
dt′. (5.6)

In principle the convection velocity vector ṽ, turbulent diffusivity D′T , and dissipation

time scale τ ′T come from solution of similarly-transformed LES momentum equations.

However if, following Colin et al. [22], the thickened scalar equations are coupled with

un-thickened LES momentum equations then the velocity vector ũ, turbulent diffusivity
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DT , and dissipation time scale τT from the un-thickened LES should be scaled as: ṽ =

ũ/E, D′T = DT /EF , and the turbulence timescale to be used in Equation 5.6 is then

τ ′−1
T = Cφ∆(DEF +DT )/(F∆)2.

The transformation of the stochastic fields equation has the effect that the solution for

a steady-state planar freely-propagating turbulent flame modelled by Equation 5.6 is

thickened by factor F and the propagation speed is increased by factor E relative to

the solution of Equation 5.5. The thickening factor, F , can therefore be set in order

to obtain satisfactory numerical resolution on a particular computational grid. The

efficiency function, E, should then be set in order to account for the reduction in resolved

flame surface area that results from thickening of the stochastic fields equation.

5.2.3 The Efficiency Function

The specification of the efficiency function for the TSF model relates to the wrinkling of

the reaction fronts in the stochastic fields solution, rather than the wrinkling of physical

flames considered in the conventional ATF model. The characteristic thickness δc∗ ,

and propagation speed Sc∗ , of the reaction fronts in the stochastic fields solution are

in general different from the thickness and speed of the corresponding laminar flame.

However, the wrinkling dynamics of the reaction fronts are assumed to be governed by

the same wrinkling factor, Ξ∆. This assumption is justified because in both ATF and

TSF, the wrinkling dynamics of reaction fronts in the flamelet regime are dominated

by the combination of resolved convection, sub-filter turbulent transport, diffusion, and

reaction processes. The efficiency function for the TSF model (Equation 5.6) is then

given by,

ETSF =
Ξ∆

(
u′∆,TSF /Sc∗ ,∆TSF /δc∗

)

Ξ∆

(
u′∆,TSF /Sc∗ ,∆TSF /Fδc∗

) , (5.7)

where the effective filter scale of the TSF is ∆TSF = Fδc∗ . Similar to [22], the sub-filter

wrinkling of the thickened fields is normalised to account for the possible wrinkling of

the thickened field. In general ∆TSF can be different from the filter scale ∆ used to

evaluate the model for the turbulent diffusivity in Equation 5.6.

Previous studies have developed models for the function Ξ∆ on the basis of theory and

empirical information from direct numerical simulations and laboratory measurements of
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flame response [14, 22]. The purpose of the TSF approach however is to provide simula-

tion results that maintain the same flame propagation speeds as the underlying stochastic

fields modelling when the computational grid spacing is increased. The modelling for

Ξ∆ should not seek to improve the agreement between the stochastic fields model and

DNS or experiment, rather it should fit to predictions of the numerically accurate un-

derlying un-thickened stochastic fields framework. Improving the physical accuracy of

the underlying stochastic fields modelling is outside the scope of the present thesis. The

functional dependence of the wrinkling factor on the filter-scale turbulence properties

Ξ∆(u′∆/SL,∆/δL) is therefore obtained from stochastic fields simulations across a range

of conditions. The set up of one-dimensional stochastic fields simulations in order to

obtain data for δc∗/δL and Sc∗/SL is presented in the next Section.

5.2.4 Determination of Wrinkling Factor from 1D Stochastic Fields

Simulations

The dependence of the sub-filter scale turbulent flame speed and reaction-front thickness

on filter-scale turbulence properties is evaluated in a one-dimensional stochastic fields

simulation of a freely-propagating planar turbulent flame. The one-dimensional ap-

proach neglects the effects that curvature and bulk strain have on the local propagation

of reaction-fronts in stochastic fields LES of premixed combustion, but has the advantage

that the simulations are computationally less expensive compared to three-dimensional

LES and still represent the transport processes normal to the resolved reaction front that

dominate the dynamics of the resolved reaction front. The framework and numerical

setup are identical to those used in the one-dimensional simulations in Chapter 4 and

can be found in Section 4.1.

Evaluation of ETSF

Sc∗/SL and δc∗/δL required in Equation 5.7 are evaluated over a wide range of range

of u′∆/SL and ∆/δL corresponding to a wide range of premixed combustion regimes.

512 stochastic fields are used for the one-dimensional simulations with uniform compu-

tational grid spacing selected to ensure at least 16 points within the reaction fronts in

each case.
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The average consumption speed of the reaction front of the individual stochastic fields

is evaluated by calculating the overall consumption speed of the ensemble average of

the stochastic fields. In this statistically-stationary case, the overall consumption speed

of the ensemble average of the stochastic fields is necessarily equal to the averaged

consumption speed of the individual stochastic fields (Sc∗ = ST∆). The consumption

speed is evaluated through

ST∆ = Sc∗ =
1

ρuYfA

∫

V

1

Ns

Ns∑

i=1

ω̇(i)dV, (5.8)

where ρu is the unburnt gas density, Yf the mass fraction of fuel in the premixed reac-

tants, A the domain cross sectional area, Ns represents the number of stochastic fields,

and ω̇(i) the instantaneous reaction rate on field i. Due to the stochastic nature of the

consumption speed given by Eq. 5.5, the values reported are those averaged over time.

The average thicknesses of the individual stochastic fields is evaluated as

〈δc∗〉 =
1

Ns

Ns∑

i=1

1

|∇ζ(i)|max
. (5.9)

Similar to the consumption speed, the average stochastic field thickness reported is also

the time averaged value.

The resultant data sets are approximated by fitting power-law functions of u′∆/SL and

∆/δL in the general form similar to that employed by Charlette et al. [14],

fi(u
′
∆/SL,∆/δL) =

(
1 +Ai

(
u′∆
SL

)ai (∆

δL

)bi)βi
. (5.10)

The ranges of u′∆/SL and ∆/δL used to fit the coefficients in Eq. 5.10 correspond to

ranges of Karlovitz number Ka ∈ (0.5−50) and filter length scale ratios ∆/δL ∈ (1−5)

that are representative of practical LES simulations of premixed combustion in in-

ternal combustion engines and gas turbines. A least squares fit to the data yields

[AS , aS , bS , βS ] = [0.083, 0.627, 0.48, 1.4] for fS = Sc∗/SL and [Aδ, aδ, bδ, βδ] = [0.081, 0.6, 0.47, 1.48]

for fδ = δc∗/δL. The curve-fits give excellent agreement across the relevant parameter

space, as shown in Fig. 5.2.
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Figure 5.2: Wrinkling factor Sc∗/SL (left) and non-dimensional reaction front
thickness δc∗/δL (right) versus sub-filter turbulence intensity u′∆/SL for well-resolved
stochastic fields (∆x � ∆), stochastic fields simulation with ∆x = ∆, and the curve fit

to the well resolved data given by Eq. 5.10

For illustrative purposes, the differences between the empirically fit wrinkling factor of

the TSF model and the algebraic wrinkling factor of Fureby [109] are shown in Figure 5.3.

Not surprisingly, the two wrinkling factors yield different results. However, it is not

to say that one is more correct than the other as comparisons between other algebraic

flame wrinkling models also produce different results - see [110]. The expected difference

between the TSF wrinkling factor and the algebraic model arises from the fact that the

wrinkling factor derived for this TSF framework is not necessarily a wrinkling factor in

the traditional sense. Since the numerically accurate stochastic field solution is sought,

here, ETSF is modelling the underlying stochastic fields predictions. The algebraic

wrinkling factor of [109] on the other hand attempts to predict the DNS data on which

it has been derived. In this particular case, the factor ETSF accounts for physical

processes and for the effect of loss of flame surface area from filtering to the extent that

the effects are accounted for by the modelled IEM/stochastic fields equations in 1D. The

only similarity shared by these two models is that in the limiting case of laminar or fully

resolved flow, the efficiency functions decay to unity - a necessary limiting behaviour

With an appropriate model for the dependence of the sub-filter scale turbulence velocity

fluctuation u′∆ on the filter length scale, and with knowledge of the laminar flame speed

and thickness, the TSF efficiency function, ETSF , can be evaluated through the following

steps:
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Figure 5.3: Comparison of wrinkling factor obtained through empirical fit of 1D
stochastic field simulations and the algebraic wrinkling factor of [109].

1. Evaluate u′∆ for the stochastic fields filter scale ∆;

2. Evaluate δc∗/δL and Sc∗/SL corresponding to u′∆/SL and ∆/δL using Eq. 5.10;

3. Evaluate F = n∆x/δc∗ and ∆TSF = n∆x, where n is the minimum number (e.g.

5-7) of grid spacings ∆x required within the reaction-front thickness δc∗ ;

4. Calculate u′∆,TSF for the effective thickened stochastic fields filter scale ∆TSF ;

5. Evaluate Eq. 5.7 for ETSF using the power law curve fit Eq. 5.10 for the wrinkling

factors.

Calculation of the sub-filter scale velocity fluctuations required for the evaluation of

ETSF (as outlined in Sec. 5.2.4), follows the procedure used in the traditional ATF

approach derived in [22]. The sub-filter scale velocity fluctuations in the TSF approach

are evaluated as

u′∆,TSF = c2∆3|∇ × (∇2(ũ))|, (5.11)

where ũ is the resolved velocity vector corresponding to filter scale ∆ and c2 = 2.0 is

a model constant [22]. The use of this relation ensures zero velocity fluctuation in the

limit of a planar laminar flame, which also enforces the correct asymptotic behaviour of

the TSF framework in this limit.
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Figure 5.4: Asymptotic behaviour of TSF.

5.2.5 Flame Sensor

An additional aspect of any artificial thickening of the scalar equations is that it is

typically necessary only in regions of the flow containing unresolvable reaction fronts.

Thickening in regions where it is not required leads to an unnecessary loss of simulation fi-

delity, for example by over-predicting the rate of fuel-air premixing in partially-premixed

combustion systems. To overcome this, Durand et al. [111] introduced dynamic thick-

ening by a flame sensor, Ω, to remove the effects of thickening away from reaction fronts.

In this work, this particular form of sensor is denoted as the traditional sensor and is

given by

Ω = 16 (c (1− c))2 , (5.12)

where c is a relevant progress variable bound by zero and unity. Ω > 0 indicates the

presence of a flame front and Ω = 0, its absence. The thickening factor in the scalar

transport equations are then rewritten as

F = 1 + (F0 − 1)Ω, (5.13)

where F0 is the nominal thickening factor determined as a function of the grid spacing

and the desired number of grid points within the reaction front.

