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A BAYESTAN APPROACH TO CHARACTERIZE FOLD CHANGE DETECTION
IN DICTYOSTELIUM DISCOIDEUM

by Muhammad Shahreeza Safiruz Bin Kassim

The survivability of Dictyostelium cells is highly dependent on how cells sense and re-
sponse to cyclic-:AMP chemoattractant. A key factor in the sense-response mechanism is
a feature called ‘fold change detection’ (FCD), where cells response to the fold changes
in stimulus as opposed to its absolute values. Studies have proposed models of the
signalling pathway for the sense-response mechanism and skeletal network motifs that
exhibit FCD. However, FCD properties in models of sense-response mechanism com-
patible with experiments that exhibit FCD are poorly understood. In this thesis, we
characterize the properties of FCD of Dictyostelium cells by using a mathematical model
of experiments that incorporates biochemical variables of the signalling pathway. We
created a population of virtual cells by estimating posterior distributions of the model
parameters using a Bayesian method. We studied the responses of the virtual cells to
various fold changes in stimulus and found that the population of cells is more consis-
tent in sensing lower fold changes. By computing the overlapping areas of distribution
of responses we found that the population of cells can distinguish lower fold changes
better than higher fold changes. We propose a hyperbolic equation to describe the
stimulus-response relation with a logarithmic relation to characterize the uncertainties
of the stimulus. We inferred the posterior probability of detecting fold changes using
Bayes’ theorem and introduce a novel model of prior probability of fold changes. We
found that the chances of detecting lower fold changes is higher and posteriors are biased
strongly by the conditional probability. To derive the population of cells’ perception of
fold change, a Bayesian Observer model is constructed and evaluated. It is found that
the population of cells perceive uncertainties of lower fold changes better than higher
fold changes. There is also a stark difference between perceptions derived from priors
modelled from chemotaxis experiment and priors from known families of distribution.
We quantified the biases in the perceptions and discovered that biases are more promi-
nent in higher fold changes. The fold distinguishability threshold is also evaluated and
its relation with the perceptual bias examined. Our work shows that the characteriza-
tion of FCD in models of sense-response mechanism can derive theoretical insights not

seen in experiments and impose constraints for model selection.
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Chapter 1

Introduction

1.1 Motivation

Biological systems respond dynamically to changes in their surrounding environment.
For example, cells can sense molecular stimuli using transmembrane protein based re-
ceptors and respond via signalling pathways by transcribing genes, synthesizing enzymes
or by changing their shapes for motility. Fascinatingly, the complex sense-response be-
haviour observed are often executed with only a handful of chemical species and without
the need of a central nervous system (CNS) (Nakagaki, 2001). Moreover the sensing pro-
cess takes place is an environment surrounded by elements of uncertainty such as the
fluctuating levels of proteins since gene expression is a stochastic process. Hence, the
key question of ‘How exactly do biological systems and biological cells in particular exe-
cute these complex functions under such environments?’ has been a subject studied by

many.

In this thesis, we focus on the sensing of chemoattractant cyclic-adenosine monoph-
sophate (cAMP) molecules by the Dictyostelium Discoideum cells (referred hereafter as
Dictyostelium ). In the pioneering experiment conducted by John T. Bonner 70 years
ago, it is found that starving Dictyostelium cells secreted chemoattractant (cAMP) to
which downstream cells responded by aggregating towards the gradient source (Bon-
ner and Savage, 1947; Konijn et al., 1967). The cellular slime mould uses a molecular
relay where it both secretes and senses the same intracellular and extracellular cAMP
in order to communicate with conspecific cells during the aggregation phase (Dinauer
et al., 1980a). The chemoattractant therefore plays a major role in both cell chemotaxis
and inter-cell signalling where the survival of the species lies on the ability of individual

Dictyostelium cells to sense and secrete cAMP molecules.



2 Chapter 1 Introduction

The key question one then ask is ‘How does Dictyostelium execute the complex sense-
response of cAMP?’. Given such importance, a considerable amount of literature (re-
viewed in chapter 2) has been dedicated to understand the intracellular biochemical re-
actions of Dictyostelium when stimulated with cAMP. Although the complete signalling
pathway is yet unclear, it has been shown that changes in cAMP elicits a transient
response (Devreotes and Steck, 1979) before returning to pre-stimulus level. This desen-
sitising of cellular response upon prolonged stimulation is a feature called ‘adaptation’
(Dinauer et al., 1980b,c). Adaptation itself is a common property to a wide range of
sensory systems (Koshland, 1974; Sterling and Laughlin, 2015) involving biochemical

and ionic processes.

A more recent experiment has dissected the biochemical signalling network responsible
for cAMP response at specific nodes of the network by fluorescent reporter constructs
in microfluidic chambers where cAMP levels are administered in steps of concentration
changes. The transient response to changes in cAMP is observed in the activation levels
of the Ras protein (RasGTP) (Takeda et al., 2012) before adaptation sets in. It has also
been shown that the molecular agents responsible for chemotaxis (through polarization
and formation of pseudopods) and secretion of intracellular cAMP lies downstream of
this protein’s activation. Therefore understanding the features observed in the upstream
process might be a key to understanding how cell chemotaxis and cAMP signalling is

regulated.

FCD in Dictyostelium

However, adaptation is not a feature observed in isolation. A further quantification of
the amplitude of the transient RasGTP has been described as characteristic of fold-
change detection (FCD) (Takeda et al., 2012; Adler et al., 2014). We describe here a
formal definition of FCD. A response is said to depict FCD if its magnitude depends on
the ratio of two successive input signals (Koshland, 1974), not their difference (Goentoro
and Kirschner, 2009; Shoval et al., 2010). This is shown in more detail in Fig. 1.1A and
Fig 1.1B where (input, output) pairs (x, z) with transient responses due to step changes
in the input from zy to z1. When two step inputs g = 1,21 = 10 and 1 = 10, 22 = 100
of the same fold change (ratio) F' = x1/x9 = z2/x1 but of different absolute values
|1 — mo| # |xa — x1| are introduced sequentially, a system exhibiting FCD produces
identical responses z that only depends on F' (Fig. 1.1B) (Shoval et al., 2011). A system
without this property reacts to the absolute values of inputs and produces output z
where z differs in amplitude, shape or duration for different step inputs (Fig. 1.1A). A
system with FCD is where output z is identical for step inputs of the same fold but yields
distinct responses for different fold inputs. In both the instances shown in Fig. 1.1 the
system shows adaptation to a sustained stimulus. In this thesis the term input-output

and stimulus-response is used interchangeably.



Chapter 1 Introduction

Input
10? T N
x |F=10 5
g1 T g
1 {F=10 8 Z,
Input x X
e nmelT] ___ -
l 10° T N
x | F= +
210 e
Internal k) TF=10 s,
variables 10° ! oo
Time [T] Time [T] Distinct response
l 4 N for different fold
4 -~
X2 iF:Z a FCD
Output z T = L
F=2 8 A S S ) U — - -
Time [T] Time [T]

Figure 1.1: Characterization of FCD to show how a system with exact FCD
responses to a two step input stimuli. (A) A non-FCD system produces two
outputs z which differs in either amplitude, shape or duration. (B) A system
with FCD has identical output z for both step inputs which can be clearly seen
when the outputs are overlapped.

Network motifs to explain qualitative behaviour in experiments

From the definition we can see that adaptation is a consequence of FCD. The transient
activation of RasG, which is the earliest measurable signalling event downstream of G
protein activation that eventually leads to chemotaxis and intercellular signalling, has
been shown to display FCD. It is thus natural to further ask what role adaptation and
FCD play in the sense-response mechanism. Indeed, in answering such a qualitative
question, it is not sufficient to only conduct in vitro experiments and map out the
network of signalling molecules and package it into a system of ordinary differential
equations (ODEs) with each variable representing the proteins in the network, as is done
in the field of system biology. A broader objective is to extract the ‘design principles’
that unify different systems that exhibit the same behaviour (Alon, 2007a). This is
made possible due to complex biological networks are often found made of recurring sub
networks of a certain motifs (Milo et al., 2002) and is not entirely random. In principle,
if it is possible to identify a network motif that exhibits adaptation or FCD behaviour
found in Dictyostelium , then other organisms which share a similar network motif can
possibly exhibit the same behaviour (Kashtan et al., 2004). The FCD property after
all is not unique only to Dictyostelium cells but is widely reported in other biological
systems as well including gene expression in the Wnt signalling pathway (Goentoro and
Kirschner, 2009), ERK2 response in cancer cells (Cohen-Saidon et al., 2009) and also
in bacterial chemotaxis (Mesibov et al., 1973; Lazova et al., 2011; Masson et al., 2012;
Edgington and Tindall, 2014). Other studies have reported on the possibility of FCD
in the Rhodobacther sphaeroides chemotaxis (Kojadinovic et al., 2013; Hamadeh et al.,
2013).
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Network motifs for FCD

What are the network motifs suggested for adaptation and FCD ? The design principles
of adaptation (Martiel and Goldbeter, 1987) is already an active area of interest across a
diverse set of organism and systems(Barkai and Leibler, 1997; Yi et al., 2000; Ma et al.,
2009). For FCD, a particular network motif (Alon, 2007b) called the incoherent feed-
forward (IFF) loop has been implicated in the FCD response (Goentoro and Kirschner,
2009; Shoval et al., 2010). Features of the IFF architecture — when antagonistic or “para-
doxical” influences of activation and inhibition (Hart and Alon, 2013) are provided by
a molecular agent — were incorporated in a mathematical model involving proteins in
the signalling pathway of the cAMP response in the Dictyostelium experiment men-
tioned earlier (Takeda et al., 2012). Parameters of this system of ordinary differential
equations (ODEs) were fit using optimisation methods to a time series of a fluorescent
reporter of the transient response(Takeda et al., 2012). It was also shown that among
the few common ways of achieving adaptation in biological networks (Ma et al., 2009),
this IFF network architecture better explains the data on transient responses (Takeda
et al., 2012).

1.2 The problem of sensing accuracy

At this point, we should be able to answer partially the key question of ‘How do Dic-
tyostelium cells execute FCD sense-response mechanism ?° by pointing to the IFF
suggested in Takeda et al. (2012) and Goentoro et al. (2009) as the network motif re-
sponsible for explaining the role of FCD observed in experiments as done byAdler et al.
(2014). However, upon further deliberation we find that there are crucial questions yet

to be addressed, which forms the foundation of our research.

In both Takeda et al. (2012) and Kamino et al. (2017), although FCD is reported to
be observed in the transient responses of Dictyostelium cells to a range of inputs, little
is known about the accuracy of FCD. How well does single Dictyostelium cells senses
fold change? Is the sensing of fold change equally accurate for any given fold? Error
bars in the experiment by Takeda et al. (2012) and Kamino et al. (2017), indicates that
there are different responses to the same step input cAMP due to cell-cell variability.
In principle if we want to quantify the accuracy of FCD sensing mechanism at single
cells level then we should stimulate single cells of Dictyostelium repetitively with the
stimulus fold cAMP of interest but with the initial stimulus varied. However, numerous
exposure of fluorescent-tag cells to illumination induces phototoxicity and therefore such

iteration of measurement is not feasible.

While FCD accuracy derived from mathematical models are commonly investigated

using skeletal networks, there is no single studies that focusses on the accuracy of FCD
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derived by detailed models such as the model ODEs given by Takeda et al. (2012).
To quantify the accuracy of FCD dynamics from models of ODEs, one approach is to
evaluate the same model with different set of parameters as done by Goentoro et al.
(2009) with the skeletal three node IFF network motif. In this setting, the cell-cell
variability is emulated through the different sets of parameter values. A model that
can exhibit FCD dynamics across a wide range of parameter values is then deemed
to be more useful than one that can only exhibit FCD within a narrow range. To
our best knowledge, the model ODEs with IFF structure suggested by Takeda et al.
(2012) represents the most intricate and therefore the best known model to describe the
molecular actors that govern the upstream dynamics of Dictyostelium cells in response
to step input of chemoattractant cyclic AMP. It is important to note however, that
the model was structured with the intention of characterizing the adaptation behaviour
of Dictyostelium cells and not of FCD. The notion that the same model in the same
experiment exhibit FCD was put forth by Adler et al. (2014). What then is the range
of parameter values that the model ODEs exhibit FCD?

Understanding the accuracy of FCD may potentially assist cell biologists in designing
future experiments where stimulation of cells can be focussed within a biologically re-
alistic range. But more importantly this study offers some important insights into how
the cell’s decision making: -to initiate motility or to secrete intracellular cAMP- is reg-
ulated and constrained by the modelled upstream sensing mechanism. We argue that if
the fate of the species lies in the ability of Dictyostelium cells to sense cAMP molecules,
then cells must be able to interpret the fold change in extracellular cAMP concentration
as accurately as possible, and collectively execute the swimming aggregation dynamics

observed by Bonner and Savage (1947).

1.3 Biophysical laws governing sensory systems

In the studies of design principles of FCD, researchers not only analyse network circuits
that enable FCD, but also relate the FCD property with biophysical laws found in well
studied sensory system such as vision and hearing of humans. For example, Goentoro
et al. (2009) suggested that FCD is a modified version of the Weber’s law where the
minimally noticeable difference between two stimulus is proportional to the level of the
background stimulus compared. Adler et al. (2014) suggested that the stimulus-response
relation of the Dictyostelium experiment by Takeda et al. (2012) obeys the Weber-
Fechner’s logarithmic law where the magnitude of responses increase logarithmically.
The definition of both laws and the findings of the two studies are further elaborated
in chapter 2. It is important to note that the biophysical laws described stemmed
from the field of psychology and cognitive neuroscience. Therefore the laws are used
to explain sensory behaviour of organisms with central nervous systems. On the other

hand, the models studied for FCD are relatively simple and mainly consist of 3 to 4
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nodes. Moreover as reviewed in Ferrell (2009), FCD is found in cell signalling process
where any notion of a cognitive system is non-existent. However, by associating FCD
to biophysical laws, one may be provide an explanation to why a property such as FCD

is desirable in lower level signalling systems.

In this thesis we are inspired by the idea that there exists a unifying theme for cellular
level signalling networks as what we have seen in complex sensory systems. Since a
Dictyostelium cell is a sensory system, are there other physical laws that it shares with
more complex sensory systems? Can we draw concepts from the field of neuroscience
as what Adler et al. (2014) and Goentoro et al. (2009) had done and analyse the sense-
response mechanism of Dictyostelium cells in the same way researches investigate the
responses of cognitive systems? By answering these questions and by viewing cells as
computational modules, we hope that we can further the discussion to how single cell

organisms such as the Dictyostelium process or compute extracellular information.

1.4 Thesis approach and contributions

To address the issues underlined in section 1.2 and 1.3, we evaluate the accuracy of FCD
sense-response mechanism in Dictyostelium , not through experiments but by examining
variability in behavioural outcomes in the context of variability in model parameters that
are compatible with the observations in Takeda et al. (2012) and assess the relevance
of the input-output characterisation of the sensing module in shaping the autonomous
actuating responses. We explicitly state here that the model ODEs as characterized
by Takeda et al. (2012) is the core model which we based our research upon. As we
are exploring constraints on mathematical models, we acknowledge inadequacies such as
the complexity of assigning pertinent values for certain model parameters, limitations

by model structures and the deterministic nature of the model.

The contributions of this thesis are briefly summarised as below,

e We present a characterization of the accuracy of FCD using an intermediate sensory
representation as derived from the model ODEs of Takeda et al. (2012) when
stimulated with a wide range of fold stimulus. We demonstrate an approach which
enables us to generalise the quantification of the FCD accuracy to a wider range
of stimulus and background cAMP. We propose a hyperbolic equation to describe
the stimulus-response relation and the logarithmic encoding hypothesis to describe

the underlying distribution of responses.

e We characterize the posterior probability of detecting fold changes using a Bayesian
approach and introduce a novel model for prior probability of fold changes in
concentration based on empirical data. We introduce the FCD sense-response

mechanism in the context of a Bayesian observer to characterize its perception and
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evaluate its biases. We present a novel model for characterizing the uncertainties

in the extracellular fold changes.

1.5 Thesis structure

This thesis is organized as below,

e Chapter 2, Fold Change Detection (FCD) in the signalling pathway of
Dictyostelium cells: Experiments and models- We present a review of bio-
logical experiments responsible for uncovering the cyclic-AMP sensing mechanism
in Dictyostelium cells and for identifying the molecular proteins involved in the
signalling pathway. We also introduce fundamental models and their properties
used to explain the adaptation and FCD behaviours in biological systems. More
importantly we present in detail the experiment and modelling results by Takeda

et al. (2012) as this is the starting point of our research.

e Chapter 3, Model analysis and parameter estimation- We begin expand-
ing our understanding of FCD in Dictyostelium by analysing the model ODEs of
Takeda et al. (2012) which this thesis is built upon. We explore the dynamical
features of the model in the context of steady states and stability analysis in en-
abling the FCD mechanism. But more importantly in this chapter we estimate
parameters of the model ODEs using a Bayesian method to emulate heterogeneity
properties as seen in experiments of Takeda et al. (2012). We analyse the resulting
posterior densities of parameters and derive insights to how different parameters

influences the detection of fold.

e Chapter 4, The accuracy of Fold Change Detection- In this chapter we
present our main contribution in the characterization of the accuracy of FCD
by means of log-normal approximation to the density of responses generated from
the estimated parameters in chapter 3. We further generalise the quantification
of FCD accuracy by estimating coefficients to quadratic functions that is used to
define the parameters of the log-normal approximation itself. We also characterize
the fold distinguishability property.

In this chapter we also revisit the biophysical laws suggested for governing FCD
in Dictyostelium cells. Specifically we probe whether it is possible to observe the
Weber-Fechner’s law using the model by Takeda et al. (2012). We also ask whether

there are other laws that better describe the stimulus-responses relation.

e Chapter 5, Inferring the posterior probability of fold change- To character-
ize the accuracy of FCD as derived from the model ODEs of Takeda et al. (2012)

in a Bayesian approach, we infer the posterior probability of fold change given
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response by using densities of responses as derived in chapter 4. We present a
novel prior modelled from an experiment of Dictyostelium chemotaxis in order to
compute the posterior and compare with priors chosen from known families of dis-
tributions. We also analyse the influence of background cAMP to each Bayesian

components.

Chapter 6, Relation with the external world- In this chapter we view the
Dictyostelium cells in the context of a Bayesian Observer model. We characterize
a novel model of the extracellular fold change and the population cells’ perception
of fold change. We evaluate in detail the perception’s accuracy by computing its
divergence from the model of extracellular fold change. We also characterize and
evaluate perceptual bias and distinguishability threshold of the Observer model

and examine the relation between these two measures of perception.

Chapter 7, Conclusions- Finally, we summarize our work in this chapter and

highlight significant questions for future work.



Chapter 2

Fold Change Detection (FCD) in
Dictyostelium cells: Experiments

and models

2.1 Introduction

This chapter presents the biological and mathematical knowledge required in order to
understand how fold change behaviour is observed in Dictyostelium cells and how the
dynamics of the behaviour is modelled. We start by describing the life cycle of Dic-
tyostelium cells and its main phases followed by the description of the signalling pathway
where FCD is observed. This is followed by a detail explanation of the core experiment
by Takeda et al. (2012) said to successfully capture the FCD behaviour of Dictyostelium
cells. We then introduce the concept of network motifs and describe several networks
that are said to exhibit FCD. We describe how the protein interactions in the Dic-
tyostelium chemotaxis signalling pathway can be viewed as a network and introduce the
incoherent feedforward network as proposed by Takeda et al. (2012). Most importantly,
we introduce the model ODEs used by Takeda et al. (2012) to describe the dynamics
of the incoherent feedforward network that is said as the best model that captures the
experimental data. This model ODEs by Takeda et al. (2012) is the core model that we

based our research upon.

2.2 Life cycle of Dictyostelium cells

In this section we will explain one of the three life cycles of Dictyostelium cells, high-
lighting only the main stages of the cycle and ignoring most of the molecular biology

details. The objective is not only to provide an overview of the Dictyostelium cell’s

9
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development but also to understand at which stage FCD is observed and appreciate the
consequences if Dictyostelium cells were unable to carry out FCD. We illustrated the

life cycle of Dictyostelium cells in Figure 2.1.

Feeding cells Starvation

2 m

Y 4 Q . Aggregation

Fruiting
Body

Slug Mound

% JMigration " 4
- dh

Figure 2.1: Life cycle of Dictyostelium Discoideum . Cells are indicated in green
and black dots represent bacteria. Propagation of wave cAMP is indicated by
the blue spiral. FCD occurs in the starvation and aggregation stages. Refer
text for more details.

The Dictyostelium Discoideum species was first discovered by Kenneth Raper (Burris
and Newcomb, 1991; Raper, 1935) nearly 83 years ago in the Appalachhian Mountains of
North America. In the early stages, Dictyostelium cells behave independently and engulf
surrounding bacteria. However, the continuous engulfing of bacteria and the increase
in the number of cells due to cell-division leads to depletion of food. The cells are
aware of this event as they have been tracking the ratio of cell density to food source by
secreting prestarvation factor (PSF) (Clarke et al., 1988). As cells enter the starvation
phase, one part of the population begin to secrete cyclic AMP in pulses (Konijn et al.,
1967). The propagated wave of cAMP is then sensed by downstream cells and cells
aggregate towards the gradient source while at the same time secreting cAMP molecules
(Raper, 1935; Bonner and Savage, 1947). The aggregated cells then form a mound.
Cells underneath the mound then push the mound upwards (Siegert and Weijer, 1995)
causing the growing mound to topple, forming a slug consisting cells in the range of a
few hundred to a hundred thousand. The slug then migrates for up to two weeks and
then forms a fruiting structure consisting of stalk and spore cells (Raper, 1940). The
stalk and spore cells are found at the anterior and the posterior of the fruiting body

respectively.

It is important to note that it is during both starvation and aggregation stages that Dic-

tyostelium cells are most likely to carry out FCD as experiments have shown that FCD
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is found in intracellular responses of Dictyostelium cells when sensing cAMP gradients
(Takeda et al., 2012; Kamino et al., 2017). FCD has been suggested as a mechanism that
guides the chemotaxis of cells and therefore the absence of FCD implies the inability of

cells to move towards the aggregation centre.

2.3 The signalling pathway of Dictyostelium

From the life cycle of Dictyostelium cells, we understand that FCD in Dictyostelium
cells most likely occur during the starvation and aggregation stages as sensing fold
change in cAMP gradient during these stages guide the chemotaxis of cells towards the
aggregation centre. Here we will zoom in the signalling pathways regulating chemotaxis
of Dictyostelium cells. In doing so we will also identify the pathway responsible for
secretion of cAMP. As FCD is observed in the transient response of RasGTP protein
(Takeda et al., 2012), the goal here is to understand the location of RasGTP in the
signalling pathway and the implications of not having FCD to the pathway.

There are many models proposed to explain the signalling pathway of Dictyostelium
cells for chemotaxis as biologists continue to pinpoint the molecular agents involved and
fully understand their interactions. Examples are the model proposed by Kortholt et al.
(2011) or the model described by Kolsch et al. (2008). We illustrated the signalling
pathways for both chemotaxis and self secretion of cAMP by Dictyostelium cells in
Figure 2.2. Figure 2.2 represents our approximation of the signalling pathway in the
context of FCD through survey of literatures and does not in any way represents a

complete or definitive form of the chemotaxis signalling pathway.

When chemoattractant cAMP molecules bind to the surface receptors cAR1 of the Dic-
tyostelium cell during the starvation and aggregation stages, it initialize the intracellular
signalling system through the dissociation of the receptor-coupled heterotrimeric G pro-
teins (Klein et al., 1985; Sun and Devreotes, 1991). The signal from the G proteins is
then transduced downstream to RasGEFs (guanine nucleotide exchange factors) which
then activate Ras proteins by causing RasG bound guanosine diphosphate-RasGDP
proteins to bind to guanosine triphosphate(GTP), creating the activated Ras-GTP pro-
teins (Kae et al., 2007). RasGTP proteins are shown to regulate downstream signalling
molecules of PI3K- which in turn translocate phosphatidylinositol-(3,4,5)-triphosphate
(PIP3) to the plasma membrane (Sasaki et al., 2004). PIP3 then allows the binding of
pleckstrin homology (PH) domain which contains proteins such as cytosolic regulator of
adenylyl cyclase (CRAC) and protein kinase B (Parent et al., 1998; Meili et al., 1999).
Proteins contained in the PH domain are key candidates suggested for activation of actin
polymerization crucial for the formation of pseudopods (lijima and Devreotes, 2002). A
pseudopod is an extension of the cell’s leading edge, enabling chemotaxis of the cell.

Meanwhile, CRAC also has been found to be an important element for the activation of
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Figure 2.2: Approximation of Dictyostelium cell’s signalling pathway for chemo-
taxis and cAMP secretion.

ACA (Comer et al., 2005; Comer and Parent, 2006) which leads to secretion of cAMP

molecules(Saran et al., 2002).

Hence, the activation of PI3K signalling pathway by Ras protein -triggered when cAMP
molecules bind to surface receptors- not only causes chemotaxis but also the secretion
of cAMP by the cell. Due to Ras protein is the single upstream effector regulating both
downstream pathways, FCD observed in transient responses of Ras-GTP (Takeda et al.,
2012) is believed to play a significant role in determining chemotaxis and self secretion
of cAMP.

2.4 FCD observed in the experiment by Takeda et al. (2012)

From the chemotaxis signalling pathway of Dictyostelium as shown in Figure 2.2, we
know that RasGTP protein is crucial in mediating signals for both chemotaxis and
internal cAMP secretion. We present here the experiment by Takeda et al. (2012) which
provides evidences supporting the claim that Dictyostelium cells respond to fold changes
in concentration and not of the absolute level of cAMP through studying the changes in
RasGTP protein. It is interesting to note that the experiment by Takeda et al. (2012)

was not designed for the observation of FCD but of adaptation behaviour. The existence
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of FCD property in the experiment by Takeda et al. (2012) was pointed out by Adler
et al. (2014) and has been confirmed later in the experiment by Kamino et al. (2017).

