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The radiation resistance matrix allows for the calculation of structurally radiated1

sound power using a series of measured structural responses. Currently, estimating2

the radiation resistance matrix requires precise modelling of the structure which, for3

practical structures, can lead to estimation errors. This paper presents two meth-4

ods for identifying the radiation resistance matrix for a structure using measurable5

structural and acoustic responses and the solution of an inverse problem. Although6

well suited to practical, complex structures, to allow the accuracy of the proposed7

methods of identifying the radiation resistance matrix to be reliably validated, they8

are compared with the theoretical radiation resistance matrix for a flat plate in an9

infinite baffle. It is shown through a simulation-based study that the accuracy of10

the proposed identification methods depends on the number of structural and acous-11

tic sensors and structural forces used in the identification process. The proposed12

identification methods are then implemented experimentally to identify the radiation13

resistance matrix for a flat plate. The results demonstrate that an accurate estimate14

of the sound power can be obtained using the experimentally identified radiation re-15

sistance matrix using the two proposed methods, and the limits on the two methods16

are discussed.17
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I. INTRODUCTION18

Active Structural Acoustic Control (ASAC) has been proposed as an effective, lightweight19

solution to structure-borne sound radiation problems. Generally speaking, ASAC uses an20

array of structural control actuators to minimise the acoustic pressure measured at an array21

of error microphones, located in the radiated sound field. The application of such a system22

can be limited, however, owing to the fact that it is not always practical to position error23

microphones in the radiated sound field. In previous work, to overcome this problem, a24

number of strategies have been developed for use in both ASAC and Active Noise Control25

(ANC), that allow the sound field to be estimated from remotely located error sensors1–5.26

Controlling the pressure radiated from a structure at discrete points may be sufficient in27

certain applications, however, many ASAC systems have focused on controlling the radiated28

sound power, which when minimised ensures a global reduction. Measuring the radiated29

sound power directly is not straightforward, however, there have been a number of publi-30

cations that propose different approaches to controlling the radiated sound power from a31

structure using only structural measurements6–8. One such approach, that has been pro-32

posed relatively recently, uses the Weighted Sum of Spatial Gradients (WSSG) to attempt to33

control the structural radiation9,10. The WSSG can be measured using a closely spaced array34

of four accelerometers and it has been shown that the WSSG provides a uniform measure35

across the surface of a plate and, therefore, is insensitive to the location of the WSSG sensor36

and does not require advance knowledge of the structure9. The WSSG control method has37

been shown through both simulations and experiments to provide effective control of the38
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sound power radiated from a flat plate9. More recently, the method has been extended to39

a cylindrical structure10, where it has been shown to provide close to optimal sound power40

control in numerical simulation, but has some limitations in an experimental implementation41

due to discrepancies in the structural properties and assumed boundary conditions10. Nev-42

ertheless, the WSSG method does potentially provide an ASAC method that is convenient43

to implement in practice requiring only a small number of error sensors, even if multiple44

WSSG sensors are required to improve the practical robustness.45

Alternative approaches to implementing ASAC using only structural sensors include the46

use of the radiation resistance matrix7,11, which completely describes the radiation from a47

structure in terms of its radiation modes6. The radiation resistance matrix has previously48

been calculated using a variety of methods, including analytical or numerical modelling us-49

ing an elemental lumped parameter approximation, for example11–13. These modelling-based50

methods, however, often rely on specific assumptions about the radiating structure. For ex-51

ample, that the sound radiation can be approximated by the radiation from an array of point52

monopole sources, which may lead to inaccuracies when considering more complex practi-53

cal structures. In order to overcome these difficulties, various methods of identifying the54

radiation resistance matrix experimentally have previously been proposed14,15. Koopmann55

and Fahnline for example, developed a method to measure the elements of the radiation56

resistance matrix using a bespoke measurement probe, named the resistance probe14. This57

method relies on the probe generating a known volume velocity from a loudspeaker posi-58

tioned on the surface of the structure. To achieve accuracy at higher frequencies the probe59

must be sufficiently small so that it represents a small area of the radiating structure, how-60
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ever, this conflicts with the requirement to be able to generate sufficiently high volume61

velocity at low frequencies. These conflicting requirements mean that the method has been62