A flame sensor can also be applied in the thickened stochastic fields approach, however, a

problem arises with the use of the traditional sensor due to the typical use of the filtered

progress variable field to evaluate the sensor. Evaluating it using the filtered progress

variable obtained by ensemble averaging the stochastic fields may result in an individual

stochastic fields’ reaction front to be thickened non-uniformly with respect to the other

fields; the extent of the thickening disparity depends on the fields position relative to
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the resolved flame front. This is simply a consequence of the shape of the sensor and

its maximum value of unity occurring at c̃ = 0.5. This behaviour is illustrated in Figure

5.5 where the variation of the progress variable of selected individual stochastic fields

(ζ(i)) with respect to the ensemble averaged progress variable (c̃) is shown for a one-

dimensional flame with low (left) and high (right) sub-filter variance. The traditional

flame sensor evaluated with the filtered progress variable is also presented. Figure 5.5

shows that if using c̃ to activate the sensor, depending on the sub-filter variance, indi-

vidual fields towards the leading or trailing edge of the resolved flame front may not be

thickened to the desired extent.
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Figure 5.5: Illustration of thickening seen by 4 different individual fields for low
sub-grid variance (left) and large sub-grid variance (right)

The first step to mitigate the potential heterogeneous thickening of each field is to simply

evaluate the flame sensor on each field using an equivalent progress variable,

Ω(i) = 16ζ2
(i)

(
1− ζ(i)

)2
, (5.14)

where Ω(i) denotes the sensor on an individual field. The principle drawback with this

particular sensor is the maximum thickening occurs at a progress variable value of 0.5.

Thickening is typically necessary in the region of 0.6 < ζ(i) < 0.8 where the reaction

rate is greatest and reactive scalar gradients are steepest. Therefore, using this sensor

in its current form results in a thickening factor which may be less than the prescribed

factor in the region of interest. Analysis of the one-step reaction mechanism employed

in this work shows that the maximum reaction rate occurs at a progress variable value of

about 0.68. At this value the thickening factor is about 75% of the maximum thickening

prescribed.
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The desire is to then to broaden the region of thickening of each stochastic field to ensure

the entirety of the reaction zone of each field exhibits the same amount of artificial

thickening across all the fields. This new sensor is known as the broadened sensor and

is described by

Ω(i) =
tanh

[
β1

(
16ζ2

(i)

(
1− ζ(i)

)2)]

tanhβ1
, (5.15)

where β1 is a broadening parameter greater than unity that broadens the thickening

zone for each field and determines how quickly the sensor approaches unity for c̃ > 0

and c̃ < 1. Although β1 is tunable, its minimum value should be such that in the absence

of sub-filter variance (and the recuperation of Equation 5.12), the flame sensor should

be approximately unity (or 0.99) at the progress variable value of maximum reaction

rate. With the thermochemical model employed in this work, the minimum value of β1

was determined to be approximately 3.5.

Although the activation of artificial thickening locally on each field may provide a benefit

on the individual fields, maintaining consistency between the thickening seen by the

potentially thickened momentum equation and the thickening seen on individual fields

becomes difficult. Therefore, it is desirable to have a single “global” sensor that is seen

by both momentum and scalar stochastic field equations.

Care must be taken when determining a method in obtaining a single sensor as simply

taking an ensemble mean of the local flame sensors on every field is inadequate as the

ensemble averaged sensor will be different to the thickening required on a particular

stochastic field. Additionally, an ensemble averaged flame sensor will almost always

be less than unity due to the weighting of number of fields and their dispersion. A

consequence of this is that a fully activated “global” sensor and consistency between

scalar and momentum equations would only be achieved in the limiting case of the

absence of sub-filter variance.

With these facts in mind, the calculation of a single sensor can be achieved if the

weighting of each field during the calculation of a global sensor can be redistributed.

Here, the weighting is such that the field with the most activated flame sensor at a given

spatial location, bears the full weighting of the ensemble average. This is also achieved

through evaluation of the maximum sensor value between all the fields as,

Ω(x, t) = max(Ω(i)(x, t)). (5.16)
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This approach yields the desirable limiting behaviour that:

1. The traditional sensor evaluated with the filtered progress variable field is recovered

in the limit of negligible sub-filter variance

2. Within the resolved flame brush, the sensor is fully activated with Ω = 1

3. The regions of thickening of the stochastic fields scalar equations is consistent with

the thickening of the LES momentum field

Arrhenius Rate Flame Sensor

Although simulation fidelity can be increased with the introduction of a flame sensor in

general, the performance and applicability of the sensor above for different cases (such as

partially premixed combustion) is sensitive to the definition of progress variable. Addi-

tionally, it does not consider changes in composition that may result in more resolvable

reaction fronts for a given numerical grid spacing. By considering this compositional

change in the calculation of the flame sensor (and thus applied thickening factor), the

simulation fidelity can be increased further through application of appropriate levels of

local flame activation, as opposed to possible “over-thickening” by ignoring them.

Leiger, Poinsot, and Veynante [48] introduced a flame sensor based on reaction rate.

Information on mixture composition is inherently included in this sensor through use of

the reaction rate magnitude which is a function of the local composition. The sensor

takes the form:

Ω = tanh

(
β2ω̇

ω̇max

)
, (5.17)

where β2 is a broadening parameter. Although the authors suggest that β2 is greater

than unity, it is suggested here that β2 be a greater than at least 2.6 as this value

guarantees in the case of the reaction rate approaching the maximum, the sensor tends

to unity.

The issue with defining a sensor based on this type of expression with the use of a

detailed chemical mechanism for the species production/destruction rates, the choice of

reaction rate to activate the sensor is non-trivial. In the work of Leiger et al. [48], they

employed an “Arrhenius-like” expression different to their one-step chemical mechanism

to calculate the presence of a reaction zone. In this work a similar methodology is
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proposed, however, the expression used to monitor the activity of the reaction zone is

an Arrhenius expression of an irreversible, one-step global reaction. The reason for this

modification is that a single step mechanism better represents the chemical reaction

pathway than an Arrhenius type expression which would require tuning (likely from a

single step mechanism anyway).

The issue with triggering the flame sensor with a one-step mechanism is that is that an

irreversible one-step mechanism may have different equilibrium compositions compared

to a detailed mechanism; a consequence of the presence of slower and reversible reac-

tions in detailed schemes. Therefore, in order to be able to use the one-step reaction

rate sensor to accurately detect a reaction zone that is representative of the detailed

mechanism, a mapping from the composition and progress of the detailed mechanism to

the composition and progress of the irreversible one-step global mechanism is required.

With the dependencies introduced, the expression for the reaction rate required in Equa-

tion 5.17 takes on the form:

ω̇(z∗, c∗) = A

[
ρY ∗o (z∗, c∗)

Wf

]m [ρY ∗f (z∗, c∗)

Wf

]n
exp

( −Ta
T ∗(z∗, c∗)

)
, (5.18)

where Wf and Wo denote the molar mass of the fuel and oxidiser respectively, ρ the

mixture density, Ta the reaction activation temperature, A the pre-exponential constant,

and m and n exponents. The “starred” mass fractions (Y ) and temperature (T ) refer

to the respective quantities in the composition space (z∗, c∗) of the irreversible one-step

mechanism. These quantities are determined through the following expressions:

Y ∗o (z∗, c∗) = Y u
o (z∗) + c∗(z∗)

[
Y b
o (z∗)− Y u

o (z∗)
]

(5.19)

Y ∗f (z∗, c∗) = Y u
f (z∗) + c∗(z∗)

[
Y b
f (z∗)− Y u

f (z∗)
]

(5.20)

T ∗(z∗, c∗) = T u(z∗) + c∗(z∗)
[
T b(z∗)− T u(z∗)

]
(5.21)

where superscript u and b indicates unburnt (c∗ = 0) and burnt (c∗ = 1) quantities

respectively. The values of unburnt quantities are determined through a simple linear

mixing rule between the pure oxidiser (z∗ = 0) and pure fuel (z∗ = 1) states, and

burnt quantities are assumed to vary linearly towards the stoichiometric equilibrium

compositions. The expressions for the variation of these quantities are given in Table 5.1

and shown schematically in Figure 5.6.
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Figure 5.6: Schematic of equilibrium profiles outlined in Table 5.1

Table 5.1: Mixing and Equilibrium Profiles for Sensor

Quantity Unburnt Burnt

Yo(z) Y o
ox(1− z) Y o

ox max(0, 1− z/zst)
Yf (z) Y o

f z Y o
f max(0, z−zst1−zst )

T (z) To + z(Tf − To)
To + z(Tad − To)/zst if z ≤ zst

Tad − (Tad − Tf )
z − zst
1− zst

if z > zst

With all the possible states known from the above expressions, in order to evaluate

Equation 5.17, z∗ and c∗ must be determined. These values are obtained from the

mapping of the composition and progress space of the detailed mechanism to those of

the one-step mechanism. The mapping is given by:

z̃(x, t) = z∗, (5.22)

and

c̃(x, t) = c∗, (5.23)
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where z̃ is the filtered mixture fraction, c̃ the filtered, normalised progress variable. The

filtered mixture fraction is evaluated by

z̃(x, t) = zst

(
sỸf (x, t)− Ỹo(x, t)

Y o
ox

+ 1

)
, (5.24)

where Ỹf (x, t) and Ỹo(x, t) are the local filtered fuel and oxidiser mass fractions, Y o
ox

the mass fraction of oxidiser in the oxidiser stream, and zst the stoichiometric mixture

fraction. The progress variable can be defined arbitrarily through,

c̃(x, t) =
Ỹα(x, t)− Y u

α [z̃(x, t)]

Y b
α [z̃(x, t)]− Y u

α [z̃(x, t)]
, (5.25)

where Y u
α [z̃(x, t)] and Y b

α [z̃(x, t)] are the unburnt and burnt states of the species chosen

to define the progress variable as functions of the local filtered composition.

In order to evaluate Equation 5.17, a value for ω̇max is required. This value is obtained

by differentiating Equation 5.18 and finding the maximum:

∂

∂c
ω̇(z̃∗, c̃∗) = 0, (5.26)

Once differentiated two approaches can be taken to solve the resultant equation. First,

is to assume a global maximum reaction rate that occurs at z∗ = zst. This assumption

simplifies the differentiated expression resulting in an equation for which an analytical

solution exists for determining ω̇max and its corresponding c∗(zst). Second, is to assume

a dependence of the reaction rate on the mixture fraction and evaluate a corresponding

value of c∗ providing ω̇max(z∗). In this case, no analytical solution exists and only

numerical solutions are possible. Therefore, for the second approach and on-the-fly use,

an iterative solution is necessary. For increased computational efficiency, the values can

be can be pre-computed and stored as a lookup table.