2.4.1 Experiment methods and results

In the experiment by Takeda et al. (2012), Dictyostelium cells were placed in a microflu-
idic device and stimulated with a sudden increase in concentration of cAMP, simulating
a step change in input. The step input is illustrated in Figure 2.3A. One might ask
whether the step input is a realistic representation of the changes in concentration for
when the wave of cAMP passes through stationary Dictyostelium cells. The scheme of
cAMP wave proposed by Tomchik and Devreotes (1981) by looking at distribution of
cAMP waves captured in fluorographs may provide a hint to the answer. In the scheme,
the minimum time it takes for the concentration in the cAMP wave to change from
10nM to 1uM is said to be half a minute given that the wave travels at the velocity
of 300um/min. Therefore, a step input from 10nM to 1xM is not biologically realistic.
However, as shown in experiments of Takeda et al. (2012); Kamino et al. (2017) and also
Sgro et al. (2015), step inputs are commonly applied by biologists in the study of cell’s

response to stimulus.

The responses of Dictyostelium cells in the microfluidic device to step input cAMP are
monitored not by studying the chemotaxis behaviour of cells but by recording the level
of brightness of the RBD-green fluoroscent protein(GFP) (referred hereafter as RBD).
RBD acts as a reporter for the RasGTP protein of the cells. Hence, in the experiment by
Takeda et al. (2012), changes in RasGTP protein of Dictyostelium cells is the quantity

of interest.

We describe the experiment by Takeda et al. (2012) and the changes in protein of
the signalling pathway which can be easier understood by referring to Figure 2.2. As
shown in Figure 2.3, before time ty, cAMP concentration in the microfluidic device is
at a basal level x and RasGDP - the non activated state of RasGTP- is distributed
uniformly across the cell. When the concentration increases rapidly to x’ in a step like
manner at tg, the activated RasG protein- RasGTP, translocate to the leading edge
of the cell’s membrane. RBD fluorescent reporter protein then binds to RasGTP at
the cell’s membrane and consequently the intensity or the brightness of certain cytosol
region decreases as illustrated in Figure 2.3B and Figure 2.3C. The intensity of RBD
fluorescent protein I(t) then gradually returns to its pre-stimulus level of zy even in the

continuous presence of new cAMP level 2/, indicating adaptation.

The magnitude of the peak response I, and the time to reach to the peak 7T}, were then
measured and recorded. Unfortunately there is no data on the adaptation time Tjgap¢ in
the experiment by Takeda et al. (2012), although the central theme of the study is the

adaptation behaviour of RasGTP. The experiment results for responses to various step
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Figure 2.3: Illustration of the Dictyostelium cells response to stimulus cAMP
experiment by Takeda et al. (2012). (A) cAMP inputs were introduced in a
step like manner where z is the basal level and 2’ is the newly increased level of
cAMP at time ty. (B) Response of RasGTP protein measured by the intensity
of RBD fluorescent reporter protein. The intensity rapidly decreases when a
new level of cAMP z’ is introduced and reaches minimum at zpy;,, followed by
a gradual return to its basal level zg. The magnitude of the peak response
Iy = Zmin — 20 and time to reach it T}, = t,, — ty were measured and recorded. I,
and T}, values varies with background z (shown later in Figure 2.4). The average
time for Tyqapt is ~ 50s (Takeda et al., 2012). (C) Changes in cell intensity as
new level of cAMP is introduced where the intensity is concentrated at the cell’s
membrane as RBD binds to RasGTP.

inputs are reproduced as Figure 2.4A for I, and Figure 2.4B for T),. I, responses are
normalized by responses of x = OnM, 2/ = 1000nM. From Figure 2.4, it is interesting
to note that I, responses of Dictyostelium cells were also measured for step inputs with

basal level £ = 0 and therefore represents undefined fold changes in input concentration.
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Figure 2.4: Figure 2C and Figure 2D experiment results by Takeda et al. (2012)
reproduced. Black circles indicate average responses and error bars represent
standard deviation. Squares indicate outputs generated from parameters de-
rived by Takeda et al. (2012) and solid lines are the corresponding interpolations
discussed in section 2.5.3. z is the initial stimulus and 2z’ is the new level of
cAMP. Data for each background cAMP is colour coded where Black:x = OnM,
Red:z = 1nM, Green:z = 10nM, Blue:x = 100nM. (A) I, responses. (B) T,
responses.

2.4.2 Weber-Fechner’s Logarithmic law

However, FCD is not obvious from the measured I, in Figure 2.4A. Therefore we selected
I, responses to step inputs of nonzero basal level (z # 0) and replotted as a function of
fold change F = 2/ /x in Figure 2.5. As can be seen, although the responses overlap each
other, different fold input does have a different range of I, thus displaying ‘FCD-like
response’ (Adler et al., 2014). ‘FCD-like response’ in the sense that stimulation with the
same background concentration but with different fold input leads to different outputs.
If the responses follow exact FCD, then we would expect that responses for the same

fold input is identical regardless of background cAMP and therefore the error bars would
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disappear and there would be only one data point for each fold inputs. The responses
between different fold input must remain distinct although there is no requirement that

the relation between fold input and output to be linear.
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Figure 2.5: I, measurements by Takeda et al. (2012) of Figure 2.4A replotted
as a function of fold change.

The FCD response as observed in Figure 2.5 is said to be a manifestation of Weber’s law
(Goentoro et al., 2009). We briefly describe Weber’s law and its derivative, the Fechner
logarithmic law and its relation to FCD. Weber’s law was established from experiments
conducted by Ernst Heinrich Weber in the 19th century to explain the relation between
stimulus and responses in human sensory system such as vision and is often expressed

as

AS
— =k 2.1
= (21)

where k is a constant, S is the initial stimulus and AS is the just noticeable difference.
Weber’s law stated that when comparing two stimulus .S7 and So where Sy > 57, the ‘just
noticeable difference’ between two stimulus AS = Sy — 57 is proportional to the inital
stimulus of S;. Therefore, as the compared background stimulus increases, S needs to
be proportionally larger than S; in order to be distinguishable. From equation 2.1, the

relation between responses R to stimulus S is said to follow a logarithmic function of

R = kInS (2.2)

where responses R represents the perceived stimulus. Equation 2.2 is the Fechner log-
arithmic law and is shown in Figure 2.6. If FCD observed in Figure 2.5 is to obey
Weber’s law, responses [, must increases proportionally to increased stimulus fold in

order to sustain distinguishability of stimulus. The relation between I, and stimulus
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Response, R

Stimulus, S

Figure 2.6: Weber-Fechner’s logarithmic law with Weber’s constant k£ = 1.

fold F' is then also logarithmic. This logarithmic relation has been suggested by Adler
et al. (2014) as best describes the relation between fold change (input) and RBD flu-
orescent protein intensity (output). However, the stimulus S in Weber-Fechner’s law
is of absolute magnitude while fold change F' is a ratio of two stimulus. Therefore the
logarithmic law suggested for Figure 2.5 is a modified version of the Weber-Fechner’s

law.

2.5 FCD network motifs

The interactions between different proteins as mapped out in signalling pathway of
Figure 2.2 and described in the experiment by Takeda et al. (2012) can be viewed in
the context of network motifs. In this section, we will introduce the concept of network
motifs followed by which network motifs are said to exhibit FCD. We will then explain
which category of motif does the protein network in the experiment by Takeda et al.
(2012) belongs to.

2.5.1 Definition and examples of network motifs

A network can be described as a directed graph with nodes. In a biological network,
nodes represent biochemical elements such as proteins or genes and directed edges rep-
resent their interactions. For example, a two node network of X — Y can be used to
represent transcription factor X activating gene Y. In this example X is an activator
for Y. X can also be an inhibitor by suppressing the expression of gene Y, indicated by
X 4Y. FCD and adaptation behaviour in biological systems are mainly investigated
using simplified three nodes networks. A recent study of ~500,000 three nodes network
motifs found that only several hundreds of them exhibit FCD (Adler et al., 2017). The
main and most commonly studied networks for FCD are the incoherent feedforward,

the non-linear integral feedback and the log-differential network (Shoval et al., 2010;
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Hironaka and Morishita, 2014). The networks are shown in Figure 2.7 where X is the
input node, Y is the internal variable node and Z is the output node. Input node X
activates both Y and Z.

A B C
X X log(X)
/\ N\ AN
y—iz (Cy—z Y—Z

Figure 2.7: Network motifs that are found to exhibit FCD. X is the input Y
is the internal variable and Z indicates the system’s output. (A) Incoherent
feedforward loop type 1 (IFFL-1). (B) Non-linear integral feedback loop. (C)
Logarithmic input with linear feedback.

Assigning a different combination of functions to nodes results in a different type of
incoherent feedforward network. It has been mathematically proven that the incoherent
feedforward loop type 1 (IFFL-1) can exhibit exact FCD when Y strongly represses the
production of Z (Goentoro et al., 2009). In such condition, the dynamics of IFFL-1 can
be described by a set of two ODEs as

dy

2 X —k.Y 2.3
dt ! ! (2:3)
dz ko X

2 22 .z 2.4
dt Y 2 (2:4)

where ki, ks and k_1,k_o are the activation and degradation rates of node Y and Z
respectively. As can be seen in equation 2.4, Z is dependent only on the fold change
in input X and not on the absolute level (Goentoro et al., 2009) due to Y itself is a

function of X.

2.5.2 Modelling experiment results of Takeda et al. (2012): Incoherent
feedforward network

In the experiment by Takeda et al. (2012), only the changes of RasGTP protein were
measured through its RBD reporter protein. Therefore, we do not know the changes
occurring in other proteins in the signalling pathway such as the RasGEF, or receptor
R as mapped out in Figure 2.2. As such, Takeda et al. (2012) proposed an incoherent

feedforward network model shown in Figure 2.8A to describe the experimental results.

If we compare Figure 2.8A to the signalling pathway of Figure 2.2, we can see that
the network proposed by Takeda et al. (2012) characterizes the dynamics of proteins
upstream of PI3K. The deactivation of RasGTP to RasGDP is mediated by RasGAP



Chapter 2 Fold Change Detection (FCD) in Dictyostelium cells: Experiments and
models 19

A R, R, B
% R
R 7\

RasGEF RasGAP

RasGEF \ /
RasGDP RasGTP ----- RBD RasGTP
RasGAP

Figure 2.8: Network Motifs. (A) Network of protein variables as derived from
the model ODEs (equation 2.8 to equation 2.14). (B) Network in Figure 2.8A
simplified as an incoherent feedforward network.

and therefore RasGAP is considered as an inhibitor. On the other hand, RasGEF is
responsible for binding RasGDP to GTP and therefore is considered an activator. Figure
2.8A therefore effectively functions as a incoherent feedforward network as illustrated in
Figure 2.8B.

A variation of the incoherent feedforward network: The Sniffer model

In comparison with the simple motifs of Figure 2.7A the incoherent feedforward network
shown in Figure 2.8B seems to has four nodes but effectively functions as a three node
network where receptor R can be considered as input node X activating GEF as Y and
output RasGTP as Z. The activation of RasGTP by R is made through GEF. The
incoherent feedforward network shown in Figure 2.7A is of type 1 where inhibition of Z
is by Y.

However, the dynamics of the incoherent feedforward network in Figure 2.8B differs
slightly where inhibitor GAP accelerates the degradation of output RasGTP instead
of suppressing the production of RasGTP. Therefore the dynamics of such incoherent

feedforward network is modelled as

ay

- X kY 2.5
o 1 1 (2.5)
az

= = X —kaYZ (2.6)

where the second term on the right hand side of equation 2.6 represents degradation
of output Z. From equation 2.6 we can see that the dependency on X by Z is not
being cancelled out and therefore no FCD. Such variation of the incoherent feedforward
network is called a ‘sniffer’ (Tyson et al., 2003; Ma et al., 2009). The sniffer model is
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shown to exhibit FCD only in a limited region when the dynamics of Z is significantly

faster than Y (Goentoro et al., 2009) causing Z to be in a quasi steady-state Zs

ko X
Zs = 2.7
T (2.7)

The independence of RasGTP in Figure 2.8B from its input cAMP via the R protein

variable is further discussed in chapter 3.

2.5.3 Model ODEs of the incoherent feedforward network

The dynamics of the incoherent feedforward model suggested in Figure 2.8A is described
by Takeda et al. (2012) through a set of Ordinary Differential Equations (ODEs) as

dR
gf::hMMMPHﬂmW—&%%%ml (2.8)
A po(cAMP RY' — Ry) — k_mR 2
o Rr2(c +r2)(Ry" — Ra) — k_RraRo (2.9)
R = R+ Ry (2.10)
dGEF
7 = kggrR—k_qprGEF (2.11)
dGAP
7 = kgapR — k_gapGAP (2.12)
d GTP
4&%7::@@mﬂmﬁ—mﬁ”phmﬁﬂﬁﬁﬁ (2.13)

dRBD!
— = kS (RBD' — RBDY') — k%%, Ras®TPRBDY!  (2.14)

where k, and k_, are the activation and degradation constant for protein = of interest.
We explicitly state here that the model ODEs of equation 2.8 to equation 2.10 forms

the core model which we based our analysis upon.

We explain the meaning of each equation in the model above as below,

e In equation 2.8,2.9 and 2.10, the surface receptors cAR1(Figure 2.2) is denoted as
R and is a sum result of two receptor populations of different affinity R, and Ra.
The level of affinity is set through the dissociation constants of Ky = k_p;/kgi
where k_gr; and kg; is the binding and unbinding kinetic rates respectively for

receptor population R;.

e 71 and 79 is the constitutive activation of receptor R and Rs respectively to indi-
cate the minimum level of activation when the surrounding cAMP concentration

1S zero.
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e The dynamics of RasGEF and RasGAP proteins are regulated by R and repre-
sented by equation 2.11 and equation 2.12, where RasGEF is denoted as GEF and
RasGAP is denoted as GAP.

e Equation 2.13 represents the main protein of interest- RasGTP where Ras™ de-

notes the total concentration of Ras.

e Equation 2.14 describes the dynamics of the RBD fluorescent reporter protein
where RBD™! denotes the total concentration of RBD.

Takeda et al. (2012) also introduced another model of ODEs structured as an integral
feedback network in order to describe the observed behaviour in Figure 2.4A and Fig-
ure 2.4B. Model ODEs of both incoherent feedforward network and integral feedback
network were fitted were fitted to the experimental results in Figure 2.4A and Figure
2.4B and their model parameters estimated using an optimisation method called simu-
lated annealing. The result of solving the incoherent feedforward network model ODEs
with the estimated paramer is shown in Figure 2.4 as squares with solid lines its corre-
sponding linear interpolation. We refer the reader to the supplemental data provided by
Takeda et al. (2012) for details of the optimisation data. Our focus here is only on the
incoherent feed forward model as it is the only model that is able to produce compatible

fitting results.

In order to understand the dynamics of each protein variable of the incoherent feedfor-
ward network, we numerically simulated the model ODEs of equation 2.8 to equation
2.14 and showed the result in Figure 2.9. The parameters and input cAMP values are
described in detail in the caption of Figure 2.9. As can be seen in Figure 2.9A, each
receptor populations reaches its steady states at a different rate due to the difference in
affinity. Having two receptor populations is important as Takeda et al. (2012) reported
that if the incoherent feedforward model ODEs has only one receptor population, it does
not yield desirable fitting results. We have also confirmed this report when attempting
to fit the model ODEs ourselves using a Bayesian method in chapter 3 similar to the
optimisation method implemented by Takeda et al. (2012). However, the confirmed re-
sult is not presented in this thesis as it is irrelevant to our objectives. It is not yet clear
how the delay between R; and Rs observed in Figure 2.9A contributes to the increase
in fitting accuracy and describing FCD observed. However the inclusion of two receptor
populations is done in order to create a realistic model as it has been reported that
Dictyostelium cell’s receptors are made up of multiple populations with different cAMP
binding rates (Van Haastert and De Wit, 1984).

Figure 2.9B shows that there is also a delay between the dynamics of GEF and GAP
before eventually reaching the same steady state. The delay is due to the difference in
dissociation constants for both protein variables. A transient response can be seen in

the RasGTP dynamics, where the increase is sharp and almost linear like in the early
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Figure 2.9: Dynamics of the incoherent feedforward model ODEs characterized
by equation 2.8 to equation 2.14. cAMP step input is set as x = 1 and 2’ = 10.
Parameters are set as the result of estimation by Takeda et al. (2012) using
simulated annealing where kg1 = 0.00267,k_r1 = 0.16, kro = 0.00244, k_py =
1.1,7“1 = 0.012,7”2 = 0.115,]€GEF = 0.04, k—GEF = 0.4, kGAp = 0.0l,k'_GAp =
0.1, Ras™ =1, kpas = 390, k_Rpas = 3126, RBD'"" =1, kosr = 0.53, ko, = 1.

period followed by a gradual return (adaptation) to its basal level (Figure 2.9C). The
dynamics of RasGTP is mimicked inversely by its reporter protein RBD, as can be seen
in Figure 2.9D.

2.5.4 Incoherent feedforward network by Takeda et al. (2012) does not
exhibit exact FCD

Here we show how the incoherent feedforward network by Takeda et al. (2012) does not
exhibit exact FCD. In order for network motifs to exhibit exact FCD, the output of a
network motif in response to fold change in input must satisfy the properties below as

illustrated in Figure 2.10.

e The peak response must be proportional to the fold change in the input signal
(Weber’s Law).

e The output must demonstrate exact adaptation by gradually returning to its pre-

stimulus level in the continuous presence of increased input signal.
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e The response must exhibit temporal adaptation dynamics where its duration and

amplitude must be the same when stimulated with inputs of the same fold change.

Input x
) Internal
Two step input variable y
with the same fold
change (f=10) lv
Output z
Time
Output Perfect Same peak
adaption amplitude
z z z
\ N
X >
Time Time Time
(a) FCD (b) No FCD (c) No FCD

Figure 2.10: Characterization of exact FCD re-illustrated from Shoval et al.
(2010) and Skataric et al. (2014) to show how a system with FCD responses to
a two step input stimuli. (a) Output z is identical for both step inputs. (b) No
FCD due to difference in peak amplitude. (¢) No FCD due to the difference in
the output shape.

All of the network motifs in Figure 2.7 are shown to have the properties listed above
and therefore demonstrate exact FCD. However, as shown in Figure 2.11, the incoherent
feedforward of the model ODEs (equation 2.8 to equation 2.13) does not exhibit exact
FCD but an ‘FCD-like’ behaviour. As can be seen from Figure 2.11, when the model
ODEs is stimulated with two step inputs of the same fold but of different absolute levels,
the responses of RasGTP are not identical. However, exact adaptation and similar
temporal dynamics are observed eventhough the peak amplitudes are different. We do
not expect the model ODEs to exhibit exact FCD as it is a much more complex system
of equations compared to the simplified three node incoherent feedforward network in
Figure 2.7A. Furthermore, the parameter range that allows the model ODEs to exhibit
FCD is also constrained by the relative dynamics of GEF and RasGTP. Hence, one the
objectives of this thesis is to quantify how identical are responses of the model ODEs to

the same fold inputs of different absolute levels.
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Figure 2.11: Incoherent feedforward loop model by Takeda et al. (2012) exhibit
an ‘FCD-like’ behaviour instead of exact FCD to input cAMP of fold F = 2.
(A) Two step inputs with different background level but the same fold (B) Solid
blue line is the response to stimulus cAMP from 1 to 2. Dashed red lines indicate
response to stimulus cAMP from 2 to 4. Parameter settings are the same as in
Figure 2.9.

2.5.5 Paradoxical components

Aside from showing the same response characteristics as underlined in Figure 2.10, there
is a recurring theme among the network motifs in Figure 2.7. In all network motifs of
Figure 2.7, output Z is simultaneously activated by X and inhibited by Y. This antago-
nistic feature or ‘paradoxical components’ by different nodes on the same target node is
also found in many biological systems as reviewed by Hart and Alon (2013). One expla-
nation given is that opposing effectors yield desirable biological functions (Hart et al.,
2012). In the context of the incoherent feedforward network, it has been suggested that
the inhibitor Y in IFFL-1 acts as a reference memory, enabling comparison of current
and previous level of inputs (Goentoro et al., 2009). Therefore, paradoxical components
are vital for a system to exhibit FCD (Hart and Alon, 2013). However, although FCD
requires paradoxical components, having paradoxical components in a network does not
necessarily guarantee FCD. An example is the integral feedback network motif which

also has paradoxical components but does not exhibit FCD.

2.5.6 Design principles of FCD

The idea that there exist a reccuring theme across organisms and systems such as the
paradoxical components in the previous section leads to the study of design principles of
biological systems. One prime example is the recurring network motifs found in the gene
transciption network of Escherichia coli bacteria (Shen-Orr et al., 2002; Alon, 2007b). A
more related example is the network motifs for adaptation where an exhaustive search of
~16,000 three node networks showed that only the incoherent feedforward and negative
feedback loop with a buffer node motifs exibit adaptation (Ma et al., 2009). Although

there are studies focused on mapping biological functions to network motifs (Mangan
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and Alon, 2003; Mangan et al., 2003), it still remain a much disputed approach (Ingram
et al., 2006; Macia et al., 2009).

Design principles of FCD is not limited to the inferrence of network motifs only. Another
approach is to understand the generalizable biophysical laws as introduced in section
2.4.2. If the fold-intensity relation does follow the Weber’s Fechner law, then it also
implies the possibility that Dictyostelium chemotaxis is based upon logarithmic tracking
of cAMP gradient concentration rather than counting the absolute number of cAMP
molecules. This is not the first time that the chemotaxis of a single cell organism is
suggested to be based upon logarithmic sensing. In an earlier study by Tu et al. (2008),
it has been shown that the input-output relationship between ligand concentration and
kinase activity rate in the FE.coli chemotaxis is well described by the logarithmic law.
The logarithmic sensing behaviour in the chemotaxis of FE.coli bacteria was confirmed
through fluorescent resonance energy transfer (FRET) measurement on the bacteria’s
adaptation time(Lazova et al., 2011). A noninvasive method was conducted by Masson

et al. (2012) which reached the same conclusion.

2.6 Summary

In this chapter we have reviewed the biological context of FCD. By identifying exactly
in which process FCD is observed, the role of FCD at the level of both single cells
and population of cells can be understood and appreciated. The detailed review of the
experiment of Dictyostelium cells to stimulus of cAMP by Takeda et al. (2012) reveals
that the FCD responses said to be observed is poorly characterized. The responses of the
mathematical model of Dictyostelium signalling pathway by Takeda et al. (2012) does
not exhibit FCD as opposed to skeletal networks suggested by Goentoro et al. (2009)
and Shoval et al. (2010). In the next chapter we ask whether it is possible to analyse
the characteristics of FCD in a complex but biologically more realistic model that does
not exhibit exact FCD.






Chapter 3

Model analysis and parameter

estimation

3.1 Introduction

We begin our journey to characterize the accuracy of FCD found in Dictyostelium cells
by first exploring the qualitative behaviour of the model ODEs by Takeda et al. (2012).
As previously stated in section 1.2, the model ODEs by Takeda et al. (2012) was struc-
tured to study the adaptation behaviour of Dictyostelium cells instead of fold change
detection. Hence we need to asses whether the model has the right properties required
for its responses to exhibit FCD. Mathematical proofs provided by Shoval et al. (2010)
underlined the necessary conditions for a system of ODEs to exhibit FCD - that the
system must show exact adaptation and is stable. In order to confirm that the model
ODEs has the stated necessary conditions, we first investigate the steady state of the
model to check for exact adaptation. This is followed by a linear stability analysis to

evaluate the stability of the model.

Once we have verified that the model is suitable for the research of FCD, the model
ODEs parameters are estimated using the Approximate Bayes Computation-Sequential
Monte Carlo (ABC-SMC) method (Toni et al., 2009). The aim here is to fully exploit the
potential of the model ODEs in capturing the FCD behaviour by looking at parameter
ranges that fits the experiment data by Takeda et al. (2012). The posterior distribu-
tions of parameters then serves as the basis on which we investigate the accuracy and

limitation of the model in detecting fold change.

27
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3.2 Model analysis

Adaptation, where transient changes in the output returns to a pre-stimulus basal level
is an integral component of FCD. The model ODEs (equation 2.8 to equation 2.14)
fitted by Takeda et al. (2012) to experiment data of Dictyostelium cells response to
stimulus cAMP is not only sensitive to a wide range of stimulus cAMP but consistently
returns to its pre-stimulus steady state. Therefore it is claimed that this is a clear
indication the model describes the adaptation observed in the experiment well. Takeda
et al. (2012) attributed the success of capturing adaptation behaviour by the model to
two factors. First is the fact that the inclusion of activation of RasGTP by RasGEF
and the degradation of RasGTP protein production by RasGAP are in line with the
local excitation-global inhibition (LEGI) model (Xiong et al., 2010) for gradient sensing.
Second is the delay observed between the activation and degradation kinetics of the two
proteins with conflicting molecular functions. This delay is not only vital for adaptation
but has also been shown to be an indispensable factor for systems based on activation-
degradation rather than activation-inhibition element to yield FCD (Goentoro et al.,
2009). Takeda et al. (2012) further showed that different versions of the model can also
fit and show adaptation as long as the activator-inhibitor element remains at the centre

of the incoherent feed forward loop network motif.

Here we explore the ‘adaptability’ of the model ODEs by Takeda et al. (2012). Specifi-
cally we ask, does the model also shows adaptation for continuously increasing stimulus?
In the study of adaptation such as Takeda et al. (2012) and Ma et al. (2009), models
are given step inputs whereby adaptation kicks in when the new level of input persists
uniformly. However if the input changes such that it increases continuously with time,
does the model remains sensitive or does adaptation prevails?. A stable steady state of
RasGTP does not necessarily guarantee adaptation. Hence the goal here is to compound
the stability of the model with adaptability.

3.2.1 Steady State analysis to verify exact adaptation property

The steady states for the variables in equation 2.5.3 are found by setting the derivatives

of each variables to zero and derived as
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Rz?ot
R’iss = #Rz (3'1)
L+ caarpn
Rss = Rlss + RQSS (32)
R
GEF,, = —=¢ (3.3)
kacEF
R
GAPs;s = = (3.4)
kacap
Rastot
RasGTP = 3.5
* I+ deas GAP e ( )

GEFss

where the kqr, = k_r,/kr;, kacer = k—cer/kcer,kicap = k-cap/kcap,kiras =
k_Ras/kRras and kqrpp = koff/kon are the dissociation constants for receptor popu-
lations R;,7 = 1,2 and proteins RasGAP, RasGEF, RasGTP, RBD respectively. The
steady state for the total receptor is taken as a cumulative effect of each receptor pop-
ulations as Rgs = Riss + Ross. We ignore the variable of protein RBD as it serves only

as a reporter for the measurement of our protein of interest-RasGTP .