shown to have a low frequency limit of around 200 Hz and, therefore, may have limited ap-63

plicability in situations where active control would be appropriate. More recently, Berkhoff64

et al. presented a method whereby the radiation resistance matrix is calculated by solving an65

inverse problem, which uses the responses measured between a number of structural forces66

and distributions of both structural velocity and acoustic pressure measurements15. This67

method has been shown to be effective experimentally, however, as the acoustic pressures are68

used to calculate the radiated sound power, in order to accurately identify the radiation re-69

sistance matrix, the radiating structure must be located in a free-field acoustic environment70

and the pressure measurements must be taken in the far-field. This may be infeasible for71

many practical structures, which cannot be relocated to a free-field acoustic environment.72

Therefore, in this paper a method to identify the radiation resistance matrix is proposed73

that does not require a free-field acoustic environment or far-field pressure measurements.74

The proposed method can thus be used, for example, when the structure is in situ.75

Two formulations of the proposed method are presented which both rely on the solution76

of an inverse problem. In the first formulation, the proposed method uses the responses77

measured between a distribution of structural forces and an array of structural velocity,78

and near-field acoustic pressure and particle velocity measurements to identify the radiation79

resistance matrix. In the second formulation, it is assumed that the particle velocity imme-80

diately in front of the surface of the structure is equal to the velocity of the structure itself81
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and, therefore, only structural velocity and near-field acoustic pressure measurements are82

used to identify the radiation resistance matrix.83

The structure of this paper is as a follows: Section II introduces the theoretical back-84

ground for the radiation resistance matrix and, using the amplitudes of an array of elemental85

radiators, the radiation resistance matrix is calculated for a flat plate in an infinite baffle for86

reference. Section III then presents the formulation of the first radiation resistance matrix87

identification method. The accuracy of the proposed method is then assessed via compari-88

son to the theoretical radiation resistance matrix formulated in Section II, for a simulated89

flat plate in an infinite baffle. A simulation based investigation into how the accuracy of90

the proposed radiation resistance matrix is affected by the number of forces and sensors91

used in the identification process is then carried out and this is followed by an experimental92

validation of the method. In Section IV, the second identification method is formulated and93

its accuracy is assessed through both simulations and an experimental validation. Finally,94

Section V draws conclusions based on the presented results.95

II. FORMULATION OF THE RADIATION RESISTANCE MATRIX USING EL-96

EMENTAL RADIATORS97

In this section, a well established, theoretical radiation resistance matrix formulation is98

presented. Initially, the theory of the formulation is detailed, followed by an example of99

the radiation resistance matrix calculated for a flat plate in an infinite baffle. This estab-100

lished structure will be used in the following sections to validate the proposed identification101

methods.102
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A. Theory103

A lumped parameter model can be used to model the acoustic radiation from a vibrating104

structure as equivalent to that of a simple point source, at low frequencies, where the acous-105

tic wavelength is much larger than the characteristic dimension of the vibrating structure.106

In this form, the acoustic field depends only on the volume velocity of the source14. This ap-107

proach can be extended to model larger structures and/or higher frequencies by subdividing108

the surface of the radiating structure into a number of elements12,14.109

In this formulation, it is assumed that the sound radiated by a structure is due to a110

number of elementary radiators6,11. The acoustic pressure immediately in front of each111

radiating element can be related to the complex velocity of each element at a single frequency112

according to the impedance relationship113

ps = Zv, (1)

where v is the vector of complex elemental structural velocities, ps is the vector of corre-114

sponding acoustic pressures on the surface of the structure and Z is the matrix of specific115

acoustic impedances, which incorporates point and transfer impedance terms over the grid116

of elements. Assuming at this point that the acoustic radiation from each element can be ap-117

proximated as a monopole source radiating into half space, defined by the infinite baffle6,11,118

the impedance between the ith and jth elements of the matrix Z can be defined as119

Zij(ω) =
jωρ0Ae

2πRij

e−jkRij (2)

where ω is angular frequency, ρ0 is the density of air, Ae is the area of each element, k is120

the wavenumber and Rij is the distance between the centres of the ith and jth elements.121
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The sound power radiated by the elemental array described above can be defined in terms122

of the vector of structural velocities and acoustic pressures as123

W =

(
Ae

2

)
IRe[pH

s v]. (3)

