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ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

A BAYESIAN APPROACH TO CHARACTERIZE FOLD CHANGE DETECTION

IN DICTYOSTELIUM DISCOIDEUM

by Muhammad Shahreeza Safiruz Bin Kassim

The survivability of Dictyostelium cells is highly dependent on how cells sense and re-

sponse to cyclic-AMP chemoattractant. A key factor in the sense-response mechanism is

a feature called ‘fold change detection’ (FCD), where cells response to the fold changes

in stimulus as opposed to its absolute values. Studies have proposed models of the

signalling pathway for the sense-response mechanism and skeletal network motifs that

exhibit FCD. However, FCD properties in models of sense-response mechanism com-

patible with experiments that exhibit FCD are poorly understood. In this thesis, we

characterize the properties of FCD of Dictyostelium cells by using a mathematical model

of experiments that incorporates biochemical variables of the signalling pathway. We

created a population of virtual cells by estimating posterior distributions of the model

parameters using a Bayesian method. We studied the responses of the virtual cells to

various fold changes in stimulus and found that the population of cells is more consis-

tent in sensing lower fold changes. By computing the overlapping areas of distribution

of responses we found that the population of cells can distinguish lower fold changes

better than higher fold changes. We propose a hyperbolic equation to describe the

stimulus-response relation with a logarithmic relation to characterize the uncertainties

of the stimulus. We inferred the posterior probability of detecting fold changes using

Bayes’ theorem and introduce a novel model of prior probability of fold changes. We

found that the chances of detecting lower fold changes is higher and posteriors are biased

strongly by the conditional probability. To derive the population of cells’ perception of

fold change, a Bayesian Observer model is constructed and evaluated. It is found that

the population of cells perceive uncertainties of lower fold changes better than higher

fold changes. There is also a stark difference between perceptions derived from priors

modelled from chemotaxis experiment and priors from known families of distribution.

We quantified the biases in the perceptions and discovered that biases are more promi-

nent in higher fold changes. The fold distinguishability threshold is also evaluated and

its relation with the perceptual bias examined. Our work shows that the characteriza-

tion of FCD in models of sense-response mechanism can derive theoretical insights not

seen in experiments and impose constraints for model selection.
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Chapter 1

Introduction

1.1 Motivation

Biological systems respond dynamically to changes in their surrounding environment.

For example, cells can sense molecular stimuli using transmembrane protein based re-

ceptors and respond via signalling pathways by transcribing genes, synthesizing enzymes

or by changing their shapes for motility. Fascinatingly, the complex sense-response be-

haviour observed are often executed with only a handful of chemical species and without

the need of a central nervous system (CNS) (Nakagaki, 2001). Moreover the sensing pro-

cess takes place is an environment surrounded by elements of uncertainty such as the

fluctuating levels of proteins since gene expression is a stochastic process. Hence, the

key question of ‘How exactly do biological systems and biological cells in particular exe-

cute these complex functions under such environments?’ has been a subject studied by

many.

In this thesis, we focus on the sensing of chemoattractant cyclic-adenosine monoph-

sophate (cAMP) molecules by the Dictyostelium Discoideum cells (referred hereafter as

Dictyostelium ). In the pioneering experiment conducted by John T. Bonner 70 years

ago, it is found that starving Dictyostelium cells secreted chemoattractant (cAMP) to

which downstream cells responded by aggregating towards the gradient source (Bon-

ner and Savage, 1947; Konijn et al., 1967). The cellular slime mould uses a molecular

relay where it both secretes and senses the same intracellular and extracellular cAMP

in order to communicate with conspecific cells during the aggregation phase (Dinauer

et al., 1980a). The chemoattractant therefore plays a major role in both cell chemotaxis

and inter-cell signalling where the survival of the species lies on the ability of individual

Dictyostelium cells to sense and secrete cAMP molecules.

1
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The key question one then ask is ‘How does Dictyostelium execute the complex sense-

response of cAMP?’. Given such importance, a considerable amount of literature (re-

viewed in chapter 2) has been dedicated to understand the intracellular biochemical re-

actions of Dictyostelium when stimulated with cAMP. Although the complete signalling

pathway is yet unclear, it has been shown that changes in cAMP elicits a transient

response (Devreotes and Steck, 1979) before returning to pre-stimulus level. This desen-

sitising of cellular response upon prolonged stimulation is a feature called ‘adaptation’

(Dinauer et al., 1980b,c). Adaptation itself is a common property to a wide range of

sensory systems (Koshland, 1974; Sterling and Laughlin, 2015) involving biochemical

and ionic processes.

A more recent experiment has dissected the biochemical signalling network responsible

for cAMP response at specific nodes of the network by fluorescent reporter constructs

in microfluidic chambers where cAMP levels are administered in steps of concentration

changes. The transient response to changes in cAMP is observed in the activation levels

of the Ras protein (RasGTP) (Takeda et al., 2012) before adaptation sets in. It has also

been shown that the molecular agents responsible for chemotaxis (through polarization

and formation of pseudopods) and secretion of intracellular cAMP lies downstream of

this protein’s activation. Therefore understanding the features observed in the upstream

process might be a key to understanding how cell chemotaxis and cAMP signalling is

regulated.

FCD in Dictyostelium

However, adaptation is not a feature observed in isolation. A further quantification of

the amplitude of the transient RasGTP has been described as characteristic of fold-

change detection (FCD) (Takeda et al., 2012; Adler et al., 2014). We describe here a

formal definition of FCD. A response is said to depict FCD if its magnitude depends on

the ratio of two successive input signals (Koshland, 1974), not their difference (Goentoro

and Kirschner, 2009; Shoval et al., 2010). This is shown in more detail in Fig. 1.1A and

Fig 1.1B where (input, output) pairs (x, z) with transient responses due to step changes

in the input from x0 to x1. When two step inputs x0 = 1, x1 = 10 and x1 = 10, x2 = 100

of the same fold change (ratio) F = x1/x0 = x2/x1 but of different absolute values

|x1 − x0| 6= |x2 − x1| are introduced sequentially, a system exhibiting FCD produces

identical responses z that only depends on F (Fig. 1.1B) (Shoval et al., 2011). A system

without this property reacts to the absolute values of inputs and produces output z

where z differs in amplitude, shape or duration for different step inputs (Fig. 1.1A). A

system with FCD is where output z is identical for step inputs of the same fold but yields

distinct responses for different fold inputs. In both the instances shown in Fig. 1.1 the

system shows adaptation to a sustained stimulus. In this thesis the term input-output

and stimulus-response is used interchangeably.



Chapter 1 Introduction 3

Time [T]
100

101

102

lo
g
 x

Time [T]
100

101

102

lo
g
 x

Time [T]
1

2

4
x

Time [T]

z
0O

u
tp

u
t 

z

Time [T]

z
0O

u
tp

u
t 

z

FCD

No FCD

Time [T]

z
0O

u
tp

u
t 

z

FCD

Internal
variables

Input x

Output z

B

Δz=|z-z0|
F=10

F=2

F=10

Input Output

A
F=10

F=10

F=2

Distinct response
for different fold
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outputs z which differs in either amplitude, shape or duration. (B) A system
with FCD has identical output z for both step inputs which can be clearly seen
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Network motifs to explain qualitative behaviour in experiments

From the definition we can see that adaptation is a consequence of FCD. The transient

activation of RasG, which is the earliest measurable signalling event downstream of G

protein activation that eventually leads to chemotaxis and intercellular signalling, has

been shown to display FCD. It is thus natural to further ask what role adaptation and

FCD play in the sense-response mechanism. Indeed, in answering such a qualitative

question, it is not sufficient to only conduct in vitro experiments and map out the

network of signalling molecules and package it into a system of ordinary differential

equations (ODEs) with each variable representing the proteins in the network, as is done

in the field of system biology. A broader objective is to extract the ‘design principles’

that unify different systems that exhibit the same behaviour (Alon, 2007a). This is

made possible due to complex biological networks are often found made of recurring sub

networks of a certain motifs (Milo et al., 2002) and is not entirely random. In principle,

if it is possible to identify a network motif that exhibits adaptation or FCD behaviour

found in Dictyostelium , then other organisms which share a similar network motif can

possibly exhibit the same behaviour (Kashtan et al., 2004). The FCD property after

all is not unique only to Dictyostelium cells but is widely reported in other biological

systems as well including gene expression in the Wnt signalling pathway (Goentoro and

Kirschner, 2009), ERK2 response in cancer cells (Cohen-Saidon et al., 2009) and also

in bacterial chemotaxis (Mesibov et al., 1973; Lazova et al., 2011; Masson et al., 2012;

Edgington and Tindall, 2014). Other studies have reported on the possibility of FCD

in the Rhodobacther sphaeroides chemotaxis (Kojadinovic et al., 2013; Hamadeh et al.,

2013).
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Network motifs for FCD

What are the network motifs suggested for adaptation and FCD ? The design principles

of adaptation (Martiel and Goldbeter, 1987) is already an active area of interest across a

diverse set of organism and systems(Barkai and Leibler, 1997; Yi et al., 2000; Ma et al.,

2009). For FCD, a particular network motif (Alon, 2007b) called the incoherent feed-

forward (IFF) loop has been implicated in the FCD response (Goentoro and Kirschner,

2009; Shoval et al., 2010). Features of the IFF architecture – when antagonistic or “para-

doxical” influences of activation and inhibition (Hart and Alon, 2013) are provided by

a molecular agent – were incorporated in a mathematical model involving proteins in

the signalling pathway of the cAMP response in the Dictyostelium experiment men-

tioned earlier (Takeda et al., 2012). Parameters of this system of ordinary differential

equations (ODEs) were fit using optimisation methods to a time series of a fluorescent

reporter of the transient response(Takeda et al., 2012). It was also shown that among

the few common ways of achieving adaptation in biological networks (Ma et al., 2009),

this IFF network architecture better explains the data on transient responses (Takeda

et al., 2012).

1.2 The problem of sensing accuracy

At this point, we should be able to answer partially the key question of ‘How do Dic-

tyostelium cells execute FCD sense-response mechanism ?’ by pointing to the IFF

suggested in Takeda et al. (2012) and Goentoro et al. (2009) as the network motif re-

sponsible for explaining the role of FCD observed in experiments as done byAdler et al.

(2014). However, upon further deliberation we find that there are crucial questions yet

to be addressed, which forms the foundation of our research.

In both Takeda et al. (2012) and Kamino et al. (2017), although FCD is reported to

be observed in the transient responses of Dictyostelium cells to a range of inputs, little

is known about the accuracy of FCD. How well does single Dictyostelium cells senses

fold change? Is the sensing of fold change equally accurate for any given fold? Error

bars in the experiment by Takeda et al. (2012) and Kamino et al. (2017), indicates that

there are different responses to the same step input cAMP due to cell-cell variability.

In principle if we want to quantify the accuracy of FCD sensing mechanism at single

cells level then we should stimulate single cells of Dictyostelium repetitively with the

stimulus fold cAMP of interest but with the initial stimulus varied. However, numerous

exposure of fluorescent-tag cells to illumination induces phototoxicity and therefore such

iteration of measurement is not feasible.

While FCD accuracy derived from mathematical models are commonly investigated

using skeletal networks, there is no single studies that focusses on the accuracy of FCD



Chapter 1 Introduction 5

derived by detailed models such as the model ODEs given by Takeda et al. (2012).

To quantify the accuracy of FCD dynamics from models of ODEs, one approach is to

evaluate the same model with different set of parameters as done by Goentoro et al.

(2009) with the skeletal three node IFF network motif. In this setting, the cell-cell

variability is emulated through the different sets of parameter values. A model that

can exhibit FCD dynamics across a wide range of parameter values is then deemed

to be more useful than one that can only exhibit FCD within a narrow range. To

our best knowledge, the model ODEs with IFF structure suggested by Takeda et al.

(2012) represents the most intricate and therefore the best known model to describe the

molecular actors that govern the upstream dynamics of Dictyostelium cells in response

to step input of chemoattractant cyclic AMP. It is important to note however, that

the model was structured with the intention of characterizing the adaptation behaviour

of Dictyostelium cells and not of FCD. The notion that the same model in the same

experiment exhibit FCD was put forth by Adler et al. (2014). What then is the range

of parameter values that the model ODEs exhibit FCD?

Understanding the accuracy of FCD may potentially assist cell biologists in designing

future experiments where stimulation of cells can be focussed within a biologically re-

alistic range. But more importantly this study offers some important insights into how

the cell’s decision making: -to initiate motility or to secrete intracellular cAMP- is reg-

ulated and constrained by the modelled upstream sensing mechanism. We argue that if

the fate of the species lies in the ability of Dictyostelium cells to sense cAMP molecules,

then cells must be able to interpret the fold change in extracellular cAMP concentration

as accurately as possible, and collectively execute the swimming aggregation dynamics

observed by Bonner and Savage (1947).

1.3 Biophysical laws governing sensory systems

In the studies of design principles of FCD, researchers not only analyse network circuits

that enable FCD, but also relate the FCD property with biophysical laws found in well

studied sensory system such as vision and hearing of humans. For example, Goentoro

et al. (2009) suggested that FCD is a modified version of the Weber’s law where the

minimally noticeable difference between two stimulus is proportional to the level of the

background stimulus compared. Adler et al. (2014) suggested that the stimulus-response

relation of the Dictyostelium experiment by Takeda et al. (2012) obeys the Weber-

Fechner’s logarithmic law where the magnitude of responses increase logarithmically.

The definition of both laws and the findings of the two studies are further elaborated

in chapter 2. It is important to note that the biophysical laws described stemmed

from the field of psychology and cognitive neuroscience. Therefore the laws are used

to explain sensory behaviour of organisms with central nervous systems. On the other

hand, the models studied for FCD are relatively simple and mainly consist of 3 to 4
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nodes. Moreover as reviewed in Ferrell (2009), FCD is found in cell signalling process

where any notion of a cognitive system is non-existent. However, by associating FCD

to biophysical laws, one may be provide an explanation to why a property such as FCD

is desirable in lower level signalling systems.

In this thesis we are inspired by the idea that there exists a unifying theme for cellular

level signalling networks as what we have seen in complex sensory systems. Since a

Dictyostelium cell is a sensory system, are there other physical laws that it shares with

more complex sensory systems? Can we draw concepts from the field of neuroscience

as what Adler et al. (2014) and Goentoro et al. (2009) had done and analyse the sense-

response mechanism of Dictyostelium cells in the same way researches investigate the

responses of cognitive systems? By answering these questions and by viewing cells as

computational modules, we hope that we can further the discussion to how single cell

organisms such as the Dictyostelium process or compute extracellular information.

1.4 Thesis approach and contributions

To address the issues underlined in section 1.2 and 1.3, we evaluate the accuracy of FCD

sense-response mechanism in Dictyostelium , not through experiments but by examining

variability in behavioural outcomes in the context of variability in model parameters that

are compatible with the observations in Takeda et al. (2012) and assess the relevance

of the input-output characterisation of the sensing module in shaping the autonomous

actuating responses. We explicitly state here that the model ODEs as characterized

by Takeda et al. (2012) is the core model which we based our research upon. As we

are exploring constraints on mathematical models, we acknowledge inadequacies such as

the complexity of assigning pertinent values for certain model parameters, limitations

by model structures and the deterministic nature of the model.

The contributions of this thesis are briefly summarised as below,

• We present a characterization of the accuracy of FCD using an intermediate sensory

representation as derived from the model ODEs of Takeda et al. (2012) when

stimulated with a wide range of fold stimulus. We demonstrate an approach which

enables us to generalise the quantification of the FCD accuracy to a wider range

of stimulus and background cAMP. We propose a hyperbolic equation to describe

the stimulus-response relation and the logarithmic encoding hypothesis to describe

the underlying distribution of responses.

• We characterize the posterior probability of detecting fold changes using a Bayesian

approach and introduce a novel model for prior probability of fold changes in

concentration based on empirical data. We introduce the FCD sense-response

mechanism in the context of a Bayesian observer to characterize its perception and
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evaluate its biases. We present a novel model for characterizing the uncertainties

in the extracellular fold changes.

1.5 Thesis structure

This thesis is organized as below,

• Chapter 2, Fold Change Detection (FCD) in the signalling pathway of

Dictyostelium cells: Experiments and models- We present a review of bio-

logical experiments responsible for uncovering the cyclic-AMP sensing mechanism

in Dictyostelium cells and for identifying the molecular proteins involved in the

signalling pathway. We also introduce fundamental models and their properties

used to explain the adaptation and FCD behaviours in biological systems. More

importantly we present in detail the experiment and modelling results by Takeda

et al. (2012) as this is the starting point of our research.

• Chapter 3, Model analysis and parameter estimation- We begin expand-

ing our understanding of FCD in Dictyostelium by analysing the model ODEs of

Takeda et al. (2012) which this thesis is built upon. We explore the dynamical

features of the model in the context of steady states and stability analysis in en-

abling the FCD mechanism. But more importantly in this chapter we estimate

parameters of the model ODEs using a Bayesian method to emulate heterogeneity

properties as seen in experiments of Takeda et al. (2012). We analyse the resulting

posterior densities of parameters and derive insights to how different parameters

influences the detection of fold.

• Chapter 4, The accuracy of Fold Change Detection- In this chapter we

present our main contribution in the characterization of the accuracy of FCD

by means of log-normal approximation to the density of responses generated from

the estimated parameters in chapter 3. We further generalise the quantification

of FCD accuracy by estimating coefficients to quadratic functions that is used to

define the parameters of the log-normal approximation itself. We also characterize

the fold distinguishability property.

In this chapter we also revisit the biophysical laws suggested for governing FCD

in Dictyostelium cells. Specifically we probe whether it is possible to observe the

Weber-Fechner’s law using the model by Takeda et al. (2012). We also ask whether

there are other laws that better describe the stimulus-responses relation.

• Chapter 5, Inferring the posterior probability of fold change- To character-

ize the accuracy of FCD as derived from the model ODEs of Takeda et al. (2012)

in a Bayesian approach, we infer the posterior probability of fold change given
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response by using densities of responses as derived in chapter 4. We present a

novel prior modelled from an experiment of Dictyostelium chemotaxis in order to

compute the posterior and compare with priors chosen from known families of dis-

tributions. We also analyse the influence of background cAMP to each Bayesian

components.

• Chapter 6, Relation with the external world- In this chapter we view the

Dictyostelium cells in the context of a Bayesian Observer model. We characterize

a novel model of the extracellular fold change and the population cells’ perception

of fold change. We evaluate in detail the perception’s accuracy by computing its

divergence from the model of extracellular fold change. We also characterize and

evaluate perceptual bias and distinguishability threshold of the Observer model

and examine the relation between these two measures of perception.

• Chapter 7, Conclusions- Finally, we summarize our work in this chapter and

highlight significant questions for future work.



Chapter 2

Fold Change Detection (FCD) in

Dictyostelium cells: Experiments

and models

2.1 Introduction

This chapter presents the biological and mathematical knowledge required in order to

understand how fold change behaviour is observed in Dictyostelium cells and how the

dynamics of the behaviour is modelled. We start by describing the life cycle of Dic-

tyostelium cells and its main phases followed by the description of the signalling pathway

where FCD is observed. This is followed by a detail explanation of the core experiment

by Takeda et al. (2012) said to successfully capture the FCD behaviour of Dictyostelium

cells. We then introduce the concept of network motifs and describe several networks

that are said to exhibit FCD. We describe how the protein interactions in the Dic-

tyostelium chemotaxis signalling pathway can be viewed as a network and introduce the

incoherent feedforward network as proposed by Takeda et al. (2012). Most importantly,

we introduce the model ODEs used by Takeda et al. (2012) to describe the dynamics

of the incoherent feedforward network that is said as the best model that captures the

experimental data. This model ODEs by Takeda et al. (2012) is the core model that we

based our research upon.

2.2 Life cycle of Dictyostelium cells

In this section we will explain one of the three life cycles of Dictyostelium cells, high-

lighting only the main stages of the cycle and ignoring most of the molecular biology

details. The objective is not only to provide an overview of the Dictyostelium cell’s

9
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development but also to understand at which stage FCD is observed and appreciate the

consequences if Dictyostelium cells were unable to carry out FCD. We illustrated the

life cycle of Dictyostelium cells in Figure 2.1.

Starvation

Aggregation

MoundSlug 
Migration

Fruiting 
Body

Feeding cells

Figure 2.1: Life cycle of Dictyostelium Discoideum . Cells are indicated in green
and black dots represent bacteria. Propagation of wave cAMP is indicated by
the blue spiral. FCD occurs in the starvation and aggregation stages. Refer
text for more details.

The Dictyostelium Discoideum species was first discovered by Kenneth Raper (Burris

and Newcomb, 1991; Raper, 1935) nearly 83 years ago in the Appalachhian Mountains of

North America. In the early stages, Dictyostelium cells behave independently and engulf

surrounding bacteria. However, the continuous engulfing of bacteria and the increase

in the number of cells due to cell-division leads to depletion of food. The cells are

aware of this event as they have been tracking the ratio of cell density to food source by

secreting prestarvation factor (PSF) (Clarke et al., 1988). As cells enter the starvation

phase, one part of the population begin to secrete cyclic AMP in pulses (Konijn et al.,

1967). The propagated wave of cAMP is then sensed by downstream cells and cells

aggregate towards the gradient source while at the same time secreting cAMP molecules

(Raper, 1935; Bonner and Savage, 1947). The aggregated cells then form a mound.

Cells underneath the mound then push the mound upwards (Siegert and Weijer, 1995)

causing the growing mound to topple, forming a slug consisting cells in the range of a

few hundred to a hundred thousand. The slug then migrates for up to two weeks and

then forms a fruiting structure consisting of stalk and spore cells (Raper, 1940). The

stalk and spore cells are found at the anterior and the posterior of the fruiting body

respectively.

It is important to note that it is during both starvation and aggregation stages that Dic-

tyostelium cells are most likely to carry out FCD as experiments have shown that FCD
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is found in intracellular responses of Dictyostelium cells when sensing cAMP gradients

(Takeda et al., 2012; Kamino et al., 2017). FCD has been suggested as a mechanism that

guides the chemotaxis of cells and therefore the absence of FCD implies the inability of

cells to move towards the aggregation centre.

2.3 The signalling pathway of Dictyostelium

From the life cycle of Dictyostelium cells, we understand that FCD in Dictyostelium

cells most likely occur during the starvation and aggregation stages as sensing fold

change in cAMP gradient during these stages guide the chemotaxis of cells towards the

aggregation centre. Here we will zoom in the signalling pathways regulating chemotaxis

of Dictyostelium cells. In doing so we will also identify the pathway responsible for

secretion of cAMP. As FCD is observed in the transient response of RasGTP protein

(Takeda et al., 2012), the goal here is to understand the location of RasGTP in the

signalling pathway and the implications of not having FCD to the pathway.

There are many models proposed to explain the signalling pathway of Dictyostelium

cells for chemotaxis as biologists continue to pinpoint the molecular agents involved and

fully understand their interactions. Examples are the model proposed by Kortholt et al.

(2011) or the model described by Kölsch et al. (2008). We illustrated the signalling

pathways for both chemotaxis and self secretion of cAMP by Dictyostelium cells in

Figure 2.2. Figure 2.2 represents our approximation of the signalling pathway in the

context of FCD through survey of literatures and does not in any way represents a

complete or definitive form of the chemotaxis signalling pathway.

When chemoattractant cAMP molecules bind to the surface receptors cAR1 of the Dic-

tyostelium cell during the starvation and aggregation stages, it initialize the intracellular

signalling system through the dissociation of the receptor-coupled heterotrimeric G pro-

teins (Klein et al., 1985; Sun and Devreotes, 1991). The signal from the G proteins is

then transduced downstream to RasGEFs (guanine nucleotide exchange factors) which

then activate Ras proteins by causing RasG bound guanosine diphosphate-RasGDP

proteins to bind to guanosine triphosphate(GTP), creating the activated Ras-GTP pro-

teins (Kae et al., 2007). RasGTP proteins are shown to regulate downstream signalling

molecules of PI3K- which in turn translocate phosphatidylinositol-(3,4,5)-triphosphate

(PIP3) to the plasma membrane (Sasaki et al., 2004). PIP3 then allows the binding of

pleckstrin homology (PH) domain which contains proteins such as cytosolic regulator of

adenylyl cyclase (CRAC) and protein kinase B (Parent et al., 1998; Meili et al., 1999).

Proteins contained in the PH domain are key candidates suggested for activation of actin

polymerization crucial for the formation of pseudopods (Iijima and Devreotes, 2002). A

pseudopod is an extension of the cell’s leading edge, enabling chemotaxis of the cell.

Meanwhile, CRAC also has been found to be an important element for the activation of
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cAMP

cAR1(Receptor)

RasGEF

RasGAP

RasGDP RasGTP

PI3K

PIP3

cRAC

ACA

kinase B

Pseudopods 
& 

ChemotaxiscAMP 
secretion

Figure 2.2: Approximation of Dictyostelium cell’s signalling pathway for chemo-
taxis and cAMP secretion.

ACA (Comer et al., 2005; Comer and Parent, 2006) which leads to secretion of cAMP

molecules(Saran et al., 2002).

Hence, the activation of PI3K signalling pathway by Ras protein -triggered when cAMP

molecules bind to surface receptors- not only causes chemotaxis but also the secretion

of cAMP by the cell. Due to Ras protein is the single upstream effector regulating both

downstream pathways, FCD observed in transient responses of Ras-GTP (Takeda et al.,

2012) is believed to play a significant role in determining chemotaxis and self secretion

of cAMP.

2.4 FCD observed in the experiment by Takeda et al. (2012)

From the chemotaxis signalling pathway of Dictyostelium as shown in Figure 2.2, we

know that RasGTP protein is crucial in mediating signals for both chemotaxis and

internal cAMP secretion. We present here the experiment by Takeda et al. (2012) which

provides evidences supporting the claim that Dictyostelium cells respond to fold changes

in concentration and not of the absolute level of cAMP through studying the changes in

RasGTP protein. It is interesting to note that the experiment by Takeda et al. (2012)

was not designed for the observation of FCD but of adaptation behaviour. The existence
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of FCD property in the experiment by Takeda et al. (2012) was pointed out by Adler

et al. (2014) and has been confirmed later in the experiment by Kamino et al. (2017).

2.4.1 Experiment methods and results

In the experiment by Takeda et al. (2012), Dictyostelium cells were placed in a microflu-

idic device and stimulated with a sudden increase in concentration of cAMP, simulating

a step change in input. The step input is illustrated in Figure 2.3A. One might ask

whether the step input is a realistic representation of the changes in concentration for

when the wave of cAMP passes through stationary Dictyostelium cells. The scheme of

cAMP wave proposed by Tomchik and Devreotes (1981) by looking at distribution of

cAMP waves captured in fluorographs may provide a hint to the answer. In the scheme,

the minimum time it takes for the concentration in the cAMP wave to change from

10nM to 1µM is said to be half a minute given that the wave travels at the velocity

of 300µm/min. Therefore, a step input from 10nM to 1µM is not biologically realistic.

However, as shown in experiments of Takeda et al. (2012); Kamino et al. (2017) and also

Sgro et al. (2015), step inputs are commonly applied by biologists in the study of cell’s

response to stimulus.

The responses of Dictyostelium cells in the microfluidic device to step input cAMP are

monitored not by studying the chemotaxis behaviour of cells but by recording the level

of brightness of the RBD-green fluoroscent protein(GFP) (referred hereafter as RBD).