As more molecules cAMP bind to the membrane surface receptors such that 1 >
kar,/(cAMP +r;) in equation 3.1, the steady state for each receptor population can be
2 Rﬁ"t. Hence, the level of R;ss is limited by the total number

of the receptors R’ in the population and increasing cAMP concentration beyond the

approximated as R;_,
capacity of R!°" will not increase the level of the steady state as all receptors are bound.

Consequently R, is limited by both Riss and Rogs.

Downstream of the receptors, the steady state of RasGEF and RasGAP proteins are
effectively determined by Rss and dissociation constants kgoppr and kggap. If the dis-
sociation constants between both proteins are the same kyGEF = kyGAP and if the
kinetics rates of activator RasGEF always surpass RasGAP such that kgrr > kgap
and k_grpr > k_gap, RasGEF and RasGAP will eventually reach the same steady
state level albeit at a different rate where RasGAP lags behind.

Because the dissociation constants k;,GEF = kyGAP are the same, the ratio between
the steady states GEFgs and GAPgs is GAP;s/GEF,s = 1. Therefore the asymptotic
behaviour of RasGTP in equation 3.5 will always reach the same steady state deter-
mined by kqpas, Ras® independent of the increase in stimulant cAMP. In summary, the
adaptation of the model ODEs is achieved by the physical limitation on the number of
molecules that bind the membrane surface receptors and when the necessary conditions
kapr > kaap, k_aer > k_gap and kgGEF = kyGAP are met.
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3.2.2 Linear Stability analysis to verify the stability of model ODEs

Once we have established that the model’s capacity to exhibit adaptation is sustainable
if we compel the activator-degradation kinetics to a certain range, we ask whether the
system is stable. Specifically we explore the eigenvalues of the system’s Jacobian evalu-
ated at steady states. We begin by simplifying the notation of equation 2.8 to equation
2.13 where the variables and constants are expressed as © = cAMP,A = GEF,B =
GAP ks = kgpr.k—a = k_crr. kg = kgap.k—p = k_gap,Y = RasC¢TF yttl =
Rastot, ky = kRas, k—y = k_Ras- B = R1+ R2 is substituted into equation 2.11 and 2.12
to make the role of the two receptors visible and explicit. The model ODEs can then be

rewritten as

R,

o = k()R = R) —kop Ry (3.6)
% = kpa(z+12)(RY — Ry) — k_paRo (3.7)
% — ka(RL+R2) —k_4A (3.8)
% — kp(Rl—R2) — k_pB (3.9)
% = kA(Y™ —Y)— k_,BY (3.10)

By deriving partial derivatives of each equation with respect to variables R1, R2, A, B, Y

the Jacobian matrix J is derived as

—kpi(x+m)—k-m 0 0 0 0
0 —kpa(x+19) —k_pRo 0 0 0
J= ka ka —k_a 0 0
kg kg 0 —k_p 0
0 0 kY kY —k_ Y —kyA—k_,B
(3.11)

Solving the eigenvalues by setting the determinant det(J — A\I) = 0,
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A = —kpi(x+r)—k g
A2 = —kpa(x+712) —k_Ro
A3 = —k_g

Moo= —kg

\s = —kyA—k_,B

If all the eigenvalues are negative real numbers then the system is stable (Strogatz, 2018).
Any eigenvalue with positive real number would lead to one of the solutions increasing
exponentially. A3 and A4 are negative real numbers due to k_4 > 0 and k_p > 0. The
eigenvalues \; and Ao are directly dependent on input x while A5 is indirectly influenced
by x through A and B. Due to enzymatic constants and input x are always real positive
values, A1, A2 and A5 are always real negative values. As input x — +00, the eigenvalues

A1,2,5 — —00, therefore the stronger the input, the system is more stable.

To illustrate how the dynamics of the model changes with respect to a continuously
increasing input, we numerically solved the model ODEs for a linear and exponential
cAMP input and show the result in Figure 3.1. Refer to the second column of table 3.1
for the set of parameter values. The same parameters are used for the computation of
responses to linear and exponentially changing input. The result shows that the primary
difference lies in the adaptation rate for protein RasGTP variable. The time for RasGTP
protein to return back to its steady state level is significantly longer for when the input

is exponential compared to linear input.

3.3 Bayesian parameter estimation

In the previous section, we have verified that the model ODEs by Takeda et al. (2012)
satisfies the necessary conditions for a dynamical system to exhibit FCD as underlined by
Shoval et al. (2010). In this section, we describe the Approximate Bayes Computation-
Sequential Monte Carlo (ABC-SMC) algorithm used to estimate the distributions of
posterior parameters of the model ODEs. We also describe the dataset used for fitting
and constraints that we have imposed on the parameter space. The objective here
is to derive the operating ranges of parameters of the model that is compatible with
experimental data said to exhibit FCD and thus capturing the parameter ranges for the
model to exhibit FCD.
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Figure 3.1: An example of the dynamics of protein variables in equation 2.8 to
equation 2.13 when the input cAMP is a linear function z(¢) = 10¢(Left column)
and exponential function x(t) = €9 (Right column). For the exponential
function, the delay between the activator-degrader protein variable is visible
when zoomed in as shown in inset figure. Bottom most panels shows the protein
of interest, RasGTP where the transient response returns to basal level and
shows adaptation.
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3.3.1 Approximate Bayes Computation-Sequential Monte Carlo (ABC-
SMCQ)

We take the view that a single set of parameters 8@ = (61,...,60,,) in the model ODEs
does not reflect either the biological reality of natural variation in protein levels (Raj
and van Oudenaarden, 2008) or of the mathematical equivalence of multiple parameter
fits of ODE models to a set of empirical data (Gutenkunst et al., 2007). In order to
quantify the uncertainties in estimating the parameters, we apply here the Approximate
Bayesian Computation-Sequential Monte Carlo (ABC-SMC) method to derive poste-
rior distributions of parameters rather than their point estimates. In this method, a
simulated observation is derived from a generative model with the parameter values of
the model sampled from a pre-defined prior distribution. The error between simulated
and experimental data is then computed and the rejection or retainment of a sample
parameter is based on whether the computed error is within a pre-determined threshold
level or not. This process is then repeated for the number of samples that we want to

estimate.

In this thesis we specifically estimated the posterior probability of the set of parameters
0 = (61,...,010) in table 3.1 given the set of fixed parameters and the selected 16
experimental data points Xy € D as

]lAe,xd (Xs)f(Xs|0)7T(0)

P.(0, X,|Xy) = . Jo F(X(|0)7(6)d0dX,

(3.12)

where 7(0) is the prior probabilities from a uniform distribution characterized by the
upper and lower bounds as listed in table 3.1. € > 0 indicates the tolerance threshold and
1 4(.) is the indicator function of a given set A. A¢ x, is the set of simulated observations

close to the true experiment data defined by the distance function as

Acx, = {Xs € D| A (X5, Xa) < e} (3.13)

where A(Xy, X;) is the distance function between experiment data Xy and simulated
data X,. X is simulated from a generative model My denoted as X; ~ My where in
our case My is the model ODEs. One of the advantages of the ABC-SMC method is
that it removes the evaluation of likelihood of observing a data given parameter f(X4|0)
by comparing the simulated observations X to Xg4. If the sampled set of parameters
0y, resulted in X such that A(Xg, Xy) < e then the sample 6y, is retained. Hence the
computational burden lies in the repetition of solving the model ODEs numerically for
a particular step input of z, 2’ to obtain I, and T, close to the selected data points used
for data fitting.
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As ABC-SMC is a sample filtering algorithm, the goal is to find N samples of 8 filtered
through T' = 1,...,t,, levels where here we set ¢,, = 30 and N = 1000. The error by
a sample parameter 0 is derived by computing the distance between simulated X, and

experimental X; data as

K 2
1 Xag — X,
INTEISOEESS (U) (3.14)
i=1 i

where the simulated observation at data point 7 is generated from the model ODEs with
corresponding step input X, ~ My(z;, ;). K = 16 (further explained in the next sub-
section), is the total data fitted, o4, is the standard deviation for Xy,. The set of errors
at a particular filter level T' = ¢ is then denoted as a vector E; = (A(01),...,2:(0n))
where the notation A(0) = A(0] X4, X5) is introduced for brevity. The tolerance level
at filter level T' =t + 1 is denoted as ;41 and is set as ¢;41 = 0.8E;. A generated sample
0y at filter level ¢ 4 1 is accepted if Apy1(0x) < €.41. The generation of samples stops
when the difference between tolerance level is ¢; — €;_1 < « or when T' = 30 population

level is reached.

The result of population of N samples evaluated at the last filtered level T = ¢, is a
N x m matrix denoted as ® = (8,...,0M)T,® € RV*™. Here m = 10 represents
the ten different parameters estimated as listed in table 3.1. The i** row is a vector
representing the it set of estimated parameters 6° = ( t...,0%),i € N. The gth
column is a vector representing the posterior density for the j* estimated parameter
0; = (9]1-, e ,HJN)T,j € m. Therefore instead of deriving a point estimate for parameter
6;, we have a population of estimates denoted as 6;. Hence, this population of estimates

is our approximation to the posterior density of parameter 6;.

3.3.2 Data fitting

In estimating the model ODEs parameters, we compare our estimates with those of
Takeda et al. (2012) and specifically the dose-peak response of Figure 2C and dose-time
to peak response of Figure 2D of the same paper. Thus wherever possible we adopted
the same approach as implemented by Takeda et al. (2012). We chose to stimulate the
model ODEs also with a step input and in fitting the data, we selected 16 of 21 discrete
experimental data points chosen by the Takeda et al. (2012). 8 data points are of the peak
responses (I,) and 8 others are of their corresponding time to peak responses (7},) of when
cells were stimulated with various level of cAMP but with background concentrations
of OnM and 100nM. The data points of stimulation by 1uM in background cAMP of
OnM are not selected as they are used for normalization. The remaining 5 data points

as chosen by Takeda et al. (2012) are not selected here as the magnitude of the inputs
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have already been represented by the 16 data points and therefore the inclusion would

only contribute to overfitting and an added burden to the computational resource.

The estimated and fixed parameters are explicitly listed in table 3.1. The fixed param-
eters are set with values derived by Takeda et al. (2012). As can be seen from table 3.1,
there are two type of receptors denoted by R; and Rs. This is to reflect two popula-
tion of receptors with different affinities of 60nM and 450nM for R; and Ry as derived
from their respective dissociation constant kg; = k_pg;/kg;. Individual parameters to
be estimated is denoted here as § where 6; indicates the i** parameter and is randomly
generated in an optimisation procedure (further described in the next section) from a
uniform distribution with an upper and lower bound based on values derived by Takeda
et al. (2012). For example, if the value estimated by Takeda et al. (2012) for parameter
6; is = then the bounds are set as = £ (0.95 x ). As can be seen from table 3.1, the
degradation rates of RasGEF and RasGAP protein are estimated such that the rela-
tion of kyggr = kqcap is maintained. Hence, there will always be a delay between
the dynamics of RasGAP and RasGEF and further ensuring that the FCD behaviour is
captured. We have also set the condition such that RY! + Rt = 1.

Table 3.1: Fixed and estimated parameters of the model ODEs. R is esti-
mated as RY" =1 — R{° hence there is no upper and lower bound set.

Parameter Derived by Takeda et al. (2012) | Upper Bound | Lower Bound Unit
Fixed

kri 0.00267 nM~sec™!
kro 0.00244 nM1sec™!
k_m 0.16 sec”!
k_po 1.1 sec™!
kaer 0.1*xk_gEF sec™!
kcap 0.1%xk_cap sec™!
Rastot 1

RBDtot 1

Estimated 0

01 : 11 0.012 0.023 6 x 1074 nM
0y : 1o 0.115 0.224 0.005 nM
03 : R 0.1 1 0

04 : RY 0.9

Os: k_gEF 0.4 0.78 0.02 sec™!
06 : k_cap 0.1 0.195 0.005 sec™!
07 : kRas 390 760.5 19.5 sec” !
03 : k_Ras 3126 6095.7 156.3 sec™!
Oy : kory 0.53 1.034 0.027 sec™!
010 : kon 1.0 1.95 0.05 sec™!
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3.4 Posterior parameter distribution

The correct way to think about the distributions

The result of estimating 1000 samples for all parameter 6;,Vj € m, using the described
ABC-SMC method is shown as histogram plots in Figure 3.2 where the histograms are
the last filtered sample populations. We consider Figure 3.2 as an approximation of
the posterior distributions of parameters conditioned on the fixed parameters. Here we
denote the set of fixed parameters in table 3.1 as Og,. Each parameter 6;,2' eEN,jEM
have been chosen randomly from a uniform prior. However, one randomly chosen prior
parameter requires the right combination of other randomly chosen priors in order to
achieve an acceptable solution of the model ODEs as required by the distance function.
This is an indicator that elements of dependency exists. Therefore it is more accurate
to view the whole of Figure 3.2 as a posterior of joint distribution of a 10 dimensional
parameters conditioned on the fixed parameters denoted as p(61, ..., 010|05x), with each
individual distributions the marginal posterior p(0;|0sx) = [ p(01,...,0j,...,610|0%x).
The mean, standard deviation, coefficient of variance and median statistics of each

distribution in Figure 3.2 are summarised in table 3.2.

Table 3.2: Statistics of the estimated marginal posterior distribution of param-
eters in Figure 3.2.

Parameter 6 || Mean p Std Dev o Coefficient of Var ¢, Median
01:71 0.0121 0.0060 0.4990 0.0122
Oy : 1o 0.1248 0.0472 0.3781 0.1220
03 : Rl 0.1387 0.0686 0.4944 0.1333
04 : RY 0.8613 0.0686 0.0796 0.8667
05 : k_ger 0.5200 0.1269 0.2440 0.5201
06 : k—_gap 0.1036 0.0178 0.1715 0.1041
07 : kRas 537.18 125.74 0.2341 544.22
0s : k_Ras 2786.04 878.19 0.3152 2655.98
9 : kors 0.2264 0.0920 0.4065 0.2095
010 : kon 1.2248 0.3888 0.3175 1.2180

Distributions of parameters in sensing defined and undefined fold change

in input.

What does the distribution indicate in the context of the cell? Note that we also fitted
the parameters to measurements of cells response when stimulated with initial cAMP
x = OnM. Stimulation in no background cAMP z = OnM entails an undefined fold change
in input- the cell has no information on the previous cAMP to compare to. Hence Figure

3.2 indicates the range of possible parameter values the modelled upstream process of
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Figure 3.2: Posterior parameter distributions derived using the ABC-SMC es-
timation method and shown as histogram plots. Each distribution consists of
1000 samples. Distribution of 83 mirrors 4 due to the ratio of receptors pop-
ulation R™ + R = 1. Vertical red lines indicate parameter as estimated by
Takeda et al. (2012). Black dashed lines indicates the median of each posterior

distributions.
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Dictyostelium operates in order to sense both defined and undefined fold change in input.
Fitting to only experiment data that has a defined fold change in cAMP would not be a
fair representation of the cells parameter because in natural environment they are likely

to encounter both scenarios.

Inferring from variability the significance of parameters in the FCD

mechanism

What information does the marginal posteriors and its statistics tells us about FCD
in Dictyostelium? It is found that in sensing both defined and undefined fold change,
certain parameters have lesser variability than others (stiff). An example is the deactiva-
tion of GAP by k_gap constant indicated by the 17% coefficient of variance(table 3.2).
(Note that coefficient of variance is used to compare variability because the parameters
are of different units of measurements.) On the contrary, certain parameters has a more
flexible range. Two examples are the receptor activation constant r; and protein RBD
degradation constant k,s¢ as indicated by their 49 % and 40% coefficient of variances
respectively. Large variability may imply that it does not really matter what values
these parameters take in order for the cell to sense fold change. Thus, the variability
in parameters is an initial indicator of the significance of each parameter and as an

extension, the role of each protein itself in the fold-change input sensing mechanism.

Characteristics of the underlying distributions

Figure 3.2 also reveal characteristics that may hint to what each underlying distribu-
tions are. For example a Gaussian might describe k_gap distribution well due to the
symetricness of the posterior. The marginal posterior for k}gg p is a right tailed distri-
bution and positive and negative skewness is observed in the distribution of kp,s and
k_Ras- RY' may be symmetric if the estimation was not limited by its upper bound. A
quick inspection of Figure 3.2 also suggests that there is no clear bimodality that can

be observed in all parameter distribution.

Distributions are not necessarily centred around Takeda’s estimates

In the ABC-SMC parameter estimation process we have centred the uniform priors

based on the estimates by Takeda. Let’s assume that there exist a true value 0;”‘6 for

Otrue

each parameter 6; where a set of = (Bve, ..., 0%%) results in an optimal fitting

of the model ODEs to the experiment data. If our estimation is also optimal, the

0" would then lie within the estimated posterior distribution.

set of true parameters
Furthermore if we consider Takeda estimates to be the true parameters and assume that

our ABC-SMC method is optimal, then Takeda estimates should lie within our posterior
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distribution. However, as can be seen from Figure 3.2, this is not the case. Figure 3.2
reveals that while parameters such as r1, 9 and k_gap are distributed around Takeda’s
estimates, some such as the k;’%g p distribution has centres that deviate far from what
Takeda had estimated. For comparison purposes we took the median of each distribution
and plotted as black dashed-lines in Figure 3.2 where else Takeda’s estimates are shown
as red lines. The degree of deviation in percentage from what Takeda estimated for each
parameter is shown in table 3.3. As expected the median of k;{g p distribution has the
highest degree of deviation at 60.46%. Therefore if the assumption that the ABC-SMC
is optimal holds, then Figure 3.2 shows that Takeda estimates for parameter such as

k?{g p does not approximate well to the true parameters.

Table 3.3: Degree of deviation of the median of the distributions in Figure 3.2
from Takeda’s estimates.

Parameter, 6 | Median 6* Diff (%)
01 :71 0.0156 1.63
02 : 7o 0.0779 6.06
03 : Rt 0.0852 33.3
04 : RE! 1.2015 3.70
Os - k_opr 0.421 30.02
06 : k_cap 0.1018 4.14
07 : kRas 564.37 39.54
03 : k_Ras 2178.9 15.04
O  kofs 0.1815  60.46
010 : kon 1.0674 21.80

Median of posteriors as the new estimate

Working on the assumption that 8" lies within the posteriors, let us consider the set of
median values for each parameter as stated in table 3.3 as our estimate 8% = (9~1, e ,910)
where éj is the median of parameter ;. 8* approximates 6", How well does I, and T,
responses generated by 0" fits the experiment data in comparison to I, and 7}, derived
using Takeda estimates? To answer this we solve model ODEs using 8* and Takeda
estimates for each pair of inputs measured in Figure 2.4A and Figure 2.4B. From the
solution of model ODEs, we derived the normalised I, and 7T}, with respect to the set
of parameters used and plot alongside the experiment data in Figure 3.3. Crosses are
the values generated using 8" and squares indicates values by Takeda’s estimates. Solid
and dashed lines are the interpolated values between each data points. The various
background cAMP are indicated by different colors(Refer Figure 3.3 for details).

Figure 3.3 shows that I, derived by 8* and Takeda estimates have different projections
for all background concentration. In contrast the projections of T}, by both estimator are

similar. The deviation of derived I, T} of each estimator from I, T, of the experiment
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Figure 3.3: Model responses solved using Takeda’s estimates (solid lines and
solid squares) and median of posterior 8* (dashed lines and crosses). Experiment
data is also indicated (black circles with error bars as standard deviations) for
comparison. The background concentrations of cAMP are indicated by different
colours where black: OnM, red: 1nM, green: 10nM, blue: 100nM.

data is quantified using the distance function of equation 3.14 and shown in table 3.4. Tt
can be observed that Takeda estimates is closer to the I, experiment data indicated by
the lower error. Both estimates approximates the 7}, data similarly although 8* perform
slightly better.

3.5 Principal Component Analysis

Now that we have estimated 1000 values for each parameter 0, j € m as in Figure 3.2,

we investigated the variance components of the parameters using Principal Component
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Table 3.4: Errors.

Estimator I, T,
Takeda 2.88 37.05
o 5.81 36.34

Analysis (PCA). We ignore the estimated values for 3 = R because it is already know
that its variance is dependent of 64 = R’*. Let us consider N xp data matrix X, where in
our case N = 1000 are the rows of estimated parameter values and p = 9 are the columns
of the reassigned parameters 6y = rl,0s = r2,03 = R§°t,94 = kagr,05s = kgap,0¢ =
kRas, 07 = k_Ras, 08 = koff, 09 = kon. The data matrix X where X C ©,X € RN*P can

be transformed as

Q=PIXT (3.15)

where P is the p X p matrix of column eigenvectors vi, va, ..., v, representing the prin-
cipal components of X and Q is a linear combinations of its basis (eigen) vectors. If
matrix of parameters X is denoted as X = [xj ...X,] where x; is the j column vector

of estimated parameter 6;, the covariance between parameter ¢; and 0, is computed as

1

Cr=NT1

(xj — 1) T (xk — pur) (3.16)

where 1 and py are both the mean for x; and xj. The variance-covariance matrix of

X is then a p x p matrix denoted as Cx,

Cii - Cip
Ce=| ¢ . (3.17)
CPJ c. Cp,p

where the diagonal Cj ; is the variance of parameter 6;. Cx can be computed in matrix
notation as Cx = 1/(N — 1)X7X. However, the parameters 61, ...,60y are of different
units of measurement where 61, 65 are activation constants r1,ro, 3 is the proportion of
the receptors population R, while 64 ~ 6y are a group of protein activation and degra-
dation constants. To ensure equal weights in the analysis of principal components, the

matrix of parameters X is standardized as X = [x] ...x]

») where x; is the standardized

column vector of estimated parameter ¢; computed as

X = a;(x; — 1) (3.18)
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Table 3.5: All principal components with corresponding parameters and eigen-
values. As shown in Figure 3.4, the first five components consist of 80% variance.

Components

Parameter 1 2 3 4 ) 6 7 8 9

71 -0.005 0.009 -0.009 0.317 0.914 -0.041 0.228 0.099 -0.006
79 0.494 0.138 -0.218 -0.355 -0.053 0.230 0.551 0.452 0.004
RY! -0.379 -0.367 0.306 0.005 0.003 0.675 -0.058 0.406 -0.055
k_cEr -0.083 0.644 0.238 -0.105 0.085 0.058 -0.300 0.266 0.583
k_aap -0.457 0.333 -0.144 0.314 -0.232 -0.315 0.190 0.481 -0.374
kRas 0.257 -0.181 0.624 -0.271 0.089 -0.468 -0.175 0.326 -0.272
k_Ras -0.479 -0.257 0.108 -0.353 -0.006 -0.324 0.510 -0.085 0.443
korr 0.303 -0.356 0.031 0.615 -0.252 -0.164 0.041 0.274 0.484
kon -0.096 -0.307 -0.616 -0.295 0.170 -0.189 -0.472 0.361 0.110
eigvalues 2.031 1.785 1.309 1.127 1.021 0.645 0.559 0.291 0.231

Here the mean of x/ is shifted to zero and scaled with factor a; = 1/0; where o; is the
standard deviation of estimated parameter ¢;. The corresponding covariance matrix Cx
is a real symmetric matrix where Cx = CxT due to only real positive numbers are used

to estimate the parameters. Therefore covariance matrix Cy is diagonalizable such that

Cy = PSPT (3.19)

where P is a matrix of orthonormal eigenvectors (eigenvectors are linearly independent
with v;ev, = 0 and |v| = 1).3 is a diagonal matrix of distinct eigenvalues in descending
order such that Ay > A\ > --- > A\, A; # A. One desirable property of the transformed
matrix Q is that the covariance matrix of Q, Cq = 1/N—1(QQT) is a diagonal matrix. It
has been shown that this can be achieved by using the eigenvectors of covariance matrix
P(Shlens, 2014). Hence the eigenvectors of P represent the principal components of X.
The result of computing the eigenvectors for our matrix of parameter X is shown in table
3.5 alongside with the corresponding eigenvalues. The computed explained variance and
cumulative variance for each principal components are shown in Figure 3.4. The result
shows that the variance of the posterior parameters can not be represented by any single
principal components although 80% of the variance is captured by the first five principal
components. Therefore at least five components are needed to preserve 80% variance of

the parameters.

3.6 Summary

We have evaluated the suitability of the model ODEs by Takeda et al. (2012) in capturing
the FCD behaviour by means of dynamical system analysis. We showed that the model
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Figure 3.4: Variance of the data contributed by each principal components.The
first five principal components captures 80% of the posterior parameters vari-
ability.

will always achieve adaptation (one of the necessary components of FCD) even though
stimulant increases continuously as opposed to step inputs due to the constraints imposed
by the receptor protein population and RasGEF-RasGAP protein on the model. We
have also inferred the posterior density of parameters of the model ODEs and provided
several interpretations of the result. The population of parameters revealed that the most
invariant (stiff) parameter is the k_g4p kinetics of protein RasGAP and distributions
are not necessarily centred around estimates by Takeda et al. (2012). The PCA analysis
showed that no single principal components dominates the variance of the posterior

parameters.






Chapter 4

The accuracy of Fold Change

Detection

4.1 Introduction

In an ideal setting, the accuracy of FCD is quantified by measuring individual response
of every single Dictyostelium cell on earth to various fold changes in the concentration of
cAMP. This way we could find the true I, response of a single cell to a certain fold change
F by looking at the consistency of I, to F' of various background cAMP z. However
as seen in Figure 2.5, the responses of Dictyostelium cells to the same fold change in
concentration of cAMP are heterogeneous even when the initial cAMP concentration is
identical due to cell-cell variability. It has been shown that although single Dictyostelium
cells produce consistent responses to the same pulses of cAMP concentration, there is
a large variability in responses when a population of cells is stimulated in the same
manner (Samadani et al., 2006). The difference in responses by different cells to the
same concentration of cAMP is found to be true even if the cells are genetically identical
(Wang et al., 2012). It is hard for a population of cells to reach an absolute consensus on
the level of I, it should produce in response to a particular fold stimulus. In this chapter
we quantify the accuracy of FCD by looking at the variability of responses derived by
the model ODEs based on the estimated posterior parameters. The principle is simple,
the population response provides a better view of how confident a particular fold is being

sensed.