Similar to the flame sensor shown in the previous section, this Arrhenius rate sensor can

be used in the context of TSF. The flame sensor can be evaluated on an individual field

through

Ω(i) = tanh

(
β2ω̇(i)

ω̇max

)
, (5.27)

where the subscript i denotes the quantities determined on each field. The global sensor

can then be evaluated as in Equation 5.16. The evaluation of the reaction rate for sensor
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activation on each field is obtained through:

ω̇(η∗(i), ζ
∗
(i)) = A

[
ρY ∗o (η∗(i), ζ

∗
(i))

Wf

]m [
ρY ∗f (η∗(i), ζ

∗
(i))

Wf

]n
exp

(
−Ta

T ∗(η∗(i), ζ
∗
(i))

)
, (5.28)

where an equivalent irreversible one-step composition space of progress variable, ζ∗(i), and

mixture fraction, η∗(i), are evaluated on each field i and mapped to by the corresponding

filtered field values. The calculation of equilibrium composition and overall methodology

remains as outlined above with the appropriate substitution of the filtered fields, z, and

c, made with the stochastic field equivalent η, and ζ, respectively.

5.3 Turbulent premixed Bunsen flame LES

In this section, the TSF framework is tested with 3D LES simulations of the premixed

Bunsen flame of Chen et al. [92]. The numerical setup and configuration can be found

in Section 4.2. In the simulations presented in this section, no flame sensor is applied

to the TSF framework and the results for the base TSF formulation is presented. For

the efficiency function, it was assumed that there was no local variation in the laminar

flame speed and lmainar flame thickness due to strain and themo-physical property

variation. The values of both SL and δL used in Equation 5.7 were obtained for a

laminar stoichiometric methane-air flame at 300K.

5.3.1 Estimated Resolution Requirements

The stochastic field reaction front thicknesses reported in Figure 5.2 and approximated

by Equation 5.10 may be used to estimate the resolution requirements for stochastic

field LES presented here. In the case of the Bunsen flame simulated in this study [92],

the thermal thickness of a laminar stoichiometric methane-air flame is 0.41mm (using

the one-step chemistry model described above), the filter length scale selected is 1mm,

and the Karlovitz number is reported to range between 1 and 10 [92]. These Karlovitz

numbers (corresponding to u′∆/SL = 1.3 and 6.2 respectively) lead to the prediction

that δc∗/δL = 1.3 − 1.7, given ∆ = 1mm. Imposing a minimum requirement of 5 grid

spacings within the stochastic field reaction front thickness δc∗ then dictates a maximum

grid spacing of 0.11 - 0.14 mm for fully-resolved stochastic fields simulation. Compared
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to the usual practice of setting the grid spacing equal to the LES filter scale, this estimate

suggests a numerically-resolved stochastic field solution would require a grid spacing of

11-14% of the filter scale, implying 360-750 times more grid points in a three-dimensional

simulation. The resolution requirements of the stochastic fields approach may be even

more daunting in simulation of industrial combustion systems for which the ratio of

filter length scale to laminar flame thickness might need to be an order of magnitude

greater than in the laboratory Bunsen flame example. The need for sub-filter scale

resolution around the stochastic field reaction fronts suggest that the TSF approach

or an Adaptive Mesh Refinement (AMR) approach may be needed in order to obtain

numerically-accurate stochastic fields predictions for practical systems.

A known disadvantage of thickened flame approaches is that application of the thicken-

ing factor and the efficiency function affects the chemical time scales in the fluid, and

consequently changes the Damköhler and Karlovitz numbers describing the turbulence-

chemistry interactions. The Damköhler number (Da= LT sL/u
′δL) and Karlovitz num-

ber (Ka= (u′3δL/S
3
LLt)

1/2) change by E/F and (F/E3)1/2 respectively. Since the turbu-

lent diffusivity and micromixing terms in Equation 5.6 lead to a stochastic field reaction

front thickness that is greater than the corresponding laminar flame thickness by the

factor fδ = δc∗/δL described by Equation 5.10, the TSF requires a thickening factor that

is smaller than for the conventional ATF approach by the same factor fδ. In the case of

the Bunsen flame LES in this study, the thickening factor is expected to be 1.3-1.7 times

less than in a conventional thickened flame LES with the same filter scale. The undesir-

able effect of thickening on the Damköhler and Karlovitz numbers is therefore generally

smaller for the TSF approach compared to the conventional ATF approach, and the

correct chemical time scale and the conventional stochastic fields model is recovered in

the limit of adequate resolution, for which no thickening is required.

5.3.2 Bunsen Flame Analysis

Below, the results for the LES simulation of the F3 and F1 flames are shown. For each

flame, two sets of simulations are conducted; one simulation solves the stochastic field

equation (Equation 5.5) and the second solves the TSF equation (Equation 5.6). Both

simulations in both flames adopt the conventional practice of setting the grid spacing
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equal to the LES filter scale, and based on the characteristic grid-spacing for these

simulations, ∆x = ∆ = 1mm.

The instantaneous filtered temperature fields taken on a plane through the burner centre-

line for an individual stochastic field in each of the two simulations is shown in Figure 5.7

for the F3 flame, and Figure 5.8 for the F1. Due to application of the TSF model, the

images show that the flame thickness increases and the flame wrinkling decreases; the

effects being more obvious in the case of the F3 flame where the thickening require-

ment is expected to be larger. The result of this is the F3 flame height predicted by

the thickened stochastic fields increases. In both cases, it can be seen that through the

unmodulated application of artificial thickening, the pilot stream away from the core

premixed jet is highly diffused.

Figure 5.7: Instantaneous temperature field of an individual field from the F3 flame
LES with ∆x = ∆ = 1.0 mm for Traditional stochastic fields (left), and thickened

stochastic fields (right).

The different flame thicknesses in the two simulations are quantified by evaluating an

indicative stochastic fields reaction front thickness given by the inverse average progress

variable gradient magnitude on the stochastic fields conditioned on the progress variable

giving maximum heat release, 〈|∇ζc,(i)| | ζc,(i) = 0.68〉−1. For the F3 Flame, application

of the TSF model leads to the average thickness of the stochastic field reaction fronts

increasing from 2.68 mm in the conventional stochastic fields simulation to 4.9 mm in

the Thickened solution, while in the F1 case, it increases from 3.5 mm to 4.85mm –

confirming that in both cases, the TSF approach delivers the target five grid spacings

within the stochastic field reaction fronts.
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Figure 5.8: Instantaneous temperature field of an individual field from the F1 flame
LES with ∆x = ∆ = 1.0 mm for Traditional stochastic fields (left), and thickened

stochastic fields (right).

Plots of time-averaged u′∆ are shown in Figure 5.9. It can be seen from the figure that

in both flames, in the near-burner regions, the velocity in the pilot stream (r/D > 1)

remains laminar. With progressive downstream location, the entire flow-field becomes

turbulent and the magnitude of sub-filter velocity fluctuations within the flame (at

approximately r/D = 0.5) decreases. Also shown is the time-averaged u′TSF . The

increased magnitude of this quantity is a result of the change of length-scale in the TSF

method.

The consequence of this decrease in u′∆ within the flame with downstream location is

that the combustion becomes more flamelet-like. From the anslysis of Chapter 4, the

implications are that the resolution should become more stringent and require a larger

thickening factor. Indeed, this behaviour can be seen in Figure 5.10 where the time-

averaged TSF thickening and efficiency factor are shown.

In the near-burner region at large r/D, both F1 and F3 thickening factors in this region

are effectively identical. As the flow is more laminar in this region, the TSF framework

is attempting to fully resolve a more laminar flame resulting in a very large thickening

factor compared to the region in the vicinity of the turbulent jet. This large thickening

factor in the large r/D regions justifies the overly diffused temperature distribution

seen in Figures 5.7 and 5.8. Closer to the jet at r/D < 1, due to the larger turbulence

intensity that acts to thicken the premixed reaction fronts, the required thickening factor

is substantially smaller than in the pilot region. This behaviour is further exemplified
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Figure 5.9: Radial distributions of time-averaged sub-filter velocity fluctuations at
various axial locations for the F1 and F3 flames. Units are in [m/s].

by comparing the thickening factor required in the F1 flame with that of the F3. Since

the F1 flame exhibits higher turbulence intensity, its thickening factor is smaller than

the corresponding F3 thickening factor at the same axial location.

The balance between the thickening factor and turbulence intensity explained above may

justify the relatively flat radial distributions of efficiency function seen for both flames.

However, due to larger thickening factor required in the F3 simulation, the efficiency

function is generally seen to be larger.

Irrespective of the difference in magnitude of the thickening factor and efficiency function

for either flame, in the vicinity of the flame front (around r/D = 0.5) both flames

exhibit a decrease in sub-filter velocity fluctuations with downstream location (as shown

in Figure 5.9). This is manifested as an increase in thickening factor with respect to

the surrounding spatial locations that exhibit a higher turbulence intensity. The result

is that the average thickening factor from locations x/D = 2.5 to x/D = 8.5 increases

from approximately 2 to 4 and from approximately 4 to 7 for the F1 and F3 flame

respectively.

The radial variation of the time-averaged filtered methane and oxygen mass fraction
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Figure 5.10: Radial distributions of time-averaged TSF efficiency function and thick-
ening factor at various axial locations for the F1 and F3 flames.

are shown in Figure 5.12 and Figure 5.13, and carbon dioxide and water vapour in

Figure 5.14 and Figure 5.15 for the F3 and F1 flames respectively.

The radial distributions of the reactants in Figure 5.12 for the F3 flame show a larger

impact of artificial thickening on the solution than those for the F1 flame in Figure 5.13.

This is expected due to the relatively small amount of thickening observed for F1 flame,

which in itself, is the primary indicator of the under-resolution exhibited by the un-

thickened stochastic field simulations.

As mentioned in Chapter 4, under-resolution affects the flame speed in three main

ways: first, numerical diffusion increases the local propagation speed of the individual

stochastic field reaction fronts; second, thickening of the stochastic field reaction fronts

caused by the numerical diffusion reduces the amount of flame wrinkling produced by

a given velocity field; third, the numerical viscosity reduces the strength of small-scale

eddies that wrinkle the reaction fronts.

The result of the artificial thickening in this method is to produce a numerically accu-

rate stochastic field solution and overcome the effects of numerical thickening outlined
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Figure 5.11: Radial distributions of the time-averaged methane reaction rate
〈ω̇CH4〉(kg/m3−s) at various axial locations comparing the thickened and Un-thickened

Stochastic Field.

above. As shown in Figure 5.11, the TSF simulations results in a decrease in the over-

all reaction rate (and consequently flame speed) relative to the un-thickened stochastic

field simulations. This results in a slightly longer flame from the TSF simulations. The

difference between the reaction rate for the un-thickened and thickened stochastic field

simulations is smaller for the F1 flame than for the F3 due to the fact that it is more

resolved than the F3 flame.