RBD acts as a reporter for the RasGTP protein of the cells. Hence, in the experiment by

Takeda et al. (2012), changes in RasGTP protein of Dictyostelium cells is the quantity

of interest.

We describe the experiment by Takeda et al. (2012) and the changes in protein of

the signalling pathway which can be easier understood by referring to Figure 2.2. As

shown in Figure 2.3, before time t0, cAMP concentration in the microfluidic device is

at a basal level x and RasGDP - the non activated state of RasGTP- is distributed

uniformly across the cell. When the concentration increases rapidly to x′ in a step like

manner at t0, the activated RasG protein- RasGTP, translocate to the leading edge

of the cell’s membrane. RBD fluorescent reporter protein then binds to RasGTP at

the cell’s membrane and consequently the intensity or the brightness of certain cytosol

region decreases as illustrated in Figure 2.3B and Figure 2.3C. The intensity of RBD

fluorescent protein I(t) then gradually returns to its pre-stimulus level of z0 even in the

continuous presence of new cAMP level x′, indicating adaptation.

The magnitude of the peak response Ip and the time to reach to the peak Tp were then

measured and recorded. Unfortunately there is no data on the adaptation time Tadapt in

the experiment by Takeda et al. (2012), although the central theme of the study is the

adaptation behaviour of RasGTP. The experiment results for responses to various step
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Figure 2.3: Illustration of the Dictyostelium cells response to stimulus cAMP
experiment by Takeda et al. (2012). (A) cAMP inputs were introduced in a
step like manner where x is the basal level and x′ is the newly increased level of
cAMP at time t0. (B) Response of RasGTP protein measured by the intensity
of RBD fluorescent reporter protein. The intensity rapidly decreases when a
new level of cAMP x′ is introduced and reaches minimum at zmin, followed by
a gradual return to its basal level z0. The magnitude of the peak response
Ip = zmin− z0 and time to reach it Tp = tp− t0 were measured and recorded. Ip
and Tp values varies with background x (shown later in Figure 2.4). The average
time for Tadapt is ≈ 50s (Takeda et al., 2012). (C) Changes in cell intensity as
new level of cAMP is introduced where the intensity is concentrated at the cell’s
membrane as RBD binds to RasGTP.

inputs are reproduced as Figure 2.4A for Ip and Figure 2.4B for Tp. Ip responses are

normalized by responses of x = 0nM, x′ = 1000nM. From Figure 2.4, it is interesting

to note that Ip responses of Dictyostelium cells were also measured for step inputs with

basal level x = 0 and therefore represents undefined fold changes in input concentration.
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Figure 2.4: Figure 2C and Figure 2D experiment results by Takeda et al. (2012)
reproduced. Black circles indicate average responses and error bars represent
standard deviation. Squares indicate outputs generated from parameters de-
rived by Takeda et al. (2012) and solid lines are the corresponding interpolations
discussed in section 2.5.3. x is the initial stimulus and x′ is the new level of
cAMP. Data for each background cAMP is colour coded where Black:x = 0nM,
Red:x = 1nM, Green:x = 10nM, Blue:x = 100nM. (A) Ip responses. (B) Tp
responses.

2.4.2 Weber-Fechner’s Logarithmic law

However, FCD is not obvious from the measured Ip in Figure 2.4A. Therefore we selected

Ip responses to step inputs of nonzero basal level (x 6= 0) and replotted as a function of

fold change F = x′/x in Figure 2.5. As can be seen, although the responses overlap each

other, different fold input does have a different range of Ip thus displaying ‘FCD-like

response’ (Adler et al., 2014). ‘FCD-like response’ in the sense that stimulation with the

same background concentration but with different fold input leads to different outputs.

If the responses follow exact FCD, then we would expect that responses for the same

fold input is identical regardless of background cAMP and therefore the error bars would
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disappear and there would be only one data point for each fold inputs. The responses

between different fold input must remain distinct although there is no requirement that

the relation between fold input and output to be linear.
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Figure 2.5: Ip measurements by Takeda et al. (2012) of Figure 2.4A replotted
as a function of fold change.

The FCD response as observed in Figure 2.5 is said to be a manifestation of Weber’s law

(Goentoro et al., 2009). We briefly describe Weber’s law and its derivative, the Fechner

logarithmic law and its relation to FCD. Weber’s law was established from experiments

conducted by Ernst Heinrich Weber in the 19th century to explain the relation between

stimulus and responses in human sensory system such as vision and is often expressed

as

∆S

S1
= k (2.1)

where k is a constant, S1 is the initial stimulus and ∆S is the just noticeable difference.

Weber’s law stated that when comparing two stimulus S1 and S2 where S2 > S1, the ‘just

noticeable difference’ between two stimulus ∆S = S2 − S1 is proportional to the inital

stimulus of S1. Therefore, as the compared background stimulus increases, S2 needs to

be proportionally larger than S1 in order to be distinguishable. From equation 2.1, the

relation between responses R to stimulus S is said to follow a logarithmic function of

R = klnS (2.2)

where responses R represents the perceived stimulus. Equation 2.2 is the Fechner log-

arithmic law and is shown in Figure 2.6. If FCD observed in Figure 2.5 is to obey

Weber’s law, responses Ip must increases proportionally to increased stimulus fold in

order to sustain distinguishability of stimulus. The relation between Ip and stimulus
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Figure 2.6: Weber-Fechner’s logarithmic law with Weber’s constant k = 1.

fold F is then also logarithmic. This logarithmic relation has been suggested by Adler

et al. (2014) as best describes the relation between fold change (input) and RBD flu-

orescent protein intensity (output). However, the stimulus S in Weber-Fechner’s law

is of absolute magnitude while fold change F is a ratio of two stimulus. Therefore the

logarithmic law suggested for Figure 2.5 is a modified version of the Weber-Fechner’s

law.

2.5 FCD network motifs

The interactions between different proteins as mapped out in signalling pathway of

Figure 2.2 and described in the experiment by Takeda et al. (2012) can be viewed in

the context of network motifs. In this section, we will introduce the concept of network

motifs followed by which network motifs are said to exhibit FCD. We will then explain

which category of motif does the protein network in the experiment by Takeda et al.

(2012) belongs to.

2.5.1 Definition and examples of network motifs

A network can be described as a directed graph with nodes. In a biological network,

nodes represent biochemical elements such as proteins or genes and directed edges rep-

resent their interactions. For example, a two node network of X → Y can be used to

represent transcription factor X activating gene Y . In this example X is an activator

for Y . X can also be an inhibitor by suppressing the expression of gene Y , indicated by

X a Y . FCD and adaptation behaviour in biological systems are mainly investigated

using simplified three nodes networks. A recent study of ∼500,000 three nodes network

motifs found that only several hundreds of them exhibit FCD (Adler et al., 2017). The

main and most commonly studied networks for FCD are the incoherent feedforward,

the non-linear integral feedback and the log-differential network (Shoval et al., 2010;



18
Chapter 2 Fold Change Detection (FCD) in Dictyostelium cells: Experiments and

models

Hironaka and Morishita, 2014). The networks are shown in Figure 2.7 where X is the

input node, Y is the internal variable node and Z is the output node. Input node X

activates both Y and Z.

X

Y Z

X

Y Z

A B C
log(X)

Y Z

Figure 2.7: Network motifs that are found to exhibit FCD. X is the input Y
is the internal variable and Z indicates the system’s output. (A) Incoherent
feedforward loop type 1 (IFFL-1). (B) Non-linear integral feedback loop. (C)
Logarithmic input with linear feedback.

Assigning a different combination of functions to nodes results in a different type of

incoherent feedforward network. It has been mathematically proven that the incoherent

feedforward loop type 1 (IFFL-1) can exhibit exact FCD when Y strongly represses the

production of Z (Goentoro et al., 2009). In such condition, the dynamics of IFFL-1 can

be described by a set of two ODEs as

dY

dt
= k1X − k−1Y (2.3)

dZ

dt
=

k2X

Y
− k−2Z (2.4)

where k1, k2 and k−1, k−2 are the activation and degradation rates of node Y and Z

respectively. As can be seen in equation 2.4, Z is dependent only on the fold change

in input X and not on the absolute level (Goentoro et al., 2009) due to Y itself is a

function of X.

2.5.2 Modelling experiment results of Takeda et al. (2012): Incoherent

feedforward network

In the experiment by Takeda et al. (2012), only the changes of RasGTP protein were

measured through its RBD reporter protein. Therefore, we do not know the changes

occurring in other proteins in the signalling pathway such as the RasGEF, or receptor

R as mapped out in Figure 2.2. As such, Takeda et al. (2012) proposed an incoherent

feedforward network model shown in Figure 2.8A to describe the experimental results.

If we compare Figure 2.8A to the signalling pathway of Figure 2.2, we can see that

the network proposed by Takeda et al. (2012) characterizes the dynamics of proteins

upstream of PI3K. The deactivation of RasGTP to RasGDP is mediated by RasGAP
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Figure 2.8: Network Motifs. (A) Network of protein variables as derived from
the model ODEs (equation 2.8 to equation 2.14). (B) Network in Figure 2.8A
simplified as an incoherent feedforward network.

and therefore RasGAP is considered as an inhibitor. On the other hand, RasGEF is

responsible for binding RasGDP to GTP and therefore is considered an activator. Figure

2.8A therefore effectively functions as a incoherent feedforward network as illustrated in

Figure 2.8B.

A variation of the incoherent feedforward network: The Sniffer model

In comparison with the simple motifs of Figure 2.7A,the incoherent feedforward network

shown in Figure 2.8B seems to has four nodes but effectively functions as a three node

network where receptor R can be considered as input node X activating GEF as Y and

output RasGTP as Z. The activation of RasGTP by R is made through GEF. The

incoherent feedforward network shown in Figure 2.7A is of type 1 where inhibition of Z

is by Y .

However, the dynamics of the incoherent feedforward network in Figure 2.8B differs

slightly where inhibitor GAP accelerates the degradation of output RasGTP instead

of suppressing the production of RasGTP. Therefore the dynamics of such incoherent

feedforward network is modelled as

dY

dt
= k1X − k−1Y (2.5)

dZ

dt
= k2X − k−2Y Z (2.6)

where the second term on the right hand side of equation 2.6 represents degradation

of output Z. From equation 2.6 we can see that the dependency on X by Z is not

being cancelled out and therefore no FCD. Such variation of the incoherent feedforward

network is called a ‘sniffer’ (Tyson et al., 2003; Ma et al., 2009). The sniffer model is
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shown to exhibit FCD only in a limited region when the dynamics of Z is significantly

faster than Y (Goentoro et al., 2009) causing Z to be in a quasi steady-state Zss

Zss =
k2X

k−2Y
(2.7)

The independence of RasGTP in Figure 2.8B from its input cAMP via the R protein

variable is further discussed in chapter 3.

2.5.3 Model ODEs of the incoherent feedforward network

The dynamics of the incoherent feedforward model suggested in Figure 2.8A is described

by Takeda et al. (2012) through a set of Ordinary Differential Equations (ODEs) as

dR1

dt
= kR1(cAMP + r1)(Rtot1 −R1)− k−R1R1 (2.8)

dR2

dt
= kR2(cAMP + r2)(Rtot2 −R2)− k−R2R2 (2.9)

R = R1 +R2 (2.10)

dGEF

dt
= kGEFR− k−GEFGEF (2.11)

dGAP

dt
= kGAPR− k−GAPGAP (2.12)

dRasGTP

dt
= kRasGEF (Rastot −RasGTP )− k−RasGAPRasGTP (2.13)

dRBDcyt

dt
= koffRBD(RBDtot −RBDcyt)− konRBDRasGTPRBDcyt (2.14)

where kx and k−x are the activation and degradation constant for protein x of interest.

We explicitly state here that the model ODEs of equation 2.8 to equation 2.10 forms

the core model which we based our analysis upon.

We explain the meaning of each equation in the model above as below,

• In equation 2.8,2.9 and 2.10, the surface receptors cAR1(Figure 2.2) is denoted as

R and is a sum result of two receptor populations of different affinity R1 and R2.

The level of affinity is set through the dissociation constants of Kd = k−Ri/kRi

where k−Ri and kRi is the binding and unbinding kinetic rates respectively for

receptor population Ri.

• r1 and r2 is the constitutive activation of receptor R1 and R2 respectively to indi-

cate the minimum level of activation when the surrounding cAMP concentration

is zero.
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• The dynamics of RasGEF and RasGAP proteins are regulated by R and repre-

sented by equation 2.11 and equation 2.12, where RasGEF is denoted as GEF and

RasGAP is denoted as GAP.

• Equation 2.13 represents the main protein of interest- RasGTP where Rastot de-

notes the total concentration of Ras.

• Equation 2.14 describes the dynamics of the RBD fluorescent reporter protein

where RBDtot denotes the total concentration of RBD.

Takeda et al. (2012) also introduced another model of ODEs structured as an integral

feedback network in order to describe the observed behaviour in Figure 2.4A and Fig-

ure 2.4B. Model ODEs of both incoherent feedforward network and integral feedback

network were fitted were fitted to the experimental results in Figure 2.4A and Figure

2.4B and their model parameters estimated using an optimisation method called simu-

lated annealing. The result of solving the incoherent feedforward network model ODEs

with the estimated paramer is shown in Figure 2.4 as squares with solid lines its corre-

sponding linear interpolation. We refer the reader to the supplemental data provided by

Takeda et al. (2012) for details of the optimisation data. Our focus here is only on the

incoherent feed forward model as it is the only model that is able to produce compatible

fitting results.

In order to understand the dynamics of each protein variable of the incoherent feedfor-

ward network, we numerically simulated the model ODEs of equation 2.8 to equation

2.14 and showed the result in Figure 2.9. The parameters and input cAMP values are

described in detail in the caption of Figure 2.9. As can be seen in Figure 2.9A, each

receptor populations reaches its steady states at a different rate due to the difference in

affinity. Having two receptor populations is important as Takeda et al. (2012) reported

that if the incoherent feedforward model ODEs has only one receptor population, it does

not yield desirable fitting results. We have also confirmed this report when attempting

to fit the model ODEs ourselves using a Bayesian method in chapter 3 similar to the

optimisation method implemented by Takeda et al. (2012). However, the confirmed re-

sult is not presented in this thesis as it is irrelevant to our objectives. It is not yet clear

how the delay between R1 and R2 observed in Figure 2.9A contributes to the increase

in fitting accuracy and describing FCD observed. However the inclusion of two receptor

populations is done in order to create a realistic model as it has been reported that

Dictyostelium cell’s receptors are made up of multiple populations with different cAMP

binding rates (Van Haastert and De Wit, 1984).

Figure 2.9B shows that there is also a delay between the dynamics of GEF and GAP

before eventually reaching the same steady state. The delay is due to the difference in

dissociation constants for both protein variables. A transient response can be seen in

the RasGTP dynamics, where the increase is sharp and almost linear like in the early
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Figure 2.9: Dynamics of the incoherent feedforward model ODEs characterized
by equation 2.8 to equation 2.14. cAMP step input is set as x = 1 and x′ = 10.
Parameters are set as the result of estimation by Takeda et al. (2012) using
simulated annealing where kR1 = 0.00267, k−R1 = 0.16, kR2 = 0.00244, k−R2 =
1.1, r1 = 0.012, r2 = 0.115, kGEF = 0.04, k−GEF = 0.4, kGAP = 0.01, k−GAP =
0.1, Rastot = 1, kRas = 390, k−Ras = 3126, RBDtot = 1, koff = 0.53, kon = 1.

period followed by a gradual return (adaptation) to its basal level (Figure 2.9C). The

dynamics of RasGTP is mimicked inversely by its reporter protein RBD, as can be seen

in Figure 2.9D.

2.5.4 Incoherent feedforward network by Takeda et al. (2012) does not

exhibit exact FCD

Here we show how the incoherent feedforward network by Takeda et al. (2012) does not

exhibit exact FCD. In order for network motifs to exhibit exact FCD, the output of a

network motif in response to fold change in input must satisfy the properties below as

illustrated in Figure 2.10.

• The peak response must be proportional to the fold change in the input signal

(Weber’s Law).

• The output must demonstrate exact adaptation by gradually returning to its pre-

stimulus level in the continuous presence of increased input signal.
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• The response must exhibit temporal adaptation dynamics where its duration and

amplitude must be the same when stimulated with inputs of the same fold change.

Figure 2.10: Characterization of exact FCD re-illustrated from Shoval et al.
(2010) and Skataric et al. (2014) to show how a system with FCD responses to
a two step input stimuli. (a) Output z is identical for both step inputs. (b) No
FCD due to difference in peak amplitude. (c) No FCD due to the difference in
the output shape.

All of the network motifs in Figure 2.7 are shown to have the properties listed above

and therefore demonstrate exact FCD. However, as shown in Figure 2.11, the incoherent

feedforward of the model ODEs (equation 2.8 to equation 2.13) does not exhibit exact

FCD but an ‘FCD-like’ behaviour. As can be seen from Figure 2.11, when the model

ODEs is stimulated with two step inputs of the same fold but of different absolute levels,

the responses of RasGTP are not identical. However, exact adaptation and similar

temporal dynamics are observed eventhough the peak amplitudes are different. We do

not expect the model ODEs to exhibit exact FCD as it is a much more complex system

of equations compared to the simplified three node incoherent feedforward network in

Figure 2.7A. Furthermore, the parameter range that allows the model ODEs to exhibit

FCD is also constrained by the relative dynamics of GEF and RasGTP. Hence, one the

objectives of this thesis is to quantify how identical are responses of the model ODEs to

the same fold inputs of different absolute levels.
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Figure 2.11: Incoherent feedforward loop model by Takeda et al. (2012) exhibit
an ‘FCD-like’ behaviour instead of exact FCD to input cAMP of fold F = 2.
(A) Two step inputs with different background level but the same fold (B) Solid
blue line is the response to stimulus cAMP from 1 to 2. Dashed red lines indicate
response to stimulus cAMP from 2 to 4. Parameter settings are the same as in
Figure 2.9.

2.5.5 Paradoxical components

Aside from showing the same response characteristics as underlined in Figure 2.10, there

is a recurring theme among the network motifs in Figure 2.7. In all network motifs of

Figure 2.7, output Z is simultaneously activated by X and inhibited by Y . This antago-

nistic feature or ‘paradoxical components’ by different nodes on the same target node is

also found in many biological systems as reviewed by Hart and Alon (2013). One expla-

nation given is that opposing effectors yield desirable biological functions (Hart et al.,

2012). In the context of the incoherent feedforward network, it has been suggested that

the inhibitor Y in IFFL-1 acts as a reference memory, enabling comparison of current

and previous level of inputs (Goentoro et al., 2009). Therefore, paradoxical components

are vital for a system to exhibit FCD (Hart and Alon, 2013). However, although FCD

requires paradoxical components, having paradoxical components in a network does not

necessarily guarantee FCD. An example is the integral feedback network motif which

also has paradoxical components but does not exhibit FCD.

2.5.6 Design principles of FCD

The idea that there exist a reccuring theme across organisms and systems such as the

paradoxical components in the previous section leads to the study of design principles of

biological systems. One prime example is the recurring network motifs found in the gene

transciption network of Escherichia coli bacteria (Shen-Orr et al., 2002; Alon, 2007b). A

more related example is the network motifs for adaptation where an exhaustive search of

∼16,000 three node networks showed that only the incoherent feedforward and negative

feedback loop with a buffer node motifs exibit adaptation (Ma et al., 2009). Although

there are studies focused on mapping biological functions to network motifs (Mangan
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and Alon, 2003; Mangan et al., 2003), it still remain a much disputed approach (Ingram

et al., 2006; Maćıa et al., 2009).

Design principles of FCD is not limited to the inferrence of network motifs only. Another

approach is to understand the generalizable biophysical laws as introduced in section

2.4.2. If the fold-intensity relation does follow the Weber’s Fechner law, then it also

implies the possibility that Dictyostelium chemotaxis is based upon logarithmic tracking

of cAMP gradient concentration rather than counting the absolute number of cAMP

molecules. This is not the first time that the chemotaxis of a single cell organism is

suggested to be based upon logarithmic sensing. In an earlier study by Tu et al. (2008),

it has been shown that the input-output relationship between ligand concentration and

kinase activity rate in the E.coli chemotaxis is well described by the logarithmic law.

The logarithmic sensing behaviour in the chemotaxis of E.coli bacteria was confirmed

through fluorescent resonance energy transfer (FRET) measurement on the bacteria’s

adaptation time(Lazova et al., 2011). A noninvasive method was conducted by Masson

et al. (2012) which reached the same conclusion.

2.6 Summary

In this chapter we have reviewed the biological context of FCD. By identifying exactly

in which process FCD is observed, the role of FCD at the level of both single cells

and population of cells can be understood and appreciated. The detailed review of the

experiment of Dictyostelium cells to stimulus of cAMP by Takeda et al. (2012) reveals

that the FCD responses said to be observed is poorly characterized. The responses of the

mathematical model of Dictyostelium signalling pathway by Takeda et al. (2012) does

not exhibit FCD as opposed to skeletal networks suggested by Goentoro et al. (2009)

and Shoval et al. (2010). In the next chapter we ask whether it is possible to analyse

the characteristics of FCD in a complex but biologically more realistic model that does

not exhibit exact FCD.





Chapter 3

Model analysis and parameter

estimation

3.1 Introduction

We begin our journey to characterize the accuracy of FCD found in Dictyostelium cells

by first exploring the qualitative behaviour of the model ODEs by Takeda et al. (2012).

As previously stated in section 1.2, the model ODEs by Takeda et al. (2012) was struc-

tured to study the adaptation behaviour of Dictyostelium cells instead of fold change

detection. Hence we need to asses whether the model has the right properties required

for its responses to exhibit FCD. Mathematical proofs provided by Shoval et al. (2010)

underlined the necessary conditions for a system of ODEs to exhibit FCD - that the

system must show exact adaptation and is stable. In order to confirm that the model

ODEs has the stated necessary conditions, we first investigate the steady state of the

model to check for exact adaptation. This is followed by a linear stability analysis to

evaluate the stability of the model.

Once we have verified that the model is suitable for the research of FCD, the model

ODEs parameters are estimated using the Approximate Bayes Computation-Sequential

Monte Carlo (ABC-SMC) method (Toni et al., 2009). The aim here is to fully exploit the

potential of the model ODEs in capturing the FCD behaviour by looking at parameter

ranges that fits the experiment data by Takeda et al. (2012). The posterior distribu-

tions of parameters then serves as the basis on which we investigate the accuracy and

limitation of the model in detecting fold change.

27
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3.2 Model analysis

Adaptation, where transient changes in the output returns to a pre-stimulus basal level

is an integral component of FCD. The model ODEs (equation 2.8 to equation 2.14)

fitted by Takeda et al. (2012) to experiment data of Dictyostelium cells response to

stimulus cAMP is not only sensitive to a wide range of stimulus cAMP but consistently

returns to its pre-stimulus steady state. Therefore it is claimed that this is a clear

indication the model describes the adaptation observed in the experiment well. Takeda

et al. (2012) attributed the success of capturing adaptation behaviour by the model to

two factors. First is the fact that the inclusion of activation of RasGTP by RasGEF

and the degradation of RasGTP protein production by RasGAP are in line with the

local excitation-global inhibition (LEGI) model (Xiong et al., 2010) for gradient sensing.

Second is the delay observed between the activation and degradation kinetics of the two

proteins with conflicting molecular functions. This delay is not only vital for adaptation

but has also been shown to be an indispensable factor for systems based on activation-

degradation rather than activation-inhibition element to yield FCD (Goentoro et al.,

2009). Takeda et al. (2012) further showed that different versions of the model can also

fit and show adaptation as long as the activator-inhibitor element remains at the centre

of the incoherent feed forward loop network motif.

Here we explore the ‘adaptability’ of the model ODEs by Takeda et al. (2012). Specifi-

cally we ask, does the model also shows adaptation for continuously increasing stimulus?

In the study of adaptation such as Takeda et al. (2012) and Ma et al. (2009), models

are given step inputs whereby adaptation kicks in when the new level of input persists

uniformly. However if the input changes such that it increases continuously with time,

does the model remains sensitive or does adaptation prevails?. A stable steady state of

RasGTP does not necessarily guarantee adaptation. Hence the goal here is to compound

the stability of the model with adaptability.

3.2.1 Steady State analysis to verify exact adaptation property

The steady states for the variables in equation 2.5.3 are found by setting the derivatives

of each variables to zero and derived as
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Riss =
Rtoti

1 +
kdRi

cAMP+ri

(3.1)

Rss = R1ss +R2ss (3.2)

GEFss =
Rss
kdGEF

(3.3)

GAPss =
Rss
kdGAP

(3.4)

RasGTPss =
Rastot

1 + kdRas
GAPss
GEFss

(3.5)

where the kdRi = k−Ri/kRi , kdGEF = k−GEF /kGEF , kdGAP = k−GAP /kGAP , kdRas =

k−Ras/kRas and kdRBD = koff/kon are the dissociation constants for receptor popu-

lations Ri, i = 1, 2 and proteins RasGAP, RasGEF, RasGTP, RBD respectively. The

steady state for the total receptor is taken as a cumulative effect of each receptor pop-

ulations as Rss = R1ss + R2ss. We ignore the variable of protein RBD as it serves only

as a reporter for the measurement of our protein of interest-RasGTP .

As more molecules cAMP bind to the membrane surface receptors such that 1 �
kdRi/(cAMP + ri) in equation 3.1, the steady state for each receptor population can be

approximated as Riss ≈ Rtoti . Hence, the level of Riss is limited by the total number

of the receptors Rtoti in the population and increasing cAMP concentration beyond the

capacity of Rtoti will not increase the level of the steady state as all receptors are bound.

Consequently Rss is limited by both R1ss and R2ss.

Downstream of the receptors, the steady state of RasGEF and RasGAP proteins are

effectively determined by Rss and dissociation constants kdGEF and kdGAP . If the dis-

sociation constants between both proteins are the same kdGEF = kdGAP and if the

kinetics rates of activator RasGEF always surpass RasGAP such that kGEF � kGAP

and k−GEF � k−GAP , RasGEF and RasGAP will eventually reach the same steady

state level albeit at a different rate where RasGAP lags behind.