By substituting Eq. 1 into Eq. 3, for the vector of pressures, the radiated sound power can124

be written as11125

W =

(
Ae

2

)
IRe[vHZv] =

(
Ae

4

)
vH [Z+ ZH ]v = vHRv (4)

where, in the final expression, the impedance matrix, Z, is assumed to be symmetric due126

to acoustic reciprocity and the real, symmetric, positive definite radiation resistance matrix127

is defined as R = (Ae/2) IRe[Z]. It can be seen from the final expression of Eq. 4, that128

the radiation resistance matrix can be used to calculate the radiated sound power using129

only structural velocities and, therefore, can be used in an ASAC system that only requires130

structural error sensors rather than acoustic sensors11.131

B. Baffled plate132

In the following, the radiation resistance matrix is calculated according to Section II, for a133

flat, rectangular plate in an infinite baffle. For elemental models, a common rule of thumb is134

to use six elements per wavelength6. In the following, a 0.414 m by 0.314 m plate is divided135

into ten elements along the x-axis and eight elements along the y-axis, as shown in Fig. 1.136

When the upper frequency of interest is 1 kHz, this provides at least eight elements per the137

shortest radiated acoustic wavelength and will thus provide an accurate model of the plate138

radiation.139140
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FIG. 1. Geometry of the 0.414 m × 0.314 m plate subdivided into a 10×8 grid of elements in an

infinite baffle.

As noted above, the radiation resistance matrix completely describes the acoustic radi-141

ation from a structure. It is possible to gain insight into the physics behind this sound142

radiation via an eigen-decomposition of the radiation resistance matrix which can be ex-143

pressed as6,144

R = QTΛQ, (5)

where Q is the matrix of eigenvectors, in which each row contains the amplitudes of each145

radiation mode, and Λ is the diagonal matrix of eigenvalues, which are proportional to146

the radiation efficiencies of the radiation modes. The radiation efficiencies of the first six147

radiation modes of the baffled plate shown in Fig. 1 have been plotted in Fig. 2 using the148

eigenvalues, λr, of the radiation resistance matrix. From this plot it can be seen that the149

magnitude of the radiation efficiencies vary slowly with frequency, increasing in magnitude as150

the frequency increases. It can also be seen that at low frequencies the radiation response will151

be dominated by the first radiation mode, whilst with increasing frequency the contribution152

of the higher order modes will become increasingly important. Through the decomposition153

of the radiation resistance matrix, surface plots of the velocity distribution of the six lowest154
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order radiation modes of the plate, when excited at 39 Hz, have been plotted in Fig. 3. From155

these plots it can be seen that the first and most efficiently radiating mode is the piston mode;156

this is followed by two rocking modes, a torsional mode and two saddle modes. Visualising157

the radiation modes in this way could help to tailor the positioning of control actuators and158

sensors when designing an ASAC system, or even lead to the design of radiation based modal159

actuators as in16,17. It is important to note that although the radiation modes are frequency160

dependant, within the range considered (0 Hz to 1 kHz) there is only a slight variation in161

the mode shapes of the dominant, lower order modes6.162
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FIG. 2. Eigenvalues of the six lowest order modes of the radiation resistance matrix.
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164

III. INVERSE ESTIMATION OF THE RADIATION RESISTANCE MATRIX US-165

ING P-U MEASUREMENTS166

In the section, the first of the proposed methods of estimating the radiation resistance167

matrix via the solution of an inverse problem is formulated and investigated via both simula-168

tions and experiments. This method uses a series of near-field particle velocity and acoustic169
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FIG. 3. (color online) Six lowest order radiation modes of the plate when excited at 39 Hz.

pressure measurements, as well structural measurements, taken when the structure is excited170

by a distribution of independent structural forces.171

A. Formulation172

The sound power radiated from a structure can be expressed in terms of the vectors of173

particle velocities, u, and acoustic pressures, p, measured on a virtual surface enclosing the174

structure as175

W =

(
Ae

2

)
IRe{pHu}, (6)

where Ae is the area over which the particle velocities and acoustic pressures are measured,176

divided by the number of measurement positions18. It is possible to express the acoustic177

pressures and particle velocities in terms of the structural responses as178

p = H̃pv and u = H̃uv, (7)
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where v is a vector of structural velocities measured on the surface of the structure and H̃p179

and H̃u are the transfer response matrices between the measured structural velocities and the180

acoustic pressures and particle velocities respectively. It should be noted that the structural181

response could alternatively be expressed in terms of accelerations or displacements without182

any implications on the proposed method, which may have practical benefits. Substituting183