For the F3 flame, the TSF simulations resulted in overall improvements in the prediction

of both reactants (Figure 5.12) and products (Figure 5.14). The improved reaction rate

prediction meant that the excess consumption of reactants (and over-production of prod-

ucts) in the un-thickened simulations were corrected to yield reactive scalar distributions

in better agreement with experiment. To a lesser extent, the same behaviour can be seen

in the case of the F1 flame where a slight improvement of the TSF simulations can be

seen in the case of the reactants compared to the un-thickened simulation (Figure 5.13).

From the ”good agreement” of product species from the un-thickened simulations, the

improved numerical accuracy of the TSF simulations results in product distributions

(Figure 5.15) that appear to worsen. Given the increased numerical accuracy of the

TSF method, the under-predicted product mass fractions is expected to be the correct



Chapter 5 The Thickened Stochastic Field Approach 133

x/D=6.5

x/D=4.5

x/D=2.5

x/D=8.5

x/D=6.5

x/D=4.5

x/D=2.5

0.0

0.015

0.03

0.045

0.06
YCH4

0.0

0.015

0.03

0.045

0.0

0.015

0.03

0.045

0.0

0.015

0.03

0.045

0.00.51.0

r/D
0.00.51.0

Thickened

Un-thickened

0.0

0.075

0.15

0.225

0.3
YO2

0.0

0.075

0.15

0.225

0.0

0.075

0.15

0.225

0.0

0.075

0.15

0.225

0.0 0.5 1.0

r/D

Figure 5.12: F3 radial distributions of the time-averaged methane mass fraction
〈ỸCH4〉 and oxygen mass fraction 〈ỸO2〉 at various axial locations comparing the thick-

ened and un-thickened stochastic field.

solution for the given numerical setup. In fact, the predictions of the TSF method in

the case of the F3 and F1 flames (including the under-predicted product species of the

F1 case) are not unique to this set of simulations and are similar to trends and results

obtained in [57, 85].

In both F1 and F3 flames, for all reactive scalars except methane, the poor results at

larger r/D are a consequence of excessive artificial thickening at the pilot and co-flow

interface region due to the absence of a flame sensor. The impact of flame sensors on

the predictions is examined in Section 5.4.

Distribution of the time-averaged filtered temperature are shown in Figure 5.16. Irre-

spective of the improvements of reactive scalars predictions in the TSF framework, mean

temperatures are over-predicted as in the un-thickened simulations. This over-prediction

is similar to those obtained by [46] who also employ the one-step reaction model used

in this thesis. This over-predictions is suspected to be a consequence of the absence of

carbon monoxide/dioxide chemistry [46].

Figure 5.17 shows radial distributions of normalised axial velocity for the F1 (Uo = 65.0

m/s) and F3 (Uo = 30.0 m/s) flames. Due to thermal expansion across the flame

front, the mean velocity field is affected by the predicted flame location. The mean
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Figure 5.13: F1 radial distributions of the time-averaged methane mass fraction
〈ỸCH4〉 and oxygen mass fraction 〈ỸO2〉 at various axial locations comparing the thick-

ened and un-thickened stochastic field.
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Figure 5.15: F1 radial distributions of the time-averaged carbon dioxide mass fraction
〈ỸCO2〉 and water vapour mass fraction 〈ỸH2O〉 at various axial locations comparing the

thickened and un-thickened stochastic field.

axial velocity in both flames shows reasonable agreement across both stochastic field

methodologies, but as the flame height in the TSF simulations are better predicted, the

axial velocity predictions of the TSF approach shows closer agreement to experiment.
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5.4 Flame Sensor

In this section, the sensitivity of the TSF solution to the inclusion of a flame sensor and

to the value of the corresponding broadening factor is investigated. In the first part, the

impact of the choice of flame sensor with nominal broadening factor is analysed. The

second part assesses the sensitivity of the choice of broadening factor for the various

sensors.

5.4.1 A Priori Flame Sensor Analysis

In Figure 5.18, the different sensors are analysed for a range of mixture fractions (zero to

stoichiometric) and progress variables (zero to unity) with the nominal broadening fac-

tors given in the captions of the figures. Also shown is the iso-line, c(z), corresponding

the the progress variable of maximum reaction rate. Figure 5.18a shows the distribution

of flame sensor activation for the traditional sensor. From this figure it is obvious that

there is no dependence on mixture fraction and that the sensor value at the maximum

reaction rate decreases as mixture fraction approaches zero. Figure 5.18b shows the dis-

tribution of the broadened sensor. Although there is still no dependence on composition,

the broadening of the sensor profile though the hyperbolic tangent ensures that there

is more activation of the flame sensor at the maximum reaction rates that stretch into

lower values of mixture fraction.

It should be noted, that although the location of the iso-line in Figure 5.18 indicates

the maximum reaction rate, it does not indicate the magnitude. For decreasing mixture

fractions towards zero, the magnitude of the maximum reaction rate decreases and

therefore, the thickening required can also decrease though accompaniment of more

resolvable scalar gradients. Therefore it may be concluded that to a certain extent the

broadened sensor captures this behaviour although perhaps coincidentally.

This behaviour is taken into account deliberately in the Arrhenius rate sensor shown in

Figure 5.18c. With the sensor normalised by the maximum reaction rate obtained at

the stoichiometric mixture fraction (zst), the flame sensor activity is highest at mixture

fractions close to stoichiometry at the progress variable for maximum reaction rate. It

then reduces along the maximum reaction rate iso-line as the mixture fraction approaches

zero. When normalising by the maximum reaction rate as a function of the local mixture
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Figure 5.18: Example compositions of activity of different flame sensors across rep-
resentative compositions for methane-air system with Tf = To = 300K.

fraction, full activation of the sensor can be seen following the maximum reaction rate iso-

line. As the mixture fraction approaches zero, as does the maximum reaction rate causing

Equation 5.17 to be activated for all values of progress variable at z = 0. This indicates

that within a simulation, if using this method of normalisation, the oxidiser stream (and

correspondingly the pure oxidiser stream) will be thickened to the maximum prescribed

thickening factor unless appropriate numerical remedies are taken. As it stands, this

limiting behaviour contradicts the primary benefit of a flame sensor to begin with and

will therefore be avoided in the proceeding 3D LES.
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Figure 5.19: Instantaneous temperature field of an individual field from the F3 flame
LES with ∆x = ∆ = 1.0 mm for traditional stochastic fields (left), and thickened
stochastic fields with no sensor (middle) and thickened stochastic fields with flame

sensor (right).

5.4.2 Bunsen Flame Analysis

To assess the effect of choice of flame sensor on the TSF simulation results, additional

simulations of the F1 and F3 cases were conducted with the three flame sensors given

in Section 5.2.5 namely: the traditional, broadened, and Arrhenius rate sensors. In the

case of the broadened sensor, β1 was set to a value of 3.5 and for the Arrhenius rate

sensor, β2 was set to the nominal value of 2.6. The reaction rate used for normalisation

in the Arrhenius sensor was that based on maximum reaction rate determined at the

stoichiometric mixture fraction (zst). For clarity the proceeding section, where the

conclusions and trends are the same for both F3 and F1 flames, only the F1 is shown.

Figures 5.19 and 5.20 show an extension of the instantaneous filtered temperature field

colour maps shown in Section 5.3.2 to include the temperature map of the solutions with

the broadened flame sensor. From these figures it can be seen that the inclusion of the

sensor concentrates the artificial thickening to the interface of the pilot and jet streams.

An effect inferred by an obvious reduction in the diffusion of the pilot stream with the

ambient air.

The concentration of the thickening to the interface of the jet and pilot can be seen

through contour maps of the instantaneous thickening factors obtained in the TSF

framework for the F3 (Figure 5.21) and F1 (Figure 5.22). The thickening factor in

both simulations is unity outside of the flame since the flame sensor tends to zero in this

region. Inside the flame, the value of the thickening factor varies due to the dependence
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Figure 5.20: Instantaneous temperature field of an individual field from the F1 flame
LES with ∆x = ∆ = 1.0 mm for traditional stochastic fields (left), and thickened
stochastic fields with no sensor (middle) and thickened stochastic fields with flame

sensor (right).

on the local value of u′∆/SL in Equation 5.10. In both cases, the peak value of the

thickening factor within the flame increases with downstream axial location.

For the F3 flame, in the near-field the peak thickening factor is typically in the range

2-4, and it is mostly in the range 4-7 downstream of x/D = 5. The F1 flame on the

other hand exhibits less thickening, generally around 1-3, increasing slightly to around

2-4 after x/D = 7. The thickening factor tends to increase downstream because of the

decay of u′∆ away from the jet inlet leading to the combustion becoming more flamelet-

like and thereby increasing the resolution requirement. These thickening factors may be

compared with the static thickening factor of F = 8 used in [46] for ATF simulations

of the F3 flame with a grid spacing of 0.8 mm, and for the value of approximately 12

required with the characteristic grid spacing used here. Figures 5.21 and 5.22 show

that the thickening factor required by the TSF approach can be significantly less than

the value required in the Thickened Flame model, reducing unwanted effects of the

thickening on the chemical time scale, the Damköhler number and the Karlovitz number.

The magnitude of mean thickening factor and efficiency function for the F1 and F3

flames with a flame sensor are shown Figure 5.23. For comparison, the results for

the no-sensor simulations are also shown. Similar to Figures 5.21 and 5.22, this figure

also shows the difference in magnitude of thickening required by the F1 and F3 flame.

More importantly, this figure clearly shows is that the inclusion of a sensor drastically

modifies the spatial distribution of thickening factor and efficiency function. Specifically,

it removes the excess and undesired diffusion of scalars that are not in the vicinity of

the flame front.
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Figure 5.21: Instantaneous contours of thickening factor in the thickened stochastic
fields simulation of the F3 Flame.

The impact of including a flame sensor (and the difference between the various types)

on the solution can be seen through radial mass fraction distributions of carbon dioxide

and oxygen in Figures 5.25 and 5.24 respectively for the different sensors. In both the

F3 and F1 flames, the mass fraction predictions between the various sensors show an

almost indistinguishable difference. However, the inclusion of a flame sensor in general

has a substantial influence on the solution, specifically in the r/D > 1 regions.

As indicated from the figures above, the inclusion of a sensor allows for unaltered mixing

and entrainment of the ambient air into the flame due to the removal of artificial thick-

ening in these regions. It can be seen in both the F1 and F3 flames that the solution

with no sensor artificially increases the diffusion of the pilot and ambient air which can
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Figure 5.22: Instantaneous contours of thickening factor in the thickened stochastic
fields simulation of the F1 Flame.

be identified with the higher/lower mass fractions of oxygen and carbon dioxide recep-

tively at larger r/D. In both F1 and F3 cases, the inclusion of the sensor substantially

improves the mixing predictions compared to experiment at larger r/D.