Because the dissociation constants kdGEF = kdGAP are the same, the ratio between

the steady states GEFss and GAPss is GAPss/GEFss = 1. Therefore the asymptotic

behaviour of RasGTP in equation 3.5 will always reach the same steady state deter-

mined by kdRas, Ras
tot independent of the increase in stimulant cAMP. In summary, the

adaptation of the model ODEs is achieved by the physical limitation on the number of

molecules that bind the membrane surface receptors and when the necessary conditions

kGEF � kGAP , k−GEF � k−GAP and kdGEF = kdGAP are met.
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3.2.2 Linear Stability analysis to verify the stability of model ODEs

Once we have established that the model’s capacity to exhibit adaptation is sustainable

if we compel the activator-degradation kinetics to a certain range, we ask whether the

system is stable. Specifically we explore the eigenvalues of the system’s Jacobian evalu-

ated at steady states. We begin by simplifying the notation of equation 2.8 to equation

2.13 where the variables and constants are expressed as x = cAMP,A = GEF,B =

GAP, kA = kGEF , k−A = k−GEF , kB = kGAP , k−B = k−GAP , Y = RasGTP , Y tot =

Rastot, ky = kRas, k−y = k−Ras. R = R1 +R2 is substituted into equation 2.11 and 2.12

to make the role of the two receptors visible and explicit. The model ODEs can then be

rewritten as

dR1

dt
= kR1(x+ r1)(Rtot1 −R1)− k−R1R1 (3.6)

dR2

dt
= kR2(x+ r2)(Rtot2 −R2)− k−R2R2 (3.7)

dA

dt
= kA(R1 +R2)− k−AA (3.8)

dB

dt
= kB(R1−R2)− k−BB (3.9)

dY

dt
= kyA(Y tot − Y )− k−yBY (3.10)

By deriving partial derivatives of each equation with respect to variables R1, R2, A,B, Y

the Jacobian matrix J is derived as

J =



−kR1(x+ r1)− k−R1 0 0 0 0

0 −kR2(x+ r2)− k−R2 0 0 0

kA kA −k−A 0 0

kB kB 0 −k−B 0

0 0 kyY
tot − kyY −k−yY −kyA− k−yB


(3.11)

Solving the eigenvalues by setting the determinant det(J− λI) = 0,
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λ1 = −kR1(x+ r1)− k−R1

λ2 = −kR2(x+ r2)− k−R2

λ3 = −k−A
λ4 = −k−B
λ5 = −kyA− k−yB

If all the eigenvalues are negative real numbers then the system is stable (Strogatz, 2018).

Any eigenvalue with positive real number would lead to one of the solutions increasing

exponentially. λ3 and λ4 are negative real numbers due to k−A ≥ 0 and k−B ≥ 0. The

eigenvalues λ1 and λ2 are directly dependent on input x while λ5 is indirectly influenced

by x through A and B. Due to enzymatic constants and input x are always real positive

values, λ1, λ2 and λ5 are always real negative values. As input x→ +∞, the eigenvalues

λ1,2,5 → −∞, therefore the stronger the input, the system is more stable.

To illustrate how the dynamics of the model changes with respect to a continuously

increasing input, we numerically solved the model ODEs for a linear and exponential

cAMP input and show the result in Figure 3.1. Refer to the second column of table 3.1

for the set of parameter values. The same parameters are used for the computation of

responses to linear and exponentially changing input. The result shows that the primary

difference lies in the adaptation rate for protein RasGTP variable. The time for RasGTP

protein to return back to its steady state level is significantly longer for when the input

is exponential compared to linear input.

3.3 Bayesian parameter estimation

In the previous section, we have verified that the model ODEs by Takeda et al. (2012)

satisfies the necessary conditions for a dynamical system to exhibit FCD as underlined by

Shoval et al. (2010). In this section, we describe the Approximate Bayes Computation-

Sequential Monte Carlo (ABC-SMC) algorithm used to estimate the distributions of

posterior parameters of the model ODEs. We also describe the dataset used for fitting

and constraints that we have imposed on the parameter space. The objective here

is to derive the operating ranges of parameters of the model that is compatible with

experimental data said to exhibit FCD and thus capturing the parameter ranges for the

model to exhibit FCD.
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Figure 3.1: An example of the dynamics of protein variables in equation 2.8 to
equation 2.13 when the input cAMP is a linear function x(t) = 10t(Left column)
and exponential function x(t) = e0.01t (Right column). For the exponential
function, the delay between the activator-degrader protein variable is visible
when zoomed in as shown in inset figure. Bottom most panels shows the protein
of interest, RasGTP where the transient response returns to basal level and
shows adaptation.
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3.3.1 Approximate Bayes Computation-Sequential Monte Carlo (ABC-

SMC)

We take the view that a single set of parameters θ = (θ1, . . . , θm) in the model ODEs

does not reflect either the biological reality of natural variation in protein levels (Raj

and van Oudenaarden, 2008) or of the mathematical equivalence of multiple parameter

fits of ODE models to a set of empirical data (Gutenkunst et al., 2007). In order to

quantify the uncertainties in estimating the parameters, we apply here the Approximate

Bayesian Computation-Sequential Monte Carlo (ABC-SMC) method to derive poste-

rior distributions of parameters rather than their point estimates. In this method, a

simulated observation is derived from a generative model with the parameter values of

the model sampled from a pre-defined prior distribution. The error between simulated

and experimental data is then computed and the rejection or retainment of a sample

parameter is based on whether the computed error is within a pre-determined threshold

level or not. This process is then repeated for the number of samples that we want to

estimate.

In this thesis we specifically estimated the posterior probability of the set of parameters

θ = (θ1, . . . , θ10) in table 3.1 given the set of fixed parameters and the selected 16

experimental data points Xd ∈ D as

Pε(θ, Xs|Xd) =
1Aε,Xd

(Xs)f(Xs|θ)π(θ)∫
Xs

∫
θ f(Xs|θ)π(θ)dθdXs

(3.12)

where π(θ) is the prior probabilities from a uniform distribution characterized by the

upper and lower bounds as listed in table 3.1. ε > 0 indicates the tolerance threshold and

1A(.) is the indicator function of a given set A. Aε,Xd is the set of simulated observations

close to the true experiment data defined by the distance function as

Aε,Xd =

{
Xs ∈ D| 4 (Xs, Xd) ≤ ε

}
(3.13)

where 4(Xd, Xs) is the distance function between experiment data Xd and simulated

data Xs. Xs is simulated from a generative model Mθ denoted as Xs ∼ Mθ where in

our case Mθ is the model ODEs. One of the advantages of the ABC-SMC method is

that it removes the evaluation of likelihood of observing a data given parameter f(Xd|θ)
by comparing the simulated observations Xs to Xd. If the sampled set of parameters

θk resulted in Xs such that 4(Xs, Xd) ≤ ε then the sample θk is retained. Hence the

computational burden lies in the repetition of solving the model ODEs numerically for

a particular step input of x, x′ to obtain Ip and Tp close to the selected data points used

for data fitting.
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As ABC-SMC is a sample filtering algorithm, the goal is to find N samples of θ filtered

through T = 1, . . . , tm levels where here we set tm = 30 and N = 1000. The error by

a sample parameter θ is derived by computing the distance between simulated Xs and

experimental Xd data as

4 (θ|Xd, Xs) =
1

K

K∑
i=1

(
Xdi −Xsi

σdi

)2

(3.14)

where the simulated observation at data point i is generated from the model ODEs with

corresponding step input Xsi ∼ Mθ(xi, x
′
i). K = 16 (further explained in the next sub-

section), is the total data fitted, σdi is the standard deviation for Xdi . The set of errors

at a particular filter level T = t is then denoted as a vector Et = (4t(θ1), . . . ,4t(θN ))

where the notation 4t(θ) = 4t(θ|Xd, Xs) is introduced for brevity. The tolerance level

at filter level T = t+1 is denoted as εt+1 and is set as εt+1 = 0.8Et. A generated sample

θk at filter level t + 1 is accepted if 4t+1(θk) ≤ εt+1. The generation of samples stops

when the difference between tolerance level is εt − εt−1 < α or when T = 30 population

level is reached.

The result of population of N samples evaluated at the last filtered level T = tm is a

N × m matrix denoted as Θ = (θ1, . . . ,θN )ᵀ,Θ ∈ RN×m. Here m = 10 represents

the ten different parameters estimated as listed in table 3.1. The ith row is a vector

representing the ith set of estimated parameters θi = (θi1, . . . , θ
i
10), i ∈ N . The jth

column is a vector representing the posterior density for the jth estimated parameter

θj = (θ1
j , . . . , θ

N
j )ᵀ, j ∈ m. Therefore instead of deriving a point estimate for parameter

θj , we have a population of estimates denoted as θj . Hence, this population of estimates

is our approximation to the posterior density of parameter θj .

3.3.2 Data fitting

In estimating the model ODEs parameters, we compare our estimates with those of

Takeda et al. (2012) and specifically the dose-peak response of Figure 2C and dose-time

to peak response of Figure 2D of the same paper. Thus wherever possible we adopted

the same approach as implemented by Takeda et al. (2012). We chose to stimulate the

model ODEs also with a step input and in fitting the data, we selected 16 of 21 discrete

experimental data points chosen by the Takeda et al. (2012). 8 data points are of the peak

responses (Ip) and 8 others are of their corresponding time to peak responses (Tp) of when

cells were stimulated with various level of cAMP but with background concentrations

of 0nM and 100nM. The data points of stimulation by 1µM in background cAMP of

0nM are not selected as they are used for normalization. The remaining 5 data points

as chosen by Takeda et al. (2012) are not selected here as the magnitude of the inputs



Chapter 3 Model analysis and parameter estimation 35

have already been represented by the 16 data points and therefore the inclusion would

only contribute to overfitting and an added burden to the computational resource.

The estimated and fixed parameters are explicitly listed in table 3.1. The fixed param-

eters are set with values derived by Takeda et al. (2012). As can be seen from table 3.1,

there are two type of receptors denoted by R1 and R2. This is to reflect two popula-

tion of receptors with different affinities of 60nM and 450nM for R1 and R2 as derived

from their respective dissociation constant kdi = k−Ri/kRi. Individual parameters to

be estimated is denoted here as θ where θi indicates the ith parameter and is randomly

generated in an optimisation procedure (further described in the next section) from a

uniform distribution with an upper and lower bound based on values derived by Takeda

et al. (2012). For example, if the value estimated by Takeda et al. (2012) for parameter

θi is x then the bounds are set as x ± (0.95 × x). As can be seen from table 3.1, the

degradation rates of RasGEF and RasGAP protein are estimated such that the rela-

tion of kdGEF = kdGAP is maintained. Hence, there will always be a delay between

the dynamics of RasGAP and RasGEF and further ensuring that the FCD behaviour is

captured. We have also set the condition such that Rtot2 +Rtot1 = 1.

Table 3.1: Fixed and estimated parameters of the model ODEs. Rtot2 is esti-
mated as Rtot2 = 1−Rtot1 , hence there is no upper and lower bound set.

Parameter Derived by Takeda et al. (2012) Upper Bound Lower Bound Unit

Fixed

kR1 0.00267 nM−1sec−1

kR2 0.00244 nM−1sec−1

k−R1 0.16 sec−1

k−R2 1.1 sec−1

kGEF 0.1 ∗ k−GEF sec−1

kGAP 0.1 ∗ k−GAP sec−1

Rastot 1
RBDtot 1

Estimated θ

θ1 : r1 0.012 0.023 6× 10−4 nM
θ2 : r2 0.115 0.224 0.005 nM
θ3 : Rtot1 0.1 1 0
θ4 : Rtot2 0.9
θ5 : k−GEF 0.4 0.78 0.02 sec−1

θ6 : k−GAP 0.1 0.195 0.005 sec−1

θ7 : kRas 390 760.5 19.5 sec−1

θ8 : k−Ras 3126 6095.7 156.3 sec−1

θ9 : koff 0.53 1.034 0.027 sec−1

θ10 : kon 1.0 1.95 0.05 sec−1
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3.4 Posterior parameter distribution

The correct way to think about the distributions

The result of estimating 1000 samples for all parameter θj , ∀j ∈ m, using the described

ABC-SMC method is shown as histogram plots in Figure 3.2 where the histograms are

the last filtered sample populations. We consider Figure 3.2 as an approximation of

the posterior distributions of parameters conditioned on the fixed parameters. Here we

denote the set of fixed parameters in table 3.1 as θfix. Each parameter θij , i ∈ N, j ∈ m
have been chosen randomly from a uniform prior. However, one randomly chosen prior

parameter requires the right combination of other randomly chosen priors in order to

achieve an acceptable solution of the model ODEs as required by the distance function.

This is an indicator that elements of dependency exists. Therefore it is more accurate

to view the whole of Figure 3.2 as a posterior of joint distribution of a 10 dimensional

parameters conditioned on the fixed parameters denoted as p(θ1, . . . , θ10|θfix), with each

individual distributions the marginal posterior p(θj |θfix) =
∫
p(θ1, . . . , θj , . . . , θ10|θfix).

The mean, standard deviation, coefficient of variance and median statistics of each

distribution in Figure 3.2 are summarised in table 3.2.

Table 3.2: Statistics of the estimated marginal posterior distribution of param-
eters in Figure 3.2.

Parameter θ Mean µ Std Dev σ Coefficient of Var cv Median

θ1 : r1 0.0121 0.0060 0.4990 0.0122
θ2 : r2 0.1248 0.0472 0.3781 0.1220
θ3 : Rtot1 0.1387 0.0686 0.4944 0.1333
θ4 : Rtot2 0.8613 0.0686 0.0796 0.8667
θ5 : k−GEF 0.5200 0.1269 0.2440 0.5201
θ6 : k−GAP 0.1036 0.0178 0.1715 0.1041
θ7 : kRas 537.18 125.74 0.2341 544.22
θ8 : k−Ras 2786.04 878.19 0.3152 2655.98
θ9 : koff 0.2264 0.0920 0.4065 0.2095
θ10 : kon 1.2248 0.3888 0.3175 1.2180

Distributions of parameters in sensing defined and undefined fold change

in input.

What does the distribution indicate in the context of the cell? Note that we also fitted

the parameters to measurements of cells response when stimulated with initial cAMP

x = 0nM. Stimulation in no background cAMP x = 0nM entails an undefined fold change

in input- the cell has no information on the previous cAMP to compare to. Hence Figure

3.2 indicates the range of possible parameter values the modelled upstream process of
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Figure 3.2: Posterior parameter distributions derived using the ABC-SMC es-
timation method and shown as histogram plots. Each distribution consists of
1000 samples. Distribution of θ3 mirrors θ4 due to the ratio of receptors pop-
ulation Rtot + Rtot2 = 1. Vertical red lines indicate parameter as estimated by
Takeda et al. (2012). Black dashed lines indicates the median of each posterior
distributions.
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Dictyostelium operates in order to sense both defined and undefined fold change in input.

Fitting to only experiment data that has a defined fold change in cAMP would not be a

fair representation of the cells parameter because in natural environment they are likely

to encounter both scenarios.

Inferring from variability the significance of parameters in the FCD

mechanism

What information does the marginal posteriors and its statistics tells us about FCD

in Dictyostelium? It is found that in sensing both defined and undefined fold change,

certain parameters have lesser variability than others (stiff). An example is the deactiva-

tion of GAP by k−GAP constant indicated by the 17% coefficient of variance(table 3.2).

(Note that coefficient of variance is used to compare variability because the parameters

are of different units of measurements.) On the contrary, certain parameters has a more

flexible range. Two examples are the receptor activation constant r1 and protein RBD

degradation constant koff as indicated by their 49 % and 40% coefficient of variances

respectively. Large variability may imply that it does not really matter what values

these parameters take in order for the cell to sense fold change. Thus, the variability

in parameters is an initial indicator of the significance of each parameter and as an

extension, the role of each protein itself in the fold-change input sensing mechanism.

Characteristics of the underlying distributions

Figure 3.2 also reveal characteristics that may hint to what each underlying distribu-

tions are. For example a Gaussian might describe k−GAP distribution well due to the

symetricness of the posterior. The marginal posterior for koffRBD is a right tailed distri-

bution and positive and negative skewness is observed in the distribution of kRas and

k−Ras. R
tot
2 may be symmetric if the estimation was not limited by its upper bound. A

quick inspection of Figure 3.2 also suggests that there is no clear bimodality that can

be observed in all parameter distribution.

Distributions are not necessarily centred around Takeda’s estimates

In the ABC-SMC parameter estimation process we have centred the uniform priors

based on the estimates by Takeda. Let’s assume that there exist a true value θtrue
j for

each parameter θj where a set of θtrue = (θtrue
1 , . . . , θtrue

10 ) results in an optimal fitting

of the model ODEs to the experiment data. If our estimation is also optimal, the

set of true parameters θtrue would then lie within the estimated posterior distribution.

Furthermore if we consider Takeda estimates to be the true parameters and assume that

our ABC-SMC method is optimal, then Takeda estimates should lie within our posterior
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distribution. However, as can be seen from Figure 3.2, this is not the case. Figure 3.2

reveals that while parameters such as r1, r2 and k−GAP are distributed around Takeda’s

estimates, some such as the koffRBD distribution has centres that deviate far from what

Takeda had estimated. For comparison purposes we took the median of each distribution

and plotted as black dashed-lines in Figure 3.2 where else Takeda’s estimates are shown

as red lines. The degree of deviation in percentage from what Takeda estimated for each

parameter is shown in table 3.3. As expected the median of koffRBD distribution has the

highest degree of deviation at 60.46%. Therefore if the assumption that the ABC-SMC

is optimal holds, then Figure 3.2 shows that Takeda estimates for parameter such as

koffRBD does not approximate well to the true parameters.

Table 3.3: Degree of deviation of the median of the distributions in Figure 3.2
from Takeda’s estimates.

Parameter, θ Median θ∗ Diff (%)

θ1 : r1 0.0156 1.63
θ2 : r2 0.0779 6.06
θ3 : Rtot1 0.0852 33.3
θ4 : Rtot2 1.2015 3.70
θ5 : k−GEF 0.421 30.02
θ6 : k−GAP 0.1018 4.14
θ7 : kRas 564.37 39.54
θ8 : k−Ras 2178.9 15.04
θ9 : koff 0.1815 60.46
θ10 : kon 1.0674 21.80

Median of posteriors as the new estimate

Working on the assumption that θtrue lies within the posteriors, let us consider the set of

median values for each parameter as stated in table 3.3 as our estimate θ∗ = (θ̃1, . . . , θ̃10)

where θ̃j is the median of parameter θj . θ∗ approximates θtrue. How well does Ip and Tp

responses generated by θ∗ fits the experiment data in comparison to Ip and Tp derived

using Takeda estimates? To answer this we solve model ODEs using θ∗ and Takeda

estimates for each pair of inputs measured in Figure 2.4A and Figure 2.4B. From the

solution of model ODEs, we derived the normalised Ip and Tp with respect to the set

of parameters used and plot alongside the experiment data in Figure 3.3. Crosses are

the values generated using θ∗ and squares indicates values by Takeda’s estimates. Solid

and dashed lines are the interpolated values between each data points. The various

background cAMP are indicated by different colors(Refer Figure 3.3 for details).

Figure 3.3 shows that Ip derived by θ∗ and Takeda estimates have different projections

for all background concentration. In contrast the projections of Tp by both estimator are

similar. The deviation of derived Ip, Tp of each estimator from Ip, Tp of the experiment
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Figure 3.3: Model responses solved using Takeda’s estimates (solid lines and
solid squares) and median of posterior θ∗ (dashed lines and crosses). Experiment
data is also indicated (black circles with error bars as standard deviations) for
comparison. The background concentrations of cAMP are indicated by different
colours where black: 0nM, red: 1nM, green: 10nM, blue: 100nM.

data is quantified using the distance function of equation 3.14 and shown in table 3.4. It

can be observed that Takeda estimates is closer to the Ip experiment data indicated by

the lower error. Both estimates approximates the Tp data similarly although θ∗ perform

slightly better.

3.5 Principal Component Analysis

Now that we have estimated 1000 values for each parameter θj , j ∈ m as in Figure 3.2,

we investigated the variance components of the parameters using Principal Component
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Table 3.4: Errors.

Estimator Ip Tp
Takeda 2.88 37.05
θ∗ 5.81 36.34

Analysis (PCA). We ignore the estimated values for θ3 = Rtot1 because it is already know

that its variance is dependent of θ4 = Rtot2 . Let us consider N×p data matrix X, where in

our case N = 1000 are the rows of estimated parameter values and p = 9 are the columns

of the reassigned parameters θ1 = r1, θ2 = r2, θ3 = Rtot2 , θ4 = kGEF , θ5 = kGAP , θ6 =

kRas, θ7 = k−Ras, θ8 = koff , θ9 = kon. The data matrix X where X ⊂ Θ,X ∈ RN×p can

be transformed as

Q = PᵀXᵀ (3.15)

where P is the p× p matrix of column eigenvectors v1,v2, . . . ,vp representing the prin-

cipal components of X and Q is a linear combinations of its basis (eigen) vectors. If

matrix of parameters X is denoted as X = [x1 . . .xp] where xj is the jth column vector

of estimated parameter θj , the covariance between parameter θj and θk is computed as

Cj,k =
1

N − 1
(xj − µj)ᵀ(xk − µk) (3.16)

where µj and µk are both the mean for xj and xk. The variance-covariance matrix of

X is then a p× p matrix denoted as Cx,

Cx =


C1,1 · · · C1,p

...
. . .

...

Cp,1 · · · Cp,p

 (3.17)

where the diagonal Cj,j is the variance of parameter θj . Cx can be computed in matrix

notation as Cx = 1/(N − 1)XᵀX. However, the parameters θ1, . . . , θ9 are of different

units of measurement where θ1, θ2 are activation constants r1, r2, θ3 is the proportion of

the receptors population Rtot2 , while θ4 ∼ θ9 are a group of protein activation and degra-

dation constants. To ensure equal weights in the analysis of principal components, the

matrix of parameters X is standardized as X = [x′1 . . .x
′
p] where x′j is the standardized

column vector of estimated parameter θj computed as

x′j = αj(xj − µj) (3.18)
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Table 3.5: All principal components with corresponding parameters and eigen-
values. As shown in Figure 3.4, the first five components consist of 80% variance.

Components
Parameter 1 2 3 4 5 6 7 8 9

r1 -0.005 0.009 -0.009 0.317 0.914 -0.041 0.228 0.099 -0.006
r2 0.494 0.138 -0.218 -0.355 -0.053 0.230 0.551 0.452 0.004
Rtot2 -0.379 -0.367 0.306 0.005 0.003 0.675 -0.058 0.406 -0.055
k−GEF -0.083 0.644 0.238 -0.105 0.085 0.058 -0.300 0.266 0.583
k−GAP -0.457 0.333 -0.144 0.314 -0.232 -0.315 0.190 0.481 -0.374
kRas 0.257 -0.181 0.624 -0.271 0.089 -0.468 -0.175 0.326 -0.272
k−Ras -0.479 -0.257 0.108 -0.353 -0.006 -0.324 0.510 -0.085 0.443
koff 0.303 -0.356 0.031 0.615 -0.252 -0.164 0.041 0.274 0.484
kon -0.096 -0.307 -0.616 -0.295 0.170 -0.189 -0.472 0.361 0.110

eigvalues 2.031 1.785 1.309 1.127 1.021 0.645 0.559 0.291 0.231

Here the mean of x′j is shifted to zero and scaled with factor αj = 1/σj where σj is the

standard deviation of estimated parameter θj . The corresponding covariance matrix Cx

is a real symmetric matrix where Cx = Cx
ᵀ due to only real positive numbers are used

to estimate the parameters. Therefore covariance matrix Cx is diagonalizable such that

Cx = PΣPᵀ (3.19)

where P is a matrix of orthonormal eigenvectors (eigenvectors are linearly independent

with vj •vk = 0 and |v| = 1).Σ is a diagonal matrix of distinct eigenvalues in descending

order such that λ1 > λ1 > · · · > λp, λj 6= λk. One desirable property of the transformed

matrix Q is that the covariance matrix of Q, Cq = 1/N−1(QQᵀ) is a diagonal matrix. It

has been shown that this can be achieved by using the eigenvectors of covariance matrix

P(Shlens, 2014). Hence the eigenvectors of P represent the principal components of X.

The result of computing the eigenvectors for our matrix of parameter X is shown in table

3.5 alongside with the corresponding eigenvalues. The computed explained variance and

cumulative variance for each principal components are shown in Figure 3.4. The result

shows that the variance of the posterior parameters can not be represented by any single

principal components although 80% of the variance is captured by the first five principal

components. Therefore at least five components are needed to preserve 80% variance of

the parameters.

3.6 Summary

We have evaluated the suitability of the model ODEs by Takeda et al. (2012) in capturing

the FCD behaviour by means of dynamical system analysis. We showed that the model
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Figure 3.4: Variance of the data contributed by each principal components.The
first five principal components captures 80% of the posterior parameters vari-
ability.

will always achieve adaptation (one of the necessary components of FCD) even though

stimulant increases continuously as opposed to step inputs due to the constraints imposed

by the receptor protein population and RasGEF-RasGAP protein on the model. We

have also inferred the posterior density of parameters of the model ODEs and provided

several interpretations of the result. The population of parameters revealed that the most

invariant (stiff) parameter is the k−GAP kinetics of protein RasGAP and distributions

are not necessarily centred around estimates by Takeda et al. (2012). The PCA analysis

showed that no single principal components dominates the variance of the posterior

parameters.





Chapter 4

The accuracy of Fold Change

Detection

4.1 Introduction

In an ideal setting, the accuracy of FCD is quantified by measuring individual response

of every single Dictyostelium cell on earth to various fold changes in the concentration of

cAMP. This way we could find the true Ip response of a single cell to a certain fold change

F by looking at the consistency of Ip to F of various background cAMP x. However

as seen in Figure 2.5, the responses of Dictyostelium cells to the same fold change in

concentration of cAMP are heterogeneous even when the initial cAMP concentration is

identical due to cell-cell variability. It has been shown that although single Dictyostelium

cells produce consistent responses to the same pulses of cAMP concentration, there is

a large variability in responses when a population of cells is stimulated in the same

manner (Samadani et al., 2006). The difference in responses by different cells to the

same concentration of cAMP is found to be true even if the cells are genetically identical

(Wang et al., 2012). It is hard for a population of cells to reach an absolute consensus on

the level of Ip it should produce in response to a particular fold stimulus. In this chapter

we quantify the accuracy of FCD by looking at the variability of responses derived by

the model ODEs based on the estimated posterior parameters. The principle is simple,

the population response provides a better view of how confident a particular fold is being

sensed.

4.2 Methods of emulating heterogeneity in responses

In the previous chapter, we have inferred posterior distributions P (θ|X) on the parame-

ter set that is compatible with the observed data X. We take the view that a single set of

45
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parameters θ = (θ1, . . . , θm) in the system of ODEs does not reflect either the biological

reality of natural variation in protein levels Raj and van Oudenaarden (2008). We shall

label by i each sample drawn from this distribution θi ∼ P (θ|X). We view every such

sample θi = (θi,1, . . . , θi,m) as an emulation of the cell-cell variability (Samadani et al.,

2006; Wang et al., 2012) in the sensing mechanism of Dictyostelium . The adaptation

displayed by Dictyostelium to sustained stimulation by externally applied cAMP (Din-

auer et al., 1980b,c) makes the characteristics of the transient response – the magnitude

of the peak response Ip and the time taken to reach this peak tp as visualized in Figure

4.1A – the main empirical quantities of interest.

We stimulate each such virtual cell in the same way as the experimental setup: for

a specific background level of cAMP x we introduce a step change of input cAMP

concentration (x′ − x) with x′ = Fx where F is the fold change. We follow the time

course of the response in the system of ODEs with parameters θj and measure Ip,j and

tp,j . Hereafter, except for right panel of Figure 4.1A , all Ip values are normalized by Ip

derived from stimulating model ODEs parameterised in Takeda et al. (2012) with step

input x = 0, x′ = 1000. The results of simulating 1000 heterogeneous virtual cells θj ,

for all j = 1, . . . , 1000 with x = 1 and F = 2 is shown in Figure 4.1B as histogram by

taking only the Ip value of each time series data of each virtual cells. By simulating a

distribution of responses rather than point estimates to a particular step input cAMP

x, x′ with fold F , we are able to further emulate variability in cell responses within

our model constraints. This is important as the experiment results reported in Takeda

et al. (2012) (replotted again as Fig 4.1C) shows how cells response to the same fold

input varies even in the same background cAMP x, indicating that although responses

to stimulant are influenced by fold changes in input cAMP, it does not necessarily follow

the exact FCD notion as introduced previously in chapter 2

To further capture the heterogeneity properties for different background x and fold

change F , we generalise as follows. Given two vectors of input background cAMP

x = (xi, x2, . . . , xm) and corresponding fold change F = (F1, F2, . . . , Fn) with xi and Fj

denoting the elements of each input vector, the set of all possible combination of input

xi and Fj is denoted as

S = {(xi, Fj) : i = 1, . . . ,m j = 1, . . . , n} (4.1)

where we set the background cAMP x to take positive integer values xi ∈ Z+ and Fj ≥ 2.