Eqs. 7 into Eq. 6 for the vectors of acoustic pressures and particle velocities, the radiated184

sound power may be written in terms of the structural responses as185

W =

(
Ae

2

)
IRe{vHH̃

H

p H̃uv}. (8)

Expanding this in terms of its real and imaginary parts allows a simplification that gives186

W =

(
Ae

4

)
vH [ΞH + Ξ]v = vHR̂v, (9)

where Ξ = H̃
H

p H̃u and the radiation resistance matrix is defined as R̂ = (Ae/2) IRe[H̃
H
p H̃u].187

It is not possible to measure the matrices H̃p and H̃u directly, as each of the structural188

responses cannot be independently driven and are only controllable via a fully coupled189

transfer response matrix19. It is possible, however, to estimate these matrices via the solution190

of an inverse problem19,20.191

The vector of structural responses, v, can be expressed in terms of a distribution of forces,192

f , and a structural transfer response matrix as193

v = Hsf, (10)

where Hs is the matrix of transfer responses between the distribution of forces and the194

measured structural responses, which can be measured directly. The relationships between195
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the transfer responses, H̃p, H̃u and Hs, and the vectors of forces, f , structural velocities,196

v, acoustic pressures, p, and acoustic particle velocities, u, are summarised by the block197

diagram shown in Fig. 4. From this block diagram, or by substituting Eq. 10 into Eqs. 7,198

the vectors of acoustic pressures and particle velocities can be expressed as199

p = H̃pHsf = Hpf and u = H̃uHsf = Huf. (11)

The transfer matrices H̃p and H̃u can then be obtained using the directly measurable transfer200

response matrices, via the solution of two corresponding inverse problems given as201

H̃p = HpH
†
s and H̃u = HuH

†
s, (12)

where the superscript † denotes the pseudo-inverse operator. When the number of structural202

measurements is equal to the number of forces, so that Hs is a square matrix, Eqs. 12 can203

be solved using the direct matrix inversion H−1
s . However, if the structural response matrix204

is not square, then the solution to the inverse problem must be calculated via the pseudo-205

inverse. The particular solution to the pseudo-inverse is dependant on the dimensions of206

the structural response matrix and, therefore, the relative numbers of forces and structural207

sensors used to measure it. Section IIIB 1 presents an investigation into how changing the208

number of forces and sensors affects the accuracy of the radiation resistance matrix. The209

specific solution to the pseudo-inverse will also be discussed in more detail.210211

B. Simulation based investigation212

In this section, the radiation resistance matrix is estimated, via the proposed inverse213

method, for a simulated flat, rectangular plate of dimensions, lx = 0.414 and ly = 0.314, as214
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FIG. 4. Block diagram showing the relationships between the vectors of forces, f , structural

velocities, v, acoustic pressures, p and acoustic particle velocities, u, in terms of the directly

measurable transfer response matrices Hp, Hu and Hs and the transfer response matrices H̃p and

H̃p that can be identified via Eq. 12.

described in Section IIB. A diagram of the simulated plate setup used to obtain the transfer215

responses used in the formulation is shown in Fig. 5, and this includes an example of the216

distribution of structural forces and sensors and the acoustic pressure and particle velocity217

sensors used in the identification procedure.218219

In order to assess the performance of the proposed identification method, the accuracy of220

the sound power estimated using the radiation resistance matrix is compared to the directly221

evaluated sound power. The modelled plate is excited by an acoustic plane wave incident222

at 45◦ in the horizontal plane and 45◦ in the vertical plate, which approximates a diffuse223

field excitation6. The sound power radiated by the plate is then calculated using both the224

structural responses of the plate with the estimated radiation resistance matrix and directly225

from the pressures and particle velocities according to Eq. 6.226
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FIG. 5. Diagram of the plate with a distribution of independent forces (arrows), collocated with

an array of structural velocity sensors (light circles), beneath an array of near-field acoustic sensors

(dark circles).