5.4.3 Sensitivity to Flame Sensor Type

The relative insensitivity of the predictions between the different sensors can be investi-

gated through analysis of the global flame sensor seen by a particular field. Scatter plots

of the global flame sensor seen by a single, arbitrary field versus progress variable are

shown in Figure 5.26 along with a solid line indicating the value of the particular flame

sensor calculated on that field. Shown along side the scatter plots is the corresponding,
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Figure 5.23: Comparison of sensor and no-sensor radial distributions of mean effi-
ciency function (ETSF ) and thickening factor (FTSF ).

50 bin discrete PDF of global sensor activation magnitude for the particular sensor being

analysed.

Figure 5.26a shows the results for the traditional sensor. Also shown with the PDF of

this particular sensor, is the discrete PDF of the traditional sensor on the same arbitrary

stochastic field in the limiting case that ζ(i) = c̃. From the scatter plot, the inclusion of

the max operation in the global sensor (along with field dispersion) draws points towards

Ω = 1 that spans a wider range of progress variable values than it would otherwise span.

As a consequence, the corresponding probability of obtaining a global sensor that is fully

activated on a particular field has increased substantially.

The width of the broadened range of activated ζ(i) with Ω = 1 provides an indication

to the amount of overlap between thickening profiles of the various fields. In general,

for a large amount of overlap of fields, it is expected that the majority of the points be

clustered at Ω = 1. Conversely, as the overlap decreases (or the fields become “isolated”),

the points will begin to cluster towards the solid line on that particular field.

An additional influence on the location of the points on the scatter plot is the location

of a stochastic field relative to the mean flame brush. The aforementioned behaviour of
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Figure 5.24: Radial distributions of the time-averaged carbon dioxide mass fraction
〈ỸCO2

〉 and oxygen mass fraction 〈ỸO2
〉 at various axial locations comparing the the

effect of different flame sensors with TSF for the F3 Flame

Ω and overlap is most applicable to a field located in the centre of the flame brush. For

a stochastic field that is preferentially located at the leading or trailing edge of the mean

flame brush, in addition to the above behaviour, there will be a larger concentration of

points towards ζ(i) = 1 and ζ(i) = 0 respectively.

The severity of overall migration of points towards the solid line on a scatter plot may

hint at the solution being statistically under-resolved. This is because for a low number

of fields and a large sub-filter variance, field dispersion will be high and overlap at a

minimum. However, it should be mentioned that the amount of overlap between fields

is a function of both the number of fields and the value of β; A small number of fields

with large β may provide the same amount of visible overlap as many fields with a small

value β. Therefore, even with a sufficient visible overlap of the fields, the simulation is

not guaranteed to be statistically resolved and other methods of ensuring this need to

be taken.

The behaviour described above is exaggerated through broadening of the sensor profile

as shown in Figure 5.26b. For this sensor the extent of progress variables with Ω = 1 is



146 Chapter 5 The Thickened Stochastic Field Approach

x/D=6.5

x/D=4.5

x/D=2.5

x/D=10.5

x/D=8.5

x/D=6.5

x/D=4.5

x/D=2.5

0.0

0.09

0.18

0.27

0.36
YCO2

0.0

0.09

0.18

0.27

0.0

0.05

0.1

0.15

0.0

0.05

0.1

0.15

0.0

0.05

0.1

0.15

0.00.51.0

r/D
0.00.51.0

Traditional

Broadened

Arrhenius No Sensor

Unthickened

0.0

0.075

0.15

0.225

0.3
YO2

0.0

0.075

0.15

0.225

0.0

0.075

0.15

0.225

0.0

0.075

0.15

0.225

0.0

0.075

0.15

0.225

0.0 0.5 1.0

r/D

Figure 5.25: Radial distributions of the time-averaged carbon dioxide mass fraction
〈ỸCO2

〉 and oxygen mass fraction 〈ỸO2
〉 at various axial locations comparing the effect

of different flame sensors with TSF for the F1 Flame

increased greatly through the process of increasing the minimum value of flame sensor

activation for a given progress variable. The points that where previously hovering

around lower flame sensor values with the traditional sensor are swept back through the

broadening. This corresponds directly to an increases in the probability of finding a

fully activated sensor as seen through the discrete PDF.

Figure 5.26c shows the effect of the Arrhenius rate sensor. Contrary to the symmetry in

progress variable space about ζ = 0.5 of the other sensors, this particular sensor shows

strong asymmetry and, as intended, a bias towards the progress variable of maximum

reaction rate. As a consequence of this bias, it shares certain similarities with the

broadened sensor, namely the forcing of larger progress variable values to have a larger

flame sensor activity. The relaxing of this enforcement at lower progress variable values

is accompanied by a substantially larger region of sparsely located activation values.

Regardless of the preference of this sensor to different extreme regions within progress

variable space, a high concentration of points can still be seen at Ω = 1, which, due to
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Figure 5.26: F1 Flame. Left: Scatter plot of global flame sensor and progress variable
of a single field. Right: PDF of global flame sensor

the dispersion of fields, spans a broader range of progress variables; a behaviour shared

by all the sensors analysed. This can also be seen in the corresponding PDF.

From these scatter plots, the relative insensitivity of choice of flame sensor is likely a

consequence of the max operation in the global flame sensor formulation. The objective

of the max operation is to create a single activated region to be seen by all fields,

however, the consequence is that through the dispersion of the fields, the actual active
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Figure 5.27: Radial distributions of the time-averaged global flame sensor at various
axial locations for the F1 flame. Symbols indicate global sensor distribution when

ζ(i) = c̃

region on a particular field (and thus the global sensor) can be much broader than

intended. Therefore, the effective broadening factor, βeff , is larger than the prescribed

broadening factor.

To exemplify this influence, Figure 5.27 shows the radial distribution of the temporally

averaged global flame sensor for the three simulations discussed at the beginning of

Section 5.4.2. In addition to this, the figure also shows the global sensor distribution

for the case where ζ(i) = c̃. The spatial distributions of the traditional and broadened

sensor in the case of ζ(i) = c̃ are quite different, yet the global sensor determined in the

TSF framework with these two sensors is effectively identical.

Comparatively, the Arrhenius sensor shows a slightly narrower profile with a much slower

broadening of the sensor with downstream location. Interestingly, this figure highlights

the principle difference between the broadened sensors and the Arrhenius rate sensors.

In the near field, the reaction rate is lower than in the downstream location and as a
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consequence, the sensor profile is narrower compared the broadened sensors which use

a geometric interpretation of the flame to establish activation. The result is that the

flame sensor is located preferentially towards c̃ = 1, however, even with this preferential

position, the artificial broadening of this sensor is sufficiently large such that the benefit

of a reaction rate based sensor is mostly hidden. These slight differences between the

Arrhenius sensor and the others may justify the diminishing (although minor) differences

seen in Figures 5.24 and 5.25.

From the results of the TSF simulations and the distribution of points within the scatter

plots in Figure 5.26, it can be concluded that apart from the Arrhenius rate sensor in

the near-field, due to the dispersion of the fields and the max operator, the sensors are

artificially broadened to the point that the choice of sensor becomes inconsequential.

This artificial broadening has the effect that as it increases, the solution will approach

the limiting case were no sensor is used; globally, Ω = 1. This limiting behaviour can

be seen in the scatter plots for the broadened and Arrhenius rate sensors with increased

broadening factors shown in Figure 5.28. Irrespective of how broad the sensor is set

locally on the field, the resultant clustering of point at Ω = 1 spans a broader progress

variable range.

As a consequence of this, the effect of increasing the broadening factor on the solution

is that it is expected to asymptotically approach the no-sensor solution. For example,

the effect of modifying the broadening factor in the Arrhenius rate sensor is shown in

Figure 5.29 and as expected, as the broadening factor approaches infinity, the results

approach the no-sensor solution.

5.4.4 Comparison to ATF

Artificially Thickened Flame simulations were conducted and compared to the results of

the TSF simulations. The objective of these set of simulations was not to scrutinise the

underlying numerical models of the ATF or the ATF’s ability to model this particular

flame as this has already been conveyed in a previous work [46]. Instead these simulations

simply provide a basis of comparison to the proposed TSF methodology.
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Figure 5.28: Scatter plot of global flame sensor and progress variable of a single field
comparing broadening factors for the F1 Flame

The ATF simulations were conducted with the exact same numerical configurations as

the TSF simulations presented in Section 5.4.2 using the traditional sensor. The main

differences in the ATF simulations relative to the TSF simulations were:

1. The absence of the max operation in the flame sensors

2. A constant thickening factor of 12 was used instead of a variable thickening factor

as in the TSF

In the ATF simulations, the efficiency function of Charlette et al. [14] was used, with

β in Equation 3.9 taking on a value of 0.5 as suggested in [14]. The sub-filter scale

velocity fluctuations required to evaluate Equation 3.9 were determined with the ATF

scale equivalent of Equation 5.11 [22]. The results of the simulations are shown in

Figure 5.31 for the F1 and in Figure 5.30 for the F3.
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Figure 5.29: Comparison of effect of modification of β2 in the Arrhenius rate sensor
for the F1 Flame with TSF
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Figure 5.30: Radial distributions of the time-averaged carbon dioxide mass fraction
〈ỸCO2

〉 and oxygen mass fraction 〈ỸO2
〉 at various axial locations comparing ATF with

TSF for the F3 Flame
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Figure 5.31: Radial distributions of the time-averaged carbon dioxide mass fraction
〈ỸCO2〉 and oxygen mass fraction 〈ỸO2〉 at various axial locations comparing ATF with

TSF for the F1 Flame

Apart from CO2 which was also difficult to capture in the TSF and un-thickened SF

simulations, the agreement between ATF and TSF is very good across both flames

which give credence to the proposed TSF framework. The under-predicted flame height

of the ATF simulations shown here can be explained by the choice of β. In the ATF

simulations of [46] a dynamic β formulation was used and the authors obtained excellent

results for all the flames (F1-F3). To illustrate the benefit of their method over the use

of a constant β, they also conducted additional simulations with a constant β of 0.2.

The results of this particular simulation resulted in an over-predicted flame height and

overall under-predicted product mass fraction compared to the dynamic formulation.

To assess the impact of β on the ATF predictions within the numerical configuration

used here, an additional simulation of the F3 flame using β = 0.2 was also conducted

and the results are shown in Figure 5.32. Similar to the results of [46], setting β = 0.2

resulted in a longer flame and under-estimated product mass fraction with respect to

the β = 0.5 results. However, the results in general are in better agreement with

experimental measurements, and closer to the predictions of the TSF framework. This
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Figure 5.32: Radial distributions of the time-averaged carbon dioxide mass fraction
〈ỸCO2〉 and water vapour mass fraction 〈ỸO2〉 at various axial locations comparing the

the effect of different values of β in Equation 3.9 for the F3 Flame

comparison highlights the sensitivity of the ATF method to the choice of β and the

benefit of implementing a dynamic formulation.