4.2 Methods of emulating heterogeneity in responses

In the previous chapter, we have inferred posterior distributions P(8|X) on the parame-

ter set that is compatible with the observed data X. We take the view that a single set of

45
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parameters @ = (01, ...,60,,) in the system of ODEs does not reflect either the biological
reality of natural variation in protein levels Raj and van Oudenaarden (2008). We shall
label by i each sample drawn from this distribution 8; ~ P(6|X). We view every such
sample 8; = (0;1,...,0;,m) as an emulation of the cell-cell variability (Samadani et al.,
2006; Wang et al., 2012) in the sensing mechanism of Dictyostelium . The adaptation
displayed by Dictyostelium to sustained stimulation by externally applied cAMP (Din-
auer et al., 1980b,c) makes the characteristics of the transient response — the magnitude
of the peak response I, and the time taken to reach this peak ¢, as visualized in Figure

4.1A — the main empirical quantities of interest.

We stimulate each such virtual cell in the same way as the experimental setup: for
a specific background level of cAMP z we introduce a step change of input cAMP
concentration (2’ — ) with 2/ = Fxz where F' is the fold change. We follow the time
course of the response in the system of ODEs with parameters 8; and measure I, ; and
tp,j. Hereafter, except for right panel of Figure 4.1A | all I}, values are normalized by I,
derived from stimulating model ODEs parameterised in Takeda et al. (2012) with step
input = 0,2’ = 1000. The results of simulating 1000 heterogeneous virtual cells 6,
for all 5 = 1,...,1000 with z = 1 and F' = 2 is shown in Figure 4.1B as histogram by
taking only the I, value of each time series data of each virtual cells. By simulating a
distribution of responses rather than point estimates to a particular step input cAMP
x,2 with fold F', we are able to further emulate variability in cell responses within
our model constraints. This is important as the experiment results reported in Takeda
et al. (2012) (replotted again as Fig 4.1C) shows how cells response to the same fold
input varies even in the same background cAMP z, indicating that although responses
to stimulant are influenced by fold changes in input cAMP, it does not necessarily follow

the exact FCD notion as introduced previously in chapter 2

To further capture the heterogeneity properties for different background z and fold
change F', we generalise as follows. Given two vectors of input background cAMP
x = (24,22, ...,%my) and corresponding fold change F = (F, F», ..., F,) with z; and F)
denoting the elements of each input vector, the set of all possible combination of input

z; and F} is denoted as
S={(z;, Fj):i=1,....m j=1,...,n} (4.1)

where we set the background cAMP x to take positive integer values z; € Z* and F; > 2.
We denote the distribution of I, responses resulted from stimulating 1000 virtual cells to
a specific pair of input (z;, F}) as I;,“’Fj. The input range of interest is x = (1,2, ...,100)
and F = (2,2.1,...,100) encompassing the range of experiment data in Fig 4.1C and
we denote the resulting set of interest as Sp. However, to derive I, responses for all pair
of input intervals within this range by numerically solving model ODEs as described
previously is computationally expensive. Hence we adapt an approximation method,

generally described as first modelling the distribution of I, responses to a sparse range of
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Figure 4.1: Emulation of cell-cell variability. (A) Response to step input z,xz’
derived by numerically solving model ODEs with parameter ¢;. I, and ¢, are the
values of interest. (B) Histogram of I, from 1000 § stimulated with step input
z = 1,2" = 2. Red curves is the result of fitting lognormal distribution. (C) I,
response to different background cAMP as in the experiment by Takeda et al.
(2012) replotted as function of fold change. Error bars in this paper represent
standard deviation

inputs and then use the model parameters to estimate I;f #Fi for any (z;, Fj) of interest.
Here we choose the sparse range of inputs to be x = (1,2,...,10,20,...,100) and
F = (2,3,...,10,20,...,100). The length of input vectors then becomes m = 19 and
n = 18 for x and F and the resulting set is denoted as S;. We derive numerically I;f iFj
for each input pair (z;, F}) in our new set Sy : S; C Sp. We model all responses I, i1
from stimulating inputs in set S; with the lognormal distribution where the probability

density function given as

o o~z F

P 1 In 1y — "2

L) = — exp _(nd, — ) (4.2)
Ipu ]O-ZL‘Z‘,FJ' A 2093¢,Fj

is then fitted to each histogram of I;“Fj and we estimate the mean INI,%Fj and standard
deviation o, F;. The results of fitting a distribution to histogram of I, LEL Where r1=1
and F; = 2 is shown in Fig 4.1B as a red curve. To illustrate how background cAMP
affects the mean and standard deviation of the responses, we plotted j;gxi’Fj and oy, F;
as coloured dots for all z;,7 = 1,...,m with a subrange fold F' = (2,5, 10,30, 100) in the

left most panels of Fig 4.2A,B . Initial inspection suggests that in the presence of high
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background cAMP, the average cell response to stimulant cAMP is weaker and that the
responses are more varied. We further fit curves of I, ” and op; forall j =1,...,n with

a quadratic function as

~F; ) ) .
L7 = ala bzl (4.3
op, = agj z? + bgja: + cgj (4.4)

and estimated function parameters afj,bfj ,cgj where k = 1,2. The result of the es-
timated parameters are plotted as black dots in the three right most panels of Figure
4.2A,B. Coloured curves of left most panels in Figure 4.2A B represent quadratic func-
tions fitted to the estimated parameters of the lognormal distribution. The curves of
quadratic parameters ai, b1, c1,co are then fitted using a hyperbolic, logarithmic or ex-
ponential function where the results of the estimated coefficients are summarised in table

4.1 while points of as and bs were linearly interpolated.
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Table 4.1: Quadratic parameter curves fitted with various functions

Parameter Functional form  Estimated Coeflicients

a1 a = 25 o =354x10"° 3 =11.591
b1 by =a+plog(F) a=-24x10"3,3=-1.4x10"3
c c1=grierte  a=328x 1074, 8,v = 0.109
T =9.424 x 1074, ¢ = 0.0556
c2 ¢ = 5 a=0.044, 3 = —0.911

Hence with the estimated coefficients and quadratic parameters we can inversely ap-

~x;, Fj .
proximate the parameters of the lognormal distribution Ipx ’ and 0y, F; for any pair

of (x;, F;) within our set of interest Sy by solving the quadratic equation

~ 2, F; . . .

Ipx 7= afj z? + bf] x; + cf] (4.5)
F; F; F;

OuiF; = azjx? + by’ i + ¢y’ (4.6)

Additionally, we can now sample a single cell response to stimulant cAMP with back-
ground z; and fold change F; denoted as R, ; drawn from the lognormal distribution

~x7,7F]

as Ry, r; ~ InN (1) ,0z,,F;) without the need to solve model ODEs.

4.3 Effect of background cAMP on FCD accuracy

Among the criteria for exact FCD is the sameness of output to the same fold input
regardless of the background input. One logical way to asses the accuracy of the fold
change detected is by benchmarking responses to a known true value. However, we do
not know what is the true response value a cell should produce when stimulated with
a specific step input. Therefore we can only estimate the accuracy of FCD by looking
at the variance of response. The assumption here is that the less varied the responses
are, the more the cells agrees to the value of FCD each of them are sensing. Hence, the

variability in responses tells us how consistently cells sense the fold change in stimulant
cAMP (FCD).

In this section we analyse the effect of background cAMP on response I,. We ask
what are the average responses to different background camp = and fold change F' and
more importantly how do responses vary? We introduce a new range of input vectors
x = (1,...,100) and F = (2,2.1,...,10) with resulting set Sg : Sy C Sp. This is
in line with results by Kamino et al. (2017) where FCD behaviour is observed when
Dictyostelium cells in background cAMP z = 0.1 ~ 10 nM were stimulated with cAMP
of fold change F' = 10 . Furthermore experiment results by Takeda et al. (2012) as
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in Figure 4.1C shows that responses are linear between F' = 2 ~ 10 but saturate for
F > 10 suggesting that FCD mechanism is more likely to occur in the linear regime.
We compute INP%Fj and oy, r; for (z;, Fj) € Sz using equation 4.5,4.6 and the results
are shown in Figure 4.3. Cross sections of Figure 4.3A and Figure 4.3C for fold change
F = 2 and F = 10 are shown as Figure 4.3B and Figure 4.3D. Figure 4.3A,B shows
that in a higher background concentration of cAMP z, we can expect that cells on
average have weaker responses as indicated by the linearly decreasing response j;,xi’Fj
with background x. There is also more variability in the responses produced, as shown
by the linear increase in the standard deviation o, F; at first followed by its saturation
around x =50 nM. Therefore in high background cAMP, the population of cells is less
confident on the fold change that is being detected indicated by the high variability in

responses produced.

A B

Xi,Fj
1
o
©

I

Background cAMP, x

50 100
Background cAMP, x

Figure 4.3: Responses for background cAMP x = (1,2,...,100) and fold change
=i, Fy o,

F = (2,2.1,...,10). (A) Mean of responses Ipz ’ in log space. (B) Cross

section sample of mean of I, for fold F' = 2 (blue circles) and F' = 10 (red

crosses). (C) Standard deviation of responses o, r; . (D) Cross section sample
of standard deviation for fold F' = 2 (blue circles) and F' = 10 (red crosses).
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4.3.1 Responses are more consistent for lower fold change

We have seen how for responses to a fixed fold change in input, the modelled lognormal
distribution shape and scale changes with different background cAMP. How can we
model responses without the stratification by background input? In order to do this
we first derive a distribution that comprises of responses from multiple background
cAMP to the same fold change in input. Focussing only on responses from our range
of background cAMP x = (1,2,...,100), it is assumed that any background within this
range is equally likely.

Algorithm 1 Generating responses across background x

1: Initialize F

2: for all F; € F do

3: Initialize background sample Xg; = (X1,...,xpr)
4 for i =1to M do

5 Sample background z; ~ U(1, 100)

6 Compute lognormal parameters for z;,
~ g, F . . )

7: Ipx T = af]x2 + bfjaz + cfj

8 Oz F; = ab? 2 + bhim 4 b

9

~ ”L7F
Sample response Ry, r; ~ lnN(Ip$ !

10: end for
11: end for

70zi,Fj)

To derive responses to fold change F} in stimulant cAMP across all background z, we first
create samples of background cAMP Xp;, = (x1,...,7y) with size M = 10,000 where
each z; is drawn randomly from a discrete uniform distribution x; ~ U(1,100),z; € X Fj-
From these samples, we generate responses using the lognormal distribution properties
described by Algorithm 1. The result is such that for each fold F}; there are M responses

Ry, r, denoted as o

The results of generating responses Ifl for fold change (F7 = 2) and Ifgl, (Fg1 = 10)
are visualized as histograms normalized as probability in Figure 4.4A. We plotted the
probability values of the bin which contains histogram mean ugj for each fold F} as Fig-
ure 4.4B. To get a full view of how distribution characteristics changes, each histogram’s
mean, < Ij 7 > and standard deviation, s F; are plotted as Figure 4.4C,D. We found that
the average responses are less likely to be seen when cells are stimulated with larger fold
change in cAMP (Figure 4.4B ). It is also observed in Figure 4.4C,D that as fold change
in input becomes larger, both mean response up; and standard deviation increases, sig-
nalling on average a stronger response is expected but the responses themselves being
less similar. The shape of the distribution changes such that in Figure 4.4A as the fold
change Fj increases, the response R, i, increases and shifts to the right while the distri-
bution becomes wider. As there is reduced variability in responses to large fold change
in input it can be concluded that cells stimulated with smaller fold change in cAMP are

likelier to be more consistent in their responses.
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Figure 4.4: Response I, distribution statistics with background cAMP z =
1,..,100 and input cAMP 2’ corresponding to fold F' = 2,2.1..,10 (interval 0.1)
considered. (A) A sample of output distribution for ' = 2 and F' = 10 plotted
as histogram and normalized as probability. Each bin represents a range of
response values and is assigned a probability value based on the sample size.
(B) The relation between mean of each output distribution and their probability.

(C) Mean of distributions < I; 7 > with standard deviations s F; represented as
error bars. (D) Standard deviation is larger as fold cAMP increases.

4.4 Fold Change Distinguishability

The distribution of responses and their properties derived previously in Figure 4.4 pro-
vides further information that there are overlapping distributions. Recall from chapter 2
that one condition required for exact FCD is to have distinct responses to different fold
change in input. Distributions that overlap indicate that some cells are ‘confused’ and
unable distinguish sensing between two different fold changes in input. As illustrated by
the green shaded area in Figure 4.5, some responses to fold change in stimulant F' = 2
can be misclassified as responses derived from F' = 3. The overlapping area repre-
sents the amount of fold change misclassification (either false positive or false negative)

between responses of two different fold inputs.
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Figure 4.5: Two distributions of responses for F' = 2 and F' = 3 fitted with log-
normal distributions with overlap areas in green. Shaded area in green indicates
responses for fold change F' = 3 misclassified as responses to F' = 2

We investigate this ‘fold distinguishability’ property where we ask what is the fold-
distance limit two fold change in stimulant denoted as F, and F, must have so that
cell responses are minimally distinguishable? It is assumed the responses If 7 for fold
F; € F derived in the previous section are also distributed log-normally with mean i,

and variance O'%j denoted as If T~ InN (/ij,a%j). The probability density function of

the log-normal distribution is then fitted to histogram of I; 7 for all F; € F derived

previously such that

F.

F; 1 (h’l] J —,U,F)2

fIp?) = —5———exp ——r T T (4.7)
Ip]O'Fj V2T 20}7‘].

The overlapping area AT ¥ between two fold F, and F), is then computed by integration

as

b c
AFlzy] :/ f([fy)djiy_i_/b f(IIf’z)dIfz (4.8)

where b is the intersection of the two lognormal distributions, a, ¢ are the minimum and
maximum horizontal values of the overlapped area. Here mean up; of one lognormal
distribution is assumed greater such that pug, > pup,. We compared and calculated the
overlapping area for fold Fx,y] where z,y = 2.0,2.1,...,10. The result is a matrix of
overlapped areas A such that
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[ AF[2,2] AF221) AF[2,10] 7
AF212]  gF[2121] . pF[2.1,10]
A= (4.9)
AF[02]  AF[021] . 4F[10,10]

where the diagonal elements are identical distributions completely overlapping each

other.

The computed result of matrix A is visualized in Figure 4.6. Fold changes

in cAMP F, and F, are only considered distinguishable if the overlapping area of their

response distributions is less than or equal to some threshold or decision boundary r.

Here r is arbitrarily selected as 40% of the overlapping area and shown as red curves in

Figure 4.6. This means that if the overlapping area between two response distributions

of fold changes F, and F, is more than 40% then the changes in input concentrations of

cAMP are perceived as indistinguishable. Therefore the two red curves divides between

the region of distinguishability and indistinguishability.

y

Fold change, F
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fold changes
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Figure 4.6: Overlapped area A for two fold F, and F, compared with z,y =
2,2.1,..,10. The overlapped area A = 1 for two distributions completely over-
lapping each other and A = 0 for the two distribution are completely separated
(no-overlap). Red curves divides between distinguishable and indistinguishable
region.
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From Figure 4.6, it can be said that for example, that a fold change of magnitude Fj
is only considered distinguishable from fold Fjy; and larger or with F5o and smaller.
Therefore the region of indistinguishability for fold F3 is Foo < F3 < Fy 1. If distance of
distinguishability dy is calculated, then it can be seen that F3 needs only fold distance
dy = 0.8 with smaller input fold changes compared to dy = 1.5 with larger F'. This
trend is evident across all fold changes in input and therefore it can be concluded that

a lower input fold change is more distinguishable than a larger one.

4.5 Hyperbolic model of input-output relation

As stated before, the architecture of the mathematical model used to describe the in-
teraction of proteins in the signalling pathway of Dictyostelium analysed in this thesis
is an instantiation of the incoherent feed forward loop (IFFL) network (Takeda et al.,
2012). Theoretical analysis have shown that the input-output relation that arises from a
system incorporated with IFFL in its design in some limiting condition is best described
by a logarithmic function (Adler et al., 2014). The logarithmic law is commonly found
in many sensory systems, from discriminating visuals to how monkeys or native humans
count (Dehaene, 2003; Dehaene et al., 2008). The relationship between ligand concen-
tration and kinase activity in the E.coli chemotaxis is also found to obey by the same
law (Tu et al., 2008). The logarithmic function used to describe the relation between
Dictyostelium cell responses I, to fold change in stimulant cAMP F introduced in Adler
et al. (2014) is given as I, = alog(F') + b and yielded a better Mean Squared Weighted
Deviation (MSWD) score than variation of power functions (Adler et al., 2014). This
implies that as the intensity of the fold input increases, the difference in peak response
must be higher for responses to be distinguishable, a key element of the Weber-Fechner

law. The functions evaluated was fitted to eleven experiment data points in Figure 4.1C.

Here we revisit the input-output relation by approximating extra data points to yield
a more accurate and confident estimation of the non-linear relationship. We generate
previously unseen distribution of responses Ij 7 for all fold change of Fj in the range F =
(2,3,...,10,20,...,100) by utilising the process described in Algorithm 1. Intervals of
the simulated responses was taken such that the data spreads well across two magnitudes
of fold change to avoid over-fitting in certain regimes. The results are shown in Figure
4.7 as blue boxplots plotted together with experiment data by Takeda et al. (2012)
replotted as black circles and black lines. The trajectory of our simulated data displays
saturation as distribution of responses to fold change within the range F' = 20 ~ F' = 100
becomes more similar. To capture the saturation behaviour we fitted to the mean of
the simulated data a hyperbolic expression of the Michaelis-Menten type used to model

enzyme kinetics given as
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F
where I,,,4, is the system’s maximum response rate and constant K, is the saturating
concentration. When fold change in input F' is small such that F' < K,,, the system
displays a linear response where I, & ;45 F'/ Ky, When fold input is large enough such

that F' > K,,, the response saturates to I, ~ Ipqz-

For comparison purposes, the logarithmic function of I, = alog(F') +b is re-fitted to the
experimental data as done by Adler et al. (2014). Both function fitting of the hyperbolic
and logarithmic function were done using the ‘nlinfit’ function of MATLAB. The results
of fitting both hyperbolic and logarithmic functions are shown as blue and green lines
respectively in Figure 4.7 with estimated coefficients I,q0, K, o, d described in the

figure caption.
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Figure 4.7: Describing Input-Output relation with simulated data. Black circles
and vertical lines indicates the experiment and standard deviation data derived
from Takeda et al. Blue boxplots is the simulated data used for non-linear
fitting. For Adler’s I(x) = alog(x) + b equation, the nonlinear fit resulted in
a = 0.0956 and d = 0.3571. For Michaelis-Menten equation, the fit to the
mean of the simulated data resulted in I, = 0.7889 and exponent K,, =
2.9638. Functions fitted to experiment data is not plotted. Refer to table 4.2
for goodness of fit.
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Table 4.2: Mean square weighted deviation (MSWD) for Logarithmic and Hy-
perbolic functions fitted to simulated (train) and experiment (test) data. A
smaller value indicates a better fit.

Equation Simulated | Experiment
I(F) = Lng F/(Km + F) 0.0119 0.0889
I,(F) = alog(F)+b 0.0996

If our simulated data derived from model ODEs approximate the experiment data well,
then we would expect that the hyperbolic function (where its coefficients are derived by
fitting to the simulated data) when evaluated with the experiment data to perform as
well if not better than the logarithmic function suggested by Adler et al. (2014). Thus
in this setting, the hyperbolic function is ‘trained’ with our simulated data but ‘tested’
with the experiment data by Takeda et al. (2012). We evaluated the goodness of fit by
computing the Mean Square Weighted Deviation (MSWD) score given below for both
functions. The MSWD equation is given as

n

o1 Ui — Yiy2
MSWD_n_llz:;( - ) (4.11)

where n is the number of data points, y; and y; are the estimated response of the
hyperbolic function and experiment data at fold F} respectively, (5; —y;)? is the residual
for ith data and o; is the standard deviation of the simulated data or error bar of
the experiment data. The results are summarised in table 4.2 and shows that the
hyperbolic function helped by its saturating nature for increase input has a better fit than
logarithmic function when evaluated against experiment data even though it is trained
with the simulated data. This result underlines two important conclusions. First is that
the hyperbolic function is a better description of the experiment data by Takeda et al.
(2012) than the logarithmic function. In fact, the hyperbolic function also describes the
simulated data better where the logarithmic function yielded MSW D = 0.0810 when
evaluated against the simulated data. This result is intentionally not shown in table 4.2
for clarity purposes. Second this implies that the prediction given by the simulated data
to unobserved inputs is sensible and provides additional evidence that the model ODEs

suggested by Takeda et al. (2012) describes the dynamics of the experiment well.
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4.6 Log-Normal model of the distribution of responses

4.6.1 Motivation

A major assumption in our approximation is that responses generated by the model
ODEs using the estimated 1000 sets of parameters is distributed log-normally. This as-
sumption applies to the distribution of responses generated with or without background
dependencies. There are many density functions other than the log-normal that can
characterize the positive skewness observed in the distribution of responses. However,
the choice of the log-normal is based on the numerosity encoding hypothesis suggested
by studies from the field of cognitive neuroscience. Such studies examine how humans
and nonhumans primate encode numerosity such as how well can subjects identify and
distinguish the same or different number of dots. Two main encoding hypotheses, a
linear and non linear has been suggested although whether the encoding is instantiated
linearly or non-linearly remains a disputed subject. Examples are the studies by Dehaene
(2001); Brannon et al. (2001) and Nieder and Miller (2003) where numerosity encoding
by pigeons and monkeys is investigated through sets of tasks that each subject has to
complete. While Dehaene (2001) and Brannon et al. (2001) suggested a linear encoding
scheme for pigeons, Nieder and Miller (2003) argued that the logarithmic compression

hypothesis better describes the neural representation of numerosity in monkeys.

In the context of this thesis, the sensing of the abundancy of molecules cAMP by Dic-
tyostelium cells is similar to the identification of numerosity of dots by monkeys as
observed in the experiment by Nieder and Miller (2003). We noticed that FCD shares
the same properties with the logarithmic encoding hypothesis. It is important to note
the difference between logarithmic response to stimulus in the previous section and the
logarithmic encoding hypothesis in this section which looks at the underlying distribu-
tion of (logarithmic) responses. Detection of fold, represented through sensory variable
I,,, is much more certain in the region of lower fold. This is similar to the certainty in
identifying lower number of dots by monkeys in the experiment by Nieder and Miller
(2003). However, as the number of dots increases, monkeys tend to make more mistakes
in identifying the exact numerosity and the distribution of uncertainties is more asym-
metric with a shallower slope towards higher numerosity. These characteristics are also
observed in the distribution of responses generated from our model ODEs and estimated
parameters, hence suggesting that the FCD sensed is also logarithmically encoded in the

sensory representations.

4.6.2 Logarithmic vs Linear Encoding Hypothesis

To evaluate which coding scheme better describes the distribution of responses, we

fitted the probability density function of the Log-Normal and Normal distribution to
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Figure 4.8: Estimated parameters of the fitted log-normal to distribution of I,
responses.

the distributions of I, responses stimulated by fold inputs F; € F = (1.1,1.2,,...,100)
independent of background cAMP. The log-normal density function is given by equation

4.7 and the density function for the normal distribution is defined as

Pl = — e (o (07— ) (112)
2mo 201\7

The estimated means and standard deviations for the normal and log-normal distribu-
tions are denoted as un,on and ur, oy, respectively. The estimated ur, oy, as a result of
the data fitting for the log-normal density function is shown in figure 4.8A,B. A sample
result of the distribution fitting for fold F' = 2,4, 10 is shown in Figure 4.9. The dis-
tribution of responses for a particular fold F; € F consists of 10,000 samples generated
using algorithm 1 and are divided into K bins. The goodness of fit for both log-normal
or normal density functions to a distribution of responses stimulated by F; € F is then

evaluated using the Sum of Squared Residuals (SSR)

K
SSRp, =Y (07 — f.(if))? (4.13)

=1

where ij is the observed density for bin i and f.(i’7) is the expected density for bin
i computed from the log-normal (equation 4.7) or normal density functions (equation
4.12). The computed result of equation 4.13 for all F; € F is shown in Figure 4.9B. Figure
4.9B shows that for every distribution of responses stimulated by input fold I} € F,
the log-normal fits better compared to the normal density function. An interesting
observation is that the normal density function fits worse for distribution of responses
stimulated by lower fold inputs especially in the range of F; < 2. Therefore there is a

possibility that the right tailness property can also be found in distribution of responses
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stimulated even with lower folds. This contrasts with results of Nieder and Miller (2003)
where the distribution of uncertainties in numerosity judgement is more symmetric and

gaussian like when the monkeys were identifying lower number of dots.

4.6.3 Does Dictyostelium cells count as humans or primates count?

Based on the goodness of fit result in Figure 4.9B alone, it is preferable to conclude
that the logarithmic compression hypothesis better describes the encoding of FCD by
Dictyostelium cells. Therefore if we map the uncertainties of Dictyostelium cells in
sensing fold changes in cAMP concentration, it follows a log-normal model where there
is a greater tendency to mis-identify when sensing higher fold change in stimulus. If
this conclusion is true, then Dictyostelium cells can also be included in the group of
species which includes humans and primates that uses the logarithmic encoding scheme
or the Approximate Number System (ANS) in counting or sensing physical or abstract
representation of numbers. Contrary to other species in the group, the structure of
Dictyostelium cells are much more primitive governed only by mechanistic bio-chemical
reactions and certainly without any central nervous system. Therefore, the conclusion
above also implies that in order to achieve ANS, a living organism does not need to
be made up of many complex and complicated systems. It is quite likely that there
is a simple explanation of this from the appearance of log-normal distributions from
geometric means and multiplicative random processes (Mitzenmacher, 2004). However,

we do not discuss this further in this thesis.
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Figure 4.9: (A) I, distributions of fold F' = 2,4, 10 fitted with Normal,and Log
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4.7 Summary

This chapter mainly provides evidence of the accuracy of FCD in modelled Dictyostelium
cells examined through the consistency of sensory responses I, We introduce quadratic
approximations to generate responses given any input in the range of background cAMP
x=1,...,100 and corresponding fold F' = 2,2.1,...,100. The approximation emulates
heterogeneity in responses through the estimated posterior parameters. We found that if
cells —represented by instantiation of the model ODEs— are stimulated with fold inputs
of higher background cAMP, the average responses are weaker but with less variability
mostly due to saturation effects. We further generalise the approximation to allow the
generation of responses free from background cAMP dependencies. By doing so, we
found that responses are more consistent in lower fold change. This implies that the
detection of lower fold change is more accurate. We also quantified another measure of
FCD which has received little attention in the studies of FCD, the fold distinguishability
property. Our analysis revealed that responses to fold changes of lower values are not

only more consistent but are also more distinguishable than higher fold changes.