The estimated radiation resistance matrix, R̂, is initially calculated using the modelled227

transfer responses between a uniform distribution of 10 × 8 forces to an equal number of228

structural velocities and near-field acoustic pressures and particle velocities. This means229

that the matrix of structural responses, Hs, is square and the direct matrix inversions can230

be used in Eqs. 12 during the estimation procedure. It is worth reiterating that this force-231

sensor arrangement gives a minimum of eight forces and sensors per the radiated acoustic232

wavelength at 1 kHz, but it is also worth noting that this provides around 2.4 forces and233

sensors per structural bending wavelength at the upper frequency of interest.234

Fig. 6 shows the radiated sound power when the plate is excited by an incident acoustic235

plane wave, as defined above. The sound power calculated using the estimated radiation236

resistance matrix, R̂, is plotted along with the directly evaluated sound power, which is237

calculated according to Eq. 6, using the uniform array of 10 × 8 particle velocities and238

acoustic pressures, evaluated 10 mm above the surface of the plate. These results show that239
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the sound power estimate is consistent with the directly evaluated sound power when the240

same number of both forces and sensors are used to estimate the radiation resistance matrix241

as acoustic sensors are used to evaluate the sound power.242
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FIG. 6. Sound power radiated by the plate when excited by an incident acoustic plane wave. The

solid line shows the directly evaluated sound power and the dashed black line shows the sound

power calculated using the estimated radiation resistance matrix, R̂.

1. The effect of the number of forces and sensors used in the estimation of the243

radiation resistance matrix244

It has been demonstrated above that the proposed method of estimating the radiation245

resistance matrix is able to accurately estimate the radiated sound power when large and246

equal numbers of both forces and sensors are used in the identification procedure. However,247

in practice it may not always be possible to use such large and square arrays and, therefore,248

this Section will present a simulation based investigation into the accuracy of the proposed249

radiation resistance matrix identification procedures when the numbers of sensors and/or250
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forces are both modified and made unequal. To assess the accuracy of the identification251

method as the number of forces and/or sensors is altered, the sound power calculated using252

the proposed radiation resistance matrix is compared to the directly evaluated sound power.253

In the first instance, the number of structural sensors used to estimate the radiation254

resistance matrix has been decreased whilst the number of acoustic sensors and structural255

forces remains fixed at eight per the shortest acoustic wavelength, which is approximately256

0.34 m at 1 kHz. This means that the matrix describing the structural transfer responses,257

Hs, is not square, and therefore, the estimation procedure cannot utilise the direct matrix258

inversions. Instead the inverse problems defined by Eqs. 12, must be solved via the pseudo-259

inverse. The form of the pseudo-inverse required is dependant on whether the number of260

forces, Lf , is greater or less than the number of structural sensors, Ls. In the following, the261

number of forces will always be greater than the number of structural sensors and, therefore,262

the matrix Hs, which has dimensions (Ls × Lf ) will be full row rank. This means that the263

solution to the inverse problem is obtained using the right-sided pseudo-inverse, which is264

given as265

H†
s = HH

s (HsH
H
s )

−1. (13)

Fig. 7 shows the sound power estimated using the radiation resistance matrix as the266

number of structural sensors was reduced, plotted along with the directly evaluated sound267

power. It can be seen from Fig. 7, that reducing the number of structural sensors used to268

calculate the radiation resistance matrix to seven per the shortest acoustic wavelength, which269

corresponds to two per the shortest structural bending wavelength, has negligible effect on270

the estimated sound power over the presented frequency range. Reducing the number of271
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structural sensors to five per the shortest acoustic wavelength, which corresponds to around272