In addition to the comparison of different values of β, additional ATF simulations were

conducted using the three sensors described above to observe if they resulted in more

substantial differences in predictions from those seen in the TSF simulations. From

Figure 5.33,even in the absence of the max operation, it can be seen that although

some differences can be observed closer to the jet rim, there is still a minor impact

on the simulation predictions with the Arrhenius rate sensor giving arguably the best

results. Therefore, the reintroduction of the max operation in the flame sensor (and

the broadening of the thicken region as a consequence) used in the TSF framework may

explain the indistinguishable results seen for the TSF sensor comparisons.
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Figure 5.33: Radial distributions of the time-averaged carbon dioxide mass fraction
〈ỸCO2〉 and water vapour mass fraction 〈ỸO2〉 at various axial locations comparing the

the effect of different flame sensors with ATF for the F1 Flame
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5.5 Conclusions

Full-resolution stochastic fields simulations are not currently available due to prohibitive

computational effort required. Such fully-resolved stochastic fields simulations of pre-

mixed turbulent combustion will be facilitated by application of AMR approaches, how-

ever introduction of AMR-stochastic fields LES is beyond the scope of this study. In-

stead, in this chapter, a thickened Stochastic Fields (TSF) approach was proposed. This

modelling approach seeks to ensure adequate numerical resolution of the stochastic fields

equation in premixed turbulent combustion with reduced computation time. This frame-

work bridges between the conventional stochastic fields and conventional Thickened-

Flame approaches depending on the sub-grid combustion regime and the numerical grid

spacing utilised. In the limit of full-resolution, it converges towards Direct Numerical

Simulation. A method for determining the thickening factor required and an efficiency

function model are provided based on data from one-dimensional stochastic fields simula-

tions of freely-propagating turbulent premixed flames. The efficiency function accounts

for the loss of resolved flame surface area caused by applying the thickening transfor-

mation to the stochastic fields equations. The numerical implementation of the TSF

approach requires only a minor modification of any stochastic fields code.

Included in the thickened stochastic fields approach presented was a new form of “global”

flame sensor specific to this framework that ensured consistency between the thicken-

ing factor seen by the a stochastic fields and potentially thickened LES momentum

equations. This new global flame sensor maintained the limiting behaviour of the TSF

framework while allowing the use of any form of flame sensor previously used in conven-

tional Artificially Thickened Flame (ATF) simulations.

In addition to the global sensor, a new flame sensor was proposed that modified a

previously established sensor based on a reaction rate formulation. The reaction rate

used to trigger the activation of the sensor proposed here is that of a one-step global

reaction as opposed to a general Arrhenius rate expression. The formulation presented

allows this sensor to be used with arbitrary chemical mechanisms and ensures that the

flame sensor is activated in the correct regions without the need for excessive tuning.

The benefit of reaction rate based sensors over geometrically activated sensors is that

they inherently account for changes in composition that may reduce local thickening

requirements.
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The TSF approach was tested by performing LES of a laboratory Bunsen flame. The

results demonstrated that the TSF method avoids numerical errors arising in stochastic

fields simulations where the grid spacing is set equal to the filter scale, and produces

results that agree closely with the experimental measurements when a flame sensor

is introduced. The thickening factor required in the TSF approach is generally less

than in the conventional ATF approach, and this promises superior modelling of flame-

turbulence interactions compared to the ATF approach. The TSF approach therefore

may permit numerically-accurate simulation of industrially-relevant premixed combus-

tion systems with several orders of magnitude fewer grid points than are required for

accurate solution of the un-thickened stochastic fields approach.

In addition to verifying the baseline TSF approach, it’s sensitivity to the choice of flame

sensor and broadening factor were investigated. It was seen that due to the proposed

form of the global flame sensor and the sub-filter dispersion of the fields, the global

flame sensor was artificially broadened to levels above those prescribed. Even with

small nominal broadening factors, the amount of artificial broadening was substantial

enough to yield TSF solutions what were effectively independent of the choice of flame

sensor. Increasing the broadening factor had the undesirable effect that it pushed the

solution towards that of one with no sensor. As such, it is recommended that the choice

of sensor and broadening factor be based on the desired behaviour of the sensor to be

recovered as the sub-filter variance approaches zero. For the broadened sensor, β1 = 3.81

is recommended, and for the Arrhenius rate sensor, β1 = 2.6.

Overall the TSF predictions are in good agreement with experiment. The simple addi-

tion of thickening terms in the TSF equation thereby yields a computationally-efficient

and accurate alternative to full-resolution stochastic fields simulations, which remain

computationally prohibitive without adoption of AMR techniques.
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Conclusion and Future Work

This thesis provided initial insight into resolution requirements of Stochastic Fields for

modelling of turbulent premixed combustion. In Chapter 4, numerical resolution re-

quirements with the Itô interpretation of the Stochastic Fields framework were investi-

gated. Three different test cases were simulated. First, one-dimensional simulations were

conducted for a range of filter widths, Karlovitz numbers, and two numerical grid reso-

lutions. The purpose of these simulations was to establish a relationship between these

flame characterising parameters and the average resolution (requirements) of a stochas-

tic fields. It was shown that under certain conditions, for numerically well-resolved

stochastic field simulations, a stochastic field thickness can approach the laminar flame

thickness and that setting the grid spacing equal to the filter width (which is commonly

employed in LES) can lead to substantial errors in predicted flame speed.

This investigation into numerical resolution requirements was extended into 3D LES

simulations of a laboratory Bunsen flame. Similar to the one-dimensional simulations,

effects of resolution in this configuration were investigated by fixing the filter width and

modifying the underlying numerical grid spacing. It was shown that for the lowest (and

to a lesser extent the highest) Reynolds number Bunsen flame solution was not numer-

ically accurate by setting the grid spacing equal to the filter width and that the scalar

fields were more effected by numerical resolution than the velocity field. Additionally,

it was shown that numerical thickening introduced from under-resolution led to reduced

generation of flame surface and consequently, a reduction in total turbulent flame speed.

157
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To remove any uncertainty associated with the imposition of boundary conditions used

in the laboratory Bunsen flame simulations, a final simulation set of a statistically planar

flame propagating in isotropic decaying turbulence was performed. Two filter widths

were tested along with two numerical grid resolutions for a total of four numerical

configurations. The effects of setting the grid spacing equal the the filter width confirmed

the observation of both the one-dimensional and 3D Bunsen flame studies. The transient

nature of these simulations highlighted an additional effect of numerical diffusion; that

the numerical thickening of flame lead to a slower flame response to the initial turbulent

field and a lag to its overall evolution. For the improved resolution cases at different

filter widths, the differences in the total flame speed predictions also indicated possible

inaccuracies of the established closures (IEM and gradient transport) of the stochastic

field model.

From the observations of Chapter 4, the established resolution requirements (specifically

at low Ka numbers) are too great for practical use. Chapter 5 introduced a thickened

stochastic field framework as a potential method to provide a numerically accurate

solution and avoid the excessive computational cost of fully resolved stochastic field

simulations.

A method for calculating the thickening factor and efficiency function required in the

proposed thickened stochastic field framework was presented. The efficiency function

was developed empirically from a series of one-dimensional stochastic fields simulations

of freely-propagating turbulent premixed flames. Simulations of the laboratory Bunsen

flame were used as initial validation. The results showed good agreement with exper-

iment except for excessive thickening in regions of pure mixing which was expected.

Additional validation was conducted by comparing the thickened stochastic field results

with results from simulations using the artificially thickened flame model. The results of

the two modelling approaches yielded similar results providing confidence in the general

approach of the thickened stochastic field framework. It was shown that the thicken-

ing factor required in the thickened stochastic fields approach is generally less than in

the conventional Artificially Thickened Flame approach while still providing comparable

results.

To mitigate this excessive mixing, a global flame sensor specific to the thickened stochas-

tic fields framework was developed and applied to the initial formulation. This sensor
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ensures consistency between the thickening factor seen by the all stochastic fields and a

potentially thickened LES momentum field while still maintaining the underlying effect

from the addition of established flame sensors. The results of the thickened stochastic

field simulations with this flame sensor drastically improved the agreement with exper-

iment. Within the application of this global sensor, the effect of various flame sensors

commonly used in the Artificially Thickened Flame approach were compared. Addi-

tionally, a variation to a reaction rate sensor based off a Arrhenius rate expression was

developed and tested. It was determined that due to the dispersion of the Stochastic

Fields and the nature of the global flame sensor, the thickened stochastic field solution

was effectively independent of the choice of flame sensor. It was therefore recommended

to use the thickening factor requiring the least computational effort in conjunction with

nominal broadening factors when generating the global flame sensor.

6.1 Future Work

Stratonovich versus Itô interpretations

In this work, only the Itô interpretation of the Stochastic Field framework was in-

vestigated. Even though the Stratonovich and Itô interpretations are mathematically

equivalent, they produce different discretised forms of the SPDE and require different

numerical implementations and algorithms to adhere to the underlying stochastic calcu-

lus used in their derivations (see [77]). This implies that numerical errors may propagate

through the solution differently yielding different numerical behaviour. Although pre-

liminary work on passive scalars has shown the results to be quite similar, how the

errors manifest themselves (if at all) between the two interpretations in the context of

under-resolved premixed combustion remains to be investigated.

Comparison of Low and High Reynolds number Stochastic Field Models

In Section 4.1.6 the 1998 [23] and 2015 [24] stochastic field formulations were briefly

compared. This study illustrated that for the conditions present in the 3D LES con-

ducted in this study, the choice of model was insignificant to the results. However, the
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one-dimensional study highlighted that at moderate-to-low (sub-filter) Reynolds num-

ber, the choice of formulation yields a different flame speed predictions. If stochastic

fields is to be extended to industrially relevant simulations, this particular regime, the

choice of model, and the influence of micromixing models requires further investigation.

Adaptive Statistical Resolution

To further reduce the computation cost of Stochastic Fields simulation and ensure a

statistically converged solution, an additional Stochastic Fields formulation can be de-

veloped that enables local adaptation of the number of stochastic fields used to evaluate

statistics. This approach is highly advantageous because varying statistical sample sizes

would be required/expected in the vicinity of the flame front which may only be in a

small region of a combustor. This would further facilitate the accurate and computa-

tionally feasible application of the Stochastic Fields approach to industrially-relevant

combustion systems. A description of the methodology and preliminary framework is

presented in Appendix A.