We denote the distribution of Ip responses resulted from stimulating 1000 virtual cells to

a specific pair of input (xi, Fj) as I
xi,Fj
p . The input range of interest is x = (1, 2, . . . , 100)

and F = (2, 2.1, . . . , 100) encompassing the range of experiment data in Fig 4.1C and

we denote the resulting set of interest as S0. However, to derive Ip responses for all pair

of input intervals within this range by numerically solving model ODEs as described

previously is computationally expensive. Hence we adapt an approximation method,

generally described as first modelling the distribution of Ip responses to a sparse range of
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Figure 4.1: Emulation of cell-cell variability. (A) Response to step input x, x′

derived by numerically solving model ODEs with parameter θi. Ip and tp are the
values of interest. (B) Histogram of Ip from 1000 θ stimulated with step input
x = 1, x′ = 2. Red curves is the result of fitting lognormal distribution. (C) Ip
response to different background cAMP as in the experiment by Takeda et al.
(2012) replotted as function of fold change. Error bars in this paper represent
standard deviation

inputs and then use the model parameters to estimate I
xi,Fj
p for any (xi, Fj) of interest.

Here we choose the sparse range of inputs to be x = (1, 2, . . . , 10, 20, . . . , 100) and

F = (2, 3, . . . , 10, 20, . . . , 100). The length of input vectors then becomes m = 19 and

n = 18 for x and F and the resulting set is denoted as S1. We derive numerically I
xi,Fj
p

for each input pair (xi, Fj) in our new set S1 : S1 ⊆ S0. We model all responses I
xi,Fj
p

from stimulating inputs in set S1 with the lognormal distribution where the probability

density function given as

f(I
xi,Fj
p ) =

1

I
xi,Fj
p σxi,Fj

√
2π

exp

(
−(ln I

xi,Fj
p − Ĩp

xi,Fj
)2

2σ2
xi,Fj

)
(4.2)

is then fitted to each histogram of I
xi,Fj
p and we estimate the mean Ĩp

xi,Fj
and standard

deviation σxi,Fj . The results of fitting a distribution to histogram of Ix1,F1
p where x1 = 1

and F1 = 2 is shown in Fig 4.1B as a red curve. To illustrate how background cAMP

affects the mean and standard deviation of the responses, we plotted Ĩp
xi,Fj

and σxi,Fj
as coloured dots for all xi, i = 1, . . . ,m with a subrange fold F = (2, 5, 10, 30, 100) in the

left most panels of Fig 4.2A,B . Initial inspection suggests that in the presence of high
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background cAMP, the average cell response to stimulant cAMP is weaker and that the

responses are more varied. We further fit curves of Ĩp
Fj

and σFj for all j = 1, . . . , n with

a quadratic function as

Ĩp
Fj

= a
Fj
1 x2 + b

Fj
1 x+ c

Fj
1 (4.3)

σFj = a
Fj
2 x2 + b

Fj
2 x+ c

Fj
2 (4.4)

and estimated function parameters a
Fj
k , b

Fj
k , c

Fj
k where k = 1, 2. The result of the es-

timated parameters are plotted as black dots in the three right most panels of Figure

4.2A,B. Coloured curves of left most panels in Figure 4.2A,B represent quadratic func-

tions fitted to the estimated parameters of the lognormal distribution. The curves of

quadratic parameters a1, b1, c1, c2 are then fitted using a hyperbolic, logarithmic or ex-

ponential function where the results of the estimated coefficients are summarised in table

4.1 while points of a2 and b2 were linearly interpolated.
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Ĩ p
x i
,F
j

-2

-1.5

-1

-0.5

0

0.5

Background cAMP, x
0 20 40 60 80 100

σ x
i,
F
j

0.04

0.06

0.08

0.1

Figure 4.2: Estimated parameters and coefficients. (A,B Most Left Panel) The estimated parameters of lognormal distributions fitted
to histogram of responses shown for fold F = 2, 5, 10, 30, 100 as coloured dots. Coloured curves are quadratic functions fitted to the
estimated parameters. (A, Right Panels) Estimated parameters of the quadratic functions fitted to the lognormal parameter Ĩp curve
shown as black dots. Black lines are results of functions in table 4.1 fitted to the estimated parameters. (B, Right Panels) Estimated
parameters of the quadratic functions fitted to the lognormal parameter σ curve shown as black dots. Black lines are results of function
in table 4.1 fitted to the estimated parameter. Red lines are linearly interpolated points.



50 Chapter 4 The accuracy of Fold Change Detection

Table 4.1: Quadratic parameter curves fitted with various functions

Parameter Functional form Estimated Coefficients

a1 a1 = αF
β+F α = 3.54× 10−5, β = 11.591

b1 b1 = α+ βlog(F ) α = −2.4× 10−3, β = −1.4× 10−3

c1 c1 = α
β+γeτF

+ ε α = 3.28× 10−4, β, γ = 0.109

τ = 9.424× 10−4, ε = 0.0556

c2 c2 = αF
β+F α = 0.044, β = −0.911

Hence with the estimated coefficients and quadratic parameters we can inversely ap-

proximate the parameters of the lognormal distribution Ĩp
xi,Fj

and σxi,Fj for any pair

of (xi, Fj) within our set of interest S0 by solving the quadratic equation

Ĩp
xi,Fj

= a
Fj
1 x2

i + b
Fj
1 xi + c

Fj
1 (4.5)

σxi,Fj = a
Fj
2 x2

i + b
Fj
2 xi + c

Fj
2 (4.6)

Additionally, we can now sample a single cell response to stimulant cAMP with back-

ground xi and fold change Fj denoted as Rxi,Fj drawn from the lognormal distribution

as Rxi,Fj ∼ lnN (Ĩp
xi,Fj

, σxi,Fj ) without the need to solve model ODEs.

4.3 Effect of background cAMP on FCD accuracy

Among the criteria for exact FCD is the sameness of output to the same fold input

regardless of the background input. One logical way to asses the accuracy of the fold

change detected is by benchmarking responses to a known true value. However, we do

not know what is the true response value a cell should produce when stimulated with

a specific step input. Therefore we can only estimate the accuracy of FCD by looking

at the variance of response. The assumption here is that the less varied the responses

are, the more the cells agrees to the value of FCD each of them are sensing. Hence, the

variability in responses tells us how consistently cells sense the fold change in stimulant

cAMP (FCD).

In this section we analyse the effect of background cAMP on response Ip. We ask

what are the average responses to different background camp x and fold change F and

more importantly how do responses vary? We introduce a new range of input vectors

x = (1, . . . , 100) and F = (2, 2.1, . . . , 10) with resulting set S2 : S2 ⊆ S0. This is

in line with results by Kamino et al. (2017) where FCD behaviour is observed when

Dictyostelium cells in background cAMP x = 0.1 ∼ 10 nM were stimulated with cAMP

of fold change F = 10 . Furthermore experiment results by Takeda et al. (2012) as
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in Figure 4.1C shows that responses are linear between F = 2 ∼ 10 but saturate for

F ≥ 10 suggesting that FCD mechanism is more likely to occur in the linear regime.

We compute Ĩp
xi,Fj

and σxi,Fj for (xi, Fj) ∈ S2 using equation 4.5,4.6 and the results

are shown in Figure 4.3. Cross sections of Figure 4.3A and Figure 4.3C for fold change

F = 2 and F = 10 are shown as Figure 4.3B and Figure 4.3D. Figure 4.3A,B shows

that in a higher background concentration of cAMP x, we can expect that cells on

average have weaker responses as indicated by the linearly decreasing response Ĩp
xi,Fj

with background x. There is also more variability in the responses produced, as shown

by the linear increase in the standard deviation σxi,Fj at first followed by its saturation

around x =50 nM. Therefore in high background cAMP, the population of cells is less

confident on the fold change that is being detected indicated by the high variability in

responses produced.
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Figure 4.3: Responses for background cAMP x = (1, 2, . . . , 100) and fold change

F = (2, 2.1, . . . , 10). (A) Mean of responses Ĩp
xi,Fj

in log space. (B) Cross

section sample of mean of Ĩp for fold F = 2 (blue circles) and F = 10 (red
crosses). (C) Standard deviation of responses σxi,Fj . (D) Cross section sample
of standard deviation for fold F = 2 (blue circles) and F = 10 (red crosses).
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4.3.1 Responses are more consistent for lower fold change

We have seen how for responses to a fixed fold change in input, the modelled lognormal

distribution shape and scale changes with different background cAMP. How can we

model responses without the stratification by background input? In order to do this

we first derive a distribution that comprises of responses from multiple background

cAMP to the same fold change in input. Focussing only on responses from our range

of background cAMP x = (1, 2, . . . , 100), it is assumed that any background within this

range is equally likely.

Algorithm 1 Generating responses across background x

1: Initialize F
2: for all Fj ∈ F do
3: Initialize background sample x̄Fj

= (x1, . . . , xM )
4: for i = 1 to M do
5: Sample background xi ∼ U(1, 100)
6: Compute lognormal parameters for xi,

7: Ĩp
xi,Fj

= a
Fj
1 x2 + b

Fj
1 x+ c

Fj
1

8: σxi,Fj = a
Fj
2 x2

i + b
Fj
2 xi + c

Fj
2

9: Sample response Rxi,Fj ∼ lnN(Ĩp
xi,Fj

, σxi,Fj )
10: end for
11: end for

To derive responses to fold change Fj in stimulant cAMP across all background x, we first

create samples of background cAMP x̄Fj = (x1, . . . , xM ) with size M = 10, 000 where

each xi is drawn randomly from a discrete uniform distribution xi ∼ U(1, 100), xi ∈ x̄Fj .

From these samples, we generate responses using the lognormal distribution properties

described by Algorithm 1. The result is such that for each fold Fj there are M responses

Rxi,Fj denoted as I
Fj
p .

The results of generating responses IF1
p for fold change (F1 = 2) and IF81

p , (F81 = 10)

are visualized as histograms normalized as probability in Figure 4.4A. We plotted the

probability values of the bin which contains histogram mean µ
Fj
p for each fold Fj as Fig-

ure 4.4B. To get a full view of how distribution characteristics changes, each histogram’s

mean, < I
Fj
p > and standard deviation, sFj are plotted as Figure 4.4C,D. We found that

the average responses are less likely to be seen when cells are stimulated with larger fold

change in cAMP (Figure 4.4B ). It is also observed in Figure 4.4C,D that as fold change

in input becomes larger, both mean response µFj and standard deviation increases, sig-

nalling on average a stronger response is expected but the responses themselves being

less similar. The shape of the distribution changes such that in Figure 4.4A as the fold

change Fj increases, the response Rxi,Fj increases and shifts to the right while the distri-

bution becomes wider. As there is reduced variability in responses to large fold change

in input it can be concluded that cells stimulated with smaller fold change in cAMP are

likelier to be more consistent in their responses.
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Figure 4.4: Response Ip distribution statistics with background cAMP x =
1, .., 100 and input cAMP x′ corresponding to fold F = 2, 2.1.., 10 (interval 0.1)
considered. (A) A sample of output distribution for F = 2 and F = 10 plotted
as histogram and normalized as probability. Each bin represents a range of
response values and is assigned a probability value based on the sample size.
(B) The relation between mean of each output distribution and their probability.

(C) Mean of distributions < I
Fj
p > with standard deviations sFj represented as

error bars. (D) Standard deviation is larger as fold cAMP increases.

4.4 Fold Change Distinguishability

The distribution of responses and their properties derived previously in Figure 4.4 pro-

vides further information that there are overlapping distributions. Recall from chapter 2

that one condition required for exact FCD is to have distinct responses to different fold

change in input. Distributions that overlap indicate that some cells are ‘confused’ and

unable distinguish sensing between two different fold changes in input. As illustrated by

the green shaded area in Figure 4.5, some responses to fold change in stimulant F = 2

can be misclassified as responses derived from F = 3. The overlapping area repre-

sents the amount of fold change misclassification (either false positive or false negative)

between responses of two different fold inputs.
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Figure 4.5: Two distributions of responses for F = 2 and F = 3 fitted with log-
normal distributions with overlap areas in green. Shaded area in green indicates
responses for fold change F = 3 misclassified as responses to F = 2

We investigate this ‘fold distinguishability’ property where we ask what is the fold-

distance limit two fold change in stimulant denoted as Fx and Fy must have so that

cell responses are minimally distinguishable? It is assumed the responses I
Fj
p for fold

Fj ∈ F derived in the previous section are also distributed log-normally with mean µFj
and variance σ2

Fj
denoted as I

Fj
p ∼ lnN (µFj , σ

2
Fj

). The probability density function of

the log-normal distribution is then fitted to histogram of I
Fj
p for all Fj ∈ F derived

previously such that

f(I
Fj
p ) =

1

I
Fj
p σFj

√
2π

exp

(
−

(ln I
Fj
p − µFj )2

2σ2
Fj

)
(4.7)

The overlapping area AF [x,y] between two fold Fx and Fy is then computed by integration

as

AF [x,y] =

∫ b

a
f(I

Fy
p )dI

Fy
p +

∫ c

b
f(IFxp )dIFxp (4.8)

where b is the intersection of the two lognormal distributions, a, c are the minimum and

maximum horizontal values of the overlapped area. Here mean µFj of one lognormal

distribution is assumed greater such that µFy > µFx . We compared and calculated the

overlapping area for fold F [x, y] where x, y = 2.0, 2.1, . . . , 10. The result is a matrix of

overlapped areas A such that
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A =


AF [2,2] AF [2,2.1] · · · AF [2,10]

AF [2.1,2] AF [2.1,2.1] · · · AF [2.1,10]

...
...

. . .
...

AF [10,2] AF [10,2.1] · · · AF [10,10]

 (4.9)

where the diagonal elements are identical distributions completely overlapping each

other. The computed result of matrix A is visualized in Figure 4.6. Fold changes

in cAMP Fx and Fy are only considered distinguishable if the overlapping area of their

response distributions is less than or equal to some threshold or decision boundary r.

Here r is arbitrarily selected as 40% of the overlapping area and shown as red curves in

Figure 4.6. This means that if the overlapping area between two response distributions

of fold changes Fx and Fy is more than 40% then the changes in input concentrations of

cAMP are perceived as indistinguishable. Therefore the two red curves divides between

the region of distinguishability and indistinguishability.
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Figure 4.6: Overlapped area A for two fold Fx and Fy compared with x, y =
2, 2.1, .., 10. The overlapped area A = 1 for two distributions completely over-
lapping each other and A = 0 for the two distribution are completely separated
(no-overlap). Red curves divides between distinguishable and indistinguishable
region.
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From Figure 4.6, it can be said that for example, that a fold change of magnitude F3

is only considered distinguishable from fold F4.1 and larger or with F2.2 and smaller.

Therefore the region of indistinguishability for fold F3 is F2.2 < F3 < F4.1. If distance of

distinguishability df is calculated, then it can be seen that F3 needs only fold distance

df = 0.8 with smaller input fold changes compared to df = 1.5 with larger F . This

trend is evident across all fold changes in input and therefore it can be concluded that

a lower input fold change is more distinguishable than a larger one.

4.5 Hyperbolic model of input-output relation

As stated before, the architecture of the mathematical model used to describe the in-

teraction of proteins in the signalling pathway of Dictyostelium analysed in this thesis

is an instantiation of the incoherent feed forward loop (IFFL) network (Takeda et al.,

2012). Theoretical analysis have shown that the input-output relation that arises from a

system incorporated with IFFL in its design in some limiting condition is best described

by a logarithmic function (Adler et al., 2014). The logarithmic law is commonly found

in many sensory systems, from discriminating visuals to how monkeys or native humans

count (Dehaene, 2003; Dehaene et al., 2008). The relationship between ligand concen-

tration and kinase activity in the E.coli chemotaxis is also found to obey by the same

law (Tu et al., 2008). The logarithmic function used to describe the relation between

Dictyostelium cell responses Ip to fold change in stimulant cAMP F introduced in Adler

et al. (2014) is given as Ip = α log(F ) + b and yielded a better Mean Squared Weighted

Deviation (MSWD) score than variation of power functions (Adler et al., 2014). This

implies that as the intensity of the fold input increases, the difference in peak response

must be higher for responses to be distinguishable, a key element of the Weber-Fechner

law. The functions evaluated was fitted to eleven experiment data points in Figure 4.1C.

Here we revisit the input-output relation by approximating extra data points to yield

a more accurate and confident estimation of the non-linear relationship. We generate

previously unseen distribution of responses I
Fj
p for all fold change of Fj in the range F =

(2, 3, . . . , 10, 20, . . . , 100) by utilising the process described in Algorithm 1. Intervals of

the simulated responses was taken such that the data spreads well across two magnitudes

of fold change to avoid over-fitting in certain regimes. The results are shown in Figure

4.7 as blue boxplots plotted together with experiment data by Takeda et al. (2012)

replotted as black circles and black lines. The trajectory of our simulated data displays

saturation as distribution of responses to fold change within the range F = 20 ∼ F = 100

becomes more similar. To capture the saturation behaviour we fitted to the mean of

the simulated data a hyperbolic expression of the Michaelis-Menten type used to model

enzyme kinetics given as
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Ip = Imax
F

Km + F
(4.10)

where Imax is the system’s maximum response rate and constant Km is the saturating

concentration. When fold change in input F is small such that F � Km, the system

displays a linear response where Ip ≈ ImaxF/Km. When fold input is large enough such

that F � Km, the response saturates to Ip ≈ Imax.

For comparison purposes, the logarithmic function of Ip = α log(F )+b is re-fitted to the

experimental data as done by Adler et al. (2014). Both function fitting of the hyperbolic

and logarithmic function were done using the ‘nlinfit’ function of MATLAB. The results

of fitting both hyperbolic and logarithmic functions are shown as blue and green lines

respectively in Figure 4.7 with estimated coefficients Imax,Km, α, d described in the

figure caption.
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Figure 4.7: Describing Input-Output relation with simulated data. Black circles
and vertical lines indicates the experiment and standard deviation data derived
from Takeda et al. Blue boxplots is the simulated data used for non-linear
fitting. For Adler’s I(x) = α log(x) + b equation, the nonlinear fit resulted in
α = 0.0956 and d = 0.3571. For Michaelis-Menten equation, the fit to the
mean of the simulated data resulted in Imax = 0.7889 and exponent Km =
2.9638. Functions fitted to experiment data is not plotted. Refer to table 4.2
for goodness of fit.
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Table 4.2: Mean square weighted deviation (MSWD) for Logarithmic and Hy-
perbolic functions fitted to simulated (train) and experiment (test) data. A
smaller value indicates a better fit.

Equation Simulated Experiment

Ip(F ) = ImaxF/(Km + F ) 0.0119 0.0889
Ip(F ) = αlog(F ) + b 0.0996

If our simulated data derived from model ODEs approximate the experiment data well,

then we would expect that the hyperbolic function (where its coefficients are derived by

fitting to the simulated data) when evaluated with the experiment data to perform as

well if not better than the logarithmic function suggested by Adler et al. (2014). Thus

in this setting, the hyperbolic function is ‘trained’ with our simulated data but ‘tested’

with the experiment data by Takeda et al. (2012). We evaluated the goodness of fit by

computing the Mean Square Weighted Deviation (MSWD) score given below for both

functions. The MSWD equation is given as

MSWD =
1

n− 1

n∑
i=1

( ŷi − yi
σi

)2
(4.11)

where n is the number of data points, ŷi and yi are the estimated response of the

hyperbolic function and experiment data at fold Fi respectively, (ŷi−yi)2 is the residual

for ith data and σi is the standard deviation of the simulated data or error bar of

the experiment data. The results are summarised in table 4.2 and shows that the

hyperbolic function helped by its saturating nature for increase input has a better fit than

logarithmic function when evaluated against experiment data even though it is trained

with the simulated data. This result underlines two important conclusions. First is that

the hyperbolic function is a better description of the experiment data by Takeda et al.

(2012) than the logarithmic function. In fact, the hyperbolic function also describes the

simulated data better where the logarithmic function yielded MSWD = 0.0810 when

evaluated against the simulated data. This result is intentionally not shown in table 4.2

for clarity purposes. Second this implies that the prediction given by the simulated data

to unobserved inputs is sensible and provides additional evidence that the model ODEs

suggested by Takeda et al. (2012) describes the dynamics of the experiment well.
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4.6 Log-Normal model of the distribution of responses

4.6.1 Motivation

A major assumption in our approximation is that responses generated by the model

ODEs using the estimated 1000 sets of parameters is distributed log-normally. This as-

sumption applies to the distribution of responses generated with or without background

dependencies. There are many density functions other than the log-normal that can

characterize the positive skewness observed in the distribution of responses. However,

the choice of the log-normal is based on the numerosity encoding hypothesis suggested

by studies from the field of cognitive neuroscience. Such studies examine how humans

and nonhumans primate encode numerosity such as how well can subjects identify and

distinguish the same or different number of dots. Two main encoding hypotheses, a

linear and non linear has been suggested although whether the encoding is instantiated

linearly or non-linearly remains a disputed subject. Examples are the studies by Dehaene

(2001); Brannon et al. (2001) and Nieder and Miller (2003) where numerosity encoding

by pigeons and monkeys is investigated through sets of tasks that each subject has to

complete. While Dehaene (2001) and Brannon et al. (2001) suggested a linear encoding

scheme for pigeons, Nieder and Miller (2003) argued that the logarithmic compression

hypothesis better describes the neural representation of numerosity in monkeys.

In the context of this thesis, the sensing of the abundancy of molecules cAMP by Dic-

tyostelium cells is similar to the identification of numerosity of dots by monkeys as

observed in the experiment by Nieder and Miller (2003). We noticed that FCD shares

the same properties with the logarithmic encoding hypothesis. It is important to note

the difference between logarithmic response to stimulus in the previous section and the

logarithmic encoding hypothesis in this section which looks at the underlying distribu-

tion of (logarithmic) responses. Detection of fold, represented through sensory variable

Ip, is much more certain in the region of lower fold. This is similar to the certainty in

identifying lower number of dots by monkeys in the experiment by Nieder and Miller

(2003). However, as the number of dots increases, monkeys tend to make more mistakes

in identifying the exact numerosity and the distribution of uncertainties is more asym-

metric with a shallower slope towards higher numerosity. These characteristics are also

observed in the distribution of responses generated from our model ODEs and estimated

parameters, hence suggesting that the FCD sensed is also logarithmically encoded in the

sensory representations.

4.6.2 Logarithmic vs Linear Encoding Hypothesis

To evaluate which coding scheme better describes the distribution of responses, we

fitted the probability density function of the Log-Normal and Normal distribution to
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Figure 4.8: Estimated parameters of the fitted log-normal to distribution of Ip
responses.

the distributions of Ip responses stimulated by fold inputs Fj ∈ F = (1.1, 1.2, , . . . , 100)

independent of background cAMP. The log-normal density function is given by equation

4.7 and the density function for the normal distribution is defined as

fN (I
Fj
p ) =

1√
2πσ2

N

exp

(
− 1

2σ2
N

(I
Fj
p − µ

Fj
N )2

)
(4.12)

The estimated means and standard deviations for the normal and log-normal distribu-

tions are denoted as µN , σN and µL, σL respectively. The estimated µL, σL as a result of

the data fitting for the log-normal density function is shown in figure 4.8A,B. A sample

result of the distribution fitting for fold F = 2, 4, 10 is shown in Figure 4.9. The dis-

tribution of responses for a particular fold Fj ∈ F consists of 10,000 samples generated

using algorithm 1 and are divided into K bins. The goodness of fit for both log-normal

or normal density functions to a distribution of responses stimulated by Fj ∈ F is then

evaluated using the Sum of Squared Residuals (SSR)

SSRFj =

K∑
i=1

(O
Fj
i − f∗(i

Fj ))2 (4.13)

where O
Fj
i is the observed density for bin i and f∗(i

Fj ) is the expected density for bin

i computed from the log-normal (equation 4.7) or normal density functions (equation

4.12). The computed result of equation 4.13 for all Fj ∈ F is shown in Figure 4.9B. Figure

4.9B shows that for every distribution of responses stimulated by input fold Fj ∈ F,

the log-normal fits better compared to the normal density function. An interesting

observation is that the normal density function fits worse for distribution of responses

stimulated by lower fold inputs especially in the range of Fj ≤ 2. Therefore there is a

possibility that the right tailness property can also be found in distribution of responses
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stimulated even with lower folds. This contrasts with results of Nieder and Miller (2003)

where the distribution of uncertainties in numerosity judgement is more symmetric and

gaussian like when the monkeys were identifying lower number of dots.

4.6.3 Does Dictyostelium cells count as humans or primates count?

Based on the goodness of fit result in Figure 4.9B alone, it is preferable to conclude

that the logarithmic compression hypothesis better describes the encoding of FCD by

Dictyostelium cells. Therefore if we map the uncertainties of Dictyostelium cells in

sensing fold changes in cAMP concentration, it follows a log-normal model where there

is a greater tendency to mis-identify when sensing higher fold change in stimulus. If

this conclusion is true, then Dictyostelium cells can also be included in the group of

species which includes humans and primates that uses the logarithmic encoding scheme

or the Approximate Number System (ANS) in counting or sensing physical or abstract

representation of numbers. Contrary to other species in the group, the structure of

Dictyostelium cells are much more primitive governed only by mechanistic bio-chemical

reactions and certainly without any central nervous system. Therefore, the conclusion

above also implies that in order to achieve ANS, a living organism does not need to

be made up of many complex and complicated systems. It is quite likely that there

is a simple explanation of this from the appearance of log-normal distributions from

geometric means and multiplicative random processes (Mitzenmacher, 2004). However,

we do not discuss this further in this thesis.
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−0.4437, σL = 0.1432. (B) Result of goodness of fit represented as Sum Squared
of Residuals (SSR) for each Ip distribution fitted.
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4.7 Summary

This chapter mainly provides evidence of the accuracy of FCD in modelled Dictyostelium

cells examined through the consistency of sensory responses Ip. We introduce quadratic

approximations to generate responses given any input in the range of background cAMP

x = 1, . . . , 100 and corresponding fold F = 2, 2.1, . . . , 100. The approximation emulates

heterogeneity in responses through the estimated posterior parameters. We found that if

cells −represented by instantiation of the model ODEs− are stimulated with fold inputs

of higher background cAMP, the average responses are weaker but with less variability

mostly due to saturation effects. We further generalise the approximation to allow the

generation of responses free from background cAMP dependencies. By doing so, we

found that responses are more consistent in lower fold change. This implies that the

detection of lower fold change is more accurate. We also quantified another measure of

FCD which has received little attention in the studies of FCD, the fold distinguishability

property. Our analysis revealed that responses to fold changes of lower values are not

only more consistent but are also more distinguishable than higher fold changes.