We also proposed a hyperbolic equation to represent the law that governs the input-
output relation between sensed fold change and its corresponding sensory responses of
I,. The proposed model further constricts Dictyostelium cells responses to increases
stimulus as compared to the logarithmic based Weber-Fechner’s law as suggested by
Adler et al. (2014). Therefore the rate where Dictyostelium cells reach the ‘feeling of
indifferent’” when sensing large stimulus is faster than expected. Finally we presented
arguments and demonstrated numerically to why the logarithmic compression hypothesis
better describes the distribution of responses by the Dictyostelium cells to sensed fold

changes.



Chapter 5

Inferring posterior probability of

fold change

5.1 Introduction

In the previous chapter, the variability of responses is captured by generating I, val-
ues from the 1000 sets of estimated parameters of the model ODEs. The response
distribution is then modelled using a log-normal density function which enables us to
approximate responses given stimulus without the need to solve the model ODEs. The
approach so far has allowed us to quantify the accuracy of FCD indirectly by inspecting
the variability of the I, responses. The primary goal of this chapter is to characterize
the posterior probability of fold given observed I, by using the derived log-normal den-
sity function. The modelling of the posterior probability of fold is vital in providing
us a direct approach of measuring FCD instead of using an intermediate sensory repre-
sentation. The inference of posterior probability is executed using Bayes’ theorem and
therefore an inclusion of a prior knowledge regarding the uncertainty of fold change is
necessary. In modelling the posterior we also ask how the prior influences the properties
of the posterior. We begin by describing Bayes’ theorem and its respective components.
We demonstrate how the prior knowledge of fold is modelled from experiments. Lastly
we look at how the fold change based on weak and strong background cAMP influences

the posterior probability of fold change.

5.2 Bayes’ theorem

As shown in the previous chapter, the distribution of responses I, for a given fold change
F independent of background stimulus is modelled using the probability density function
(pdf) of the log-normal distribution denoted as

63
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The pdf is parameterised by the estimated mean u{ and standard deviation af shown
in Figure 4.8. From here we derive the conditional probability distribution of observing
response I, given that the model is stimulated with input fold F' by integration of the
pdf as

P(I,|F) = / FEIF: i oF )l (5.1)

The probability distribution P(I,|F') represents the conditional probability and is our
approximation of the probability of the fluorescent intensity I, level we would expect
to observe when the Dictyostelium cells in microfluidic chambers are stimulated with
fold change F' in input cAMP. This conditional probability P(I,|F') incorporates the
uncertainties in the experiment data through the estimated 1000 sets of ODEs model
parameters. We can compute the probability of observing I, between any intervals o
and 3 given fold change F as P(a < I, < B|F) = ff f(L\F; pk of)dF.

Supposed that we have conducted a microfluidic experiment and measured the fluo-
rescent intensity I, for Dictyostelium cells stimulated with an unknown fold change in
cAMP. What is the probability that the unknown fold change in cAMP is F' given the
observed I,, P(F'|I,) ? This problem of inferring the state of the environment when we
have data from an experiment is solved using Bayes’ theorem. The theorem states that
the inverse conditional probability or more known as the posterior probability P(F|I,)

is derived as

P(I,|F)P(F)

P, (5.2)

P(F|I,) =
where P(Ip|F) is the already introduced conditional probability and P(F’) is the proba-
bility of fold change where it represents the Dictyostelium cells’ own prior knowledge or
‘internal belief” on the distribution of fold before sensing molecules of cAMP. Intuitively
we would expect that a certain range of fold change is more likely to be encountered in

the environment than others. P(I,) is the marginalized probability defined as

P(I,) = /F P(I,|F)P(F)dF (5.3)

and acts as a normalization constant so that integral of the posterior equal one [ » P(F|Ip)dF =
1. As we already have the density function to compute the conditional probability, the

key in solving the posterior lies with the modelling of the prior. The rest of this chapter
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describes our approach in modelling the prior probability based on existing experiment
data and computing the conditional probability. This is followed by computing the
marginal P(l,) and how we put them all together to infer the posterior probability
P(F|I).

5.3 Modelling the conditional probability

The conditional probability P(Ip|F) is numerically computed as solving it analytically re-
quires the difficult task of finding non-linear functions that best describe the curves of the
estimated log-normal distribution parameters in Figure 4.8. We predetermined pairs of
discrete values of I, and F' and denote as two vectors I, = (0.1,0.11,0.12,...,1,;,...,1)
and F = (1.1,1.2,..., Fj,...,100). The elements of each vector are denoted as I,,; and
F};. The probability of observing I,,; given that the stimulus is F} is then computed by

integration of the density function

) F;
Ipitd L o ( —(Inlpi — pi’)
1o 2ot)?

2
P(I,; € I, + 6|F)) = / )dj'p (5.4)

F
Ip’ifé IP,iUL

where P(I,; € I,; £ 6|F};) indicates the probability of observing I,,; in the range of
I,; — 0 and I,; + 9. Hereafter P(I,; € I,; £ 0|Fj) is referred as P(I,;|Fj) for brevity.
The interval § is chosen such that the sum of the computed conditional probability equal
one, Z}p:m P(1,;|Fj) = 1,VF; € F. We then solve for the conditional probability for
all possible combinations of Ij,; and F};. The result of the computation for selected I,
and F' is shown in Figure 5.1. For the purpose of analysis we define F' < 10 as low fold
region and F' > 10 as high fold region. From Figure 5.1 it is more likely that we observe
low I,, when the Dictyostelium cells are stimulated with low fold than observing high I,
caused by higher F' ! . The conditional probability of observing a low I,, given low fold
is significant only for a small range of I,. For example, P(I,|F' = 2) is only significant
for I, in the range of I, = 0.15 ~ 0.36.

Due to saturation, stimulating cells beyond F' = 20 does not increase the chances of
observing a higher I,,. A positive skewness can be seen for distributions of observed I,
stimulated with large F'. The saturation of estimated mean pj for fold F' > 20 as in
Figure 4.8 ensures that within this range, the P(I,|F) does not have significant support

along the I, axis.

'Note that I, responses are normalized as described in chapter 4. Therefore observing low I, trans-
lates into observing a high fluorescent intensity distributed uniformly across the cell.
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Figure 5.1: The conditional probability; the probability of observing I, values
given measured fold change in cAMP F, P(I,|F'). Results are shown for F' =
1.6,1.8,2,4,6,8,10, 20,40, 60,80,100. The Fold F' axis is set in log scale for
readability purposes.

5.4 Modelling prior fold based on experiment

In this section our goal is to extract what the internal belief of fold change is by looking
at the response of the cells to artificial gradients. We model the prior P(F') by using
information on cell movements measured experimentally by Amselem et al. (2012) in
the study of Dictyostelium chemotaxis. Dictyostelium cells’ directional responses to a
gradient of chemoattractant is quantified by the chemotactic index which is the distance
travelled in the direction of gradient divided by the total distance travelled by a popu-
lation of cells (Skoge et al., 2010). Alternatively one might also track their motility in

terms of velocity and angle in microfluidic devices (Song et al., 2006; Meier et al., 2011).

Amselem et al. (2012) generated a stable linear gradient in a microfluidic chamber con-
taining a population of Dictyostelium cells. The direction of the gradient is one di-
mensional as illustrated in Figure 5.2A. Concentration is strongest at one end of the
chamber at location x = xg while cAMP is zero at the opposite end at x = L. Figure
5.2B illustrates the cAMP concentration profile in the microfluidic chamber. Each cells
were then tracked by microscopic imaging and the velocity and angle of movements were

recorded. The distribution of velocity v and angle ¢ recorded by Amselem et al. (2012)
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Figure 5.2: (A)Illustration of a single cell chemotaxis in the stable gradient
microfluidic chamber as reported in the experiment by Amselem et al. (2012).
The corresponding coordinate system is also defined. cAMP concentration is
strongest at xg. (B) cAMP concentration in the microfluidic chamber is mod-
elled as linear function of location x.

are reproduced in Figure 5.3A and B. We found that the distribution of velocity v can
be characterized using a modified one dimensional Maxwell-Boltzman distribution. The

fitting of probability density function fi (.)

fv (o, B,0) = yoPe s (5.5)

to data points indicated by the black crosses in Figure 5.3A resulted in a good fit with
SSR = 0.0003. The fitted parameters are v = 0.0469, 8 = 0.5647, and o = 97.4319.
The result of fitting fy(.) with stated parameter values is shown as a red dashed line in
Figure 5.3A. The integration f0+oo f(v)dv = 1 applies as v can only take non negative
values and subsequently solving the probability is done by P(v) = [ fv(v|y, 3, a)dv.

Figure 5.3B shows that although a large portion of cells show chemotactic behaviour
indicated by frequency data in the range of —7/2 < ¢ < 7/2, there exist a portion of
cells that moved in the opposite direction of the gradient cAMP. We have tried fitting
data points in Figure 5.3B with pdf from known family of distributions in order to derive
a functional form for the angle variable ¢. But we did not manage to find any density
function that fit nor describe Figure 5.3B well. Hence the probability of angle P(¢p) is
computed directly from Figure 5.3B.
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Figure 5.3: Distribution of velocity and angle of cells reproduced from Amselem
et al. (2012). Data points in black crosses and lines were extracted by using
ginput function in MATLAB. Each points represent the center of one histogram
bin in Figure 2C and 2D of Amselem et al. (2012). (A) Distribution of velocity.
Red dashed lines indicates fitted results. Refer text for details on the probability
density function (pdf) equation and its parameter. (B) Distribution of angle
where —7/2 < ¢ < 7/2 indicate the gradient direction, (7/2 < ¢ < 7) or
(r/2 < ¢ < m) are cells that swim away from the direction of gradient. Cells
swim perpendicular to the gradient when ¢ = 7/2, —7/2.

5.4.1 Modelling fold change inside a chamber with linear gradient

In order to derive the prior P(F’), we first model the fold change experienced by the cell
when moving from x; to X9 in the microfluidic chamber as illustrated in Figure 5.2A
where x;,9 = 1,2 is the distance ¢ from the gradient source. Unlike many studies on
Dictyostelium gradient sensing where fold is often defined as the ratio of concentration
sensed across the length of the cell (Mato et al., 1975), here we define FCD as what
the cell senses when moving between two locations. A single cell at x; will experience
a concentration of ¢(x;). When the cell swims with velocity v and at an angle ¢ with
respect to the applied gradient, the distance travelled Ax along the gradient is obtained
by

AX = vT oS ¢ (5.6)

where 7 is the duration of the migration time. The new horizontal location of xo is

derived as

X9 = X| — UTCOS® (5.7)
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Due to the fact that the gradient is the same everywhere in vertical direction, it is only
necessary to consider the concentration of cAMP at its new horizontal location ¢(x3).

The fold change experienced by the cell is then defined as ratio of concentrations as

(5.8)

In order to describe the model of cAMP concentration ¢(x) here we refer to how a linear
gradient was generated in the experiment by Amselem et al. (2012). Both Song et al.
(2006) and Amselem et al. (2012) generated a linear and stable gradient of cAMP using
modified versions of pyramidal microfluidial network, a technique previously established
by Jeon et al. (2000). Different concentration of cAMPs were mixed through networks
of microfluidic channel where cAMP fluid flows parallel into the microfluidic chamber
containing Dictyostelium cells. The analytical solution for a linear gradient of cAMP
was previously derived by Postma and van Haastert (2009). They modelled the one
dimensional diffusion of cAMP in a concentration gradient generated in a Zigmond
chamber? given as
oc(z,t) 0?

where D(um?/s) is the diffusion coefficient of cAMP and ¢(z, t) is the cAMP concentra-
tion at distance x from the source at time ¢t. Given that the concentration is maximal at
xo and zero at x = L where L is the length of the chamber, the solution at equilibrium

yields

c(z) = co(1 — L) (5.10)

L
where ¢y denotes the maximal concentration at xg (Refer Figure 5.2B for illustration of
the concentration profile of the linear gradient). Substituting equation 5.10 in equation

5.8, we obtain the fold change F

F = EL (5.11)

where the term ¢y cancels. The location variable x» is as defined earlier in equation 5.10.

Therefore the fold change can be expressed as

In a Zigmond chamber, cells were placed under a glass bridge supported by two glass strips. Two
blocks of agar as chemoattractors are then placed at each side of the glass bridge. The linear gradient
is created by the two blocks of agar(Postma and van Haastert, 2009).
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L — (x1 — vTcosyp)
L — T
-
= 1+ chosgo (5.12)

where A = L—x7 and 7 > 0. The condition A > 0 applies, constraining location x; which
can not be further than the length of the chamber(z; < L). Here we treat 7 and X as
constants. The derived fold change is then F' = g(v, p; 7, \), a function of two variables;
velocity v and angle ¢ parameterised by two constants 7 and A\ where g : RT™ — R™.
The range of ¢ considered is consistent with the range of data in Figure 5.3B where
—7m < ¢ < 7. Figure 5.4 is the result of equation 5.12 plotted for the considered range
of p and 0 < v < 30. Fold F is either an increasing or decreasing function determined
by angle ¢ and has a slope of 7/\. It can be easily seen from equation 5.12 and Figure
5.4 that F' = 1 when ¢ = —7/2,7/2. It is also observed from Figure 5.4 that fold F’

increases maximal when the cell swims directly up the gradient at ¢ = 0.
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Figure 5.4: Fold change F' = g(v,;7,A) as a function of velocity v and angle
o computed from equation 5.12. Parameters are fixed as 7 = 0.015, A = 1.

We introduce here the constraints imposed to ensure a logical definition of equation
5.12. When the cell swims in the direction of the gradient (cos(¢) > 0), the maximum

distance that it can travel is limited to x; where this constraint is expressed as
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vT cos(p) < x; (5.13)

Equation 5.12 is then upper bounded as

F<l4-—21

(5.14)
_—

If the length of the chamber is hypothetically long L — +o00, and the distance x; at
which the cell is located is close to L (x1 = L + §, where § is small distance between
L and z7), then the maximum fold change that can be sensed by the cell is F' — +o0.
The possible range of fold change is then F' = (1, +0o0].

When the cell swims in the opposite direction of the gradient (cos(¢) < 0), the cell can

travel no further than L — z1, and the constraint is expressed as

|vr cos(p)| < L — (5.15)

Similar as before, equation 5.12 is lower bounded as

F>1_L-m

1
- L—1z1 (5.16)

where the minus sign is due to cos(¢) < 0. The minimum ‘reduced’ fold change sensed
is F' = 0, and the range of fold change is F' = [0,1). This is in line with the definition
of fold change where F' < 0 is not possible. No fold change F' = 1 is sensed when the

cell is static (v = 0) or when it swims perpendicular to the direction of the gradient
(cos(p) = 0).

5.4.2 Conditional density by transformation of random variable

Now that we have a model of fold F' defined by equation 5.12 and characterized the
pdf of velocity v in equation 5.5, we proceed to derive the pdf of fold F' conditioned
on angle ¢,f(F|p) using the transformation of random variable technique. We have
established the relation between fold F' and v through F = g(v, ¢;w). For a fixed angle
¢, the function g(v|y;w) is differentiable and monotonic where g(+) is a strictly increasing
or decreasing function. Let V be a random variable representing any possible value of
velocity v described by density function fy (v). Since V' is a continuous random variable,
F* = ¢g(V) is also a continuous random variable. The density of F™* is then derived using

the transformation of random variables as
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Fer(F) = fola™ ()| oo™ ()| (5.17)

where fi/(-) is the density function for velocity derived earlier in equation 5.5. ¢~!(F)

is the inverse function and is obtained by rearranging equation 5.12 as

A
-1
F) = F-1 1
P = () (515)
F-1
TS Sk (5.19)
Cosp
where w = A/7 is introduced for brevity. The derivative of the inverse function is
computed as
d _; w
— F) = 2
ar? =0 (5.20)

Putting it all together, the density function of fold F' given angle ¢, f(F'|¢) is derived

as

(F - 1>)ﬂexp (et 1>/cow>2) (5:21)

Cos o

fr-(Flp) = (w

w
cosp

Since the fitted parameter 8 = 0.5, the conditional density function can be rewritten as

w

f(Fle) =~ w

(F — 1)exp <—(w(F — 1)/ cos 90)2> (5.22)

COSY o

cosy

Previously, we introduced restrictions to the range F' with respect to ¢ to maintain a
logical definition of equation 5.12. Similarly here we consider restrictions imposed by
@ on the density function. In order to avoid solutions with complex numbers due to
(F—1) : : .
TR the range of F is F' > 1 for ¢ that results in cosp > 0 and Fis0 < F <1

for ¢ where cosp < 0. In the case of ¢ = m/2,7/2, the density function is undefined for

w > 0 and zero for w = 0 due to |w/cosf|.

The result of plotting equation 5.22 for different angles ¢ is shown in Figure 5.5. When
a Dictyostelium cell moves in the opposite direction of the gradient, it is more likely
to sense a much reduced fold change as the angle of deviation widens as indicated in
Figure 5.5A. In contrast Figure 5.5B shows that the cell is likelier to experience a wider
and higher range of fold change when swimming closer to the gradient direction. Both

Figure 5.5A and B shows that the probability of sensing fold change close to 1 is the
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Figure 5.5: Conditional probability density function f(F|p) from equation 5.21
plotted for various range of . Different values of w are used for readability and
contrasting purposes. Areas under all curves are equal to 1. (A) When cosp < 0
with w = 30. (B) When cosp > 0 with w = 0.2

highest with the width of the density narrowing as the cell swims perpendicular to the
gradient indicated by curves of f(F|¢ = 7/8) and f(F|e = 117/8).

5.4.3 The constraint on w

Throughout our derivation is based on available experimental data and we have treated
the term w = A/7 or equivalently w = L — z1/7 as a constant. As a result we have
observed in Figure 5.5 how different values of w leads to different density function curves.
If w can be arbitrarily chosen, then for certain values of w the density function of
equation 5.21 with fixed parameters -, 5, @ would not integrate to 1. We derive here the
restrictions on w in order to ensure the density function integrates to 1. Equation 5.15

can be rearranged in terms of the components of w as

vr|cosp| < L —x

T 1v|cosgo| < 1

L—:L’l

T

v| cos ¢ (5.23)

Vv

7 is previously defined as the duration of time that the cell moves. When a change
in concentration is detected, the time that it takes for the response of intracellular
RasGTP to return to its steady state after stimulation is denoted as Tyqqp¢ as illustrated
in Figure 5.6. Introducing external stimulus during this refractory period will not yield
any response from the cell. It is known that the cell moves in steps where the steps are
either caused by the sensing of fold change or just a random walk. Therefore duration

of cell movement 7 can be further defined as
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Input

to t; Time [T]

Output

ZO‘

Zmin

Time [T]

Figure 5.6: Illustration of Figure 2E experiment result by Takeda et al. (2012)).
Upper panel shows the step up and step down cyclic AMP input where x
= 100 nM and x’=1puM. Lower panel is the average response of RasGTP in
Dictyostelium cells to the step input of the upper panel. Also indicated in
the lower panel are the time durations for various response behaviour where
Ty = 198, Tadapt = 508, Treset = 60s.

T = trcD + trandom

where tpcp is time of movement caused by fold change detection and t,andom 1S time of
movement caused by random walk. During the period T4,y the cell has moved between
two location x1 and z2 regardless of the number of steps. These movements during T}, qqp¢
are considered as movements caused by fold change and therefore 7 is lower bounded by
Thdapt such that

T 2 Tadapt (524)

where the duration of a movements must be at least the length of time of the refractory
period. Like I, and T}, that has been mainly the subject of our discussions so far, the
duration of cellular property Tyqqp¢ varies between cells and is determined by the internal
parameters(deterministic approach). The value of Tygqp: is extracted from Takeda et al.
(2012) Figure 2F experiment result. The result shows the average response and variabil-
ity of Dictyostelium cells to a step change of cyclic AMP input up from 100nM to 1uM
and down from 1M to 100nM. From the figure, the duration of Tf44p: is = Imin. The
maximum velocity recorded in the experiment by Amselem et al. (2012) is v = 30um

min~ 1. Therefore the minimum length of the microfluidic chamber L — 7 is
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L—1z1 > vT|cosy|
> (30pm/min)(1min)|cosy]
> 30pum

where [cosy| is maximum at ¢ = 7, —7 and consecutively w > 30pm/min.

5.4.4 Chemotaxis experiment based prior

Now that we have an analytical expression for the conditional density function, the

conditional probability of fold F' given angle ¢ is then solved by

F+op

P(F € F 4 oplp) = /F  HFlpar (5.25)

Due to restrictions imposed on the density function by angle variable ¢ as discussed
earlier the value of w must be chosen such that the integration f1+°° f(Fl—m/2<p<
7/2)dF =1 and fol f(F|—m<¢<—7/2,7/2 < ¢ <7)dF =1 applies. Thus the prior
P(F) representing the probability of a Dictyostelium cell sensing fold F' regardless of

angle is derived as

P(F) =Y _P(Flp)P() (5.26)
®

The probability of angle P(y) is solved directly from Figure 5.3B. Each points in Figure
5.3B represents a center of the histogram bin in Figure 2D of Amselem et al. (2012). The
width of each histogram bin is /9 and therefore the probability of angle P(p = x) is
the result of the height of the histogram represented by the frequency multiplied by the
width. Equation 5.26 is then solved numerically for discrete values of angle ¢ indicated
in Figure 5.5B.

In the case of P(F' = 1), the probability of P(F' = 1|p = —n/2,7/2) is solved separately
because the conditional density function is non-integrable since we have defined the
equation 5.12 such that F' = 1 is only possible when ¢ = —7/2,7/2. However it is
not accurate to assume P(F = 1) = 0 as Figure 5.5B clearly shows that there are cell

movements perpendicular to the direction of gradient at ¢ = 7/2, —7/2. Therefore for
P(F =1)
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P(F=1) = Y P(F=1p)P(p)

— P(F=1lp= —n/2)P(p = —7/2) + P(F = ljp = n/2)P(p = 7/2)
= (1)(0.0515) + (1)(0.0534)
= 0.1049

If a cell is observed to move at angle ¢ = —m/2,7/2 the probability P(F = 1|p =
—m/2,7m/2) = 1 regardless of velocity because the gradient is one dimensional. Prob-
ability P(¢ = —m/2) and P(¢ = m/2) are both obtained by computing the area un-
der the density curve of Figure 5.5B resulting in P(F = 1) = 0.1049. The result
above is combined with numerical solution to equation 5.26 where conditional prob-
ability P(F|¢) = [ f(Fle;w,v, B, «)dF and the density function parameters set as
w = 30,7 = 0.0469, f = 0.5647,« = 97.4319 . The computation result for prior P(F')

distribution modelled based on chemotaxis experiment is shown in Figure 5.7.

0.25

0.05¢ 7

T J\

107" 10° 10’ 102
Fold, F

Figure 5.7: Prior Probability of Fold P(F') averaged over all angles and modelled
based on chemotaxis experiment data. The parameters are fixed as w = 30,y =
0.0469, 5 = 0.5647 and « = 97.4319.

It can be observed from Figure 5.7 that the prior is significant for only a narrow range
of approximately F' = 0.2 ~ 2. As a short summary, we can infer the probability of cell
sensing increased fold change as P(F > 1) = 0.5910 where this is also the probability
of cell swimming up the gradient P(F' > 1) = Pfopypard- Likewise the probability of cell
sensing reduced fold change is P(0 < F < 1) = 0.3040 and similarly this is also the
probability cell moving in the opposite direction of gradient P(0 < F' < 1) = Prgckward-
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Lastly the probability of the cell sensing no changes in fold is P(F = 1) = 0.1049 which
indicates the cell swimming perpendicular to the gradient P(F' = 1) = Pperpendicular-
Therefore our model here indicates that there is a probability of 60% that a Dictyostelium
cell senses an increase in fold change. The prior probability of fold derived here is referred

hereafter as the ‘chemotaxis prior’.

5.5 Uniform, exponential and Weibull Distribution as al-

ternative priors

Although we have modelled prior P(F') based on chemotaxis experiment as Figure 5.7,
it is interesting to compare with other alternative priors modelled differently. Among
the limitations posed by the experiment based prior is that the one dimensional linear
gradient setting does not approximate the gradient found in a natural environment.
Considering that extracellular cAMP is not only diffused but is also degraded by cyclic
nucleotide phosphodiesterase (PDE) secreted by Dictyostelium cells themselves (Suc-
gang et al., 1997), the cAMP gradient is more likely to be exponentially decreasing in
time and space. The exponentially decreasing gradient of concentration cAMP is mod-
elled in chapter 6. In this section we assume that the alternative priors are drawn from
established families of distribution. How does different priors affect both the distribution

of marginal and posterior probability?

We chose the uniform, exponential and Weibull distribution as three alternative model
priors. The uniform distribution as a non-informative prior is a sensible choice in the
absence of information on gradient3. This would remove preferences to any fold change
considered and in general allow information from the experiment data to contribute
more to the posterior. Whereas the uniform prior assigns equal weights to each fold
change, the exponential prior is selected to reflect a strong bias towards low fold and
the Weibull prior to represent bias in a specific range of fold. Given fold range F =

(1.1,1.2,...,F},...,100), the uniform prior is computed as

F+ép 1
P(F,eF;+6 :/ —dF
( J J F) Fj—éF Fma:p - Fm'm

where in our case Fy;, = 1.1, Fiq. = 100. The exponential prior is computed as

Fij+éF
P(Fj € Fj +6p) = / e MiTlgp
Fj—6p

3We acknowledge that the non-informative property of the uniform distribution is subject to debate.
One example of this disputation is given by Zwickl and Holder (2004) where the uniform prior leads to
a biased estimate of the posterior in the general time-reversible model. A more suitable candidate for a
non-informative prior is the Jefrey’s prior (Jeffreys, 1946).
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where the degradation rate parameter A = 1/20. The Weibull prior is computed as

Fitor | Fy—1
P(F; eFjiaF):/ T T ey g e (5.27)

Fj—6p 7 Y

where the shape parameter is k = 1.5,k < 0 and the scale v = 23,y > 0. We solved the
prior probability for VF; € F and showed the results as panels in the top row of Figure
5.8 The exponential and Weibull functions are shifted along the horizontal by 1 as the we
only calculate from F' = 1.1. The integral width § is chosen such that S"5=19 p(F) = 1.