1.2 per the shortest structural bending wavelength, begins to introduce some small errors273

at the upper end of the presented frequency range. As the number of structural sensors274

reduces further, to approximately three per the shortest acoustic wavelength, it can be seen275

from the results that errors begin to appear at higher frequencies. The results in this case276

are still accurate up to around 400 Hz, because the structural sensor arrangement provides277

around 8 sensors per the acoustic wavelength or approximately 2 per the structural bending278

wavelength at this frequency. Reducing the number of sensors further, to approximately one279

per the shortest acoustic wavelength, leads to the errors becoming large and occurring at280

lower frequencies.281
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FIG. 7. (color online) Sound power estimated using the radiation resistance matrix as the number

of structural sensors used in the identification is decreased. The blue solid line shows the directly

evaluated sound power, the solid, dot-dashed, dashed and dotted black lines show the sound power

estimate when seven, five, three and one structural sensors per the shortest acoustic wavelength

were used in the identification of the radiation resistance matrix, respectively.
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In the following, the number of forces used to identify the radiation resistance matrix284

is reduced and the number of structural and acoustic sensors used remains fixed at eight285

per the shortest acoustic wavelength. Again, as matrix the Hs is not square, the inverse286

problems must be solved via the pseudo-inverse as defined by Eqs. 12. In this case, the287

number of forces will always be less than the number of structural sensors and, therefore,288

the matrix Hs will be full column rank. This means that the solution to the inverse problem289

should be obtained using the left sided pseudo-inverse, which is given as290

H†
s = (HH

s Hs)
−1HH

s . (14)

Fig. 8 shows the radiated sound power calculated using the estimated radiation resistance291

matrix as the number of forces used in the estimation is reduced, plotted along with the292

directly evaluated sound power. From Fig. 8 it can clearly be seen that as the number293

of forces used to identify the radiation resistance matrix is reduced, the accuracy of the294

sound power estimate decreases. In particular, it can be seen that with seven forces per the295

shortest acoustic wavelength, the sound power estimate is accurate over the full frequency296

range presented. When the number of forces is reduced to five per the shortest acoustic297

wavelength a similar level of accuracy is obtained, but with some small errors at higher298

frequencies. However, when reducing the number of forces used in the identification to three299

per the shortest acoustic wavelength, which corresponds to less than one per the shortest300

structural bending wavelength, the accuracy of the sound power estimate is limited at higher301

frequencies. When the number of forces per the shortest acoustic wavelength is reduced to302

approximately one, more errors are introduced across the entire frequency range, as expected.303
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FIG. 8. (color online) Sound power estimated using the radiation resistance matrix as the number of

forces used in the identification is decreased. The blue solid line shows the directly evaluated sound

power, the solid, dot-dashed, dashed and dotted black lines show the sound power estimate when

seven, five, three and one forces per the shortest acoustic wavelength were used in the identification

of the radiation resistance matrix, respectively.

Finally, the effect of reducing the number of acoustic sensors has been investigated. In the304

following simulation results, the number of structural sensors and forces was fixed at eight305

per the shortest acoustic wavelength, whilst the number of uniformly distributed particle306

velocity and acoustic pressure measurements was decreased. In this case, the matrix Hs307

is square and, therefore, the direct inverse solution can be used. Fig. 9 shows the sound308

power calculated using the estimated radiation resistance matrix as the number of acoustic309

measurements is reduced. From these results it can be seen that the accuracy of the sound310

power estimate is largely unaffected as the number of acoustic measurements is decreased.311

That said, some errors are introduced into the sound power estimate when there are only 1.5312

sensors per acoustic wavelength. This observation is consistent with the Nyquist sampling313
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theorem and it is evident that an accurate estimation is provided when there are at least314

2 acoustic sensors per the shortest acoustic wavelength. This is in contrast to the results315

presented in Figs. 7 and 8, because the speed of sound in the structure is much higher316

than in air and the associated wavelengths are thus much shorter. This means that a larger317

number of forces and structural sensors is required in relation to the acoustic wavelength.318
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FIG. 9. (color online) Sound power estimated using the radiation resistance matrix as the number

of acoustic measurements used in the identification is decreased. The blue solid line shows the

directly evaluated sound power, the solid, dot-dashed, dashed and dotted black lines show the

sound power estimate when seven, five, three and one acoustic measurements per the shortest

acoustic wavelength were used in the identification of the radiation resistance matrix, respectively.