We also proposed a hyperbolic equation to represent the law that governs the input-

output relation between sensed fold change and its corresponding sensory responses of

Ip. The proposed model further constricts Dictyostelium cells responses to increases

stimulus as compared to the logarithmic based Weber-Fechner’s law as suggested by

Adler et al. (2014). Therefore the rate where Dictyostelium cells reach the ‘feeling of

indifferent’ when sensing large stimulus is faster than expected. Finally we presented

arguments and demonstrated numerically to why the logarithmic compression hypothesis

better describes the distribution of responses by the Dictyostelium cells to sensed fold

changes.



Chapter 5

Inferring posterior probability of

fold change

5.1 Introduction

In the previous chapter, the variability of responses is captured by generating Ip val-

ues from the 1000 sets of estimated parameters of the model ODEs. The response

distribution is then modelled using a log-normal density function which enables us to

approximate responses given stimulus without the need to solve the model ODEs. The

approach so far has allowed us to quantify the accuracy of FCD indirectly by inspecting

the variability of the Ip responses. The primary goal of this chapter is to characterize

the posterior probability of fold given observed Ip by using the derived log-normal den-

sity function. The modelling of the posterior probability of fold is vital in providing

us a direct approach of measuring FCD instead of using an intermediate sensory repre-

sentation. The inference of posterior probability is executed using Bayes’ theorem and

therefore an inclusion of a prior knowledge regarding the uncertainty of fold change is

necessary. In modelling the posterior we also ask how the prior influences the properties

of the posterior. We begin by describing Bayes’ theorem and its respective components.

We demonstrate how the prior knowledge of fold is modelled from experiments. Lastly

we look at how the fold change based on weak and strong background cAMP influences

the posterior probability of fold change.

5.2 Bayes’ theorem

As shown in the previous chapter, the distribution of responses Ip for a given fold change

F independent of background stimulus is modelled using the probability density function

(pdf) of the log-normal distribution denoted as

63
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f(Ip|F ;µFL , σ
F
L ) =

1

IpσFL
√

2π
exp

(
−(lnIp − µFL )2

2(σFL )2

)

The pdf is parameterised by the estimated mean µFL and standard deviation σFL shown

in Figure 4.8. From here we derive the conditional probability distribution of observing

response Ip given that the model is stimulated with input fold F by integration of the

pdf as

P (Ip|F ) =

∫
f(Ip|F ;µFL , σ

F
L )dIp (5.1)

The probability distribution P (Ip|F ) represents the conditional probability and is our

approximation of the probability of the fluorescent intensity Ip level we would expect

to observe when the Dictyostelium cells in microfluidic chambers are stimulated with

fold change F in input cAMP. This conditional probability P (Ip|F ) incorporates the

uncertainties in the experiment data through the estimated 1000 sets of ODEs model

parameters. We can compute the probability of observing Ip between any intervals α

and β given fold change F as P (α < Ip < β|F ) =
∫ β
α f(Ip|F ;µFL , σ

F
L )dF .

Supposed that we have conducted a microfluidic experiment and measured the fluo-

rescent intensity Ip for Dictyostelium cells stimulated with an unknown fold change in

cAMP. What is the probability that the unknown fold change in cAMP is F given the

observed Ip, P (F |Ip) ? This problem of inferring the state of the environment when we

have data from an experiment is solved using Bayes’ theorem. The theorem states that

the inverse conditional probability or more known as the posterior probability P (F |Ip)
is derived as

P (F |Ip) =
P (Ip|F )P (F )

P (Ip)
(5.2)

where P (Ip|F ) is the already introduced conditional probability and P (F ) is the proba-

bility of fold change where it represents the Dictyostelium cells’ own prior knowledge or

‘internal belief’ on the distribution of fold before sensing molecules of cAMP. Intuitively

we would expect that a certain range of fold change is more likely to be encountered in

the environment than others. P (Ip) is the marginalized probability defined as

P (Ip) =

∫
F
P (Ip|F )P (F )dF (5.3)

and acts as a normalization constant so that integral of the posterior equal one
∫
F P (F |Ip)dF =

1. As we already have the density function to compute the conditional probability, the

key in solving the posterior lies with the modelling of the prior. The rest of this chapter
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describes our approach in modelling the prior probability based on existing experiment

data and computing the conditional probability. This is followed by computing the

marginal P (Ip) and how we put them all together to infer the posterior probability

P (F |Ip).

5.3 Modelling the conditional probability

The conditional probability P (Ip|F ) is numerically computed as solving it analytically re-

quires the difficult task of finding non-linear functions that best describe the curves of the

estimated log-normal distribution parameters in Figure 4.8. We predetermined pairs of

discrete values of Ip and F and denote as two vectors Ip = (0.1, 0.11, 0.12, . . . , Ip,i, . . . , 1)

and F = (1.1, 1.2, . . . , Fj , . . . , 100). The elements of each vector are denoted as Ip,i and

Fj . The probability of observing Ip,i given that the stimulus is Fj is then computed by

integration of the density function

P (Ip,i ∈ Ip,i ± δ|Fj) =

∫ Ip,i+δ

Ip,i−δ

1

Ip,iσ
Fj
L

√
2π

exp

(
−(lnIp,i − µ

Fj
L )2

2(σFjL )2

)
dIp (5.4)

where P (Ip,i ∈ Ip,i ± δ|Fj) indicates the probability of observing Ip,i in the range of

Ip,i − δ and Ip,i + δ. Hereafter P (Ip,i ∈ Ip,i ± δ|Fj) is referred as P (Ip,i|Fj) for brevity.

The interval δ is chosen such that the sum of the computed conditional probability equal

one,
∑1

Ip=0.1 P (Ip,i|Fj) = 1,∀Fj ∈ F. We then solve for the conditional probability for

all possible combinations of Ip,i and Fj . The result of the computation for selected Ip

and F is shown in Figure 5.1. For the purpose of analysis we define F ≤ 10 as low fold

region and F > 10 as high fold region. From Figure 5.1 it is more likely that we observe

low Ip when the Dictyostelium cells are stimulated with low fold than observing high Ip

caused by higher F 1 . The conditional probability of observing a low Ip given low fold

is significant only for a small range of Ip. For example, P (Ip|F = 2) is only significant

for Ip in the range of Ip = 0.15 ∼ 0.36.

Due to saturation, stimulating cells beyond F = 20 does not increase the chances of

observing a higher Ip. A positive skewness can be seen for distributions of observed Ip

stimulated with large F . The saturation of estimated mean µL for fold F > 20 as in

Figure 4.8 ensures that within this range, the P (Ip|F ) does not have significant support

along the Ip axis.

1Note that Ip responses are normalized as described in chapter 4. Therefore observing low Ip trans-
lates into observing a high fluorescent intensity distributed uniformly across the cell.
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Figure 5.1: The conditional probability; the probability of observing Ip values
given measured fold change in cAMP F , P (Ip|F ). Results are shown for F =
1.6, 1.8, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100. The Fold F axis is set in log scale for
readability purposes.

5.4 Modelling prior fold based on experiment

In this section our goal is to extract what the internal belief of fold change is by looking

at the response of the cells to artificial gradients. We model the prior P (F ) by using

information on cell movements measured experimentally by Amselem et al. (2012) in

the study of Dictyostelium chemotaxis. Dictyostelium cells’ directional responses to a

gradient of chemoattractant is quantified by the chemotactic index which is the distance

travelled in the direction of gradient divided by the total distance travelled by a popu-

lation of cells (Skoge et al., 2010). Alternatively one might also track their motility in

terms of velocity and angle in microfluidic devices (Song et al., 2006; Meier et al., 2011).

Amselem et al. (2012) generated a stable linear gradient in a microfluidic chamber con-

taining a population of Dictyostelium cells. The direction of the gradient is one di-

mensional as illustrated in Figure 5.2A. Concentration is strongest at one end of the

chamber at location x = x0 while cAMP is zero at the opposite end at x = L. Figure

5.2B illustrates the cAMP concentration profile in the microfluidic chamber. Each cells

were then tracked by microscopic imaging and the velocity and angle of movements were

recorded. The distribution of velocity v and angle ϕ recorded by Amselem et al. (2012)
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Figure 5.2: (A)Illustration of a single cell chemotaxis in the stable gradient
microfluidic chamber as reported in the experiment by Amselem et al. (2012).
The corresponding coordinate system is also defined. cAMP concentration is
strongest at x0. (B) cAMP concentration in the microfluidic chamber is mod-
elled as linear function of location x.

are reproduced in Figure 5.3A and B. We found that the distribution of velocity v can

be characterized using a modified one dimensional Maxwell-Boltzman distribution. The

fitting of probability density function fV (.)

fV (v|γ, β, α) = γvβe
−v2
α (5.5)

to data points indicated by the black crosses in Figure 5.3A resulted in a good fit with

SSR = 0.0003. The fitted parameters are γ = 0.0469, β = 0.5647, and α = 97.4319.

The result of fitting fV (.) with stated parameter values is shown as a red dashed line in

Figure 5.3A. The integration
∫ +∞

0 f(v)dv = 1 applies as v can only take non negative

values and subsequently solving the probability is done by P (v) =
∫
fV (v|γ, β, α)dv.

Figure 5.3B shows that although a large portion of cells show chemotactic behaviour

indicated by frequency data in the range of −π/2 < ϕ < π/2, there exist a portion of

cells that moved in the opposite direction of the gradient cAMP. We have tried fitting

data points in Figure 5.3B with pdf from known family of distributions in order to derive

a functional form for the angle variable ϕ. But we did not manage to find any density

function that fit nor describe Figure 5.3B well. Hence the probability of angle P (ϕ) is

computed directly from Figure 5.3B.
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Figure 5.3: Distribution of velocity and angle of cells reproduced from Amselem
et al. (2012). Data points in black crosses and lines were extracted by using
ginput function in MATLAB. Each points represent the center of one histogram
bin in Figure 2C and 2D of Amselem et al. (2012). (A) Distribution of velocity.
Red dashed lines indicates fitted results. Refer text for details on the probability
density function (pdf) equation and its parameter. (B) Distribution of angle
where −π/2 < ϕ < π/2 indicate the gradient direction, (π/2 < ϕ ≤ π) or
(π/2 < ϕ ≤ π) are cells that swim away from the direction of gradient. Cells
swim perpendicular to the gradient when ϕ = π/2,−π/2.

5.4.1 Modelling fold change inside a chamber with linear gradient

In order to derive the prior P (F ), we first model the fold change experienced by the cell

when moving from x1 to x2 in the microfluidic chamber as illustrated in Figure 5.2A

where xi, i = 1, 2 is the distance i from the gradient source. Unlike many studies on

Dictyostelium gradient sensing where fold is often defined as the ratio of concentration

sensed across the length of the cell (Mato et al., 1975), here we define FCD as what

the cell senses when moving between two locations. A single cell at x1 will experience

a concentration of c(x1). When the cell swims with velocity v and at an angle ϕ with

respect to the applied gradient, the distance travelled ∆x along the gradient is obtained

by

∆x = vτ cosϕ (5.6)

where τ is the duration of the migration time. The new horizontal location of x2 is

derived as

x2 = x1 − vτcosϕ (5.7)
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Due to the fact that the gradient is the same everywhere in vertical direction, it is only

necessary to consider the concentration of cAMP at its new horizontal location c(x2).

The fold change experienced by the cell is then defined as ratio of concentrations as

F =
c(x2)

c(x1)
(5.8)

In order to describe the model of cAMP concentration c(x) here we refer to how a linear

gradient was generated in the experiment by Amselem et al. (2012). Both Song et al.

(2006) and Amselem et al. (2012) generated a linear and stable gradient of cAMP using

modified versions of pyramidal microfluidial network, a technique previously established

by Jeon et al. (2000). Different concentration of cAMPs were mixed through networks

of microfluidic channel where cAMP fluid flows parallel into the microfluidic chamber

containing Dictyostelium cells. The analytical solution for a linear gradient of cAMP

was previously derived by Postma and van Haastert (2009). They modelled the one

dimensional diffusion of cAMP in a concentration gradient generated in a Zigmond

chamber2 given as
∂c(x, t)

∂t
= D

∂2

∂x2
c(x, t) (5.9)

where D(µm2/s) is the diffusion coefficient of cAMP and c(x, t) is the cAMP concentra-

tion at distance x from the source at time t. Given that the concentration is maximal at

x0 and zero at x = L where L is the length of the chamber, the solution at equilibrium

yields

c(x) = c0(1− x

L
) (5.10)

where c0 denotes the maximal concentration at x0 (Refer Figure 5.2B for illustration of

the concentration profile of the linear gradient). Substituting equation 5.10 in equation

5.8, we obtain the fold change F

F =
(1− x2

L )

(1− x1
L )

(5.11)

where the term c0 cancels. The location variable x2 is as defined earlier in equation 5.10.

Therefore the fold change can be expressed as

2In a Zigmond chamber, cells were placed under a glass bridge supported by two glass strips. Two
blocks of agar as chemoattractors are then placed at each side of the glass bridge. The linear gradient
is created by the two blocks of agar(Postma and van Haastert, 2009).
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F =
L− (x1 − vτcosϕ)

L− x1

= 1 +
τ

λ
vcosϕ (5.12)

where λ = L−x1 and τ ≥ 0. The condition λ ≥ 0 applies, constraining location x1 which

can not be further than the length of the chamber(x1 � L). Here we treat τ and λ as

constants. The derived fold change is then F = g(v, ϕ; τ, λ), a function of two variables;

velocity v and angle ϕ parameterised by two constants τ and λ where g : R+ → R+.

The range of ϕ considered is consistent with the range of data in Figure 5.3B where

−π ≤ ϕ ≤ π. Figure 5.4 is the result of equation 5.12 plotted for the considered range

of ϕ and 0 ≤ v ≤ 30. Fold F is either an increasing or decreasing function determined

by angle ϕ and has a slope of τ/λ. It can be easily seen from equation 5.12 and Figure

5.4 that F = 1 when ϕ = −π/2, π/2. It is also observed from Figure 5.4 that fold F

increases maximal when the cell swims directly up the gradient at ϕ = 0.
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Figure 5.4: Fold change F = g(v, ϕ; τ, λ) as a function of velocity v and angle
ϕ computed from equation 5.12. Parameters are fixed as τ = 0.015, λ = 1.

We introduce here the constraints imposed to ensure a logical definition of equation

5.12. When the cell swims in the direction of the gradient (cos(ϕ) > 0), the maximum

distance that it can travel is limited to x1 where this constraint is expressed as
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vτ cos(ϕ) ≤ x1 (5.13)

Equation 5.12 is then upper bounded as

F ≤ 1 +
x1

L− x1
(5.14)

If the length of the chamber is hypothetically long L → +∞, and the distance x1 at

which the cell is located is close to L (x1 = L + δ, where δ is small distance between

L and x1), then the maximum fold change that can be sensed by the cell is F → +∞.

The possible range of fold change is then F = (1,+∞].

When the cell swims in the opposite direction of the gradient (cos(ϕ) < 0), the cell can

travel no further than L− x1, and the constraint is expressed as

|vτ cos(ϕ)| ≤ L− x1 (5.15)

Similar as before, equation 5.12 is lower bounded as

F ≥ 1− L− x1

L− x1
(5.16)

where the minus sign is due to cos(ϕ) < 0. The minimum ‘reduced’ fold change sensed

is F = 0, and the range of fold change is F = [0, 1). This is in line with the definition

of fold change where F < 0 is not possible. No fold change F = 1 is sensed when the

cell is static (v = 0) or when it swims perpendicular to the direction of the gradient

(cos(ϕ) = 0).

5.4.2 Conditional density by transformation of random variable

Now that we have a model of fold F defined by equation 5.12 and characterized the

pdf of velocity v in equation 5.5, we proceed to derive the pdf of fold F conditioned

on angle ϕ,f(F |ϕ) using the transformation of random variable technique. We have

established the relation between fold F and v through F = g(v, ϕ;ω). For a fixed angle

ϕ, the function g(v|ϕ;ω) is differentiable and monotonic where g(·) is a strictly increasing

or decreasing function. Let V be a random variable representing any possible value of

velocity v described by density function fV (v). Since V is a continuous random variable,

F ∗ = g(V ) is also a continuous random variable. The density of F ∗ is then derived using

the transformation of random variables as
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fF ∗(F ) = fV (g−1(F ))

∣∣∣∣ ddF g−1(F )

∣∣∣∣ (5.17)

where fV (·) is the density function for velocity derived earlier in equation 5.5. g−1(F )

is the inverse function and is obtained by rearranging equation 5.12 as

g−1(F ) =
λ

τcosϕ
(F − 1) (5.18)

= ω
(F − 1)

cosϕ
(5.19)

where ω = λ/τ is introduced for brevity. The derivative of the inverse function is

computed as

d

dF
g−1(F ) =

ω

cosϕ
(5.20)

Putting it all together, the density function of fold F given angle ϕ, f(F |ϕ) is derived

as

fF ∗(F |ϕ) = γ

(
ω

(F − 1)

cosϕ

)β
exp

(
−(ω(F − 1)/ cosϕ)2

α

) ∣∣∣∣ ω

cosϕ

∣∣∣∣ (5.21)

Since the fitted parameter β ≈ 0.5, the conditional density function can be rewritten as

f(F |ϕ) = γ

∣∣∣∣ ω

cosϕ

∣∣∣∣
√
ω

(F − 1)

cosϕ
exp

(
−(ω(F − 1)/ cosϕ)2

α

)
(5.22)

Previously, we introduced restrictions to the range F with respect to ϕ to maintain a

logical definition of equation 5.12. Similarly here we consider restrictions imposed by

ϕ on the density function. In order to avoid solutions with complex numbers due to√
ω (F−1)

cosϕ , the range of F is F ≥ 1 for ϕ that results in cosϕ > 0 and F is 0 ≤ F ≤ 1

for ϕ where cosϕ < 0. In the case of ϕ = π/2, π/2, the density function is undefined for

ω > 0 and zero for ω = 0 due to |ω/cosθ|.

The result of plotting equation 5.22 for different angles ϕ is shown in Figure 5.5. When

a Dictyostelium cell moves in the opposite direction of the gradient, it is more likely

to sense a much reduced fold change as the angle of deviation widens as indicated in

Figure 5.5A. In contrast Figure 5.5B shows that the cell is likelier to experience a wider

and higher range of fold change when swimming closer to the gradient direction. Both

Figure 5.5A and B shows that the probability of sensing fold change close to 1 is the
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Figure 5.5: Conditional probability density function f(F |ϕ) from equation 5.21
plotted for various range of ϕ. Different values of ω are used for readability and
contrasting purposes. Areas under all curves are equal to 1. (A) When cosϕ < 0
with ω = 30. (B) When cosϕ > 0 with ω = 0.2

highest with the width of the density narrowing as the cell swims perpendicular to the

gradient indicated by curves of f(F |ϕ = π/8) and f(F |ϕ = 11π/8).

5.4.3 The constraint on ω

Throughout our derivation is based on available experimental data and we have treated

the term ω = λ/τ or equivalently ω = L − x1/τ as a constant. As a result we have

observed in Figure 5.5 how different values of ω leads to different density function curves.

If ω can be arbitrarily chosen, then for certain values of ω the density function of

equation 5.21 with fixed parameters γ, β, α would not integrate to 1. We derive here the

restrictions on ω in order to ensure the density function integrates to 1. Equation 5.15

can be rearranged in terms of the components of ω as

vτ | cosϕ| ≤ L− x1

τ

L− x1
v| cosϕ| ≤ 1

L− x1

τ
≥ v| cosϕ| (5.23)

τ is previously defined as the duration of time that the cell moves. When a change

in concentration is detected, the time that it takes for the response of intracellular

RasGTP to return to its steady state after stimulation is denoted as Tadapt as illustrated

in Figure 5.6. Introducing external stimulus during this refractory period will not yield

any response from the cell. It is known that the cell moves in steps where the steps are

either caused by the sensing of fold change or just a random walk. Therefore duration

of cell movement τ can be further defined as
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Figure 5.6: Illustration of Figure 2E experiment result by Takeda et al. (2012)).
Upper panel shows the step up and step down cyclic AMP input where x
= 100 nM and x’=1µM. Lower panel is the average response of RasGTP in
Dictyostelium cells to the step input of the upper panel. Also indicated in
the lower panel are the time durations for various response behaviour where
Tp = 19s,Tadapt = 50s,Treset = 60s.

τ = tFCD + trandom

where tFCD is time of movement caused by fold change detection and trandom is time of

movement caused by random walk. During the period Tadapt the cell has moved between

two location x1 and x2 regardless of the number of steps. These movements during Tadapt

are considered as movements caused by fold change and therefore τ is lower bounded by

Tadapt such that

τ ≥ Tadapt (5.24)

where the duration of a movements must be at least the length of time of the refractory

period. Like Ip and Tp that has been mainly the subject of our discussions so far, the

duration of cellular property Tadapt varies between cells and is determined by the internal

parameters(deterministic approach). The value of Tadapt is extracted from Takeda et al.

(2012) Figure 2F experiment result. The result shows the average response and variabil-

ity of Dictyostelium cells to a step change of cyclic AMP input up from 100nM to 1µM

and down from 1µM to 100nM. From the figure, the duration of Tadapt is ≈ 1min. The

maximum velocity recorded in the experiment by Amselem et al. (2012) is v = 30µm

min−1. Therefore the minimum length of the microfluidic chamber L− x1 is
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L− x1 ≥ vτ |cosϕ|

≥ (30µm/min)(1min)|cosϕ|

≥ 30µm

where |cosϕ| is maximum at ϕ = π,−π and consecutively ω ≥ 30µm/min.

5.4.4 Chemotaxis experiment based prior

Now that we have an analytical expression for the conditional density function, the

conditional probability of fold F given angle ϕ is then solved by

P (F ∈ F ± δF |ϕ) =

∫ F+δF

F−δF
f(F |ϕ)dF (5.25)

Due to restrictions imposed on the density function by angle variable ϕ as discussed

earlier the value of ω must be chosen such that the integration
∫ +∞

1 f(F | − π/2 < ϕ <

π/2)dF = 1 and
∫ 1

0 f(F | − π ≤ ϕ < −π/2, π/2 < ϕ ≤ π)dF = 1 applies. Thus the prior

P (F ) representing the probability of a Dictyostelium cell sensing fold F regardless of

angle is derived as

P (F ) =
∑
ϕ

P (F |ϕ)P (ϕ) (5.26)

The probability of angle P (ϕ) is solved directly from Figure 5.3B. Each points in Figure

5.3B represents a center of the histogram bin in Figure 2D of Amselem et al. (2012). The

width of each histogram bin is π/9 and therefore the probability of angle P (ϕ = x) is

the result of the height of the histogram represented by the frequency multiplied by the

width. Equation 5.26 is then solved numerically for discrete values of angle ϕ indicated

in Figure 5.5B.

In the case of P (F = 1), the probability of P (F = 1|ϕ = −π/2, π/2) is solved separately

because the conditional density function is non-integrable since we have defined the

equation 5.12 such that F = 1 is only possible when ϕ = −π/2, π/2. However it is

not accurate to assume P (F = 1) = 0 as Figure 5.5B clearly shows that there are cell

movements perpendicular to the direction of gradient at ϕ = π/2,−π/2. Therefore for

P (F = 1)
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P (F = 1) =
∑
ϕ

P (F = 1|ϕ)P (ϕ)

= P (F = 1|ϕ = −π/2)P (ϕ = −π/2) + P (F = 1|ϕ = π/2)P (ϕ = π/2)

= (1)(0.0515) + (1)(0.0534)

= 0.1049

If a cell is observed to move at angle ϕ = −π/2, π/2 the probability P (F = 1|ϕ =

−π/2, π/2) = 1 regardless of velocity because the gradient is one dimensional. Prob-

ability P (ϕ = −π/2) and P (ϕ = π/2) are both obtained by computing the area un-

der the density curve of Figure 5.5B resulting in P (F = 1) = 0.1049. The result

above is combined with numerical solution to equation 5.26 where conditional prob-

ability P (F |ϕ) =
∫
f(F |ϕ;ω, γ, β, α)dF and the density function parameters set as

ω = 30, γ = 0.0469, β = 0.5647, α = 97.4319 . The computation result for prior P (F )

distribution modelled based on chemotaxis experiment is shown in Figure 5.7.

Fold, F

10-1 100 101 102

P
(F

)

0

0.05

0.1

0.15

0.2

0.25

Figure 5.7: Prior Probability of Fold P (F ) averaged over all angles and modelled
based on chemotaxis experiment data. The parameters are fixed as ω = 30, γ =
0.0469, β = 0.5647 and α = 97.4319.

It can be observed from Figure 5.7 that the prior is significant for only a narrow range

of approximately F = 0.2 ∼ 2. As a short summary, we can infer the probability of cell

sensing increased fold change as P (F > 1) = 0.5910 where this is also the probability

of cell swimming up the gradient P (F > 1) = Pforward. Likewise the probability of cell

sensing reduced fold change is P (0 < F < 1) = 0.3040 and similarly this is also the

probability cell moving in the opposite direction of gradient P (0 < F < 1) = Pbackward.
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Lastly the probability of the cell sensing no changes in fold is P (F = 1) = 0.1049 which

indicates the cell swimming perpendicular to the gradient P (F = 1) = Pperpendicular.

Therefore our model here indicates that there is a probability of 60% that a Dictyostelium

cell senses an increase in fold change. The prior probability of fold derived here is referred

hereafter as the ‘chemotaxis prior’.

5.5 Uniform, exponential and Weibull Distribution as al-

ternative priors

Although we have modelled prior P (F ) based on chemotaxis experiment as Figure 5.7,

it is interesting to compare with other alternative priors modelled differently. Among

the limitations posed by the experiment based prior is that the one dimensional linear

gradient setting does not approximate the gradient found in a natural environment.

Considering that extracellular cAMP is not only diffused but is also degraded by cyclic

nucleotide phosphodiesterase (PDE) secreted by Dictyostelium cells themselves (Suc-

gang et al., 1997), the cAMP gradient is more likely to be exponentially decreasing in

time and space. The exponentially decreasing gradient of concentration cAMP is mod-

elled in chapter 6. In this section we assume that the alternative priors are drawn from

established families of distribution. How does different priors affect both the distribution

of marginal and posterior probability?

We chose the uniform, exponential and Weibull distribution as three alternative model

priors. The uniform distribution as a non-informative prior is a sensible choice in the

absence of information on gradient3. This would remove preferences to any fold change

considered and in general allow information from the experiment data to contribute

more to the posterior. Whereas the uniform prior assigns equal weights to each fold

change, the exponential prior is selected to reflect a strong bias towards low fold and

the Weibull prior to represent bias in a specific range of fold. Given fold range F =

(1.1, 1.2, . . . , Fj , . . . , 100), the uniform prior is computed as

P (Fj ∈ Fj ± δF ) =

∫ F+δF

Fj−δF

1

Fmax − Fmin
dF

where in our case Fmin = 1.1, Fmax = 100. The exponential prior is computed as

P (Fj ∈ Fj ± δF ) =

∫ Fj+δF

Fj−δF
λe−λFj−1dF

3We acknowledge that the non-informative property of the uniform distribution is subject to debate.
One example of this disputation is given by Zwickl and Holder (2004) where the uniform prior leads to
a biased estimate of the posterior in the general time-reversible model. A more suitable candidate for a
non-informative prior is the Jefrey’s prior (Jeffreys, 1946).
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where the degradation rate parameter λ = 1/20. The Weibull prior is computed as

P (Fj ∈ Fj ± δF ) =

∫ Fj+δF

Fj−δF

k

γ
(
Fj − 1

γ
)k−1e(Fj−1/γ)kdF (5.27)

where the shape parameter is k = 1.5, k < 0 and the scale γ = 23, γ > 0. We solved the

prior probability for ∀Fj ∈ F and showed the results as panels in the top row of Figure

5.8 The exponential and Weibull functions are shifted along the horizontal by 1 as the we

only calculate from F = 1.1. The integral width δ is chosen such that
∑F=100

F=1.1 P (F ) = 1.