5.6 Marginal and posterior

Now that we have computed the conditional probability P(I,|F') and prior distribu-
tion P(F'), we proceed to compute the marginal and subsequently solve the posterior
probability of a cell sensing fold F; when we have observed a certain I,; value. The
marginal probability of observing I,; is obtained by integration over all probabilities of

fold change given by the prior

P(I;) = Y P(I,|F;)P(F))
F;eF

where P(I,;|Fj) is the conditional probability (Figure 5.1) and P(F}) is the prior. The
results of computing the marginal distribution by considering all values of I, ; € I, with
different priors modelled earlier are shown as panels in the second row from the top of
Figure 5.8. The chemotaxis based prior distribution is normalized in the range of F =

(1.1,1.2...,100) to match the discrete range computed by the conditional probability.

5.6.1 Conditional probability and the bias of priors is reflected in dif-
ferent region of the marginal

Figure 5.8 indicates that it is more probable to observe I, in the range of I, > 0.5 when
the marginals are computed by the alternative priors. The marginals of alternative priors
also demonstrate unimodal characteristics where a large portion of the total probability
is made up by I, > 0.5 with maximal at I, ~ 0.74. The comparatively high probability
in the region of 0.5 < I, <1 is caused by saturation of the mean ,uIZ given fold F' > 20
at I, ~ 0.74 (Refer Figure 4.8). The marginal distributions are affected only sightly
by the alternative priors in the region of I, < 0.5. In contrast, the marginal by the
chemotaxis based prior shows that most of the chances of observing I, lies within the
range of I, < 0.2. The distribution is bimodal and has peaks at I, = 0.1 and I, = 0.7
where the probability of the former is significantly higher than the latter. The marginal
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is affected by the strong bias concentrated in region of lower F' of the chemotaxis based

prior.

5.6.2 Posterior reveals that detection of high fold change is highly
unlikely

Having computed the marginal distributions with different types of priors, we proceed
to solve the posterior probability that the fold detected is F; given observed response of

I,; as

P(Ip| F;) P(Fy)

The numerator part is also the joint distribution between I, ; and F; denoted as P(I,;, F})
P(I,;|F;)P(Fj). The equation above is solved for all VI,; € I, and VF; € F to yield
a distribution of posterior. The results are shown over two rows in the bottom half of
Figure 5.8 where only results for selected I,,; € I, are displayed for readability purposes.
In the same way that we analysed the marginals, the posteriors computed from different
priors are also shown in separate columns. The second row from the bottom indicates
posterior of fold given observed I, = 0.1,0.2,...,0.5 (low I,) and the bottom row for
I, =0.6,0.7,...,1 (high I,).

Two stark contrasts can be seen from Figure 5.8. Firstly, the posterior probability of
fold detected for I, < 0.5 and I, > 0.5 is of a different magnitude. This can be seen
from the difference in scale of the vertical axis between the two bottom rows. Secondly,
given that we observed I, < 0.5, the probability of detecting fold is only in the range
of FF <10 and it is highly unlikely that F' > 10 is being detected. Likewise the chances
of detecting F' < 10 is almost non existent if I, observed is I, > 0.6. In this range,
although the chances are comparatively small, it is more likely that the fold detected
is of ' > 10. Regardless of the priors, the posterior distributions indicates that the
probability of detecting fold F' < 10 decreases almost exponential-like as the observed I,
is higher. Thus it can be concluded that the range of fold that is significantly enough to
be detected is within F' < 10 and it is highly unlikely for the population cells to detect
fold change beyond F' = 10.

5.6.3 Posterior is strongly influenced by the conditional probability
regardless of prior bias

In order to understand the effect of priors on the posteriors, we first study the posterior
based on the uniform prior shown in the second column of Figure 5.8. As each prior

fold is equally likely, any occurring bias in the posterior is a result of the conditional
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probability. The uniform prior based posterior serves as a benchmark when studying
the effects of other priors. The effect of bias in the exponent and Weibull prior is
only evident on the posteriors conditioned on high I, at I, > 0.5. It is only when the
bias is concentrated in the region of small fold as provided by the chemotaxis based
prior that the shape of the posterior distribution conditioned on low I, is affected. The
distribution shape for P(F|I, = 0.3) has two peaks with high probability assigned to
fold F = 1.1. Because the chemotaxis based prior assigns almost zero probability to
F > 2, the posteriors derived in the region where I, > 0.5 is of the same dynamics as

the uniform based posterior.
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Figure 5.8: Results of inferring the posterior probability of the fold sensed by a cell is F given an observed Ip P(F|I,) using Bayes’
theorem. Each column represent results from using different priors. The results for the posterior distributions are divided into two
parts with different scale. Only sample results are shown for the posterior. Axes are scaled identically except where doing so would
significantly reduce the readability of the plot.
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5.7 Background dependencies

In this section we investigate how different background concentration of cAMP influence
the conditional probability and subsequently the posterior of P(F|I,, z) where x denotes
the background cAMP. The comparison will be between background z = 1InM and
x = 100nM. The procedure of solving the posterior is the same as when we solve for
the conditional probability and marginal for different priors. The difference lies in the
density function used to solve for the conditional probability where it is dependant on
both fold F' and background cAMP x.

5.7.1 Conditional probability

To solve for the conditional probability of I,,; given stimulus fold F; and background

cAMP z, we integrate the density function of equation

Ip,i+5 1 (L, — "2
PI~€I-j:6F-,:n:/ ex( bt P >dl-
2 . 15, @) Ipi—6 1 7z'Uaci,Fj\/% P 20’9261_7Fj bt

= ’L':F'
Each of the mean Ipw J

imated by a quadratic function respectively as previously derived in equation 4.5 and

and standard deviation o, r; of the density function is approx-

equation 4.6

~x;,F} F; F; F;
I, = a)’z? +b 2 + ¢’

Fj o  ,Fj F;
Opp,Fy = "7 + by mi + ¢y

where the quadratic parameters ay, by, ¢, k = 1,2 are functions of fold I itself as sum-
marised in table 4.1. The result of computing P(I,;|Fj,x) for all I,; € I, F; € F
and x = (1,100) is shown in Figure 5.9. The result shows that the distributions of
P(I,|F,z) for both background cAMP becomes more and more similar as the condi-
tioned F' increases, indicating saturations. However, the uncertainties do not increase in
the manner where P(I,|F,x) distributions become more right tailed as we have clearly
observed in Figure 5.1. Compared with Figure 5.1, there is a higher confidence about
the level of I, that can be observed given a particular fold change in stimulus in both
background. Figure 5.9B shows that when the fold change in stimulus is based upon a
stronger background, the saturation of P(Ip|F,z) happens at a faster rate. Interestingly
enough, stimulating cells with fold of stronger background does not increase the prob-
ability of observing higher I,,. In fact with background cAMP 2 = 100nM, the highest
I,, that is likely to be observed is limited in the range of I, = 0.5 ~ 0.71. If we want
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Figure 5.9: Conditional probability distribution P(I,|F,z) with background
cAMP dependencies

to increase the chances of observing higher I, then we should stimulate cells with high
fold of lower background such as fold F' = 10 with = 1nM that yields observable I,, in
the range of I, = 0.93 ~ 1.14 (Figure 5.9A). The P(I,|F,z = 100) distributions given
F > 20 overlapped more compared to P(I,|F,z = 1) conditioned upon the same fold
range. Therefore, we can expect that P(Ip|F, z) distributions are also more distinguish-
able when conditioned upon stimulus fold in the range of F' > 20 of weaker background

cAMP. Using the overlapped areas as a measure of establishing distinguishable folds as
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what we have done in chapter 4, we can also expect that the stimulus folds are easier to

distinguished when the background concentration is weak.

5.7.2 Marginal and posterior

The marginal with background dependencies P(I,;|x) is solved as

P(Ip,i

z) = Y P(IpilFj,z)P(F})
FjeF

where P(F}) is the different types of priors modelled earlier. The result of computing
the marginal for all I,; € I, F; € F,z = (1,100) and for the different types of priors is
shown in Figure 5.10. The result shows that in general when the background cAMP is
strong the marginal distributions yielded is denser with a narrower significant range that
shifts to the left. Figure 5.10 indicates that with the exception of the marginal based on
the chemotaxis prior, we are likely to observe lower I, in the vicinity of I, = 0.5 when
there is a strong background concentration regardless of the amount of fold change itself.
The chemotaxis based prior marginal maintains its bias towards observing very low I,
in the range of I, = 0.11 ~ 0.2 although with stronger background cAMP, the chances

of observing around I, = 0.5 slightly increases.
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Figure 5.10: Marginal probability distribution P(I,) with background cAMP

dependencies.

Finally the posterior with background dependencies is solved as
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P(1pilFj, =) P(F})
P(lpilz)

P(Fj|I,;,2) =

where as before it is solved for I,; € I, Fj € F,z = (1,100). The result is shown in
Figure 5.11. As expected, the effect of background cAMP emerges when the posterior
is conditioned upon I, > 0.5 (indicated in panels of second and fourth row from top)
as this is the region where the saturation of the conditional probability occurs. For
example, P(F'|I,) conditioned on I, = 0.6 has high probability values in the range of
F =4 ~ F =10 when derived from conditional probability based on weaker background
cAMP. In contrast, the same posterior has lower probability values in the range of
F =10 ~ F = 100 when the background cAMP of fold change used to stimulate the
conditional probability is stronger. As can be seen from panels of the second and fourth
row, this trend is evident across all priors. Therefore conditional probabilities with a

slower saturation rate results in a more separable posteriors.

With the exception of the chemotaxis prior based posterior, the influence of priors bias
on the posterior is only visible for when the conditioned I, is in the range of I, > 0.5.
Like the priors, the effects of background cAMP on the posterior is also noticeable when
the posterior is conditioned upon the region of I, > 0.5. Only with a strong bias towards
lower fold as shown by the chemotaxis prior can we see the changes in the posterior of
fold distribution conditioned upon I, < 0.5.
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Figure 5.11: The results for the posterior distributions with background dependencies. Results are separated according to the prior
type (column) and background cAMP(row). Only sample results are shown. Axes are scaled identically except where doing so would
significantly reduce the readability of the plot.
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5.8 Summary

This chapter is devoted to model for fold change F and response peak I, the condi-
tional probability P(Ip|F), prior P(F'), marginal P(I,) and finally derive the posterior
probability distribution P(F'|I,). We modelled the prior based on chemotaxis and also
included priors chosen from some family of distribution for comparison. The conditional
probability shows that the probability of observing lower I, given small fold would al-
ways surpass the conditional probability of observing higher I, no matter how strong
the stimulus fold is. The chemotaxis prior shows that small fold changes have higher
chances of being sensed and that the conditional probability drops almost exponentially

for larger folds.

The biggest take-away message however, lies with the derived posterior probability of
fold P(F|I,). We can see a slight ‘anti-bayesian’ effect * where the posterior is pri-
marily determined by the conditional probability and where only a very strong bias in
the prior will swing the posterior towards the prior. This suggest that the chances of
sensing a particular small fold although is obviously very high, but more importantly
is also primarily determined by the conditional probability where its behaviour in turn
is dependent on the characteristics of the population of virtual cells and constrained
by the limitation of the model ODEs. The stimulus statistics computed and as seen in
the chemotaxis prior does not pose much influence and therefore regardless of what the
cell’s internal beliefs are, what is more important is what does the population has to say.
The effects of background cAMP is similar to the priors where it is apparent in poste-
riors conditioned upon high I,,. Again, only the chemotaxis prior which biases strongly
towards lower fold, changes the posterior conditioned upon lower I, in both weak and
strong background cAMP. The probability components derived in this chapter will be

used to model the cell’s internal perception in the next chapter.

4 Anti-Bayesian effect is when the estimated posterior is repulsed away from the prior mean by the
likelihood. We will discuss this further in chapter 6, specifically in section 6.2.






Chapter 6

Relation with the external world

6.1 Introduction

The stimulus-perception-response mechanism of a biological organism is often studied
at a coarse level, where the signalling pathway is viewed as a ‘communication channel’
rather than analysing the complicated intracellular bio-chemical reactions that constitute
it. The objective is then to maximise the propagation of information along the pathway
for the organism to make decisions as accurate as possible (Sims, 2016; Marzen and
DeDeo, 2017). This information theory approach has also been applied to the study of
Dictyostelium cells where the rate of information that must not be corrupted in order for
cells to make decisions on motility was derived (Iglesias, 2016). In this chapter instead of
analysing the full stimulus-perception-response mechanism, we introduce the ‘Bayesian
Observer Model’ (referred hereafter as the ‘Observer Model’) from the field of theoretical
neuroscience in order to characterize the stimulus-perception of FCD of Dictyostelium
cells. Some parts of the model’s components have already been characterized in chapter

4 and 5 as described in the next section.

We begin by introducing some background literature and key concepts on how stimulus
information is encoded by sensory systems modelled by the Bayesian hypothesis. We
also describe the motivation of applying the Bayesian approach in the context of FCD.
We then describe a formal definition of the Observer Model and its components. We
present a novel characterization of extracellular fold change as required by the model.
We evaluate in detail the perception of FCD by Dictyostelium cells as derived from
the Observer Model against the extracellular fold change model. We also quantify the
prediction of the fold change in stimulus by the Observer model. Finally we compute the
fold change perceptual bias and fold change distinguishability threshold as characterized
by the Observer model and examine whether a relation between these two properties

exist.

89
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6.2 The Bayesian Observer model

6.2.1 Motivation

Before we introduce the Bayesian Observer model and its components, we present here
some background and key principles of the model that motivate us to apply the Bayesian
approach to the sensory system of FCD. Human sensory systems such as vision and
hearing are not perfect and therefore there are differences between the actual external
stimulus and perceived stimulus encoded by our neurons. This amount of deviation of
the perceived stimulus from the actual stimulus forms the bias of our perceptions. One
explanation for the observed bias is that our perceptions are heavily influenced by our
prior beliefs. An example is a kilogram of feathers and a kilogram of lead where the
lead is perceived to be heavier even though both are of the same weight. Intuitively,
the bias observed can be attributed to our internal belief or our prior knowledge that
lead is heavier. However, biases in perceptions also work in the opposite direction of our
expectations. An example is when comparing the weights of two objects of the same
mass but of different heights where results showed that shorter objects are perceived

heavier, creating a size-weight illusion (Usnadze, 1931) .

The Bayesian hypothesis suggests that our perception is a result of the sensory system
trying to optimize the computation of the sensed stimulus combined with prior knowl-
edge (Curry, 1972). A Bayesian model of perception would therefore consists of two

main components; the prior and the likelihood.

Efficient encoding of the stimulus statistics

However, the Bayesian approach has been heavily criticised because of the inclusion of
the prior and likelihood components and that they are often chosen arbitrarily or out of
mathematical conveniences (Gelman et al., 2008). Wei and Stocker (2015) presented a
Bayesian Observer model based on the efficient encoding hypothesis which constraints
the priors and likelihoods. The efficient encoding hypothesis suggests that because of
the limitation imposed by the neural resources, the firing of neurons (which collectively
is the sensory representation of the stimulus) are optimized to the prior distribution of
stimulus (Barlow, 1961). In the context of FCD, the responses of Dictyostelium cells is
akin to the firing of neurons. Using the efficient coding hypothesis, if observing changes
of two fold in the surrounding cAMP concentration is statistically likely, the population
of cells would optimally represent the uncertainties of the external stimulus fold change

F = 2 compared to other unlikely fold changes in stimulus cAMP.
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Anti-Bayesian effect

As a result of imposing constraints on the priors and likelihood by the efficient encoding
hypothesis, the Bayesian Observer model derived by Wei and Stocker (2015) suggests
that perceptions are often subject to the anti-Bayesian effect. We illustrated the anti-
Bayesian effect in the context of FCD in Figure 6.1. In Figure 6.1, the uncertainties of
the external fold changes in stimulus is represented by the prior P(F), the likelihood
P(Ip|F) is the sensory representation of stimulus fold F' and the posterior P(F'|I,) is the
perception. If the estimated F' derived from the perception is repelled from the prior,
then the bias observed is anti-Bayesian. In this way, perceptions that are influenced
more by the prior are deemed Bayesian and those that are repelled away from the prior
are deemed anti-Bayesian. The problem of weights of lead and feathers given earlier is
an example of a Bayesian perception while the size-weight illusion problem correspond
to an anti-Bayesian perception.

Prior mean

Likelihood mean
Posterior mean

F

True

F

Figure 6.1: Illustration of the anti-Bayesian effect produced by the Bayesian
model of perception (Wei and Stocker, 2015, 2012). Posterior estimate (mean) is
biased away from the prior by the likelihood. Vertical black solid line represents
the true value of stimulus denoted as Fryye-

We ask whether it is possible to apply the Bayesian approach to model the perception of
FCD by the population of (virtual) Dictyostelium cells. By casting the sensory system
of FCD in this context, it is hoped that questions such as What is the biases in the
perceptions of FCD? and Does the biases also demonstrate anti-Bayesian effects? can
be addressed. The latter question has been partially addressed in the previous chapter

where we showed that the inferred posterior exhibits anti-Bayesian effects.

6.2.2 Model components

In this section, we will see how the probability components derived in the previous
chapter are used in modelling the cell’s perception of fold change. The ‘Observer Model’
was proposed by Wei and Stocker (2015) as a model consisting of an encoding and
a decoding mechanism to explain the possible computation of sensory information by
cognitive systems. The model is illustrated in the context of FCD in Figure 6.2. The

uncertainty in the extracellular stimulus fold P(F') is encoded by the Dictyostelium
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cells and represented internally by the sensory variable I, as P(I,|F). The Bayesian
decoding mechanism then incorporates the population of cells’ own belief or prior about
the uncertainty of the stimulus fold. The result is an estimation of F' denoted as F which
represents what the cells perceive the external fold to be. Some loss of information during
both encoding and decoding process is inevitable as the model is assumed imperfect and

subject to the influence of noise.

Observer Model

~ Sensory InternaI\

representation Perception

Stimulus —| *.4, Likelihood *.®
Fold
P(IpIF)

Bayesian Decoding

S e

Distinguishability '

Figure 6.2: The Bayesian Observer Model by Wei and Stocker (2015)

Chapter 4 therefore can be considered as a characterization of the encoder and chapter 5
can be viewed as an attempt to model the decoder mechanism. The posterior probability
of fold P(F|I,) inferred in chapter 5 then forms the ‘internal perception’ of fold change or
what the population of virtual cells perceive the distribution of the extracellular stimulus
fold to look like. Hereafter P(F'|I,) is referred interchangeably as ‘internal model” and
‘internal perception’. The inferred posterior P(F'|I,) is also referred interchangeably as
P(F|I,) when discussing in the context of posterior of estimates. What is yet to be

characterized is the uncertainty of the extracellular fold change P(F).

6.2.3 Bias and distinguishability threshold as measures of perception

Perception can be characterized by two measures; the perceptual bias and distinguisha-
bility threshold. As defined by Wei and Stocker (2017) and illustrated in Figure 6.3
in the context of FCD, perceptual bias is indicated by the amount of deviation of the

perceived fold change Fpercept from the actual stimulus Fr.

On the other hand, distinguishability or discriminability is indicated by the observer’s
ability to pick out minimal changes in the stimulus variable. In Figure 6.3, if the observer
can tell the difference between perceptions, each differing by a small value of fold, then

we would say that the distinguishability threshold is low.
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Figure 6.3: Definition of bias and distinguishability

By imposing constraints on the prior and likelihood using the efficient encoding, Wei
and Stocker (2015) were able to derive a relation between between the prior distribution
of stimulus P(F') and the Fisher information J(F') as

P(F) x \/J(F) (6.1)

If the likelihood of observing the sensory variable I, given stimulus F is twice differen-

tiable, then the Fisher information is defined as

J(F) = ~E[ (- Yog f(1,|F))’] (6.2

Further mathematical derivations by the same author in Wei and Stocker (2017) proved
that the relation between perceptual bias b(F') and the distinguishability threshold D(F)

is proportional

b(F) o< (D(F)?) (6.3)

We refer the reader to the paper by Wei and Stocker (2017) for detailed derivations of
the bias-distingushability threshold relation as per equation above. We present only the

significant assumptions asserted in the derivations in the context of FCD as below.

e The encoding is assumed to be efficient in the sense that mutual information
between the sensory representation I, and stimulus variable F' (mutual information
denoted as I[I,; F]) is maximised. This entails that the conditional entropy is

minimal where given an observed I, the uncertainty of the underlying F' is reduced

11, F) = H(F) - H(F|L,) (6.4
where the entropy of H(F'|I,) is approximated by the Fisher information J(F).

e Mutual information I is constrained as I[F, I,] < I[F, F]
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e The estimator F is assumed with variance 1/o(F) by means of Cramer Rao can

then be approximated by a gaussian with the same variance.

e The distribution of the sensory representation P(Ip,|F) is assumed to be gaussian
distributed

We ask whether the relation of equation 6.3 holds true in the context of FCD as well. We
have already characterized the distinguishability property in chapter 4 by looking at how
much P(I,|F) overlaps. However, the distinguishability threshold and the perceptual
bias are yet to be quantified and the relation between these two quantities in the context
of FCD has yet to be examined.

6.3 Modelling the external fold change

In order to model the cell’s perception of fold change, we characterize here the uncer-
tainties of the extracellular stimulus fold, hereafter referred as the ‘external model’. The
distribution of cAMP by aggregating Dictyostelium cells was first visualized in the pa-
per by Tomchik and Devreotes (1981) where a scheme for a travelling wave cAMP was
suggested. Since then, various studies have proposed many models mainly focussed on
describing the spiralling behaviour seen in Tomchik and Devreotes (1981). An example
of such a study is the planar and spiralling cAMP wave model by Tyson and Murray
(1989) based on the reaction-diffusion equation proposed earlier by Martiel and Gold-
beter (1987). More often than not, models proposed involve detailed cellular attributes
such as the surface area of cell, the rate of intracellular and extracellular cAMP, and
the binding affinity of cAMP receptors (Monk and Othmer, 1989, 1990). Although the
changes in concentration for a spiralling wave has been extensively studied, there is no
such study that investigates the fold change in concentration of a propagated cAMP.
Hence we derive here our own model using a statistical approach to describe how sta-
tionary cells would experience fold change as cAMP is being propagated. Note that this
approach differs greatly to the dynamics of fold change modelled by the chemotaxis prior
in chapter 5 where it is based upon movement of cells in a fixed linear cAMP gradient.
We believe that the fold change modelled in this chapter would resemble the fold change

found in the natural environment more.

6.3.1 Normal approximation of the total cAMP produced by a popu-
lation

We assume that a single cell produces a cAMP concentration x. Due to cell-cell vari-
ability, different cells produce different amounts of cAMP. Hence z varies and we denote

X as a random variable representing the amount of cAMP produced by a single cell. X
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is randomly drawn from an unknown distribution of concentration cAMP with mean pp
and standard deviation op. Therefore a single cell on average is expected to produce ut
amount of cAMP with some variance of o. Suppose there are m populations of cells
of a fixed size n with each cells in any population producing various amount of cAMP
drawn from the unknown distribution. The total concentration produced by the k' pop-
ulation is denoted as Y X where it is the sum of the cAMP produced by cells in the
k¢, population. The distribution of population sums is then derived by plotting > X
for all £ € m populations. For such a distribution, the Central Limit Theorem for sums
states that as the sample size n increases, the distribution of the total concentration

>~ X approximates the normal distribution such that

> X ~ N(npr,orv/n) (6.5)

Here, nur is the mean and op+/n is the standard deviation. As the number of cells
in the population grows, a decrease in the standard deviation is expected. Hence the
distribution of total cAMP produced by a population of cells can be approximated if we

know pt and ot regardless of how stimulus cAMP is distributed.

6.3.2 Fold change as a ratio of two normals

Now we consider two populations of cells N, N, where N; indicates the number of cells
in each population ¢,i = {x,y}. Specifically we consider Ny as the population of cells at
the aggregation centre at time t1. As more cells migrate to the centre, the population
grows to IV, at time t3 and therefore N, > IV,. We denote X,Y as two random variables
to represent the amount of cAMP produced by individual cells in each population and
we assume X and Y are independent. The limitation of the independence assumption
is acknowledged as a portion of cells in N, also originates from NV,. Therefore there is
a possibility that correlations exist between X and Y. However if we accept that the
assumption is true, then using the Central Limit Theorem the total amount of cAMP

produced by each population is drawn from two independent normal distribution of

ZX ~ N(MJJ7UI) (6'6)
ZY ~ Ny, oy) (6.7)

with mean of sums for population x and y denoted as p, and p,
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po = Nzpr (6.8)
fy = Nypr (6.9)

Similarly the standard deviation of sums of population x and y are defined as

0y = o7\ Ng (6.10)
oy = orv/Ny (6.11)

The fold change in concentration between the two population cells is then a ratio of the
two independent normal random variables denoted as F' where F' = X/Y. In our case,
both X and Y are always strictly positive due to the nature of the physical quantity
that they represent. This means that the population of cells must have produce some
amount of cAMP.

We briefly introduce previous studies on the distribution of ratio of two normals. In the
paper by Marsaglia (1965) which later was revisited and extended in Marsaglia et al.
(2006), it has been shown that the distribution of ratio of two normals can be linearly
transformed and expressed in the terms of the standard normal. Diaz-Francés and Rubio
(2013) presented a theoretical proof that the ratio can be approximated by a normal
distribution when certain conditions on the coefficient are met. Both the density and
distribution functions have complicated expressions (Marsaglia et al., 2006; Hinkley,
1969). Here we provide the density function of F' as given by Diaz-Francés and Rubio
(2013)

Tr(F5 by iy, 0, 0y, 0y) = m(1 +(27;/y/7;j)2F2)eXp< :

(0/00)2 (1) 1) + 1>>
262

2

e o a(Gen($) o

where

(Ut (uai)(0, /00 PF)
Sy\/1+ (0y/04)?F?

The density function is parameterised by the mean of sums ., pt,, standard deviation

of sums 0,0, and coefficient of variance 9, of Y. The means are of equation 6.8 and
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equation 6.9 while the standard deviations are of equation 6.10 and equation 6.11. The
parameters can be simplified by setting 8 = p,/p, representing the ratio of means and

p = 0y/0, as the ratio of standard deviations. 3 and p can be further expressed as

_ N (6.13)

and

_ N (6.14)

where as we can see both 8 and p are only dependent on the ratio of the population

size. On the other hand if we expand J, by substituting equation 6.9 and equation 6.11

= o7 vy (6.15)

it is found that J, is dependant on dt and the size of population y. dt is the coefficient
of variance of the concentration of cAMP which is assumed to be unknown. Among
the properties of fr(.) is that it is heavy tailed, has no finite moments and its shape is
primarily determined by d,. Studies have come up with different bounds on the values
of ¢, and 0, as listed in table 6.1 where fr(.) can be approximated by the normal
distribution. The rule of thumb is to keep J, as small as possible in order to achieve a

good approximation.