Micromixing

In this work, different closures for the micromixing term in the Stochastic Field frame-

work were not investigated. Turbulent premixed LES simulations to date have shown a

lack of sensitivity to how Cφ is modelled. However, it is expected that to facilitate the

extension of Stochastic Fields into industrially-relevant combustion systems that may

exhibit more flamelet like combustion, a more rigorous and in-depth investigation into

micromixing closures required at different premixed combustion regimes is necessary. A

possible 3D test case for this investigation would be that of the Kobayashi Bunsen flame

[112, 113].
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Appendix A

Adaptive Statistical Resolution

This Appendix provides a conceptual overview of a potential approach for controlling

the statistical uncertainty of stochastic field simulations and reducing the computational

cost by varying the number of fields though the solution domain. The number of samples

in a Monte-Carlo PDF simulation should always be sufficient to give a converged and

unbiased estimate of the statistics of the PDF at all points in the flow. However, the

number of samples required to give a converged estimate is likely to depend on the local

(sub-filter) PDF, but the local (sub-filter) PDF may vary throughout the flow domain.

For example, in the previous chapters it was shown that the analysed Bunsen flame [92]

had a varying combustion regime along its length due to the decay of velocity RMS;

close to the jet inlet, the flame was best described by the thickened flame regime which

may exhibit lower local (sub-filter) variance than farther downstream where the flow

was characterised to be more flamelet-like.

The variation of composition variables such as mass fraction depends on the local flow,

mixing, and combustion characteristics and, in the case of LES, the filter size. The sub-

filter variance of the composition variable is expected to vary based on the combustion

regime; as the Damköhler number increases and the combustion regime moves towards

the flamelet regime, the sub-filter variance tends towards a maximum of the order c(1−c).
As the Damköhler number decreases, the sub-grid variance is expected to tend towards

a minimum. The minimum number of stochastic fields required in a simulation should

be sufficient to statistically resolve the highest Damköhler regime (or largest (sub-filter)

variance) experienced in the flow as generally, a larger sample size would be required to

estimate statistics of a PDF with a larger sub-filter variance. Currently, the constant

number of fields would be used throughout the simulation domain, meaning that, in

regions with lower sub-filter variances, the number of fields is greater than necessary.
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A.1 General Approach

The general approach of the Adaptive Statistical Resolution method is to locally estimate

the minimum number of samples required to obtain an adequate statistical prediction

by stochastic fields to a specified uncertainty level in both space and time. With this

estimate, the number of stochastic fields (or samples) can be modified to provide a

pre-determined, user-defined uncertainty level. This modulation of the number of fields

reduces the computational cost of a simulation with respect to an equivalent, statistically

resolved, constant field number simulation.

The metric used to estimate the statistical uncertainty of the stochastic fields predictions

should also provide a sample number required to obtain the target uncertainty. To

avoid simply replacing the computational saving from a reduction of stochastic field

number with other forms of complex and demanding computations, the metric used

to determine this uncertainty should be available from the stochastic fields themselves.

During simulation, active control of the statistical resolution is achieved by comparing

the required number of fields to the current number of fields being solved at a particular

spatial location.

An example of the resultant process is shown schematically in Figure A.1 where the

number of fields available for use in a simulation are indicated by a dashed black line.

In this figure, the current active number of fields being solved is indicated by the green

dashed line at 8 fields. If at a given spatial position (or time), the number of required

fields is determined to be below the current active number (8), but above the level below

(4), no adaptation is required as the target minimum statistical resolution is surpassed.

If the number of required fields is greater than that of the current number (> 8) or

less than number of the level below (< 4), then a “zone” is formed, here defined as a

transition region, where active control of the statistical resolution occurs.

The transition regions should be constructed in such a way that the termination of the

transition zone occurs at the spatial location where the increased/decreased field number

is required and should always stretch into the direction of statistical over-resolution.

Active control of the statistical resolution within the transition regions occurs through

smooth (de)merging of fields. Therefore, the transition regions defines the boundaries

where spatial (de)merging of fields initialises and terminates. In Figure A.1, line N1

illustrates a merging process, and N2 a field demerging process; the shaded regions

indicate where the transition regions would likely be required. The general effect of the

spatial adaptation of field number ensures the statistical uncertainty of the stochastic

field simulation meets a minimum requirement over the entire simulation domain.
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Figure A.1: Schematic evolution of field number through transition regions.
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Figure A.2: Schematic of merging of fields though the transition zone

Within these transition regions, pairs of fields that are selected to merge are gradu-

ally relaxed towards their pairwise mean on a predetermined merging timescale. The

magnitude of the timescale can be arbitrary but should be related to the width of the

transition region required. Therefore, in Figure A.1, Z1 will likely have a larger merging

timescale than Z2 and Z3.

A one-dimensional schematic representation of the merging process within a transition

region is shown in Figure A.2. The merging of the fields is formulated in such a way that
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arbitrarily-selected pairs of fields are smoothly brought together through the transition

zone, gradually increasing their correlation until they become identical, and can be

solved by a single field.

Merging of fields reduces the overall scalar variance, and it is therefore analogous to the

micromixing term in the stochastic fields equation. In order to avoid excessive variance

dissipation during the merging and demerging processes, it is proposed that the mixing

rate applied in the micromixing model should be reduced in order to give the overall

scalar dissipation rate intended.

A.2 Preliminary Framework and Implementation

A.2.1 Structure of Merging Tree

The current proposed methodology for field adaptation enables only 2n fields to be solved

at a particular spatial location at a given time. The maximum number of “levels” of

merging is determined from the maximum number of fields (Nmax) and by the power of

two exponent nmax to obtain it. As such any level can be described by this procedure.

For example, in Figure A.3, level 3 corresponds to 8 fields and level 2, 4 fields, etc.

The choice of maximum number of fields is currently arbitrary and may be determined

automatically and/or adapted temporally, or may be imposed by the user based on the

computational resource available.

The various levels are sorted in ascending order such that the during initial stages of

the simulation, a specified level is chosen as the starting level (nstart) corresponding to

2nstart active fields. Relative to the current level, a field one level above corresponds to

a parent field, and fields below correspond to the child fields. For example, SF 1.1 is the

parent of SF 2.1, and SF 3.1 and 3.2 are the children of SF 2.1. The fields are distributed

in such a way that every field has one parent and every parent has 2 children.

At every iteration, every field on all the levels are assigned their own dichotomic random

variate (+1 or -1) for use in evaluation of the Wiener increment even if that level is not

active at that particular point in space (dashed circles in Figure A.3).

On every level of the tree at every time step, dichotomic random variates for the Wiener

terms are drawn without replacement from a set of numbers containing n/2 occurrences

of -1 and n/2 occurrences of +1, such that the zero mean and unity variance conditions

is enforced at every level of the tree.

In the example case of Figure A.3, it can be seen that every individual level (and thus all

levels cumulatively) possess zero mean and unity variance. It should also be mentioned
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that structure of the merge tree is fixed throughout the simulation domain. This avoids

difficulties in the situation where separate regions with the same number of fields come

together during the simulation.
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Figure A.3: Wiener term distributions of all fields at every level

A.2.2 Merging of Fields

For simplicity in the initial formulation, when it is determined that fields should be

merged, an entire level is merged. Although this removes the ability for finer control

of statistical uncertainty, it greatly simplifies the merging process and the numerical

implementation.

Prior to merging, the two sibling fields have independent random variates and, after

merging, they must have the same random variate (i.e. that of their parent). It is

then necessary to devise a scheme for setting the Wiener increment for the two sibling

fields during a merge or demerge process such that the overall requirement of zero mean

and unity variance is enforced throughout the transition process. Additionally, it is

preferable that the cumulative contribution of the random variates approximates the

normal distribution of the Wiener process implied in the derivation of the stochastic

fields equation.

The idea behind merging siblings is that throughout the merging process, the siblings

will gradually inherit the Wiener term increment value of their parent. The result is a

gradual blending of Wiener term increments from one level to the other while keeping

the zero mean/unity variance satisfied.
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A.3 Preliminary Formulation

A.3.1 Merging Progress - α

Within the transition regions the random variates applied to the the merging fields, ξi′n

are taken as a weighted sum of the random variates of the child, ξin, and of its parent,

ξp(i) (where superscript i is the index of the child and p(i) is the index of the parent of

field i). Thus, the merging of the random variates is specified by parameter α, so that

the both children adopt the variate of their parent when α = 1, as given by

ξi′n =
[
(1− α)ξin + αξp(i)

]
. (A.1)

Since the random variates at each level of the tree have zero mean, the weighted sum of

variates between levels is also guaranteed to have zero mean, however the variance is no

longer necessarily equal to unity. A factor f is introduced in Equation A.1 in order to

ensure unity variance. This yields

ξi′n =
[
(1− α)ξin + αξp(i)

]
f. (A.2)

The expression for f can be obtained by taking the expectation of the variance of

Equation A.2 and yields results in an expression

1

f2
=

1

2n

2n∑

i=1

(ξi′)2 = (1− α)2 + α2 +
1

2n
α(1− α)

2n∑

i=1

ξiξp(i). (A.3)

together, the two equations yield

ξin
′
=

[
(1− α) ξin + αξp(i)

]
√

(1− α)2 + α2 + α (1− α) 1
2n
∑2n

i=1 ξ
i
nξ
p(i) + ε

, (A.4)

In the rare case that α = 0.5 and every child has an equal but opposite random variate

to its parent, f = 1/0. Strictly, Equation A.3 remains defined and takes a value of zero

in this limit, however a small parameter ε may be added in order to avoid computational

difficulties due to rounding errors.
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A.3.2 Merging Function

The evolution of a scalar composition for pairwise mixing models can be defined in terms

of an interaction matrix (Mij) by

dφiα
dt

= − 1

wi

N∑

j=1

Mi,jφα,j (A.5)

where N is the number of the particles or fields and wi their weight. For the IEM model

used in this work, the interaction matrix coefficients are

M IEM
i,i =

Cφ
2τIEM

(1− wi)wi,

M IEM
i,j = − Cφ

2τIEM
wjwi, i 6= j,

where it can be readily shown that this interaction matrix satisfies all the criteria of

pairwise-exchange models given in Section 3.2.2. For this adaptive field method, in the

transition regions, the process of merging fields is achieved through a similar pairwise

exchange between selected fields.

The pairwise exchange between fields leading to merging can be described through an

interaction matrix, Mn, that describes the merging of fields at an arbitrary level n.

The coefficients in this new matrix include the effects of both micromixing (MM ) and

merging. The coefficients are

Mn
i,j =

[
MM
i,j +

1

2τmerge

(
1− 2n−1wi

)
wi

]
δnj , i = j

Mn
i,j = −

[
MM
i,j +

2n−1wjwi
2τmerge

max
(
δi−2nmax−n,j , δi,j−2nmax−n

)]
δnj i 6= j (A.6)

where the field weighting at level n is given by

wi =
1

2n
, (A.7)

and δnj represents a “switch” on level n which takes on a value of unity when the value

of index j is that of an active field. It ensures that only active fields have coefficients

within in the interaction matrix at the corresponding level. This switch is given by

δnj =

2n∑

α=1

δ1+α2nmax−n−j,1. (A.8)

The max of Kronecker deltas in Equation A.6 ensure that the correct pairs of fields

are interacting (merging) with each other equally at level n. It also ensures that the
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interaction matrix remains symmetric satisfying the conservation of means, variance

decay, and boundness criteria.