5.6 Marginal and posterior

Now that we have computed the conditional probability P (Ip|F ) and prior distribu-

tion P (F ), we proceed to compute the marginal and subsequently solve the posterior

probability of a cell sensing fold Fj when we have observed a certain Ip,i value. The

marginal probability of observing Ip,i is obtained by integration over all probabilities of

fold change given by the prior

P (Ip,i) =
∑
Fj∈F

P (Ip,i|Fj)P (Fj)

where P (Ip,i|Fj) is the conditional probability (Figure 5.1) and P (Fj) is the prior. The

results of computing the marginal distribution by considering all values of Ip,i ∈ Ip with

different priors modelled earlier are shown as panels in the second row from the top of

Figure 5.8. The chemotaxis based prior distribution is normalized in the range of F =

(1.1, 1.2 . . . , 100) to match the discrete range computed by the conditional probability.

5.6.1 Conditional probability and the bias of priors is reflected in dif-

ferent region of the marginal

Figure 5.8 indicates that it is more probable to observe Ip in the range of Ip > 0.5 when

the marginals are computed by the alternative priors. The marginals of alternative priors

also demonstrate unimodal characteristics where a large portion of the total probability

is made up by Ip > 0.5 with maximal at Ip ≈ 0.74. The comparatively high probability

in the region of 0.5 ≤ Ip ≤ 1 is caused by saturation of the mean µFL given fold F > 20

at Ip ≈ 0.74 (Refer Figure 4.8). The marginal distributions are affected only sightly

by the alternative priors in the region of Ip < 0.5. In contrast, the marginal by the

chemotaxis based prior shows that most of the chances of observing Ip lies within the

range of Ip < 0.2. The distribution is bimodal and has peaks at Ip = 0.1 and Ip = 0.7

where the probability of the former is significantly higher than the latter. The marginal
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is affected by the strong bias concentrated in region of lower F of the chemotaxis based

prior.

5.6.2 Posterior reveals that detection of high fold change is highly

unlikely

Having computed the marginal distributions with different types of priors, we proceed

to solve the posterior probability that the fold detected is Fj given observed response of

Ip,i as

P (Fj |Ip,i) =
P (Ip,i|Fj)P (Fj)

P (Ip,i)

The numerator part is also the joint distribution between Ip,i and Fj denoted as P (Ip,i, Fj) =

P (Ip,i|Fj)P (Fj). The equation above is solved for all ∀Ip,i ∈ Ip and ∀Fj ∈ F to yield

a distribution of posterior. The results are shown over two rows in the bottom half of

Figure 5.8 where only results for selected Ip,i ∈ Ip are displayed for readability purposes.

In the same way that we analysed the marginals, the posteriors computed from different

priors are also shown in separate columns. The second row from the bottom indicates

posterior of fold given observed Ip = 0.1, 0.2, . . . , 0.5 (low Ip) and the bottom row for

Ip = 0.6, 0.7, . . . , 1 (high Ip).

Two stark contrasts can be seen from Figure 5.8. Firstly, the posterior probability of

fold detected for Ip ≤ 0.5 and Ip > 0.5 is of a different magnitude. This can be seen

from the difference in scale of the vertical axis between the two bottom rows. Secondly,

given that we observed Ip < 0.5, the probability of detecting fold is only in the range

of F ≤ 10 and it is highly unlikely that F > 10 is being detected. Likewise the chances

of detecting F ≤ 10 is almost non existent if Ip observed is Ip > 0.6. In this range,

although the chances are comparatively small, it is more likely that the fold detected

is of F > 10. Regardless of the priors, the posterior distributions indicates that the

probability of detecting fold F ≤ 10 decreases almost exponential-like as the observed Ip

is higher. Thus it can be concluded that the range of fold that is significantly enough to

be detected is within F ≤ 10 and it is highly unlikely for the population cells to detect

fold change beyond F = 10.

5.6.3 Posterior is strongly influenced by the conditional probability

regardless of prior bias

In order to understand the effect of priors on the posteriors, we first study the posterior

based on the uniform prior shown in the second column of Figure 5.8. As each prior

fold is equally likely, any occurring bias in the posterior is a result of the conditional
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probability. The uniform prior based posterior serves as a benchmark when studying

the effects of other priors. The effect of bias in the exponent and Weibull prior is

only evident on the posteriors conditioned on high Ip at Ip > 0.5. It is only when the

bias is concentrated in the region of small fold as provided by the chemotaxis based

prior that the shape of the posterior distribution conditioned on low Ip is affected. The

distribution shape for P (F |Ip = 0.3) has two peaks with high probability assigned to

fold F = 1.1. Because the chemotaxis based prior assigns almost zero probability to

F > 2, the posteriors derived in the region where Ip > 0.5 is of the same dynamics as

the uniform based posterior.
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Figure 5.8: Results of inferring the posterior probability of the fold sensed by a cell is F given an observed Ip P (F |Ip) using Bayes’
theorem. Each column represent results from using different priors. The results for the posterior distributions are divided into two
parts with different scale. Only sample results are shown for the posterior. Axes are scaled identically except where doing so would
significantly reduce the readability of the plot.
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5.7 Background dependencies

In this section we investigate how different background concentration of cAMP influence

the conditional probability and subsequently the posterior of P (F |Ip, x) where x denotes

the background cAMP. The comparison will be between background x = 1nM and

x = 100nM. The procedure of solving the posterior is the same as when we solve for

the conditional probability and marginal for different priors. The difference lies in the

density function used to solve for the conditional probability where it is dependant on

both fold F and background cAMP x.

5.7.1 Conditional probability

To solve for the conditional probability of Ip,i given stimulus fold Fj and background

cAMP x, we integrate the density function of equation

P (Ip,i ∈ Ip,i ± δ|Fj , x) =

∫ Ip,i+δ

Ip,i−δ

1

Ip,iσxi,Fj
√

2π
exp

(
−(lnIp,i − Ĩp

xi,Fj
)2

2σ2
xi,Fj

)
dIp,i

Each of the mean Ĩp
xi,Fj

and standard deviation σxi,Fj of the density function is approx-

imated by a quadratic function respectively as previously derived in equation 4.5 and

equation 4.6

Ĩp
xi,Fj

= a
Fj
1 x2

i + b
Fj
1 xi + c

Fj
1

σxi,Fj = a
Fj
2 x2

i + b
Fj
2 xi + c

Fj
2

where the quadratic parameters ak, bk, ck, k = 1, 2 are functions of fold F itself as sum-

marised in table 4.1. The result of computing P (Ip,i|Fj , x) for all Ip,i ∈ Ip, Fj ∈ F

and x = (1, 100) is shown in Figure 5.9. The result shows that the distributions of

P (Ip|F, x) for both background cAMP becomes more and more similar as the condi-

tioned F increases, indicating saturations. However, the uncertainties do not increase in

the manner where P (Ip|F, x) distributions become more right tailed as we have clearly

observed in Figure 5.1. Compared with Figure 5.1, there is a higher confidence about

the level of Ip that can be observed given a particular fold change in stimulus in both

background. Figure 5.9B shows that when the fold change in stimulus is based upon a

stronger background, the saturation of P (Ip|F, x) happens at a faster rate. Interestingly

enough, stimulating cells with fold of stronger background does not increase the prob-

ability of observing higher Ip. In fact with background cAMP x = 100nM, the highest

Ip that is likely to be observed is limited in the range of Ip = 0.5 ∼ 0.71. If we want
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x=100nM
B

x=1nM
A

Figure 5.9: Conditional probability distribution P (Ip|F, x) with background
cAMP dependencies

to increase the chances of observing higher Ip then we should stimulate cells with high

fold of lower background such as fold F = 10 with x = 1nM that yields observable Ip in

the range of Ip = 0.93 ∼ 1.14 (Figure 5.9A). The P (Ip|F, x = 100) distributions given

F > 20 overlapped more compared to P (Ip|F, x = 1) conditioned upon the same fold

range. Therefore, we can expect that P (Ip|F, x) distributions are also more distinguish-

able when conditioned upon stimulus fold in the range of F > 20 of weaker background

cAMP. Using the overlapped areas as a measure of establishing distinguishable folds as
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what we have done in chapter 4, we can also expect that the stimulus folds are easier to

distinguished when the background concentration is weak.

5.7.2 Marginal and posterior

The marginal with background dependencies P (Ip,i|x) is solved as

P (Ip,i|x) =
∑
Fj∈F

P (Ip,i|Fj , x)P (Fj)

where P (Fj) is the different types of priors modelled earlier. The result of computing

the marginal for all Ip,i ∈ Ip, Fj ∈ F, x = (1, 100) and for the different types of priors is

shown in Figure 5.10. The result shows that in general when the background cAMP is

strong the marginal distributions yielded is denser with a narrower significant range that

shifts to the left. Figure 5.10 indicates that with the exception of the marginal based on

the chemotaxis prior, we are likely to observe lower Ip in the vicinity of Ip = 0.5 when

there is a strong background concentration regardless of the amount of fold change itself.

The chemotaxis based prior marginal maintains its bias towards observing very low Ip

in the range of Ip = 0.11 ∼ 0.2 although with stronger background cAMP, the chances

of observing around Ip = 0.5 slightly increases.
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Figure 5.10: Marginal probability distribution P (Ip) with background cAMP
dependencies.

Finally the posterior with background dependencies is solved as
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P (Fj |Ip,i, x) =
P (Ip,i|Fj , x)P (Fj)

P (Ip,i|x)

where as before it is solved for Ip,i ∈ Ip, Fj ∈ F, x = (1, 100). The result is shown in

Figure 5.11. As expected, the effect of background cAMP emerges when the posterior

is conditioned upon Ip > 0.5 (indicated in panels of second and fourth row from top)

as this is the region where the saturation of the conditional probability occurs. For

example, P (F |Ip) conditioned on Ip = 0.6 has high probability values in the range of

F = 4 ∼ F = 10 when derived from conditional probability based on weaker background

cAMP. In contrast, the same posterior has lower probability values in the range of

F = 10 ∼ F = 100 when the background cAMP of fold change used to stimulate the

conditional probability is stronger. As can be seen from panels of the second and fourth

row, this trend is evident across all priors. Therefore conditional probabilities with a

slower saturation rate results in a more separable posteriors.

With the exception of the chemotaxis prior based posterior, the influence of priors bias

on the posterior is only visible for when the conditioned Ip is in the range of Ip > 0.5.

Like the priors, the effects of background cAMP on the posterior is also noticeable when

the posterior is conditioned upon the region of Ip > 0.5. Only with a strong bias towards

lower fold as shown by the chemotaxis prior can we see the changes in the posterior of

fold distribution conditioned upon Ip < 0.5.
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Figure 5.11: The results for the posterior distributions with background dependencies. Results are separated according to the prior
type (column) and background cAMP(row). Only sample results are shown. Axes are scaled identically except where doing so would
significantly reduce the readability of the plot.
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5.8 Summary

This chapter is devoted to model for fold change F and response peak Ip the condi-

tional probability P (Ip|F ), prior P (F ), marginal P (Ip) and finally derive the posterior

probability distribution P (F |Ip). We modelled the prior based on chemotaxis and also

included priors chosen from some family of distribution for comparison. The conditional

probability shows that the probability of observing lower Ip given small fold would al-

ways surpass the conditional probability of observing higher Ip no matter how strong

the stimulus fold is. The chemotaxis prior shows that small fold changes have higher

chances of being sensed and that the conditional probability drops almost exponentially

for larger folds.

The biggest take-away message however, lies with the derived posterior probability of

fold P (F |Ip). We can see a slight ‘anti-bayesian’ effect 4 where the posterior is pri-

marily determined by the conditional probability and where only a very strong bias in

the prior will swing the posterior towards the prior. This suggest that the chances of

sensing a particular small fold although is obviously very high, but more importantly

is also primarily determined by the conditional probability where its behaviour in turn

is dependent on the characteristics of the population of virtual cells and constrained

by the limitation of the model ODEs. The stimulus statistics computed and as seen in

the chemotaxis prior does not pose much influence and therefore regardless of what the

cell’s internal beliefs are, what is more important is what does the population has to say.

The effects of background cAMP is similar to the priors where it is apparent in poste-

riors conditioned upon high Ip. Again, only the chemotaxis prior which biases strongly

towards lower fold, changes the posterior conditioned upon lower Ip in both weak and

strong background cAMP. The probability components derived in this chapter will be

used to model the cell’s internal perception in the next chapter.

4Anti-Bayesian effect is when the estimated posterior is repulsed away from the prior mean by the
likelihood. We will discuss this further in chapter 6, specifically in section 6.2.





Chapter 6

Relation with the external world

6.1 Introduction

The stimulus-perception-response mechanism of a biological organism is often studied

at a coarse level, where the signalling pathway is viewed as a ‘communication channel’

rather than analysing the complicated intracellular bio-chemical reactions that constitute

it. The objective is then to maximise the propagation of information along the pathway

for the organism to make decisions as accurate as possible (Sims, 2016; Marzen and

DeDeo, 2017). This information theory approach has also been applied to the study of

Dictyostelium cells where the rate of information that must not be corrupted in order for

cells to make decisions on motility was derived (Iglesias, 2016). In this chapter instead of

analysing the full stimulus-perception-response mechanism, we introduce the ‘Bayesian

Observer Model’ (referred hereafter as the ‘Observer Model’) from the field of theoretical

neuroscience in order to characterize the stimulus-perception of FCD of Dictyostelium

cells. Some parts of the model’s components have already been characterized in chapter

4 and 5 as described in the next section.

We begin by introducing some background literature and key concepts on how stimulus

information is encoded by sensory systems modelled by the Bayesian hypothesis. We

also describe the motivation of applying the Bayesian approach in the context of FCD.

We then describe a formal definition of the Observer Model and its components. We

present a novel characterization of extracellular fold change as required by the model.

We evaluate in detail the perception of FCD by Dictyostelium cells as derived from

the Observer Model against the extracellular fold change model. We also quantify the

prediction of the fold change in stimulus by the Observer model. Finally we compute the

fold change perceptual bias and fold change distinguishability threshold as characterized

by the Observer model and examine whether a relation between these two properties

exist.

89
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6.2 The Bayesian Observer model

6.2.1 Motivation

Before we introduce the Bayesian Observer model and its components, we present here

some background and key principles of the model that motivate us to apply the Bayesian

approach to the sensory system of FCD. Human sensory systems such as vision and

hearing are not perfect and therefore there are differences between the actual external

stimulus and perceived stimulus encoded by our neurons. This amount of deviation of

the perceived stimulus from the actual stimulus forms the bias of our perceptions. One

explanation for the observed bias is that our perceptions are heavily influenced by our

prior beliefs. An example is a kilogram of feathers and a kilogram of lead where the

lead is perceived to be heavier even though both are of the same weight. Intuitively,

the bias observed can be attributed to our internal belief or our prior knowledge that

lead is heavier. However, biases in perceptions also work in the opposite direction of our

expectations. An example is when comparing the weights of two objects of the same

mass but of different heights where results showed that shorter objects are perceived

heavier, creating a size-weight illusion (Usnadze, 1931) .

The Bayesian hypothesis suggests that our perception is a result of the sensory system

trying to optimize the computation of the sensed stimulus combined with prior knowl-

edge (Curry, 1972). A Bayesian model of perception would therefore consists of two

main components; the prior and the likelihood.

Efficient encoding of the stimulus statistics

However, the Bayesian approach has been heavily criticised because of the inclusion of

the prior and likelihood components and that they are often chosen arbitrarily or out of

mathematical conveniences (Gelman et al., 2008). Wei and Stocker (2015) presented a

Bayesian Observer model based on the efficient encoding hypothesis which constraints

the priors and likelihoods. The efficient encoding hypothesis suggests that because of

the limitation imposed by the neural resources, the firing of neurons (which collectively

is the sensory representation of the stimulus) are optimized to the prior distribution of

stimulus (Barlow, 1961). In the context of FCD, the responses of Dictyostelium cells is

akin to the firing of neurons. Using the efficient coding hypothesis, if observing changes

of two fold in the surrounding cAMP concentration is statistically likely, the population

of cells would optimally represent the uncertainties of the external stimulus fold change

F = 2 compared to other unlikely fold changes in stimulus cAMP.
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Anti-Bayesian effect

As a result of imposing constraints on the priors and likelihood by the efficient encoding

hypothesis, the Bayesian Observer model derived by Wei and Stocker (2015) suggests

that perceptions are often subject to the anti-Bayesian effect. We illustrated the anti-

Bayesian effect in the context of FCD in Figure 6.1. In Figure 6.1, the uncertainties of

the external fold changes in stimulus is represented by the prior P (F ), the likelihood

P (Ip|F ) is the sensory representation of stimulus fold F and the posterior P (F |Ip) is the

perception. If the estimated F derived from the perception is repelled from the prior,

then the bias observed is anti-Bayesian. In this way, perceptions that are influenced

more by the prior are deemed Bayesian and those that are repelled away from the prior

are deemed anti-Bayesian. The problem of weights of lead and feathers given earlier is

an example of a Bayesian perception while the size-weight illusion problem correspond

to an anti-Bayesian perception.

F

Prior Likelihood

Posterior
Prior mean
Likelihood mean
Posterior mean

FTrue

Figure 6.1: Illustration of the anti-Bayesian effect produced by the Bayesian
model of perception (Wei and Stocker, 2015, 2012). Posterior estimate (mean) is
biased away from the prior by the likelihood. Vertical black solid line represents
the true value of stimulus denoted as FTrue.

We ask whether it is possible to apply the Bayesian approach to model the perception of

FCD by the population of (virtual) Dictyostelium cells. By casting the sensory system

of FCD in this context, it is hoped that questions such as What is the biases in the

perceptions of FCD? and Does the biases also demonstrate anti-Bayesian effects? can

be addressed. The latter question has been partially addressed in the previous chapter

where we showed that the inferred posterior exhibits anti-Bayesian effects.

6.2.2 Model components

In this section, we will see how the probability components derived in the previous

chapter are used in modelling the cell’s perception of fold change. The ‘Observer Model’

was proposed by Wei and Stocker (2015) as a model consisting of an encoding and

a decoding mechanism to explain the possible computation of sensory information by

cognitive systems. The model is illustrated in the context of FCD in Figure 6.2. The

uncertainty in the extracellular stimulus fold P (F ) is encoded by the Dictyostelium
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cells and represented internally by the sensory variable Ip as P (Ip|F ). The Bayesian

decoding mechanism then incorporates the population of cells’ own belief or prior about

the uncertainty of the stimulus fold. The result is an estimation of F denoted as F̂ which

represents what the cells perceive the external fold to be. Some loss of information during

both encoding and decoding process is inevitable as the model is assumed imperfect and

subject to the influence of noise.

Encoding Likelihood

Prior

Ip

Sensory 
representation

Internal 
Perception

Stimulus 
Fold 

F

Bayesian Decoding

Observer Model

Distinguishability Bias 

P(F) P(Ip|F) P(F|Ip)

Figure 6.2: The Bayesian Observer Model by Wei and Stocker (2015)

Chapter 4 therefore can be considered as a characterization of the encoder and chapter 5

can be viewed as an attempt to model the decoder mechanism. The posterior probability

of fold P (F |Ip) inferred in chapter 5 then forms the ‘internal perception’ of fold change or

what the population of virtual cells perceive the distribution of the extracellular stimulus

fold to look like. Hereafter P (F |Ip) is referred interchangeably as ‘internal model’ and

‘internal perception’. The inferred posterior P (F |Ip) is also referred interchangeably as

P (F̂ |Ip) when discussing in the context of posterior of estimates. What is yet to be

characterized is the uncertainty of the extracellular fold change P (F ).

6.2.3 Bias and distinguishability threshold as measures of perception

Perception can be characterized by two measures; the perceptual bias and distinguisha-

bility threshold. As defined by Wei and Stocker (2017) and illustrated in Figure 6.3

in the context of FCD, perceptual bias is indicated by the amount of deviation of the

perceived fold change Fpercept from the actual stimulus FT.

On the other hand, distinguishability or discriminability is indicated by the observer’s

ability to pick out minimal changes in the stimulus variable. In Figure 6.3, if the observer

can tell the difference between perceptions, each differing by a small value of fold, then

we would say that the distinguishability threshold is low.
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FTF
percept

Bias

Fold

Distinguishability

Figure 6.3: Definition of bias and distinguishability

By imposing constraints on the prior and likelihood using the efficient encoding, Wei

and Stocker (2015) were able to derive a relation between between the prior distribution

of stimulus P (F ) and the Fisher information J(F ) as

P (F ) ∝
√
J(F ) (6.1)

If the likelihood of observing the sensory variable Ip given stimulus F is twice differen-

tiable, then the Fisher information is defined as

J(F ) = −E
[( d
dF

log f(Ip|F )
)2]

(6.2)

Further mathematical derivations by the same author in Wei and Stocker (2017) proved

that the relation between perceptual bias b(F ) and the distinguishability threshold D(F )

is proportional

b(F ) ∝ (D(F )2)′ (6.3)

We refer the reader to the paper by Wei and Stocker (2017) for detailed derivations of

the bias-distingushability threshold relation as per equation above. We present only the

significant assumptions asserted in the derivations in the context of FCD as below.

• The encoding is assumed to be efficient in the sense that mutual information

between the sensory representation Ip and stimulus variable F (mutual information

denoted as I[Ip;F ]) is maximised. This entails that the conditional entropy is

minimal where given an observed Ip, the uncertainty of the underlying F is reduced

I[Ip;F ] = H(F )−H(F |Ip) (6.4)

where the entropy of H(F |Ip) is approximated by the Fisher information J(F ).

• Mutual information I is constrained as I[F, Ip] ≤ I[F, F̂ ]
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• The estimator F̂ is assumed with variance 1/σ(F̂ ) by means of Cramer Rao can

then be approximated by a gaussian with the same variance.

• The distribution of the sensory representation P (Ip|F ) is assumed to be gaussian

distributed

We ask whether the relation of equation 6.3 holds true in the context of FCD as well. We

have already characterized the distinguishability property in chapter 4 by looking at how

much P (Ip|F ) overlaps. However, the distinguishability threshold and the perceptual

bias are yet to be quantified and the relation between these two quantities in the context

of FCD has yet to be examined.

6.3 Modelling the external fold change

In order to model the cell’s perception of fold change, we characterize here the uncer-

tainties of the extracellular stimulus fold, hereafter referred as the ‘external model’. The

distribution of cAMP by aggregating Dictyostelium cells was first visualized in the pa-

per by Tomchik and Devreotes (1981) where a scheme for a travelling wave cAMP was

suggested. Since then, various studies have proposed many models mainly focussed on

describing the spiralling behaviour seen in Tomchik and Devreotes (1981). An example

of such a study is the planar and spiralling cAMP wave model by Tyson and Murray

(1989) based on the reaction-diffusion equation proposed earlier by Martiel and Gold-

beter (1987). More often than not, models proposed involve detailed cellular attributes

such as the surface area of cell, the rate of intracellular and extracellular cAMP, and

the binding affinity of cAMP receptors (Monk and Othmer, 1989, 1990). Although the

changes in concentration for a spiralling wave has been extensively studied, there is no

such study that investigates the fold change in concentration of a propagated cAMP.

Hence we derive here our own model using a statistical approach to describe how sta-

tionary cells would experience fold change as cAMP is being propagated. Note that this

approach differs greatly to the dynamics of fold change modelled by the chemotaxis prior

in chapter 5 where it is based upon movement of cells in a fixed linear cAMP gradient.

We believe that the fold change modelled in this chapter would resemble the fold change

found in the natural environment more.

6.3.1 Normal approximation of the total cAMP produced by a popu-

lation

We assume that a single cell produces a cAMP concentration x. Due to cell-cell vari-

ability, different cells produce different amounts of cAMP. Hence x varies and we denote

X as a random variable representing the amount of cAMP produced by a single cell. X
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is randomly drawn from an unknown distribution of concentration cAMP with mean µT

and standard deviation σT. Therefore a single cell on average is expected to produce µT

amount of cAMP with some variance of σT. Suppose there are m populations of cells

of a fixed size n with each cells in any population producing various amount of cAMP

drawn from the unknown distribution. The total concentration produced by the kth pop-

ulation is denoted as
∑
Xk where it is the sum of the cAMP produced by cells in the

kth population. The distribution of population sums is then derived by plotting
∑
Xk

for all k ∈ m populations. For such a distribution, the Central Limit Theorem for sums

states that as the sample size n increases, the distribution of the total concentration∑
X approximates the normal distribution such that

∑
X ∼ N (nµT, σT

√
n) (6.5)

Here, nµT is the mean and σT
√
n is the standard deviation. As the number of cells

in the population grows, a decrease in the standard deviation is expected. Hence the

distribution of total cAMP produced by a population of cells can be approximated if we

know µT and σT regardless of how stimulus cAMP is distributed.

6.3.2 Fold change as a ratio of two normals

Now we consider two populations of cells Nx, Ny where Ni indicates the number of cells

in each population i, i = {x, y}. Specifically we consider Ny as the population of cells at

the aggregation centre at time t1. As more cells migrate to the centre, the population

grows to Nx at time t2 and therefore Nx > Ny. We denote X,Y as two random variables

to represent the amount of cAMP produced by individual cells in each population and

we assume X and Y are independent. The limitation of the independence assumption

is acknowledged as a portion of cells in Nx also originates from Ny. Therefore there is

a possibility that correlations exist between X and Y . However if we accept that the

assumption is true, then using the Central Limit Theorem the total amount of cAMP

produced by each population is drawn from two independent normal distribution of

∑
X ∼ N (µx, σx) (6.6)∑
Y ∼ N (µy, σy) (6.7)

with mean of sums for population x and y denoted as µx and µy
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µx = NxµT (6.8)

µy = NyµT (6.9)

Similarly the standard deviation of sums of population x and y are defined as

σx = σT

√
Nx (6.10)

σy = σT

√
Ny (6.11)

The fold change in concentration between the two population cells is then a ratio of the

two independent normal random variables denoted as F where F = X/Y . In our case,

both X and Y are always strictly positive due to the nature of the physical quantity

that they represent. This means that the population of cells must have produce some

amount of cAMP.

We briefly introduce previous studies on the distribution of ratio of two normals. In the

paper by Marsaglia (1965) which later was revisited and extended in Marsaglia et al.