Because many of the parameters are ratios or combinations of other parameters, the
essential element boils down to only three parameters which are pt, o1 and Ny. These
are also the parameters that makes up d,. To demonstrate the changes in the landscape
of the density function, we computed fr for different values of ur, o, Ny with g fixed
as = 3. The result is shown in Figure 6.4A,B and C. Results of fr(.) for different

is shown in Figure 6.4D for reference. It can be seen from Figure 6.4A,B and C that
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Table 6.1: Different constraint on the values of §, and J, to enable approxima-
tion of fr(.) by the normal distribution.

Author Constraints
Geary (1930) 9y <1/3
Hayya et al. (1975) 9y <0.09,0, > 0.19
Kuethe et al. (2000) 0y < 0.1
Marsaglia et al. (2006) | 6, < 0.25,6, > 0.443

a smaller J, can be achieved by either increasing pr and Ny or by decreasing or. As
expected, smaller J, results in a density curve that is sharper and narrower. Figure
6.4D shows that as the ratio of the means (8 increases, the density curve becomes more
right tailed with a larger standard deviation. Therefore if there is a large increase in
the number of cells from the initial population N, to N, there is more uncertainty in
the resulting fold distribution. The right tailed property entails that the distribution is
always more biased towards smaller fold and the chance of observing larger fold increases

as [ increases although it still remains highly unlikely.

0y=0.14
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Figure 6.4: Dynamics of the density function fr when its parameters are varied.
The parameters when not varied are fixed as ut = 0.5,017 = 0.5, N, = 100.
Arrows shown to indicate how d, changes when the parameter of interest is
increased. Due to the complexity of the density function, computation is done
with the help of Mathematica file provided by Weisstein (2003).

In the following sections, with the exception of 8 = i, /p, all other parameters of the

density function will be assigned values and treated as constants for simplicity purposes.
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Therefore the density function of external fold change fr(F';[3) is parameterised by a

single parameter [.

6.3.3 External Fold model has similar characteristics with Internal
Fold despite modelled independently.

The probability of the extracellular stimulus fold is then solved for all § in B =
(1.1,1.2,...,100) by integrating the density function of equation 6.12

F+5F
P(F c FiéF‘ﬁ;/’LT7JT7Ny) :/ fF(F;/L;E,,U,y,Jbe,(Sy)dF (616)
F—ép

where its parameters are fixed as ur = 2.0,01 = 1.5, N, = 100. In the following sections,
P(F € F % 6p|B; pr, o1, Ny) is denoted as P(F|f3) for brevity. For § = 1.1, F < 1is
possible if the total amount of cAMP produced by population N, cells is less than what
population of N, cells produced although F' > 0 is still true in any scenario. The sample
result of the probability distributions conditioned on § = 1.1,2.1,...,9.1 is shown in
Figure 6.5. We refer to the conditional probability distribution of fold P(F|3) derived
here as the External Model to contrast the internal model P(F'|Ip) derived in chapter
5. While the external model represents the uncertainty of the fold change found in the
natural environment, the internal model correspond to the internal belief or perception
of the Dictyostelium cells regarding the state of the extracellular fold given an internal

response I;,.

Given that the parameters ji, o and N, are fixed, the external model can be viewed as
the probability of fold conditioned only on ratio of means #, P(F|3). § in essence is the
expected fold change upon a level of cell aggregation. Figure 6.5 where P(F|5 = 2.1)
shows that when the expected fold is low, the likelihood of the expected fold is so
dominant that it is quite unlikely to observe other nearby fold. However this likelihood
becomes more similar with other nearby folds as § increases as shown by the distribution
of P(F|p =9.1).

Surprisingly the external fold change modelled here has similar characteristics as the
internal model. The external model approximates the fold change in cAMP produced
by two populations of cells using the Central Limit Theorem. On the other hand, the
internal model takes into account intricate biochemical model fitted to experiment data.
In spite of the contrasting approach, both models are right tailed with bias towards
lower fold change. As the conditioned § in P(F|3) of the external model increases, the
positive skewness of the distribution also increases. This behaviour is similar to when

I,, of P(F|I,) increases in the same manner.



100 Chapter 6 Relation with the external world

1.1
0.3} /

>
% 02t B8:2.1
3
o 3:3.1
o 0.1 (4.1

' 3:6.1

3:9.1
107! 10° 10 102

Fold F

Figure 6.5: External model of Fold Change P(F'|3) derived by integrating equa-
tion 6.12. Parameters are set as ut = 0.5,010 = 0.1, Ny, = 100. Only sample
results are shown for readability purposes.

6.3.4 External model is valid regardless of location by means of the
cAMP diffussion-degradation model.

So far we have modelled the extracellular fold based on the amount of cAMP produced
by two population of cells found at the aggregation centre. In this section we provide
further arguments and justifications as to why the external model is valid even outside
the aggregation centre. We know from literature that cAMP produced at the aggregation
centre is then propagated outwards in the form of spiralling wave in order to guide the
chemotaxis of cells far away. We ask how does the fold change propagated behave at
some distance L from the centre? If the fold change produced by the two populations is
F = 4, would the magnitude of the fold change propagated be reduced such that F' =2
at L? We can describe the diffusion of cAMP molecules produced by a population of

cells at the aggregation center with a two-dimensional diffusion equation as

8£ =D 8270 + 8270
ot ox2 = Oy?

where C(x,y,t) is the cAMP concentration, D is the diffusion constant, z,y are the
cartesian coordinates and ¢ is the time variable. The solution to the partial differential

equation above gives us a normalized gaussian function

_7«2

1
C(r,t) = ﬁexp(fm)

47D

where r is the radial coordinate. This indicates that the diffused cAMP is independent

of direction and what counts is the actual distance from the source. However, we know
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that Dictyostelium cells also secrete cyclic nucleotide phosphodiesterase (PDE)(Sucgang
et al., 1997) to degrade the cAMP in the environment. Considering both the effect
of PDE and the independence of direction, the extracellular cAMP dynamics can be

modelled with a one dimensional diffusion-degradation equation as

0C (z,t) D82C(:r,t)

ot 0z2

—aC(z,t)

where « is the cAMP degradation rate by PDE. The distance from cAMP source is
represented by variable x. If the production of cAMP at the aggregation centre is stable
and reaches the state of equilibrium where there are no changes in cAMP with respect

to time, the equation above can be solved as

/D7)

where Cj is the initial concentration at the centre. The level of cAMP concentration

C(z) = Coexp(

is therefore simplified by elimination of both time and direction variables. Now let us
again consider the population of N, cells at the aggregation centre that is producing
a stable flow cAMP where we assume the amount of cAMP is dependent only on the

number of cells. The level of cAMP is then governed by

NI

To avoid confusion with population of cells N, we denote L as the distance variable

Cn,(L) = Coexp(

from the source. The initial concentration at the aggregation centre (L = 0) is Cy. The

population of cells then grows to N, and similarly

—L

Vo

producing a consistent cAMP level of C|. The transition time between Cy to C is

Cn,(L) = C(’)exp(

assumed to be brief enough such that it is negligible. Both population are further
assumed to have the same diffusion and degradation rate of D and «. The fold change

F in concentration at location L is then derived as
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where using the probabilistic approach derived earlier, both Cy and C{j are drawn from
two independent normal distributions. Hence, a stationary Dictyostelium cell which
experiences a sudden rise in the surrounding level of cAMP would sense the same fold
change regardless of its distance nor direction from the aggregation centre. The possibil-
ity of this scenario is largely supported by the the same constants D and « that govern
the cAMP dynamics of the two populations. The sole dependency of fold change on the
ratio of the initial concentration is equivalent to being dependent only on the ratio of
the number of cells in population N, and NNV,,. Therefore the external model is also valid

outside the aggregation centre.

6.4 Matching External and Internal fold model

As we have derived a model for the external fold change, we continue evaluating the
FCD accuracy by comparing the external model to the internal model. As stated in the
introduction, the external model represents the state of extracellular fold change while
the internal model is what the cells perceive the extracellular fold to be. If Dictyostelium
cells sense with 100% accuracy then we would expect that when a certain I, = a is
observed, the resulting distribution of fold P(F|I, = a) overlaps and matches perfectly
with the external model with a certain § = b, P(F|8 = b) i.e, what the cells perceive
is exactly the same with what the state of the world is. However as we will see this
is not necessarily the case. We can view the discrepancy between the two models as a
result of the cell’s (possibly) imperfect sensing mechanism trying to optimally sense fold
change amidst biological noise (both extrinsic and intrinsic) combined with the stimulus

statistics that it has computed over time.

To quantify how much this perception deviates from the externally set of distribution
of fold changes, we compute the Kullback-Leibler divergence (Kullback and Leibler,
1951) between the two models. This method would also be used to understand how
the divergence of the external distribution constructed above from the internal model
P(F|I,) changes the internal model P(F'|I,), when different priors are used or when
the background dependency P(F|I,,z) is considered. The Kullback-Leibler Divergence

between two probability distributions P and @ is given as
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Z
DkL(P||Q) = ZP log ®

where P(i) and Q(i) are the probability values at ¢ for each respective distribution.
The sum operation applies as we are handling discrete values of probability. Note that
the divergence is asymmetric and therefore Dkr, (P||Q) # Dk (Q||P). If the divergence

equation is expressed as

Dk1(P||Q) = ZP YogP (i) ZP )ogQ(7)

then we can see that the first term on the right side of the equation is the negative
entropy of the P distribution. The entropy is reduced only when @ overlaps P at i. In
our case P and @) represents the external and internal model respectively. The above

equation can be rewritten in terms of the external and internal model as

P(F|B)
P(F|Ip)

DxL(P(F|B)||P(F|1,) ZP F|B)log 57
Note that the base of the comparison is the external model P = P(F|3). A low diver-
gence score indicates that the internal model is more similar and closer to the compared
external model. Hence in such case, we consider the internal perception to be of high
accuracy. Otherwise when the Dgy, score is high, the perception is deemed of low accu-

racy.

6.4.1 A simple example

Before we proceed to evaluate the divergence between the full range of our exter-
nal P(F|5),8 € B,B = (1.1,1.2,...,100) and internal model P(F|I,), I, € I,I, =
(0.14,0.15,...,1.14), we first demonstrate here the Kullback-Leibler divergence result
between P(F|5 = 2) and P(F|I,). The objective is to show the overlapping behaviour

of the two models as I, the internal response increases. The divergence is expressed as

Dxv(P(F|B = 2)[|[P(F|I,)) = > P(F =j|3 = 2”0%(]355(; ifuz >2)>
VjeF P

and solved for all I, € I,. The internal model compared in this example is the uniform
prior based posterior (P(F') = uniform). The result is shown in Figure 6.6A. As can be
seen from the figure, the two models becomes more similar as I, increases in the range of
I, = 0.1 to I, = 0.24 indicated by the decrease in the Dgy,. The internal model that is
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most similar to the external model of P(F|S = 2) is the distribution of P(F|I, = 0.24)
with the minimum score of Dk, = 0.09563. Hence when the external state is given by
the distribution of P(F|8 = 2), population cells with internal model of P(F|I, = 0.24)

perceives the external state most accurately.
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Figure 6.6: Kullback-Leibler Divergences between P(F|3),8 = 2,10 and
P(F\Ip),I, = 0.1,0.11,...,1. The result for P(F|8 = 2) is shown in (A) with
the most similar models visualized in (B). Likewise the result for P(F|3 = 10)
is shown in (C) and the most similar models are visualized in (D).

To visualize how the most similar models overlap each other, we plotted the distribution
of P(F| = 2) and P(F|I, = 0.24) as blue and red curves respectively in Figure 6.6B.
As we can see, the external and internal almost completely overlap each other, hence the
very low divergence score. Both models have the same peak at F* = 1.9 indicated by the
overlapping vertical blue and red dashed lines. When I, increases such that I, > 0.24,
the corresponding distribution P(F|I,) shifts away from the external P(F|5 = 2) to
the right, leading to more divergence. The divergence or separation is complete when

P(F|I, = 0.54) as indicated by the maximum divergence score reached in Figure 6.6A.

How would the overlapping behaviour changes when the external model is of a a higher
B? To answer this we also computed the divergence P(F | = 10) against P(F'|I,),VI, €



Chapter 6 Relation with the external world 105

2rA o15] | st B or=15] |
—_—— 0T=2.U —_—— OT—Z.U
0.05]
P(FIB=10)
o
o’ 20041
g 5
§, @ 0.03
?g o
=) 002l P(FIIp=53)
0.01}
(0,53.1.97;') N
0 | | | L | | I 0 . =
01 02 03 04 05 06 07 08 09 4 6 8 10 12 14 16

Fold, F

Figure 6.7: The effect of changing parameter o1 on the Kullback-Leibler Diver-
gences between P(F|f = 10) and P(F|I,),I, = 0.1,0.11,...,1. The internal is
computed from the uniform prior.

I,. The result is shown in Figure 6.6C. A quick glance of the figure reveals that the
overlapping behaviour is similar to when P(F|5 = 2) except that there is no clear
separation reached between the two models even as I, increases to I, = 1. The divergence
reaches its minimum at P(F|I, = 0.53) with Dy, = 2.258. Note that the minimum
score here is larger than when P(F|S = 2). Therefore the accuracy of perception by the
population of cells given that the extracellular state is characterized by P(F|S = 10) is
relatively lower than when P(F|3 = 2).

As before, we plotted the distributions curves of the most similar models in Figure
6.6D. We found that the peaks or mode of the distribution do not overlap as when
P(F|B = 2). If we compare to Figure 6.6C with Figure 6.6A, it can be seen that the rate
at which models becomes more dissimilar is also much slower. This is due to external
models with large 8 tends to overlap the right tail of the internal as in Figure 6.6D.
Thus a short conclusion that can be made here is that internal models perceive more
accurately external models conditioned on low 5. As the compared 5 of the external

model increases, the divergence is greater.

Before we compute the divergence for the full range of 5 € B , we ask what happens
if the parameters pr,or and N, of the external model are varied and how would it
effect the divergence? We can change any one of the three parameters and achieve the
same effect because we would eventually be tuning d,. Therefore here we varied ot
and analysed the computed divergence for Dky,(P(F|8 = 10;01 = 1.5)||P(F|I,)) and
D1, (P(F|8 = 10;01 = 2.0)||P(F|Ip)) for all I, € I.

The result is shown in Figure 6.7A. As we can see, increasing o1 and thus flattening the
distribution curve of P(F'|) yields a lower minimum score of Dky, = 1.972. Figure 6.7B
illustrates how the external models in solid blue and black dashed lines become closer

to the internal model as pr increases. However, Dy, = 1.972 is the smallest divergence
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that can be achieved by changing o1 due to the constraint 7 < 1 that we imposed on

the external model.

6.4.2 Results for all 5 and Ip

Continuing our analysis, here we investigate the Kullback-Leibler divergence when g of
P(F|B) is varied. Specifically we computed Dy, (P(F|B)||P(F|I,)) for all 5 € B and
I, € I, and for all type of priors. To understand the effects of two parameters 3 and I,,
we first study the resulting Kullback-Leibler divergence visualized in a 3D landscape as

shown in Figure 6.8.
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Figure 6.8: Kullback-Leibler Divergence Dxr,(P(F|B)||P(F|Ip)) for all I, €
I,,8 € Fand F € F. The P(F|I,) compared is the uniform prior based model.

Note that the P(F|I,) compared in Figure 6.8 is also of the uniform prior based model.
From Figure 6.8, a valley can be observed where its lowest point indicates the region
where the divergences are minimal and the two models are most similar. For small
values of 3, there exist a small range of I, when conditioned upon give rise to internal
models similar to the compared external model, hence the observed narrow valley. The
existence of plateaus on both sides of the valley shows a clear separation between the

two models compared.
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However, the width of the valley widens as the compared § of the external increases.
As B and I, both reaches approximately g > 10,1, > 0.5, the plateau on one side
diminishes and the valley flattens out. This indicate that within the range of 5 >
10,1, > 0.5, the external model is relatively similar to all internal models regardless of
the I,, that the internal is conditioned upon. Does this mean that within this range, all
internal models perceive the compared external fold changes accurately? To answer this
question, we plotted the external and internal distribution parameterised by 8 = 20, 50
and I, = 0.6,0.8,1.0 shown as Figure 6.9. One of the reason for the flat region is the
significant decrease in the probability value as 3 increases from § = 20 to 8 = 50 which
then contributes to a lower divergence score. Moreover the external for 8 > 10 overlaps
only the right tail of the internal model regardless of the conditioned I,. Due to the
probability in the right tail region remains largely unchanged, the resulting divergence
scores are kept low and does not vary much. Therefore it would be misleading to say
that the low divergence score observed in the flat region in Figure 6.8 indicates that the

accuracy of the internal perception is high.
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Figure 6.9: Comparison between the probability distribution curves of the ex-
ternal model P(F|f), 8 = 20,50) and internal model P(F'|I,), I, = (0.6,0.8,1.0)
demonstrates how overlaps in region of 3 > 10,1, > 0.5 leads to lower diver-
gence scores and the flat surface observed in Figure 6.8. All internal models are
uniform prior based. Solid blue line indicates the external model and dashed
curves are the internal conditioned on various I,,.

6.4.3 Effects of priors

To see the effects of internal models with different priors, we plotted the Kullback-Leibler

divergence landscape shown as Figure 6.10. For readability and contrasting purposes
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the landscapes are visualized as contours. We also truncated the result to ignore some
part of the insignificant flat region. As can be seen, the contours for all priors share
the same characteristics of having a narrow valley initially which widens as 8 increases.
All type of priors also have flat regions in the range of approximately 5 > 10, I, > 0.5.
Therefore we can further add to the previous conclusion that regardless of the type of
priors, the Kullback-Leibler divergence is an inappropriate measure of accuracy of the
internal perception in the region of 3 > 10 and I, > 0.5.

Chemotaxis Prior Uniform Prior

Figure 6.10: The effect of internal models with different priors on the Kullback-
Leibler Divergence.

One point that stands out in Figure 6.10 is that the divergence computed with chemo-
taxis prior based internal model has a very narrow valley, almost bottleneck like at (3, I,,)
coordinate of (2,0.27) and (2,0.31). It is also observed that the contour for the exponent
and Weibull prior based internal are almost similar to each other. To gain more insights
on the effect of different priors, we extracted the minimum points of the valley for each
landscape. For a range of external P(F|3),5 € B, internal models based on a certain
type of prior would have a set of I;(3) = (a1,az,...,ay) that when are conditioned
upon produce P(F|I,) most similar to the compared external. Thus, P(F|I,), I, € I;
represents most accurate perception on the entire range of external P(F|5), € B. In-
tuitively, if the type of priors plays any role in determining the amount of divergence,
internal models based on a different prior would have a different set of I} and conse-

quently, a different set of minimum divergence scores as well.
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In order to determine I, (8), we treated the divergence landscape result as a function of
I,, and B denoted as D(Ip, 5) = Dk (P(F|B)||P(F|I,))), for all I, € I, and 8 € B. For
a given 8 we then find

L(B) = arglminD(Ip,B) (6.17)

Subsequently the corresponding minimum divergence score for I,;(3) denoted as Dyin(f3)

is then derived as

Din(B8) = min D(Ip; B) (6.18)

and is found for all 5 € B. The range of B here is chosen as B = (1.4,1.5,...,10)
because this is the range where the computed divergence result is considered as a suitable
measure of the internal perception’s accuracy. We plotted the curves of Ij () and
Dynin(B) for different type of priors in Figure 6.11A and Figure 6.11B respectively.
Figure 6.11A answers the question ‘For a particular prior based internal model, which I,
when conditioned upon produces P(F'|I,) that matches most with the compared external
P(F|B)?’. The corresponding Figure 6.11B then provides the answer for ‘If P(F|I, = a)
is found to match most with P(F|B = b), what would the minimum score be?’. Figure
6.11A shows that the set of I} derived by internal models with uniform, exponent or
Weibull prior are similar in the range of § = 1.14 to § = 4. Hence in this range
internal models based on the mentioned three priors share a similar perception of the
external state. Only the chemotaxis prior based internal provides a different set of I}
and therefore perceives the external state differently. For the case when the external
state is determined by 8 > 4, the perception varies among different priors albeit the

chemotaxis and uniform prior based perception are exactly the same.

Figure 6.11B tells us the accuracy of the perception in Figure 6.11A. With the exception
of the chemotaxis prior, in general perceptions are of high accuracy across all priors when
the compared external has a very low § as shown by the low D,,;, score. The accuracy
of perception then deteriorates as f increases. However, the chemotaxis prior based
internal tells a slightly different story. If we analyse the blue line trajectory in Figure
6.11B, we can see that the chemotaxis prior based has two regions where the accuracy
of perception is relatively high. The first is for § < 1.6 and second is when 2.8 < 5 < 4.
The accuracy of the perception temporarily worsens at a considerably high rate in the
range of 1.6 < 8 < 2.8. We can see here the strong effect of the chemotaxis prior in
determining the perception of the internal model. The perception then continues to

resembles the uniform prior based for § > 4 and deteriorates as 3 increases.
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Figure 6.11: The effect of priors on the minimum divergence score. (A) I,
that must be conditioned upon to derive internal model that best match the
compared external given by 5. (B) The corresponding divergence score for (A).

6.4.4 Effects of background dependency

We have seen the effects of internal models computed from different priors on the ac-
curacy of perception as quantified by the minimum divergence score. As shown in the
previous chapter, the internal model of posterior fold can also be conditioned on both
I
P
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Chemotaxis, x=1nM Chemotaxis, x=100nM

Figure 6.12: Kullback-Leibler Divergence landscape for different prior based
internal with background dependencies.

and background cAMP z denoted as P(F|I,,x). How would background cAMP affect
the divergence between the two models? We computed Dkr,(P(F|3)||P(F|Ip,x)) for all
B € B, I, € I, and for x = 1,100. The divergence is computed for all types of priors.
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The x values are deliberately chosen such that the comparison is done between a weak

and a strong background cAMP.
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Figure 6.13: The effect of priors on the minimum divergence score. Rows sep-
arate the effect of priors on the best set of internal models P(F[I,;) (Top) and
their corresponding divergence score (Bottom). Columns separates results of
when the internal models are stimulated with fold of weak background cAMP
(Left) and strong background cAMP (Right).

Similar to the previous section, we visualized the landscape of Dy, score as contours

in Figure 6.12. Figure 6.12 shows that regardless of priors, a stark difference can be

observed in the divergence result computed by different background cAMP. A weak

background cAMP of x = 1nM seems to yield a more consistent and narrower valley

compared to the result by x = 100nM. This indicates that there is a better separation

between the distributions of the compared internal P(F|I,,x = 1), 1, € I, and external

P(F|B),B € B model. The clear separation is due to the symmetricness found in the

distribution of P(F|I,,x = 1) for all I, € I,. In contrast, contours of background

xz = 100nM show flat regions as seen previously in section 6.4.3. This is caused by

the heavy tailness of P(F|I,, = 100) (for all I, € I,) distributions especially when

conditioned upon high I,.
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As seen in the previous section, it is difficult to extract meaningful insights just by
observing the contours of Figure 6.12. Therefore we derived the set of perceptions
with minimum divergence scores I, () and the corresponding minimum divergence score
Diyin(p) for P(F|Ip,x = 1) and P(F|I,,z = 100) in the similar manner as what we
have done previously in section 6.4.3. The result is shown in Figure 6.13 where a
quick glance reveals that the effects of priors between different background cAMP are
hardly distinguishable. In general the profiles of I,;(3) derived by internal conditioned on
x = InM across all priors in Figure 6.13A are more unique compared to when x = 100nM
indicated by the saturation in Figure 6.13B. The divergence score of internal with weaker
background x = InM is also significantly better as shown in Figure 6.13C,D. Therefore
we can conclude that internal model of a weaker background has a higher accuracy of

perceiving what the external distribution of fold is .

6.5 Validating the bias-distinguishability relation

In this section our primary goal is to examine whether the bias-distinguishability relation
as described by equation 6.3 is valid in the context of FCD. In order to achieve this goal,

we first quantify bias and distinguishability threshold and examine their characteristics.

6.5.1 Bias

In the previous section, we have quantified the accuracy between the internal perception
of fold change given observed sensory response P(F|I,) and external fold change distri-
bution P(F|B). The divergences between P(F|I,) and P(F|3) can also be considered
as biases. However, as illustrated in Figure 6.1, biases are defined in the context the
Observer model as deviations between posterior estimates and the true stimulus. We
further illustrate the definition of bias in Figure 6.14'. When an observer model is stim-
ulated by a true fold denoted as Frr drawn from some distribution P(F'), the model then
produces a posterior distribution of estimates P(F |F'r) to represent its ‘overall percep-
tion’. In Figure 6.14 we have illustrated P(F|Fr) as a gaussian distribution. Given Fje
as the best estimator, the perceptual bias for estimating true stimulus Fp denoted as
b(Fr) is defined as

b(FT) = |FT _Fpre‘ (619)

'In Wei and Stocker (2017), for a given stimulus 6, the bias of stimulus b(#) is expressed in the term
of i(6) = 0 + b(0) where [1(0) is the mean of a gaussian distribution. The relation of bias and prior
distribution of stimulus is given as b(6) o (1/p(0)?)’ and is proven true for various loss functions that
the Bayesian decoder minimizes.
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Figure 6.14: Definition of overall bias

where in the case of Figure 6.14 we used the mean of P(F|Fr) distribution as Fe. In
the context of our study we derive the posterior distribution of estimates or the ‘overall

internal perception’ P(F |Fr) by averaging over all I, € I, as

P(F|Fr)= Y P(F|I,)P(I,|Fr) (6.20)
Iel,

where P(F|I,) and P(I,|Fr) are respectively the posterior and conditional distribution
from chapter 5. We already know the underlying stimulus Fr that resulted in the
approximated P(I,|Fr). We then solve our prediction of the true stimulus denoted as
Fpre

Fyre = argmax P(F|Fr) (6.21)
B

where we take the maximum value or the mode of the distribution P(F|Fr) as our best
estimator. We computed P(F|Fr) for all Fr € Fp,Fp = (2,2.1,...,10) and derived
their corresponding Fpe. We plotted samples of results of P(F |Fr) and Fy for given
Fr = 2,6,10 for all priors in Figure 6.15. Figure 6.15 shows that in general the bias

increases across all priors when the sensed true stimulus Fr increases.