The micromixing contribution can be descried by any pairwise exchange micromixing

model. Since the IEM is used in this thesis, it is used to complete the formulation. The

interaction matrix in the transition zones with IEM micromixing model then becomes

Mn
i,j =

[
Cφ

2τIEM
(1− wi)wi +

1

2τmerge

(
1− 2n−1wi

)
wi

]
δnj , i = j

Mn
i,j = −

[
Cφ

2τIEM
wjwi +

2n−1wjwi
2τmerge

max
(
δi−2nmax−n,j , δi,j−2nmax−n

)]
δnj . i 6= j (A.9)

Through Equation A.5, evolution equation of for the i − th scalar α at level n can be

determined. The evolution equation becomes

∂φnα,i
∂t

=

[
− Cφ

2τIEM

(
φnα,i − 〈φnα〉

)
− 1

2τmerge

(
φnα,i − 〈φnα〉i,ip

)]
δni . (A.10)

This equation implies that within the transition zone, if the field is active, it will be

merging and (micro) mixing. This is consistent with the current merging strategy and

can be seen from Figure A.3. In Equation A.10, 〈φα〉 is the mean of all active fields and

〈φα〉i,ip is the pairwise mean of merging fields i and its pair ip = i+ 2nmax−n

〈φα〉ij =
φα,i + φα,i+2nmax−n

2
. (A.11)

A.3.3 Merging Timescale

Note: The formulation in this sub-section has been provided as a contribution from Dr.

Richardson and does not reflect work completed by the author.

The effect of the (de)merging of fields is to modify the total scalar dissipation rate.

Therefore, within the transition regions the total scalar dissipation rate needs to be at

the correct value to that which would occur in the absence of any (de)merging. Given a

model for the scalar dissipation rate (ωχ), and a specified the merging frequency (ωT )

scale, the required micromixing timescale can be determined. For a single scalar (Y),

the turbulent mixing frequency for the IEM (for example) is given as

ωM =
−1

2∆t
ln




(
φ2
io
− φioφi,ip

)
+
(
φ2
i,ip
− φ2

)
− φ′′o 2

(1 + exp (−2ωχ∆t))
(
φ2
io
− φioφi,ip

)
exp (−2ωT∆t) +

(
φ2
i,ip
− φ2

)


 , (A.12)

where

φi,ip =

(
φi + φip

)

2
. (A.13)
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The maximum allowable value of ωT corresponds to the case ωM → 0, yielding a maxi-

mum transition frequency of

ωTmax =
−1

2∆t
ln




(
φ2
io
− φioφi,ip

)
− φ′′o 2

(1 + exp (−2ωφ∆t))
(
φ2
io
− φioφi,ip

)


 . (A.14)

A.4 Outstanding Work

This Appendix presented an conceptual framework for the spatial adaption of statistical

resolution. Additional work is required to develop a full mathematical description of the

proposed method. The outstanding work is primarily in two areas:

1. The establishment of a criterion that determines the required field num-

ber: The premise of this function is to establish (and be able to quantify) an

acceptable numerical uncertainty that allows the flow physics of interest to be

captured accurately. This particular item will likely be derived as some function

of the standard error of the instantaneous statistics of the stochastic fields or pos-

sibly as a ratio between the instantaneous variance and the maximum expected.

2. The establishment of the transition regions: Establishing the transition

regions in the domain will require knowledge of how the imposed field number is

required to change throughout the computational domain. Based on the spatial (or

temporal) gradients of statistical uncertainty, the transition regions will need to

be constructed accordingly. The size of the transition zone will directly influence

the merging timescales imposed on the merging fields.





Appendix B

Statistical Convergence of

Stochastic Fields

In this Appendix the influence of the sample number on the stochastic field solution

is investigated. This is in order to quantify the level of uncertainty associated with a

given stochastic field number across a range of different premixed combustion configura-

tions. To achieve this, two different cases are analysed: a one-dimensional statistically

stationary case and a 3D non-statistically stationary case.

In statistically stationary flows, sampling errors associated with lower sample number

are not expected to be influential to the predictions of expectations as long as the method

can be proven to be truly unbiased. In the stochastic field framework, confidence in the

statistical predictions with a low field number can be obtained through increasing the

sampling time. In non-statistically stationary cases such as in an internal combustion

engine cycle, sampling errors may lead to errors in instantaneous turbulent flame speed

predictions which affect the time-evolving properties of the flame.

B.1 One-dimensional Simulation

In order to investigate the effect of sample size on the stochastic field solution, one-

dimensional simulations are conducted for a range of premixed combustion regimes.

Contrary to the one-dimensional study conducted in Chapter 4, here, the grid spacing

is held constant, and the number of stochastic field are varied. In order to maintain

consistency with the findings of the previous chapters and to isolate the influence of

sample size, the one-dimensional simulations conducted are sufficiently well resolved and

numerically accurate with approximately 16 grid points resolving the average stochastic

183
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field reaction-front. The conditions simulated in the one-dimensional configuration are

shown in Table B.1.

Table B.1: Simulation Configuration

Ka 0.5, 5, 50, 500

L∗/δth 1, 10

Number of stochastic fields 4, 8, 16, 32, 64, 128, 256, 512

The turbulent (sub-filter) flame speed is of primary importance in premixed combustion

modelling. As such the statistical convergence of the simulations was analysed though

comparison of the expectation of this parameter. The time-averaged flame speed was

calculated as in Equation 4.10 in Chapter 4. The results presented are normalised by

the flame speed obtained with 512 fields for the corresponding case. This was done to be

able to better visualise and compare convergence, and because 512 fields was deemed to

be an unrealistic maximum number of fields to be used in practical 3D simulations; it is

currently computationally infeasible to use more. Results of the simulations are shown

in Figure B.1.
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Figure B.1: Statistical convergence represented through normalised sub-filter flame
speed at various Karlovitz numbers for: ∆/δL = 1 (left) and ∆/δL = 10 (right)

From this figure, it can be seen that the predictions of sub-filter flame speed are very

much dependant on the field number. Nevertheless, the general trends observed are

in line with the expected behaviour outlined at the beginning of Appendix A, namely:

the number of required fields increases for decreasing Karlovitz number at a fixed filter

width, and increases with filter size at a fixed Karlovitz number.

From the one-dimensional simulations it can be seen that the field number introduces

bias to the stochastic field solution. This behaviour was not observed in the introductory
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Figure B.2: Expectation of the mean scalar magnitude at two different spatial loca-
tions as a function of stochastic field number for the plug-flow reactor case [114]

work of [23] and [25] that presented the stochastic field variant of the plug-flow reactor

test case used in [114] for the Lagrangian PDF framework. It is expected that this

bias in the one-dimensional simulations presented here is a consequence of the coupling

between the scalar (stochastic) fields and the momentum fields which is not present in

the test case of [114]; a constant density and velocity were assumed.

To show this effect, the non-linear source term plug-flow reactor case from [114] was

simulated with a numerically accurate grid spacing (∆x = 0.012). The expectations

were obtained by repeated simulation of the case and sampling at 1.5s until the smallest

change in successive scalar expectations was below 0.5%. The results for the expectation

of the mean scalar magnitude at two different spatial locations is presented in Figure B.2.

From this figure, it can be seen that the expectation of the scalar magnitude is inde-

pendent of field number. It can therefore be expected that similar constant density

conditions applied to the one-dimensional premixed flame calculations will yield similar

statistical convergence behaviour.

Indeed, as seen from Figure B.3 the constant density premixed flame calculation com-

pared to an equivalent variable density simulation shows vastly different behaviour. For

the constant density case, all the stochastic fields predict a flame speed within 0.5% of

the flame speed predicted by 512 fields.
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Figure B.3: Comparison of statistical convergence for ∆/δL = 10 at Ka=5 for con-
stant and variable density

B.2 3D LES Statistical Convergence

One of the few investigations on the effect of field number in 3D LES-stochastic field

simulations was conducted by Dodoulas [74] for the Bunsen flames of Chen et al. [92]. It

is therefore not repeated in this work. From that statistical convergence study, although

the differences were not substantial, it was shown that there was a difference in statistical

moment predictions by stochastic fields between using 4 and 16 fields. In this section a

statistical convergence analysis is conducted on the statistically-planar flame in isotropic

decaying turbulence outlined in Section 4.3.

The results for case B f are shown in Figure B.4 and case C f in Figure B.5. In the

results for the case B f, the differences between the solutions of the different number of

stochastic fields is almost negligible although an effect is seen by having a field number

greater than unity. Thus, for this particular configuration, 8 fields can be considered and

acceptable number of fields. Case C f in Figure B.5 on the other hand shows different

behaviour. By simply doubling the filter width, statistical independence is not observed

between the different simulations and more fields may be required in excess of 64.

The results for the simulations with ∆ = ∆x are shown in Figure B.6 for case B c and

Figure B.7 for C c. The results for this set of simulations is more interesting. In case
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Figure B.4: Statistical convergence study of case B f. Left: Temporal evolution of
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Figure B.5: Statistical convergence study of case C f. Left: Temporal evolution of
normalised turbulent flame speed (lines) and turbulent surface area (symbols). Right:
non-dimensional mean flame brush thickness (lines) and mean stochastic field thickness

(symbols)

B c the simulations show very compelling convergence between using 8 and 16 fields,

with a marginal difference in results obtained by using 1 field. For the larger filter width

of case C c, there appears to be almost no influence of stochastic fields on the evolution

of flame speed. In this particular case, the conclusion would be that 1 field would be

sufficient.
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Figure B.7: Statistical convergence study of case C c. Left: Temporal evolution of
normalised turbulent flame speed (lines) and turbulent surface area (symbols). Right:
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B.3 Conclusion

From this brief investigation into statistical convergence of stochastic fields it can be

seen that when setting the filter width equal to the grid spacing, numerical dissipation

contributes to the scalar dissipation rate, un-naturally reducing the sub-filter variance

and thus, field requirements.

However, from the numerically accurate simulations, this is not seen to be the case.

It was shown that the number of stochastic fields required in a simulation to give a

statistically converged solution will vary depending on the sub-filter combustion regime.

The number of fields required will depend on what is deemed to be “converged” but for



Appendix B Statistical Convergence of Stochastic Fields 189

increasingly flamelet sub-filter combustion regimes, the field requirement may be on the

order of 256 fields.
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