(2006), it has been shown that the distribution of ratio of two normals can be linearly

transformed and expressed in the terms of the standard normal. Dı́az-Francés and Rubio

(2013) presented a theoretical proof that the ratio can be approximated by a normal

distribution when certain conditions on the coefficient are met. Both the density and

distribution functions have complicated expressions (Marsaglia et al., 2006; Hinkley,

1969). Here we provide the density function of F as given by Dı́az-Francés and Rubio

(2013)

fF (F ;µx, µy, σx, σy, δy) =
(σy/σx)

π(1 + (σy/σx)2F 2)
exp

(
− ((σy/σx)2(µx/µy)

2 + 1)

2δ2
y

)

×

{
1 +

√
π

2
q erf

(q
2

)
exp
(q2

2

)}
(6.12)

where

q =
(1 + (µx/µy)(σy/σx)2F )

δy
√

1 + (σy/σx)2F 2

The density function is parameterised by the mean of sums µx, µy, standard deviation

of sums σx, σy and coefficient of variance δy of Y . The means are of equation 6.8 and
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equation 6.9 while the standard deviations are of equation 6.10 and equation 6.11. The

parameters can be simplified by setting β = µx/µy representing the ratio of means and

ρ = σy/σx as the ratio of standard deviations. β and ρ can be further expressed as

β =
NxµT

NyµT

=
Nx

Ny
(6.13)

and

ρ =
σT

√
Ny

σT

√
Nx

=

√
Ny

Nx
(6.14)

where as we can see both β and ρ are only dependent on the ratio of the population

size. On the other hand if we expand δy by substituting equation 6.9 and equation 6.11

δy =
σy
µy

=
σT

µT

√
Ny

Ny

= δT

√
Ny

Ny
(6.15)

it is found that δy is dependant on δT and the size of population y. δT is the coefficient

of variance of the concentration of cAMP which is assumed to be unknown. Among

the properties of fF (.) is that it is heavy tailed, has no finite moments and its shape is

primarily determined by δy. Studies have come up with different bounds on the values

of δy and δx as listed in table 6.1 where fF (.) can be approximated by the normal

distribution. The rule of thumb is to keep δy as small as possible in order to achieve a

good approximation.

Because many of the parameters are ratios or combinations of other parameters, the

essential element boils down to only three parameters which are µT, σT and Ny. These

are also the parameters that makes up δy. To demonstrate the changes in the landscape

of the density function, we computed fF for different values of µT, σT, Ny with β fixed

as β = 3. The result is shown in Figure 6.4A,B and C. Results of fF (.) for different β

is shown in Figure 6.4D for reference. It can be seen from Figure 6.4A,B and C that
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Table 6.1: Different constraint on the values of δy and δx to enable approxima-
tion of fF (.) by the normal distribution.

Author Constraints

Geary (1930) δy ≤ 1/3
Hayya et al. (1975) δy ≤ 0.09, δx ≥ 0.19
Kuethe et al. (2000) δy ≤ 0.1
Marsaglia et al. (2006) δy ≤ 0.25, δx ≥ 0.443

a smaller δy can be achieved by either increasing µT and Ny or by decreasing σT. As

expected, smaller δy results in a density curve that is sharper and narrower. Figure

6.4D shows that as the ratio of the means β increases, the density curve becomes more

right tailed with a larger standard deviation. Therefore if there is a large increase in

the number of cells from the initial population Ny to Nx, there is more uncertainty in

the resulting fold distribution. The right tailed property entails that the distribution is

always more biased towards smaller fold and the chance of observing larger fold increases

as β increases although it still remains highly unlikely.
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Fold F
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δy=0.02

δy=0.14
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δy=0.05

δy=0.1
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Figure 6.4: Dynamics of the density function fF when its parameters are varied.
The parameters when not varied are fixed as µT = 0.5, σT = 0.5, Ny = 100.
Arrows shown to indicate how δy changes when the parameter of interest is
increased. Due to the complexity of the density function, computation is done
with the help of Mathematica file provided by Weisstein (2003).

In the following sections, with the exception of β = µx/µy all other parameters of the

density function will be assigned values and treated as constants for simplicity purposes.
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Therefore the density function of external fold change fF (F ;β) is parameterised by a

single parameter β.

6.3.3 External Fold model has similar characteristics with Internal

Fold despite modelled independently.

The probability of the extracellular stimulus fold is then solved for all β in B =

(1.1, 1.2, . . . , 100) by integrating the density function of equation 6.12

P (F ∈ F ± δF |β;µT, σT, Ny) =

∫ F+δF

F−δF
fF (F ;µx, µy, σx, σy, δy)dF (6.16)

where its parameters are fixed as µT = 2.0, σT = 1.5, Ny = 100. In the following sections,

P (F ∈ F ± δF |β;µT, σT, Ny) is denoted as P (F |β) for brevity. For β = 1.1, F < 1 is

possible if the total amount of cAMP produced by population Nx cells is less than what

population of Ny cells produced although F ≥ 0 is still true in any scenario. The sample

result of the probability distributions conditioned on β = 1.1, 2.1, . . . , 9.1 is shown in

Figure 6.5. We refer to the conditional probability distribution of fold P (F |β) derived

here as the External Model to contrast the internal model P (F |Ip) derived in chapter

5. While the external model represents the uncertainty of the fold change found in the

natural environment, the internal model correspond to the internal belief or perception

of the Dictyostelium cells regarding the state of the extracellular fold given an internal

response Ip.

Given that the parameters µT, σT and Ny are fixed, the external model can be viewed as

the probability of fold conditioned only on ratio of means β, P (F |β). β in essence is the

expected fold change upon a level of cell aggregation. Figure 6.5 where P (F |β = 2.1)

shows that when the expected fold is low, the likelihood of the expected fold is so

dominant that it is quite unlikely to observe other nearby fold. However this likelihood

becomes more similar with other nearby folds as β increases as shown by the distribution

of P (F |β = 9.1).

Surprisingly the external fold change modelled here has similar characteristics as the

internal model. The external model approximates the fold change in cAMP produced

by two populations of cells using the Central Limit Theorem. On the other hand, the

internal model takes into account intricate biochemical model fitted to experiment data.

In spite of the contrasting approach, both models are right tailed with bias towards

lower fold change. As the conditioned β in P (F |β) of the external model increases, the

positive skewness of the distribution also increases. This behaviour is similar to when

Ip of P (F |Ip) increases in the same manner.
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Figure 6.5: External model of Fold Change P (F |β) derived by integrating equa-
tion 6.12. Parameters are set as µT = 0.5, σT = 0.1, Ny = 100. Only sample
results are shown for readability purposes.

6.3.4 External model is valid regardless of location by means of the

cAMP diffussion-degradation model.

So far we have modelled the extracellular fold based on the amount of cAMP produced

by two population of cells found at the aggregation centre. In this section we provide

further arguments and justifications as to why the external model is valid even outside

the aggregation centre. We know from literature that cAMP produced at the aggregation

centre is then propagated outwards in the form of spiralling wave in order to guide the

chemotaxis of cells far away. We ask how does the fold change propagated behave at

some distance L from the centre? If the fold change produced by the two populations is

F = 4, would the magnitude of the fold change propagated be reduced such that F = 2

at L? We can describe the diffusion of cAMP molecules produced by a population of

cells at the aggregation center with a two-dimensional diffusion equation as

∂C

∂t
= D

(
∂2C

∂x2
+
∂2C

∂y2

)

where C(x, y, t) is the cAMP concentration, D is the diffusion constant, x, y are the

cartesian coordinates and t is the time variable. The solution to the partial differential

equation above gives us a normalized gaussian function

C(r, t) =
1

4πDt
exp
(−r2

4Dt

)
where r is the radial coordinate. This indicates that the diffused cAMP is independent

of direction and what counts is the actual distance from the source. However, we know
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that Dictyostelium cells also secrete cyclic nucleotide phosphodiesterase (PDE)(Sucgang

et al., 1997) to degrade the cAMP in the environment. Considering both the effect

of PDE and the independence of direction, the extracellular cAMP dynamics can be

modelled with a one dimensional diffusion-degradation equation as

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
− αC(x, t)

where α is the cAMP degradation rate by PDE. The distance from cAMP source is

represented by variable x. If the production of cAMP at the aggregation centre is stable

and reaches the state of equilibrium where there are no changes in cAMP with respect

to time, the equation above can be solved as

C(x) = C0exp
( −x√

D/α

)
where C0 is the initial concentration at the centre. The level of cAMP concentration

is therefore simplified by elimination of both time and direction variables. Now let us

again consider the population of Ny cells at the aggregation centre that is producing

a stable flow cAMP where we assume the amount of cAMP is dependent only on the

number of cells. The level of cAMP is then governed by

CNy(L) = C0exp
( −L√

D/α

)
To avoid confusion with population of cells Nx, we denote L as the distance variable

from the source. The initial concentration at the aggregation centre (L = 0) is C0. The

population of cells then grows to Nx and similarly

CNx(L) = C ′0exp
( −L√

D/α

)
producing a consistent cAMP level of C ′0. The transition time between C0 to C ′0 is

assumed to be brief enough such that it is negligible. Both population are further

assumed to have the same diffusion and degradation rate of D and α. The fold change

F in concentration at location L is then derived as
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F =
CNx(L)

CNy(L)

=
C ′0
C0

exp
(−L+ L√

D/α

)
=

C ′0
C0

where using the probabilistic approach derived earlier, both C0 and C ′0 are drawn from

two independent normal distributions. Hence, a stationary Dictyostelium cell which

experiences a sudden rise in the surrounding level of cAMP would sense the same fold

change regardless of its distance nor direction from the aggregation centre. The possibil-

ity of this scenario is largely supported by the the same constants D and α that govern

the cAMP dynamics of the two populations. The sole dependency of fold change on the

ratio of the initial concentration is equivalent to being dependent only on the ratio of

the number of cells in population Nx and Ny. Therefore the external model is also valid

outside the aggregation centre.

6.4 Matching External and Internal fold model

As we have derived a model for the external fold change, we continue evaluating the

FCD accuracy by comparing the external model to the internal model. As stated in the

introduction, the external model represents the state of extracellular fold change while

the internal model is what the cells perceive the extracellular fold to be. If Dictyostelium

cells sense with 100% accuracy then we would expect that when a certain Ip = a is

observed, the resulting distribution of fold P (F |Ip = a) overlaps and matches perfectly

with the external model with a certain β = b, P (F |β = b) i.e, what the cells perceive

is exactly the same with what the state of the world is. However as we will see this

is not necessarily the case. We can view the discrepancy between the two models as a

result of the cell’s (possibly) imperfect sensing mechanism trying to optimally sense fold

change amidst biological noise (both extrinsic and intrinsic) combined with the stimulus

statistics that it has computed over time.

To quantify how much this perception deviates from the externally set of distribution

of fold changes, we compute the Kullback-Leibler divergence (Kullback and Leibler,

1951) between the two models. This method would also be used to understand how

the divergence of the external distribution constructed above from the internal model

P (F |Ip) changes the internal model P (F |Ip), when different priors are used or when

the background dependency P (F |Ip, x) is considered. The Kullback-Leibler Divergence

between two probability distributions P and Q is given as
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DKL(P ||Q) =
∑
i

P (i)log
P (i)

Q(i)

where P (i) and Q(i) are the probability values at i for each respective distribution.

The sum operation applies as we are handling discrete values of probability. Note that

the divergence is asymmetric and therefore DKL(P ||Q) 6= DKL(Q||P ). If the divergence

equation is expressed as

DKL(P ||Q) =
∑
i

P (i)logP (i)−
∑
i

P (i)logQ(i)

then we can see that the first term on the right side of the equation is the negative

entropy of the P distribution. The entropy is reduced only when Q overlaps P at i. In

our case P and Q represents the external and internal model respectively. The above

equation can be rewritten in terms of the external and internal model as

DKL(P (F |β)||P (F |Ip)) =
∑
F

P (F |β)log
P (F |β)

P (F |Ip)

Note that the base of the comparison is the external model P = P (F |β). A low diver-

gence score indicates that the internal model is more similar and closer to the compared

external model. Hence in such case, we consider the internal perception to be of high

accuracy. Otherwise when the DKL score is high, the perception is deemed of low accu-

racy.

6.4.1 A simple example

Before we proceed to evaluate the divergence between the full range of our exter-

nal P (F |β), β ∈ B,B = (1.1, 1.2, . . . , 100) and internal model P (F |Ip), Ip ∈ Ip, Ip =

(0.14, 0.15, . . . , 1.14), we first demonstrate here the Kullback-Leibler divergence result

between P (F |β = 2) and P (F |Ip). The objective is to show the overlapping behaviour

of the two models as Ip, the internal response increases. The divergence is expressed as

DKL(P (F |β = 2)||P (F |Ip)) =
∑
∀j∈F

P (F = j|β = 2)log

(
P (F = j|β = 2)

P (F = j|Ip)

)

and solved for all Ip ∈ Ip. The internal model compared in this example is the uniform

prior based posterior (P (F ) = uniform). The result is shown in Figure 6.6A. As can be

seen from the figure, the two models becomes more similar as Ip increases in the range of

Ip = 0.1 to Ip = 0.24 indicated by the decrease in the DKL. The internal model that is
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most similar to the external model of P (F |β = 2) is the distribution of P (F |Ip = 0.24)

with the minimum score of DKL = 0.09563. Hence when the external state is given by

the distribution of P (F |β = 2), population cells with internal model of P (F |Ip = 0.24)

perceives the external state most accurately.
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Figure 6.6: Kullback-Leibler Divergences between P (F |β), β = 2, 10 and
P (F |Ip), Ip = 0.1, 0.11, . . . , 1. The result for P (F |β = 2) is shown in (A) with
the most similar models visualized in (B). Likewise the result for P (F |β = 10)
is shown in (C) and the most similar models are visualized in (D).

To visualize how the most similar models overlap each other, we plotted the distribution

of P (F |β = 2) and P (F |Ip = 0.24) as blue and red curves respectively in Figure 6.6B.

As we can see, the external and internal almost completely overlap each other, hence the

very low divergence score. Both models have the same peak at F ∗ = 1.9 indicated by the

overlapping vertical blue and red dashed lines. When Ip increases such that Ip > 0.24,

the corresponding distribution P (F |Ip) shifts away from the external P (F |β = 2) to

the right, leading to more divergence. The divergence or separation is complete when

P (F |Ip = 0.54) as indicated by the maximum divergence score reached in Figure 6.6A.

How would the overlapping behaviour changes when the external model is of a a higher

β? To answer this we also computed the divergence P (F |β = 10) against P (F |Ip),∀Ip ∈
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computed from the uniform prior.

Ip. The result is shown in Figure 6.6C. A quick glance of the figure reveals that the

overlapping behaviour is similar to when P (F |β = 2) except that there is no clear

separation reached between the two models even as Ip increases to Ip = 1. The divergence

reaches its minimum at P (F |Ip = 0.53) with DKL = 2.258. Note that the minimum

score here is larger than when P (F |β = 2). Therefore the accuracy of perception by the

population of cells given that the extracellular state is characterized by P (F |β = 10) is

relatively lower than when P (F |β = 2).

As before, we plotted the distributions curves of the most similar models in Figure

6.6D. We found that the peaks or mode of the distribution do not overlap as when

P (F |β = 2). If we compare to Figure 6.6C with Figure 6.6A, it can be seen that the rate

at which models becomes more dissimilar is also much slower. This is due to external

models with large β tends to overlap the right tail of the internal as in Figure 6.6D.

Thus a short conclusion that can be made here is that internal models perceive more

accurately external models conditioned on low β. As the compared β of the external

model increases, the divergence is greater.

Before we compute the divergence for the full range of β ∈ B , we ask what happens

if the parameters µT, σT and Ny of the external model are varied and how would it

effect the divergence? We can change any one of the three parameters and achieve the

same effect because we would eventually be tuning δy. Therefore here we varied σT

and analysed the computed divergence for DKL(P (F |β = 10;σT = 1.5)||P (F |Ip)) and

DKL(P (F |β = 10;σT = 2.0)||P (F |Ip)) for all Ip ∈ Ip.

The result is shown in Figure 6.7A. As we can see, increasing σT and thus flattening the

distribution curve of P (F |β) yields a lower minimum score of DKL = 1.972. Figure 6.7B

illustrates how the external models in solid blue and black dashed lines become closer

to the internal model as µT increases. However, DKL = 1.972 is the smallest divergence
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that can be achieved by changing σT due to the constraint δT ≤ 1 that we imposed on

the external model.

6.4.2 Results for all β and Ip

Continuing our analysis, here we investigate the Kullback-Leibler divergence when β of

P (F |β) is varied. Specifically we computed DKL(P (F |β)||P (F |Ip)) for all β ∈ B and

Ip ∈ Ip and for all type of priors. To understand the effects of two parameters β and Ip,

we first study the resulting Kullback-Leibler divergence visualized in a 3D landscape as

shown in Figure 6.8.

Figure 6.8: Kullback-Leibler Divergence DKL(P (F |β)||P (F |Ip)) for all Ip ∈
Ip, β ∈ F and F ∈ F. The P (F |Ip) compared is the uniform prior based model.

Note that the P (F |Ip) compared in Figure 6.8 is also of the uniform prior based model.

From Figure 6.8, a valley can be observed where its lowest point indicates the region

where the divergences are minimal and the two models are most similar. For small

values of β, there exist a small range of Ip when conditioned upon give rise to internal

models similar to the compared external model, hence the observed narrow valley. The

existence of plateaus on both sides of the valley shows a clear separation between the

two models compared.
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However, the width of the valley widens as the compared β of the external increases.

As β and Ip both reaches approximately β ≥ 10, Ip ≥ 0.5, the plateau on one side

diminishes and the valley flattens out. This indicate that within the range of β ≥
10, Ip ≥ 0.5, the external model is relatively similar to all internal models regardless of

the Ip that the internal is conditioned upon. Does this mean that within this range, all

internal models perceive the compared external fold changes accurately? To answer this

question, we plotted the external and internal distribution parameterised by β = 20, 50

and Ip = 0.6, 0.8, 1.0 shown as Figure 6.9. One of the reason for the flat region is the

significant decrease in the probability value as β increases from β = 20 to β = 50 which

then contributes to a lower divergence score. Moreover the external for β ≥ 10 overlaps

only the right tail of the internal model regardless of the conditioned Ip. Due to the

probability in the right tail region remains largely unchanged, the resulting divergence

scores are kept low and does not vary much. Therefore it would be misleading to say

that the low divergence score observed in the flat region in Figure 6.8 indicates that the

accuracy of the internal perception is high.
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ternal model P (F |β), β = 20, 50) and internal model P (F |Ip), Ip = (0.6, 0.8, 1.0)
demonstrates how overlaps in region of β ≥ 10, Ip ≥ 0.5 leads to lower diver-
gence scores and the flat surface observed in Figure 6.8. All internal models are
uniform prior based. Solid blue line indicates the external model and dashed
curves are the internal conditioned on various Ip.

6.4.3 Effects of priors

To see the effects of internal models with different priors, we plotted the Kullback-Leibler

divergence landscape shown as Figure 6.10. For readability and contrasting purposes
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the landscapes are visualized as contours. We also truncated the result to ignore some

part of the insignificant flat region. As can be seen, the contours for all priors share

the same characteristics of having a narrow valley initially which widens as β increases.

All type of priors also have flat regions in the range of approximately β ≥ 10, Ip ≥ 0.5.

Therefore we can further add to the previous conclusion that regardless of the type of

priors, the Kullback-Leibler divergence is an inappropriate measure of accuracy of the

internal perception in the region of β ≥ 10 and Ip ≥ 0.5.

Figure 6.10: The effect of internal models with different priors on the Kullback-
Leibler Divergence.

One point that stands out in Figure 6.10 is that the divergence computed with chemo-

taxis prior based internal model has a very narrow valley, almost bottleneck like at (β, Ip)

coordinate of (2, 0.27) and (2, 0.31). It is also observed that the contour for the exponent

and Weibull prior based internal are almost similar to each other. To gain more insights

on the effect of different priors, we extracted the minimum points of the valley for each

landscape. For a range of external P (F |β), β ∈ B, internal models based on a certain

type of prior would have a set of I∗p (β) = (a1, a2, . . . , aN ) that when are conditioned

upon produce P (F |Ip) most similar to the compared external. Thus, P (F |Ip), Ip ∈ I∗p
represents most accurate perception on the entire range of external P (F |β), β ∈ B. In-

tuitively, if the type of priors plays any role in determining the amount of divergence,

internal models based on a different prior would have a different set of I∗p and conse-

quently, a different set of minimum divergence scores as well.
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In order to determine I∗p (β), we treated the divergence landscape result as a function of

Ip and β denoted as D(Ip, β) = DKL(P (F |β)||P (F |Ip))), for all Ip ∈ Ip and β ∈ B. For

a given β we then find

I∗p (β) = argmin
Ip

D(Ip, β) (6.17)

Subsequently the corresponding minimum divergence score for I∗p (β) denoted as Dmin(β)

is then derived as

Dmin(β) = minD(Ip;β) (6.18)

and is found for all β ∈ B. The range of B here is chosen as B = (1.4, 1.5, . . . , 10)

because this is the range where the computed divergence result is considered as a suitable

measure of the internal perception’s accuracy. We plotted the curves of I∗p (β) and

Dmin(β) for different type of priors in Figure 6.11A and Figure 6.11B respectively.

Figure 6.11A answers the question ‘For a particular prior based internal model, which Ip

when conditioned upon produces P (F |Ip) that matches most with the compared external

P (F |β)?’. The corresponding Figure 6.11B then provides the answer for ‘If P (F |Ip = a)

is found to match most with P (F |β = b), what would the minimum score be?’. Figure

6.11A shows that the set of I∗p derived by internal models with uniform, exponent or

Weibull prior are similar in the range of β = 1.14 to β = 4. Hence in this range

internal models based on the mentioned three priors share a similar perception of the

external state. Only the chemotaxis prior based internal provides a different set of I∗p

and therefore perceives the external state differently. For the case when the external

state is determined by β > 4, the perception varies among different priors albeit the

chemotaxis and uniform prior based perception are exactly the same.

Figure 6.11B tells us the accuracy of the perception in Figure 6.11A. With the exception

of the chemotaxis prior, in general perceptions are of high accuracy across all priors when

the compared external has a very low β as shown by the low Dmin score. The accuracy

of perception then deteriorates as β increases. However, the chemotaxis prior based

internal tells a slightly different story. If we analyse the blue line trajectory in Figure

6.11B, we can see that the chemotaxis prior based has two regions where the accuracy

of perception is relatively high. The first is for β < 1.6 and second is when 2.8 ≤ β < 4.

The accuracy of the perception temporarily worsens at a considerably high rate in the

range of 1.6 ≤ β < 2.8. We can see here the strong effect of the chemotaxis prior in

determining the perception of the internal model. The perception then continues to

resembles the uniform prior based for β > 4 and deteriorates as β increases.
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Figure 6.11: The effect of priors on the minimum divergence score. (A) Ip
that must be conditioned upon to derive internal model that best match the
compared external given by β. (B) The corresponding divergence score for (A).

6.4.4 Effects of background dependency

We have seen the effects of internal models computed from different priors on the ac-

curacy of perception as quantified by the minimum divergence score. As shown in the

previous chapter, the internal model of posterior fold can also be conditioned on both

Ip
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Figure 6.12: Kullback-Leibler Divergence landscape for different prior based
internal with background dependencies.

and background cAMP x denoted as P (F |Ip, x). How would background cAMP affect

the divergence between the two models? We computed DKL(P (F |β)||P (F |Ip, x)) for all

β ∈ B, Ip ∈ Ip and for x = 1, 100. The divergence is computed for all types of priors.
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The x values are deliberately chosen such that the comparison is done between a weak

and a strong background cAMP.
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Figure 6.13: The effect of priors on the minimum divergence score. Rows sep-
arate the effect of priors on the best set of internal models P (F |I∗p ) (Top) and
their corresponding divergence score (Bottom). Columns separates results of
when the internal models are stimulated with fold of weak background cAMP
(Left) and strong background cAMP (Right).

Similar to the previous section, we visualized the landscape of DKL score as contours

in Figure 6.12. Figure 6.12 shows that regardless of priors, a stark difference can be

observed in the divergence result computed by different background cAMP. A weak

background cAMP of x = 1nM seems to yield a more consistent and narrower valley

compared to the result by x = 100nM. This indicates that there is a better separation

between the distributions of the compared internal P (F |Ip, x = 1), Ip ∈ Ip and external

P (F |β), β ∈ B model. The clear separation is due to the symmetricness found in the

distribution of P (F |Ip, x = 1) for all Ip ∈ Ip. In contrast, contours of background

x = 100nM show flat regions as seen previously in section 6.4.3. This is caused by

the heavy tailness of P (F |Ip, x = 100) (for all Ip ∈ Ip) distributions especially when

conditioned upon high Ip.
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As seen in the previous section, it is difficult to extract meaningful insights just by

observing the contours of Figure 6.12. Therefore we derived the set of perceptions

with minimum divergence scores I∗p (β) and the corresponding minimum divergence score

Dmin(β) for P (F |Ip, x = 1) and P (F |Ip, x = 100) in the similar manner as what we

have done previously in section 6.4.3. The result is shown in Figure 6.13 where a

quick glance reveals that the effects of priors between different background cAMP are

hardly distinguishable. In general the profiles of I∗p (β) derived by internal conditioned on

x = 1nM across all priors in Figure 6.13A are more unique compared to when x = 100nM

indicated by the saturation in Figure 6.13B. The divergence score of internal with weaker

background x = 1nM is also significantly better as shown in Figure 6.13C,D. Therefore

we can conclude that internal model of a weaker background has a higher accuracy of

perceiving what the external distribution of fold is .

6.5 Validating the bias-distinguishability relation

In this section our primary goal is to examine whether the bias-distinguishability relation

as described by equation 6.3 is valid in the context of FCD. In order to achieve this goal,

we first quantify bias and distinguishability threshold and examine their characteristics.

6.5.1 Bias

In the previous section, we have quantified the accuracy between the internal perception

of fold change given observed sensory response P (F |Ip) and external fold change distri-

bution P (F |β). The divergences between P (F |Ip) and P (F |β) can also be considered

as biases. However, as illustrated in Figure 6.1, biases are defined in the context the

Observer model as deviations between posterior estimates and the true stimulus. We

further illustrate the definition of bias in Figure 6.141. When an observer model is stim-

ulated by a true fold denoted as FT drawn from some distribution P (F ), the model then

produces a posterior distribution of estimates P (F̂ |FT) to represent its ‘overall percep-

tion’. In Figure 6.14 we have illustrated P (F̂ |FT) as a gaussian distribution. Given Fpre

as the best estimator, the perceptual bias for estimating true stimulus FT denoted as

b(FT) is defined as

b(FT) = |FT − Fpre| (6.19)

1In Wei and Stocker (2017), for a given stimulus θ, the bias of stimulus b(θ) is expressed in the term
of µ̂(θ) = θ + b(θ) where µ̂(θ) is the mean of a gaussian distribution. The relation of bias and prior
distribution of stimulus is given as b(θ) ∝ (1/p(θ)2)′ and is proven true for various loss functions that
the Bayesian decoder minimizes.
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Figure 6.14: Definition of overall bias

where in the case of Figure 6.14 we used the mean of P (F̂ |FT) distribution as Fpre. In

the context of our study we derive the posterior distribution of estimates or the ‘overall

internal perception’ P (F̂ |FT) by averaging over all Ip ∈ Ip as

P (F̂ |FT) =
∑
Ip∈Ip

P (F̂ |Ip)P (Ip|FT) (6.20)

where P (F̂ |Ip) and P (Ip|FT) are respectively the posterior and conditional distribution

from chapter 5. We already know the underlying stimulus FT that resulted in the

approximated P (Ip|FT). We then solve our prediction of the true stimulus denoted as

Fpre

Fpre = argmax
F̂

P (F̂ |FT) (6.21)

where we take the maximum value or the mode of the distribution P (F̂ |FT) as our best

estimator. We computed P (F̂ |FT) for all FT ∈ FT,FT = (2, 2.1, . . . , 10) and derived

their corresponding Fpre. We plotted samples of results of P (F̂ |FT) and Fpre for given

FT = 2, 6, 10 for all priors in Figure 6.15. Figure 6.15 shows that in general the bias

increases across all priors when the sensed true stimulus FT increases.