We then computed the perceptual bias b(Fr) (equation 6.19) evaluated using Fj,e derived
from all Fr € Fp,Fp = (2,2.1,...,10) and show the result in Figure 6.16. As can
be seen from Figure 6.16, there are two different regions of bias for chemotaxis prior
based perception. In the range of small fold Fr < 4 the perceptual bias modelled with
chemotaxis prior increases at a relatively fast rate. For the range of Fpr > 4 the bias
then drops drastically and is equal to the bias of the uniform based perception. One
reason for the increasing bias in Fr < 4 is because the prediction Fy. = 1.1 yielded is
the same for all P(F|Fr) within this range. As can be seen in Figure 6.15 left panels,
the indifferent prediction is further caused by the fact that the chemotaxis prior based
perception will always assign the highest probability to F' = 1.1 when stimulated with

It < 4. The decision to maximise P(F |Fr) in equation 6.21 will always yield the same
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Figure 6.15: The effect of priors on bias. Vertical dashed red lines indicate
predictions Fpe from the overall internal perceptions while the vertical black
lines indicate the true stimulus Fr.

perception regardless of the true stimulus. The origin of this phenomenon can be traced

back to the chemotaxis prior P(F') which assigns strong probability values for F' < 2.
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Figure 6.16: Bias for different priors.

10




116 Chapter 6 Relation with the external world

6.5.2 Distinguishability threshold

Previously in chapter 4 we have quantified the distinguishability between two folds F}
and Fy, and showed the result of overlapping areas in Figure 4.6. Here we extract
the ‘distinguishability threshold’ as a function of fold denoted as D(F') by first finding
all possible pair values of = and y that satisfies Az, y] = 0.4. Essentially what we
are looking for are the x,y combinations that lies on the two red curves of Figure
4.6 where they represent the first combination that are deemed distinguishable. The
distinguishability threshold D(F) is then solved by D(F)jage = © — y for x < y and
D(F)sman = y —x for & > y. The former is the threshold between fold x and larger folds
while the latter is the threshold between fold x and smaller folds. This requirement of
having to define two distinguishability threshold is due to the fact that the overlapped
distribution P(Ip,|F) computed is asymmetric. The result of computing both D(F)jarge
and D(F)gman are shown in Figure 6.17.

5

2 4 6 8 10
Fold, F

Figure 6.17: Distinguishability threshold. D(F)gman is the minimally distin-
guishable smaller fold and D(F )1arge is the minimally distinguishable larger fold.

An example of how Figure 6.17 should be analysed is as follow. For F' = 4 that lies on the
blue line, the discrimination threshold is D (F)iarge = 2.1. This means that the minimally
distinguishable larger fold for F' =4 is F' = 6.1. Likewise the minimally distinguishable
smaller fold for F' = 6 is F' = 3.9 indicated by the coordinate on the red line pointed by
the arrow. The result from Figure 6.17 shows that in general distinguishability threshold

increases with stimulus fold.

6.5.3 Bias-distinguishability threshold relation

Now that we have quantified both bias and distinguishability threshold, we examine the

validity of equation 6.3 describing the relation between the two measures of perception.
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We ask whether the relation between bias and distinguishability threshold in the observer

model of sensing stimulus

b(F) o< (D(F)?)

is also true in the context of FCD. The bias-distinguishability relation established by
Wei and Stocker (2017) is supported by results from studies on sensory system of circu-
lar variables such as visual orientation. However, Wei and Stocker (2017) state that for
sensory systems operating with magnitude variables, the relation between distinguisha-
bility threshold and stimulus variable is expected to obey Weber’s law where threshold
must increase linearly with stimulus. Consequently it is predicted that the perceptual

bias is also a linear function of stimulus.

We first examine the relation between distinguishability threshold and stimulus fold as
observed in Figure 6.17 by fitting linear and quadratic curves to the data. The result
of fitting both functions is shown in Figure 6.18 and the corresponding sum squared of
residuals are listed in table 6.2. As can be observed, the distinguishability threshold-fold
relation is better described by quadratic function as indicated by the red solid curves in
Figure 6.17 rather than linear functions. Therefore it is more accurate to say that the
distinguishability threshold increases in a quadratic manner as the stimulus fold change
increases. It is important to note that the distinguishability threshold derived here is
for fold change in concentration and not of the magnitude of the concentration itself. If
it was the latter case, then the linear relation of the Weber’s Law as emphasised by Wei
and Stocker (2017) is expected to hold.

Given that D(F) is governed by quadratic functions, (D(F)?)" would then yield cubic
functions. Hence, the perceptual bias b(F') would need to be proportional to distin-
guishability threshold defined as a cubic function of stimulus fold in order for the rela-
tion of equation 6.3 to be valid. However as can be seen from Figure 6.16, bias is better
described by a linear or a quadratic function of fold F'. Therefore, it can be concluded
that the validity of equation 6.3 does not hold true when the bias is defined as equation
6.19.

Table 6.2: Sum of Squared Residuals for linear and quadratic curves fitted to
the distinguishability threshold data.

D(F Linear | Quadratic
(Flarge | 1.0946 | 0.0853
(F)eman | 1.9147 | 0.0943

~—

As we have defined two different distinguishability threshold, we plotted b(F') of Figure
6.16 against D(F') (instead of plotting b(F) against D((F)?)’)) of Figure 6.17 in Figure
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6.19A B. Figure 6.19A,B indicate a possible linear relation between b(F) and D(F') for
both D(Flarge) and D(Fyman). As distinguishability threshold increases, the perceptual
bias also increases. The correlation is expected to be stronger for D(Fyyay) compared
to D(Farge) regardless of the type of priors. When the threshold for higher fold to
distinguish smaller fold increases, there is a greater perceptual bias as the bias is of the
higher fold. The existence of two regions of bias can be seen when the internal model is

computed using the chemotaxis prior.

5

2 4 6 8 10
Fold, F

Figure 6.18: Distinguishability threshold (black crosses) fitted with lin-
ear(dashed blue lines) and quadratic curve (solid red lines).

Hence our current conclusion is that the relation of b(F) oc (D(F)?)" as derived by Wei
and Stocker (2017) does not hold true in the case of FCD in Dictyostelium cells. Instead,
a linear relation of b(F') o« D(F') as demonstrated by Figure 6.19A,B would be more
plausible.

X Experiment

O Uniform

A Exponent
Weibull

D(F)

D(F)Iarge small

Figure 6.19: Bias-distinguishability threshold relation plotted for internal model
based on different types of priors. (A) Minimally distinguishable threshold for
larger folds. (B) Minimally distinguishable threshold for smaller folds.
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6.6 Summary

This chapter focusses on the evaluation of the internal model derived in chapter 5. In
order to quantify the accuracy of perception by the internal model, we have characterized
a model of the external fold change. We have also explored how the model is constrained
by its parameter pr,oT, N, and showed that the two most important factors are the
coefficient of variance ¢, and ratio of means of sums 3. A mathematical justification is
also given to show the validity of the external model. The most surprising result is that
the external model displayed similar characteristics to the internal model despite they
are derived independently. The former was derived using a statistical approach to model
simple sums of cAMP produced, while the latter is a result of a long and complex process
involving a Bayesian inference of the posterior distribution of fold changes preceded
by the 1000 variation of model ODEs representing the bio-chemical attributes of the
signalling pathway.

Using the Kullback-Leibler divergence as a measure of accuracy of perception, we showed
that the perception is more accurate when compared with external distribution of lower
fold. The accuracy diverges more as the compared mean of the external fold increases.
We also demonstrated the limitation of Kullback-Leibler divergence as a measure of
perception’s accuracy when the compared external fold is high. We derived sets of
most accurate perceptions and showed that perceptions are similar across different priors
except for internal model based upon the chemotaxis prior. In fact, the chemotaxis prior
based model is the only model with the distinct feature of two region of perceptions.
The accuracy of the internal perception is also much higher when stimulated with folds
of weaker background cAMP.

We also described the Observer model, characterized the prediction from the overall
internal perception and defined bias in the context of FCD. We showed that bias increases
as the stimulated fold is stronger across all type of priors except for the chemotaxis
prior based internal. The distinguishability threshold is characterized for two different
cases- one for the minimally distinguishable larger folds and the other for the minimally
distinguishable smaller folds. We showed that the bias-distinguishability threshold as
established by Wei and Stocker (2017) does not hold true for FCD in Dictyostelium cells.






Chapter 7
Summary and Conclusions

In this thesis, we have presented various characterization of the FCD sensing mecha-
nism in Dictyostelium cells through a well described mathematical model of the up-
stream signalling pathway. We acknowledge that only the sense-perception components
of the cyclic-AMP sense-peception-response mechanism has been successfully charac-
terized. The study of FCD accuracy derived from upstream models is significant in
characterizing the constraints that models impose on downstream models. The accu-
racy of FCD of upstream models then acts as a criteria for model selection, limiting
plausible downstream models. One of the issues that we have identified from literature
when modelling the sense-response mechanism such as the oscillation of cAMP in single
or population of cells (Sgro et al., 2015; Noorbakhsh et al., 2015) is that the assumptions
of upstream models often do not emulate significant properties that allow for accurate
sensing. We argue that if the properties of the upstream signalling pathway are not
captured correctly, then the modelled actuator would yield unrealistic results. Or even
if the results concur with experimental data, the derived model would not be a sensible

approximation of the sense-response mechanism.

We summarise and conclude our thesis here in the context of the questions posed in
chapter 1 and derive several conclusions from our findings. To answer what is the
accuracy of FCD observed in mathematical models of the Dictyostelium cell, we started
by probing the model ODEs described by Takeda et al. (2012). We found that the
dynamics of the model are stable and exhibit adaptation as a crux component of FCD
when the input to the model ODEs continuously increases. Hence we deem that this
initial analysis provided enough support to validate the investigation of the accuracy of
FCD using the model ODEs by Takeda et al. (2012).
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7.1 Criteria enabling FCD by the model

We studied what are some of the criteria that enable the validated model to exhibit
FCD in the first place, regardless whether the fold changes detected are accurate or not.
Half of the parameters of the model were then estimated using the ABC-SMC method
where we derived posterior densities of parameters. This provided the operating ranges
of parameters in detecting fold changes where some of the ranges deviate far from what
Takeda et al. (2012) estimated. The variability observed in the posterior distributions
showed that some parameters are less variant and implies that some strict constraints are
necessary in order for the model to exhibit FCD. It has also been shown through PCA
that no single principal component of the sampled parameters can primarily capture the
exhibited FCD behaviour. However, different posterior distributions might be obtained
if we estimated the full 18 parameters of the model ODEs or if we chose a different
set of data for data fitting. To estimate the full parameters of the model would be
computationally expensive, a problem common to the SMC method when dealing with
complex models. An alternative approach is to apply Gibbs sampling, where estimated
parameters are divided into blocks. Some blocks are sampled from the conditional
probability with the remaining blocks of parameters fixed. The blocks are then switched

and the sampling process is repeated.

7.2 Lower fold changes are being detected more accurately

and are more distinguishable

Nevertheless, the posterior parameters do give us a measure of the model’s variability
in capturing the FCD in Dictyostelium experiment. The densities of sparsely generated
responses from the estimated parameters were modelled using the log-normal density
function where its coefficients were approximated using quadratic functions. We found
that responses free from background dependencies are more consistent to stimulant
with lower fold changes. This provides the first hint to the accurateness of FCD by
the model—lower fold changes are being detected more accurately as opposed to higher
fold changes. We also quantified the fold distinguishability property by measuring the
overlapping area of distribution of responses. Our results showed that responses to lower
fold changes are more distinguishable and therefore lower fold changes in stimulant are
also more distinguishable than higher fold changes. The characterization of the stimulus-
response relation showed that the hyperbolic equation describes the relation better than
the logarithmic law proposed by Adler et al. (2014). We also found that the uncertainties
in the responses are better described by a logarithmic relation as opposed to a linear
relation. The conclusions reached here are limited by the properties of the model and are
further restricted by the log-normal density function used to approximate the responses

of the model. Although the heavy right tailness seen in the distribution of responses
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can be characterized using many other families of distributions such as the Gamma or F
distribution, we justify the choice of the log-normal as studies have shown that responses

of sensory systems can be described using the logarithmic compression hypothesis.

7.3 The probability of lower fold changes is higher

We inferred the posterior probability of fold changes being detected given the sensory
responses generated from the model using Bayes’ theorem. In doing so we modelled
a novel prior probability of fold changes encountered by Dictyostelium cells based on
chemotaxis experiment and compared with other known priors. We found that the
posterior probability is significant in ranges of low fold changes and decreases drastically
as the observed responses increases. Therefore, given lower responses, the probability of
lower fold change is higher. The inferred posterior is constrained by the conditional and
prior probability. We showed that with the exception of the chemotaxis based prior,
the inferred posterior displays an ‘anti-Bayesian effect’ where it is biased away from
the prior by the conditional probability. It can be argued that the stark differences
in distribution profiles between the chemotaxis based prior and the alternative priors
suggest that comparison of posteriors computed by these priors are impractical. An
alternative approach is to choose model parameters such that the resulting alternative
priors are also significant in a narrow range in order to influence the posterior. It is
acknowledged that the choice of prior although indispensable in the Bayesian approach

remains a controversial subject.

7.4 Perceptions of lower extracellular fold changes and of

weaker initial stimulus are more accurate

Using the inferred posteriors, we characterized the perception of Dictyostelium cells
regarding the state of the extracellular fold changes. In doing so, a novel model of the
extracellular fold changes was derived and divergences between the two distributions
were computed. We found that Dictyostelium cells characterized by the model ODEs
of Takeda et al. (2012) perceive fold changes better when the extracellular fold changes
are of lower range and worsens as the fold changes in the environment increases. We
derived sets of most accurate perceptions and showed that there are different regions
of perceptions if the prior beliefs are derived from chemotaxis experiments. From the
modelled perceptions we derived the predictions of fold changes by the population of cells
and computed the biases. We showed that bias increases as the stimulated fold change is
stronger. We also characterized the minimally distinguishability threshold and showed

that the threshold increases almost quadratic like as the stimulus fold increases.
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7.5 Future work

We describe here several future research directions in modelling the complete cyclic
AMP sense-response mechanism of the Dictyostelium cells. The next step is to probe
and characterize the response or actuator component of the Dictyostelium cells. In
the studies by Sgro et al. (2015) and Noorbakhsh et al. (2015) the peak levels of the
transient generated by the sensing component are treated as inputs to a postulated au-
tonomous excitable, oscillatory model system introduced in the neuroscience literature.
This mechanism contains a threshold for oscillations via a Hopf bifurcation suggests a
variable response based on a stochastic triggering mechanism. In contrast, a different
mechanism is proposed in Kamino et al. (2017) that makes explicit reference to the FCD
property and follows similar lines to Martiel and Goldbeter (1987) where intracellular
production of cAMP by adenylyl cyclase (ACA) sets up the relay mechanism forming a
positive feedback loop, and the desensitisation of the CAR receptor (another mechanism

for adaptation) enables an oscillatory behaviour.

In both sets of studies the link to the specific mechanism proposed in Takeda et al.
(2012) is only obliquely made, with Kamino et al. (2017) extending the FCD mechanism
of the IFF networks to a cell density-dependent secretion module, and Sgro et al. (2015)
disputing the relevance of the IFF module to the oscillatory responses. Although model
simplifications makes it easier to analyse the system’s mathematical properties, we are
in the opinion that future research should characterize the sense-secrete system of the
Dictyostelium cell by incorporating the upstream signalling pathway model ODEs de-
scribed by Takeda et al. (2012). One approach is by restructuring the model ODEs by
Takeda et al. (2012) from a feedforward network to a feedback network model. This can
be achieved by defining the secretion of cAMP as

dz(t)  kjRas(t)?
dt K3 + Ras(t)?

—k,x(t)

where cAMP is denoted here by z(t) in contrast to the experimentally controlled ex-
tracellular levels z and x’. The parameters k7 and k, are the production and decay
rate of the molecule cAMP and Kp = k;, /k is the corresponding dissociation constant.
x(t) is a variable that combines intracellular levels of cAMP and that which is secreted,
summarising a two-step description. The decay rate k; can be attributed to a intra-
cellular phosphodiesterase-enabled process (Dinauer et al., 1980a) or by dilution in the

extracellular environment.

Another approach is to link the inputs from the sensing module modelled in Takeda et al.
(2012) to the oscillatory FitzHugh-Nagumo based actuating module (Sgro et al., 2015;
Noorbakhsh et al., 2015) that secretes cAMP to establish the feedforward amplification
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(Wang et al., 2012) of responses. The model ODEs of Takeda et al. (2012) can be

extended by adding two equations to described the oscillatory dynamics as

dA A3

T A (Y -

7 ( 3 ) — Re + Ras
dRe
TW = A—’YR6+CO

where in this coupled model, A and Re is the activator and repressor of the FitzHugh-
Nagumo, v, cg, 7 are the FitzZHugh-Nagumo model parameters. It is important to note
that although this coupled model can characterize the single cell level cAMP oscillation

observed in experiments, it does not capture the sense-secrete mechanism in its system.

In both suggested models, the parameters of the extended equations can be constrained
by the range of the posterior parameters estimated in chapter 3. The possible oscillating
responses by both systems are then restricted by the experiments based constraints.
Reversely the sets of parameters resulting in responses which are not oscillatory can
be also identified. It has been reported in the experiments by Sgro et al. (2015) that
the oscillation of cAMP by single Dictyostelium cells have a refractory period of 2 to 3
minutes which then governs the frequency of the cAMP pulses. This refractory period
can be associated to the desensitization of the receptor or the adaptation time of the Ras
protein. Indeed, the focus of this thesis has been on the maximum level of responses.
There is a need to explore the role of the adaptation time for the maximum responses to
return to its pre-stimulus level. The 1000 sets of parameters derived in chapter 3 would
yield different adaptation time. This would in turn lead to different refractory periods
of the extended model and would yield an estimate of the variability in the possible

refractory period.

7.5.1 A broader perspective

The examples of future works given so far are of research projects that can be imple-
mented directly using the results obtained in this thesis. The goal of incorporating a
feedback model is to enhance the modelling of the sense-perception mechanism. On the
other hand, the coupling of an oscillation module is to evaluate how the sense-perception
mechanism constraints or is constrained by the oscillation module. However, if we look
from a broader perspective, the research framework developed in this thesis can be ap-
plied to understand the functional characteristics of different models across different
biological systems. For example, future works can focus on evaluating the distribution
of responses of other alternative mathematical models used to describe the chemotaxis
pathway of Dictyostelium cells and characterize the sense-perception mechanism. How

different would the perception of the population of cells be if it is modelled using other
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models? It is also possible to characterize in the same manner the accuracy of FCD
by the three models of Rhodobacter sphaeroides chemotaxis as introduced in Hamadeh
et al. (2013) that is said to exhibit FCD and are robust to structural changes and varia-
tion in parameters. What would the characteristics of the probability of fold changes by
the three models of Rhodobacter sphaeroides chemotaxis be? Would any of the models
share the same characteristics as the model of FCD in Dictyostelium cells derived in this
thesis? Hence, the comparison of characteristics of FCD is not only between models of
Dictyostelium but is also possible across different organism that is said to exhibit the
FCD property. This enables future research to further extract design principles of FCD
by probing the relation between the likelihood of displaying functional properties and
the underlying model structures. The research framework introduced in this thesis is
by no means limited to the FCD property only and can be further generalized to other
observed behaviour. One interesting study would be the characterization of adaptation

as this behaviour is observed in many organism and is widely documented compared to
FCD.

In the conventional approach of mathematical modelling of biological systems, the goal
is to identify model structures and parameters that is compatible with experimental
data and provide predictions to future experiments. However, by analysing population
of responses and models of perception as demonstrated in this thesis, the goal then
changes to identifying a model that is likeliest to exhibit functional behaviour as required
by the system. We argue that mathematical models that fit well with experiment data
but do not exhibit desirable functional properties are not realistic representations of the

biological system.



Appendix A

Approximate Bayesian
Computation (ABC) method

Bayesian methods can be used to estimate parameters of models of biological systems by
Ordinary Differential Equations(ODEs). By using Bayes’ rule, we can estimate model
parameter 6 by inferring the posterior probability of § given observed data X, denoted
as P(0]X)

P(X10)P(0)

POIX) = =50

(A.1)
where the likelihood P(X|0) is the probability of data given parameter, P(6) is the prior
probability of parameter § and P(X) is the marginalized likelihood.

However, in the case where the likelihood and model evidence are analytically in-
tractable, approximation method is more suitable in inferring the posterior probability.
A well known algorithm is the Approximation Bayesian Computation (ABC) rejection
sampler, developed earlier by Pritchard et al. (1999) and Beaumont et al. (2002) in
population genetics. The posterior distribution is simplified by eliminating the constant

of proportionality as,

P(0]X) oc f(X]0)7(0) (A.2)

where f(X|6) is the likelihood of parameter 6 given data X (Toni et al., 2009). @
is generated from m(#) and accepted with probability f(X|#). The method is further
improved when the calculation of likelihood is replaced by comparing simulated data X
to the observed data Xy. X, is simulated from a generative model My with 6 drawn

from 7 (@) such that X ~ My. The posterior is then expressed as
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o (d(Xa, Xs) <€) (X5 ~ Mg)m(0)
P9, Xs|Xq) = Jo [, (d(X4, X,) < €)(X, ~ M) (6) A

where € > 0 is the tolerance value, * is the indicator function and d(Xg4, Xs) is the

distance function. The ABC generic algorithmic form is given as

1. Sample candidate parameter vector 8* from prior distribution 7(6) independently.
2. Simulate dataset X, from model My with parameter 0*: Xg ~ Mpy|g g

3. Compare the simulated dataset X, with the observed data X4, using some distance

function d and tolerance € > 0. If d(X4, X5) < € accept 0*, else reject.

The output is a set of parameter values sampled from distribution of P(0|d(X4, Xs) < €).
If the tolerance € is small enough, then the distribution P(6|d(Xg4, Xs) < €) is close to the
true posterior P(6|Xy). For dynamical models, comparison between the simulated and
observed data can be carried out directly without having to use summary statistics. The

pseudo-code for ABC rejection sampler (Pritchard et al., 1999) is given as Algorithm 1.

Algorithm 2 ABC Rejection Sampler

1: Sample candidate parameter 6* from prior P(0)
2: Simulate dataset X ~ Mpl|gp-

3: if d(Xd, Xs) < e then

4: Accept 6*
5
6
7

. else
reject
. end if

If the gap between the prior and posterior distribution is very large, then the sampled
candidates are from parameter space with low likelihood, causing a low acceptance rate.
The algorithm is therefore inefficient as it is time consuming. Other ABC methods such
as Markov Chain Monte Carlo (MCMC) (Marjoram et al., 2003) and Sequential Monte
Carlo (SMC) (Sisson et al., 2007) have been introduced to overcome the inefficiency
of ABC rejection sampler. However, in MCMC method it is still possible to have low
acceptance probability and correlated samples. This will result in a long chain that is
difficult to escape the parameter space of low likelihood (Beaumont, 2010). For this
reason and simplification purposes, we will focus the discussion on Sequential Monte

Carlo (SMC ) method as it is more relevant for our work.
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A.1 Approximate Bayesian Computation-Sequential Monte
Carlo (ABC-SMC) method

To overcome the disadvantages of ABC rejection sampler and MCMC, Sequential Monte
Carlo(SMC) based ABC method was introduced by Sisson et al. (2007) based on the
algorithm by Del Moral et al. (2006). A further refined version of ABC-SMC was
developed by Beaumont et al. (2009) and Toni et al. (2009). We will focus on the SMC
algorithm varied by Toni et al. (2009). This algorithm is similar to the algorithm by
Beaumont et al. (2009) and Sisson et al. (2007).

Population 1 Population 2 Population T
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Figure A.1: Particle filter mechanism of ABC-SMC method reillustrated from
Toni and Stumpf (2009). Population of particles are gradually filtered through
the intermediate distributions. With enough population levels T and small
tolerance ep, the last distribution approximates close to the true posterior dis-
tribution.

The mechanism of ABC-SMC works like a particle filter with many cascaded tolerance
level €, > €3 > --- > e > 0. This concept would enable the algorithm to escape low
probability sampling space that made previous ABC method inefficient. At level t =1,
N numbers of candidate parameter values called ’particles’ are sampled independently
from prior distribution m(6). Accepted particles would form an initial population of
N particles, 61, ...,0n with intermediate distribution P(0|d(Xg4, Xs) < €1). At t = 2,
the particles are weighted and sampled from a new prior which is set as the previous
intermediate distribution, 7(0) = P(0|d(X4, Xs) < €1). Particles surviving the rejection
step with tolerance ¢; are perturbed with perturbation kernel K;;; and evaluated against
tolerance €;41. In this way, particles are propagated and filtered through a series of
intermediate distribution P(0|d(X4, X¥) < ¢),i = 1...T' — 1, gradually approaching
the target posterior distribution. With a large enough population , it can escape low
probability space otherwise difficult with ABC MCMC.

The pseudo-code for the algorithm is shown in Algorithm 2. Single asterisk (6*) indi-

cates particles before perturbation while double asterisk (6**) indicates particles after
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perturbation. Perturbation kernel K; is chosen as random walk (uniform or gaussian).

For a illustration of the particle filtering mechanism, refer to Figure A.1.

Algorithm 3 ABC-SMC

1: Initialize tolerance €y, €s..., e, population ¢ = 0,
2: Initialize particle indicator ¢ = 1
3: if t =0 then
4: Sample particle 8** independently from 7(6)
5: else
6: Sample particle §* from previous population 6 ; weighted with w;_1
7: Perturb 6* with perturbation kernel K; to get 6** K;(0|0*)
8 end if
9: if new prior 7(6**) = 0 then
10: Return to 3
11: else
12: Simulate candidate dataset from generative model X ~ Mpy|g g+
13: end if
14: if d(X4, Xs) > € then
15: Go to 3
16: else
17: Set 9 = §**, calculate weight for particle ()t
, 1, ift=0
szZ) = m(6) £
TR R
18: end if

19: if ¢ < N then

20: 1=14+1

21: Go to 3

22: else

23: Normalize weights
24: end if

25: if t < T then

26: Sett=t+1

27: Go to 2

28: end if
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