We then computed the perceptual bias b(FT) (equation 6.19) evaluated using Fpre derived

from all FT ∈ FT,FT = (2, 2.1, . . . , 10) and show the result in Figure 6.16. As can

be seen from Figure 6.16, there are two different regions of bias for chemotaxis prior

based perception. In the range of small fold FT < 4 the perceptual bias modelled with

chemotaxis prior increases at a relatively fast rate. For the range of FT ≥ 4 the bias

then drops drastically and is equal to the bias of the uniform based perception. One

reason for the increasing bias in FT < 4 is because the prediction Fpre = 1.1 yielded is

the same for all P (F̂ |FT) within this range. As can be seen in Figure 6.15 left panels,

the indifferent prediction is further caused by the fact that the chemotaxis prior based

perception will always assign the highest probability to F = 1.1 when stimulated with

FT < 4. The decision to maximise P (F̂ |FT) in equation 6.21 will always yield the same
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Figure 6.15: The effect of priors on bias. Vertical dashed red lines indicate
predictions Fpre from the overall internal perceptions while the vertical black
lines indicate the true stimulus FT.

perception regardless of the true stimulus. The origin of this phenomenon can be traced

back to the chemotaxis prior P (F ) which assigns strong probability values for F < 2.
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Figure 6.16: Bias for different priors.
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6.5.2 Distinguishability threshold

Previously in chapter 4 we have quantified the distinguishability between two folds Fx

and Fy and showed the result of overlapping areas in Figure 4.6. Here we extract

the ‘distinguishability threshold’ as a function of fold denoted as D(F ) by first finding

all possible pair values of x and y that satisfies AF [x, y] = 0.4. Essentially what we

are looking for are the x, y combinations that lies on the two red curves of Figure

4.6 where they represent the first combination that are deemed distinguishable. The

distinguishability threshold D(F ) is then solved by D(F )large = x − y for x < y and

D(F )small = y−x for x > y. The former is the threshold between fold x and larger folds

while the latter is the threshold between fold x and smaller folds. This requirement of

having to define two distinguishability threshold is due to the fact that the overlapped

distribution P (Ip|F ) computed is asymmetric. The result of computing both D(F )large

and D(F )small are shown in Figure 6.17.
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Figure 6.17: Distinguishability threshold. D(F )small is the minimally distin-
guishable smaller fold and D(F )large is the minimally distinguishable larger fold.

An example of how Figure 6.17 should be analysed is as follow. For F = 4 that lies on the

blue line, the discrimination threshold is D(F )large = 2.1. This means that the minimally

distinguishable larger fold for F = 4 is F = 6.1. Likewise the minimally distinguishable

smaller fold for F = 6 is F = 3.9 indicated by the coordinate on the red line pointed by

the arrow. The result from Figure 6.17 shows that in general distinguishability threshold

increases with stimulus fold.

6.5.3 Bias-distinguishability threshold relation

Now that we have quantified both bias and distinguishability threshold, we examine the

validity of equation 6.3 describing the relation between the two measures of perception.
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We ask whether the relation between bias and distinguishability threshold in the observer

model of sensing stimulus

b(F ) ∝ (D(F )2)′

is also true in the context of FCD. The bias-distinguishability relation established by

Wei and Stocker (2017) is supported by results from studies on sensory system of circu-

lar variables such as visual orientation. However, Wei and Stocker (2017) state that for

sensory systems operating with magnitude variables, the relation between distinguisha-

bility threshold and stimulus variable is expected to obey Weber’s law where threshold

must increase linearly with stimulus. Consequently it is predicted that the perceptual

bias is also a linear function of stimulus.

We first examine the relation between distinguishability threshold and stimulus fold as

observed in Figure 6.17 by fitting linear and quadratic curves to the data. The result

of fitting both functions is shown in Figure 6.18 and the corresponding sum squared of

residuals are listed in table 6.2. As can be observed, the distinguishability threshold-fold

relation is better described by quadratic function as indicated by the red solid curves in

Figure 6.17 rather than linear functions. Therefore it is more accurate to say that the

distinguishability threshold increases in a quadratic manner as the stimulus fold change

increases. It is important to note that the distinguishability threshold derived here is

for fold change in concentration and not of the magnitude of the concentration itself. If

it was the latter case, then the linear relation of the Weber’s Law as emphasised by Wei

and Stocker (2017) is expected to hold.

Given that D(F ) is governed by quadratic functions, (D(F )2)′ would then yield cubic

functions. Hence, the perceptual bias b(F ) would need to be proportional to distin-

guishability threshold defined as a cubic function of stimulus fold in order for the rela-

tion of equation 6.3 to be valid. However as can be seen from Figure 6.16, bias is better

described by a linear or a quadratic function of fold F . Therefore, it can be concluded

that the validity of equation 6.3 does not hold true when the bias is defined as equation

6.19.

Table 6.2: Sum of Squared Residuals for linear and quadratic curves fitted to
the distinguishability threshold data.

D(F ) Linear Quadratic

D(F )large 1.0946 0.0853
D(F )small 1.9147 0.0943

As we have defined two different distinguishability threshold, we plotted b(F ) of Figure

6.16 against D(F ) (instead of plotting b(F ) against D((F )2)′)) of Figure 6.17 in Figure
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6.19A,B. Figure 6.19A,B indicate a possible linear relation between b(F ) and D(F ) for

both D(Flarge) and D(Fsmall). As distinguishability threshold increases, the perceptual

bias also increases. The correlation is expected to be stronger for D(Fsmall) compared

to D(Flarge) regardless of the type of priors. When the threshold for higher fold to

distinguish smaller fold increases, there is a greater perceptual bias as the bias is of the

higher fold. The existence of two regions of bias can be seen when the internal model is

computed using the chemotaxis prior.
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Figure 6.18: Distinguishability threshold (black crosses) fitted with lin-
ear(dashed blue lines) and quadratic curve (solid red lines).

Hence our current conclusion is that the relation of b(F ) ∝ (D(F )2)′ as derived by Wei

and Stocker (2017) does not hold true in the case of FCD in Dictyostelium cells. Instead,

a linear relation of b(F ) ∝ D(F ) as demonstrated by Figure 6.19A,B would be more

plausible.
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Figure 6.19: Bias-distinguishability threshold relation plotted for internal model
based on different types of priors. (A) Minimally distinguishable threshold for
larger folds. (B) Minimally distinguishable threshold for smaller folds.
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6.6 Summary

This chapter focusses on the evaluation of the internal model derived in chapter 5. In

order to quantify the accuracy of perception by the internal model, we have characterized

a model of the external fold change. We have also explored how the model is constrained

by its parameter µT, σT, Ny and showed that the two most important factors are the

coefficient of variance δy and ratio of means of sums β. A mathematical justification is

also given to show the validity of the external model. The most surprising result is that

the external model displayed similar characteristics to the internal model despite they

are derived independently. The former was derived using a statistical approach to model

simple sums of cAMP produced, while the latter is a result of a long and complex process

involving a Bayesian inference of the posterior distribution of fold changes preceded

by the 1000 variation of model ODEs representing the bio-chemical attributes of the

signalling pathway.

Using the Kullback-Leibler divergence as a measure of accuracy of perception, we showed

that the perception is more accurate when compared with external distribution of lower

fold. The accuracy diverges more as the compared mean of the external fold increases.

We also demonstrated the limitation of Kullback-Leibler divergence as a measure of

perception’s accuracy when the compared external fold is high. We derived sets of

most accurate perceptions and showed that perceptions are similar across different priors

except for internal model based upon the chemotaxis prior. In fact, the chemotaxis prior

based model is the only model with the distinct feature of two region of perceptions.

The accuracy of the internal perception is also much higher when stimulated with folds

of weaker background cAMP.

We also described the Observer model, characterized the prediction from the overall

internal perception and defined bias in the context of FCD. We showed that bias increases

as the stimulated fold is stronger across all type of priors except for the chemotaxis

prior based internal. The distinguishability threshold is characterized for two different

cases- one for the minimally distinguishable larger folds and the other for the minimally

distinguishable smaller folds. We showed that the bias-distinguishability threshold as

established by Wei and Stocker (2017) does not hold true for FCD in Dictyostelium cells.





Chapter 7

Summary and Conclusions

In this thesis, we have presented various characterization of the FCD sensing mecha-

nism in Dictyostelium cells through a well described mathematical model of the up-

stream signalling pathway. We acknowledge that only the sense-perception components

of the cyclic-AMP sense-peception-response mechanism has been successfully charac-

terized. The study of FCD accuracy derived from upstream models is significant in

characterizing the constraints that models impose on downstream models. The accu-

racy of FCD of upstream models then acts as a criteria for model selection, limiting

plausible downstream models. One of the issues that we have identified from literature

when modelling the sense-response mechanism such as the oscillation of cAMP in single

or population of cells (Sgro et al., 2015; Noorbakhsh et al., 2015) is that the assumptions

of upstream models often do not emulate significant properties that allow for accurate

sensing. We argue that if the properties of the upstream signalling pathway are not

captured correctly, then the modelled actuator would yield unrealistic results. Or even

if the results concur with experimental data, the derived model would not be a sensible

approximation of the sense-response mechanism.

We summarise and conclude our thesis here in the context of the questions posed in

chapter 1 and derive several conclusions from our findings. To answer what is the

accuracy of FCD observed in mathematical models of the Dictyostelium cell, we started

by probing the model ODEs described by Takeda et al. (2012). We found that the

dynamics of the model are stable and exhibit adaptation as a crux component of FCD

when the input to the model ODEs continuously increases. Hence we deem that this

initial analysis provided enough support to validate the investigation of the accuracy of

FCD using the model ODEs by Takeda et al. (2012).
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7.1 Criteria enabling FCD by the model

We studied what are some of the criteria that enable the validated model to exhibit

FCD in the first place, regardless whether the fold changes detected are accurate or not.

Half of the parameters of the model were then estimated using the ABC-SMC method

where we derived posterior densities of parameters. This provided the operating ranges

of parameters in detecting fold changes where some of the ranges deviate far from what

Takeda et al. (2012) estimated. The variability observed in the posterior distributions

showed that some parameters are less variant and implies that some strict constraints are

necessary in order for the model to exhibit FCD. It has also been shown through PCA

that no single principal component of the sampled parameters can primarily capture the

exhibited FCD behaviour. However, different posterior distributions might be obtained

if we estimated the full 18 parameters of the model ODEs or if we chose a different

set of data for data fitting. To estimate the full parameters of the model would be

computationally expensive, a problem common to the SMC method when dealing with

complex models. An alternative approach is to apply Gibbs sampling, where estimated

parameters are divided into blocks. Some blocks are sampled from the conditional

probability with the remaining blocks of parameters fixed. The blocks are then switched

and the sampling process is repeated.

7.2 Lower fold changes are being detected more accurately

and are more distinguishable

Nevertheless, the posterior parameters do give us a measure of the model’s variability

in capturing the FCD in Dictyostelium experiment. The densities of sparsely generated

responses from the estimated parameters were modelled using the log-normal density

function where its coefficients were approximated using quadratic functions. We found

that responses free from background dependencies are more consistent to stimulant

with lower fold changes. This provides the first hint to the accurateness of FCD by

the model−lower fold changes are being detected more accurately as opposed to higher

fold changes. We also quantified the fold distinguishability property by measuring the

overlapping area of distribution of responses. Our results showed that responses to lower

fold changes are more distinguishable and therefore lower fold changes in stimulant are

also more distinguishable than higher fold changes. The characterization of the stimulus-

response relation showed that the hyperbolic equation describes the relation better than

the logarithmic law proposed by Adler et al. (2014). We also found that the uncertainties

in the responses are better described by a logarithmic relation as opposed to a linear

relation. The conclusions reached here are limited by the properties of the model and are

further restricted by the log-normal density function used to approximate the responses

of the model. Although the heavy right tailness seen in the distribution of responses
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can be characterized using many other families of distributions such as the Gamma or F

distribution, we justify the choice of the log-normal as studies have shown that responses

of sensory systems can be described using the logarithmic compression hypothesis.

7.3 The probability of lower fold changes is higher

We inferred the posterior probability of fold changes being detected given the sensory

responses generated from the model using Bayes’ theorem. In doing so we modelled

a novel prior probability of fold changes encountered by Dictyostelium cells based on

chemotaxis experiment and compared with other known priors. We found that the

posterior probability is significant in ranges of low fold changes and decreases drastically

as the observed responses increases. Therefore, given lower responses, the probability of

lower fold change is higher. The inferred posterior is constrained by the conditional and

prior probability. We showed that with the exception of the chemotaxis based prior,

the inferred posterior displays an ‘anti-Bayesian effect’ where it is biased away from

the prior by the conditional probability. It can be argued that the stark differences

in distribution profiles between the chemotaxis based prior and the alternative priors

suggest that comparison of posteriors computed by these priors are impractical. An

alternative approach is to choose model parameters such that the resulting alternative

priors are also significant in a narrow range in order to influence the posterior. It is

acknowledged that the choice of prior although indispensable in the Bayesian approach

remains a controversial subject.

7.4 Perceptions of lower extracellular fold changes and of

weaker initial stimulus are more accurate

Using the inferred posteriors, we characterized the perception of Dictyostelium cells

regarding the state of the extracellular fold changes. In doing so, a novel model of the

extracellular fold changes was derived and divergences between the two distributions

were computed. We found that Dictyostelium cells characterized by the model ODEs

of Takeda et al. (2012) perceive fold changes better when the extracellular fold changes

are of lower range and worsens as the fold changes in the environment increases. We

derived sets of most accurate perceptions and showed that there are different regions

of perceptions if the prior beliefs are derived from chemotaxis experiments. From the

modelled perceptions we derived the predictions of fold changes by the population of cells

and computed the biases. We showed that bias increases as the stimulated fold change is

stronger. We also characterized the minimally distinguishability threshold and showed

that the threshold increases almost quadratic like as the stimulus fold increases.
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7.5 Future work

We describe here several future research directions in modelling the complete cyclic

AMP sense-response mechanism of the Dictyostelium cells. The next step is to probe

and characterize the response or actuator component of the Dictyostelium cells. In

the studies by Sgro et al. (2015) and Noorbakhsh et al. (2015) the peak levels of the

transient generated by the sensing component are treated as inputs to a postulated au-

tonomous excitable, oscillatory model system introduced in the neuroscience literature.

This mechanism contains a threshold for oscillations via a Hopf bifurcation suggests a

variable response based on a stochastic triggering mechanism. In contrast, a different

mechanism is proposed in Kamino et al. (2017) that makes explicit reference to the FCD

property and follows similar lines to Martiel and Goldbeter (1987) where intracellular

production of cAMP by adenylyl cyclase (ACA) sets up the relay mechanism forming a

positive feedback loop, and the desensitisation of the CAR receptor (another mechanism

for adaptation) enables an oscillatory behaviour.

In both sets of studies the link to the specific mechanism proposed in Takeda et al.

(2012) is only obliquely made, with Kamino et al. (2017) extending the FCD mechanism

of the IFF networks to a cell density-dependent secretion module, and Sgro et al. (2015)

disputing the relevance of the IFF module to the oscillatory responses. Although model

simplifications makes it easier to analyse the system’s mathematical properties, we are

in the opinion that future research should characterize the sense-secrete system of the

Dictyostelium cell by incorporating the upstream signalling pathway model ODEs de-

scribed by Takeda et al. (2012). One approach is by restructuring the model ODEs by

Takeda et al. (2012) from a feedforward network to a feedback network model. This can

be achieved by defining the secretion of cAMP as

dx(t)

dt
=

k+
x Ras(t)

3

K3
D +Ras(t)3

− k−x x(t)

where cAMP is denoted here by x(t) in contrast to the experimentally controlled ex-

tracellular levels x and x′. The parameters k+
x and k−x are the production and decay

rate of the molecule cAMP and KD = k−x /k
+
x is the corresponding dissociation constant.

x(t) is a variable that combines intracellular levels of cAMP and that which is secreted,

summarising a two-step description. The decay rate k−x can be attributed to a intra-

cellular phosphodiesterase-enabled process (Dinauer et al., 1980a) or by dilution in the

extracellular environment.

Another approach is to link the inputs from the sensing module modelled in Takeda et al.

(2012) to the oscillatory FitzHugh-Nagumo based actuating module (Sgro et al., 2015;

Noorbakhsh et al., 2015) that secretes cAMP to establish the feedforward amplification
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(Wang et al., 2012) of responses. The model ODEs of Takeda et al. (2012) can be

extended by adding two equations to described the oscillatory dynamics as

dA

dt
= A− (

A3

3
)−Re+Ras

τ
dRe

dt
= A− γRe+ c0

where in this coupled model, A and Re is the activator and repressor of the FitzHugh-

Nagumo, γ, c0, τ are the FitzHugh-Nagumo model parameters. It is important to note

that although this coupled model can characterize the single cell level cAMP oscillation

observed in experiments, it does not capture the sense-secrete mechanism in its system.

In both suggested models, the parameters of the extended equations can be constrained

by the range of the posterior parameters estimated in chapter 3. The possible oscillating

responses by both systems are then restricted by the experiments based constraints.

Reversely the sets of parameters resulting in responses which are not oscillatory can

be also identified. It has been reported in the experiments by Sgro et al. (2015) that

the oscillation of cAMP by single Dictyostelium cells have a refractory period of 2 to 3

minutes which then governs the frequency of the cAMP pulses. This refractory period

can be associated to the desensitization of the receptor or the adaptation time of the Ras

protein. Indeed, the focus of this thesis has been on the maximum level of responses.

There is a need to explore the role of the adaptation time for the maximum responses to

return to its pre-stimulus level. The 1000 sets of parameters derived in chapter 3 would

yield different adaptation time. This would in turn lead to different refractory periods

of the extended model and would yield an estimate of the variability in the possible

refractory period.

7.5.1 A broader perspective

The examples of future works given so far are of research projects that can be imple-

mented directly using the results obtained in this thesis. The goal of incorporating a

feedback model is to enhance the modelling of the sense-perception mechanism. On the

other hand, the coupling of an oscillation module is to evaluate how the sense-perception

mechanism constraints or is constrained by the oscillation module. However, if we look

from a broader perspective, the research framework developed in this thesis can be ap-

plied to understand the functional characteristics of different models across different

biological systems. For example, future works can focus on evaluating the distribution

of responses of other alternative mathematical models used to describe the chemotaxis

pathway of Dictyostelium cells and characterize the sense-perception mechanism. How

different would the perception of the population of cells be if it is modelled using other
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models? It is also possible to characterize in the same manner the accuracy of FCD

by the three models of Rhodobacter sphaeroides chemotaxis as introduced in Hamadeh

et al. (2013) that is said to exhibit FCD and are robust to structural changes and varia-

tion in parameters. What would the characteristics of the probability of fold changes by

the three models of Rhodobacter sphaeroides chemotaxis be? Would any of the models

share the same characteristics as the model of FCD in Dictyostelium cells derived in this

thesis? Hence, the comparison of characteristics of FCD is not only between models of

Dictyostelium but is also possible across different organism that is said to exhibit the

FCD property. This enables future research to further extract design principles of FCD

by probing the relation between the likelihood of displaying functional properties and

the underlying model structures. The research framework introduced in this thesis is

by no means limited to the FCD property only and can be further generalized to other

observed behaviour. One interesting study would be the characterization of adaptation

as this behaviour is observed in many organism and is widely documented compared to

FCD.

In the conventional approach of mathematical modelling of biological systems, the goal

is to identify model structures and parameters that is compatible with experimental

data and provide predictions to future experiments. However, by analysing population

of responses and models of perception as demonstrated in this thesis, the goal then

changes to identifying a model that is likeliest to exhibit functional behaviour as required

by the system. We argue that mathematical models that fit well with experiment data

but do not exhibit desirable functional properties are not realistic representations of the

biological system.



Appendix A

Approximate Bayesian

Computation (ABC) method

Bayesian methods can be used to estimate parameters of models of biological systems by

Ordinary Differential Equations(ODEs). By using Bayes’ rule, we can estimate model

parameter θ by inferring the posterior probability of θ given observed data X, denoted

as P (θ|X)

P (θ|X) =
P (X|θ)P (θ)

P (X)
(A.1)

where the likelihood P (X|θ) is the probability of data given parameter, P (θ) is the prior

probability of parameter θ and P (X) is the marginalized likelihood.

However, in the case where the likelihood and model evidence are analytically in-

tractable, approximation method is more suitable in inferring the posterior probability.

A well known algorithm is the Approximation Bayesian Computation (ABC) rejection

sampler, developed earlier by Pritchard et al. (1999) and Beaumont et al. (2002) in

population genetics. The posterior distribution is simplified by eliminating the constant

of proportionality as,

P (θ|X) ∝ f(X|θ)π(θ) (A.2)

where f(X|θ) is the likelihood of parameter θ given data X (Toni et al., 2009). θ

is generated from π(θ) and accepted with probability f(X|θ). The method is further

improved when the calculation of likelihood is replaced by comparing simulated data Xs

to the observed data Xd. Xs is simulated from a generative model Mθ with θ drawn

from π(θ) such that Xs ∼Mθ. The posterior is then expressed as
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P (θ,Xs|Xd) =
·(d(Xd, Xs) ≤ ε)(Xs ∼Mθ)π(θ)∫

θ

∫
Xs ·(d(Xd, Xs) ≤ ε)(Xs ∼Mθ)π(θ)

(A.3)

where ε > 0 is the tolerance value, · is the indicator function and d(Xd, Xs) is the

distance function. The ABC generic algorithmic form is given as

1. Sample candidate parameter vector θ∗ from prior distribution π(θ) independently.

2. Simulate dataset Xs from model Mθ with parameter θ∗: Xs ∼Mθ|θ←θ∗

3. Compare the simulated datasetXs, with the observed dataXd, using some distance

function d and tolerance ε ≥ 0. If d(Xd, Xs) ≤ ε accept θ∗, else reject.

The output is a set of parameter values sampled from distribution of P (θ|d(Xd, Xs) ≤ ε).
If the tolerance ε is small enough, then the distribution P (θ|d(Xd, Xs) ≤ ε) is close to the

true posterior P (θ|Xd). For dynamical models, comparison between the simulated and

observed data can be carried out directly without having to use summary statistics. The

pseudo-code for ABC rejection sampler (Pritchard et al., 1999) is given as Algorithm 1.

Algorithm 2 ABC Rejection Sampler

1: Sample candidate parameter θ∗ from prior P (θ)
2: Simulate dataset Xs ∼Mθ|θ←θ∗
3: if d(Xd, Xs) ≤ ε then
4: Accept θ∗

5: else
6: reject
7: end if

If the gap between the prior and posterior distribution is very large, then the sampled

candidates are from parameter space with low likelihood, causing a low acceptance rate.

The algorithm is therefore inefficient as it is time consuming. Other ABC methods such

as Markov Chain Monte Carlo (MCMC) (Marjoram et al., 2003) and Sequential Monte

Carlo (SMC) (Sisson et al., 2007) have been introduced to overcome the inefficiency

of ABC rejection sampler. However, in MCMC method it is still possible to have low

acceptance probability and correlated samples. This will result in a long chain that is

difficult to escape the parameter space of low likelihood (Beaumont, 2010). For this

reason and simplification purposes, we will focus the discussion on Sequential Monte

Carlo (SMC ) method as it is more relevant for our work.
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A.1 Approximate Bayesian Computation-Sequential Monte

Carlo (ABC-SMC) method

To overcome the disadvantages of ABC rejection sampler and MCMC, Sequential Monte

Carlo(SMC) based ABC method was introduced by Sisson et al. (2007) based on the

algorithm by Del Moral et al. (2006). A further refined version of ABC-SMC was

developed by Beaumont et al. (2009) and Toni et al. (2009). We will focus on the SMC

algorithm varied by Toni et al. (2009). This algorithm is similar to the algorithm by

Beaumont et al. (2009) and Sisson et al. (2007).

Figure A.1: Particle filter mechanism of ABC-SMC method reillustrated from
Toni and Stumpf (2009). Population of particles are gradually filtered through
the intermediate distributions. With enough population levels T and small
tolerance εT , the last distribution approximates close to the true posterior dis-
tribution.

The mechanism of ABC-SMC works like a particle filter with many cascaded tolerance

level ε1 > ε2 > · · · > εT > 0. This concept would enable the algorithm to escape low

probability sampling space that made previous ABC method inefficient. At level t = 1,

N numbers of candidate parameter values called ’particles’ are sampled independently

from prior distribution π(θ). Accepted particles would form an initial population of

N particles, θ1, ..., θN with intermediate distribution P (θ|d(Xd, Xs) ≤ ε1). At t = 2,

the particles are weighted and sampled from a new prior which is set as the previous

intermediate distribution, π(θ) = P (θ|d(Xd, Xs) ≤ ε1). Particles surviving the rejection

step with tolerance εi are perturbed with perturbation kernel Ki+1 and evaluated against

tolerance εi+1. In this way, particles are propagated and filtered through a series of

intermediate distribution P (θ|d(Xd, X
∗
s ) ≤ εi), i = 1...T − 1, gradually approaching

the target posterior distribution. With a large enough population , it can escape low

probability space otherwise difficult with ABC MCMC.

The pseudo-code for the algorithm is shown in Algorithm 2. Single asterisk (θ∗) indi-

cates particles before perturbation while double asterisk (θ∗∗) indicates particles after
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perturbation. Perturbation kernel Kt is chosen as random walk (uniform or gaussian).

For a illustration of the particle filtering mechanism, refer to Figure A.1.

Algorithm 3 ABC-SMC

1: Initialize tolerance ε1, ε2..., εT , population t = 0,
2: Initialize particle indicator i = 1
3: if t = 0 then
4: Sample particle θ∗∗ independently from π(θ)
5: else
6: Sample particle θ∗ from previous population θit−1 weighted with wt−1

7: Perturb θ∗ with perturbation kernel Kt to get θ∗∗ Kt(θ|θ∗)
8: end if
9: if new prior π(θ∗∗) = 0 then

10: Return to 3
11: else
12: Simulate candidate dataset from generative model Xs ∼Mθ|θ←θ∗
13: end if
14: if d(Xd, Xs) ≥ εt then
15: Go to 3
16: else
17: Set θi = θ∗∗, calculate weight for particle θ(i)t ,

w
(i)
t =

1, if t = 0
π(θ

(i)
t )∑N

j=1 w
(j)
t−1Kt(θ

(j)
t−1,θ

(i)
t )

if t > 0

18: end if
19: if i < N then
20: i = i+ 1
21: Go to 3
22: else
23: Normalize weights
24: end if
25: if t < T then
26: Set t = t+ 1
27: Go to 2
28: end if
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