Following the simulation investigation carried out above, it is clear that a reduction in319

the number of forces and structural sensors results in a rapid reduction in the accuracy of320

the sound power estimate. The number of acoustic sensors also effects the accuracy, but, due321

to the longer wavelength in air compared to that in the structure, the effects are smaller. In322

Section IIIC, the proposed radiation resistance matrix identification method is implemented323
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in practice to obtain a sound power estimate for an acoustically excited aluminium plate. In324

order to carry out this experiment, an appropriate number of structural and acoustic sensors325

and forces should be chosen. It is obvious that for the most accurate sound power estimate,326

a very large number of sensors and forces should be used, however, this would increase the327

cost of conducting the procedure. On the other hand, using less sensors and forces would328

reduce the cost of the procedure but at a detriment to the accuracy of the sound power329

estimation. Therefore, to strike a balance between an overly populated system, in which330

the number of actuators, sensors and cabling required would make the system extremely331

costly, and the accuracy of the sound power estimate, three forces and three structural and332

acoustic sensors per the shortest acoustic wavelength has been chosen. According to the333

results presented in Figs. 7, 8 and 9, this is expected to provide an accurate estimation up334

to around 400 Hz, but it is important to initially assess within the simulation environment335

the impact of reducing both forces, and structural and acoustic sensors simultaneously.336

The proposed configuration corresponds to 12 forces and 12 structural and acoustic sensors337

uniformly distributed over the plate and the accuracy of the sound power estimate achieved338

when using this arrangement to identify the radiation resistance matrix for the simulated339

plate is shown in Fig. 10. These results show that the estimate identifies the majority of the340

radiating modes of the plate across the given frequency range, however, above approximately341

400 Hz errors appear in the level of the sound power estimate. This is as expected from342

the results presented in Figs. 7, 8 and 9 and provides two clear frequency ranges where the343

estimation is expected to be accurate (f < 400 Hz) and suffer from errors (f > 400 Hz).344
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FIG. 10. Sound power radiated by the simulated plate when acoustically excited with broadband

noise. The solid line shows the measured sound power and the dashed line shows the sound power

calculated using the proposed radiation resistance matrix R̂ with 3 forces, and 3 structural and

acoustic sensors per the shortest acoustic wavelength.

C. Experimental Validation345

Based on the simulation study carried out above, an experimental rig has been built to346

validate the proposed methods of estimating the radiation resistance matrix. In the exper-347

imental setup, which is shown in Fig. 11, the forces have been provided by 12 lightweight348

(29.6 g) inertial actuators, the structural sensors have been provided by 12 accelerometers,349

approximately collocated with each actuator, and the acoustic pressure and particle veloc-350

ity have been measured using a Microflown p-u probe. To measure the transfer responses351

required for the estimation of the radiation resistance matrix, each of the inertial actuators352

was driven independently with broadband noise to excite the plate and the structural re-353

sponse was measured by the array of accelerometers, and the acoustic pressure and particle354
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velocity responses were measured above each accelerometer position, approximately 10 mm355

from the surface of the plate.356

(a) (b)

FIG. 11. (color online) Photograph of the experimental setup used to measure the radiation

resistance matrix for the plate. The 12 actuators and approximately collocated accelerometers can

be seen on the plate and the p-u probe can be seen in 11(b)

A loudspeaker enclosed in the sealed cavity below the plate, shown in Fig. 11(b), was357

used to excite the plate acoustically. The radiated sound power was then calculated directly358

using the measured pressure and particle velocities as in Eq. 6, and using the radiation359

resistance matrix estimated using the proposed method, formulated in Section IIIA.360

Fig. 12 shows the sound power estimate plotted along with the directly evaluated sound361

power. It should be noted that for this plate the breathing mode is at approximately 100 Hz362

and the peak at around 50 Hz is due to the resonance of the actuators. From these results363

it can be seen that, at frequencies below around 400 Hz, the identified radiation resistance364

matrix is able to estimate the radiated sound power relatively accurately. The four lowest365

radiating modes, which are within this bandwidth, are identified in both frequency and366

amplitude. At 400 Hz and above, the accuracy of the estimation reduces, as expected367
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from the simulation results presented in Fig. 10. Initially, the resonance frequencies are368

identified, but the sound power level estimation is inaccurate. Then, at higher frequencies,369

the resonance frequencies themselves become poorly estimated.370
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FIG. 12. Sound power radiated by the plate when acoustically excited with broadband noise. The

solid line shows the measured sound power and the dashed line shows the sound power calculated

using the estimated radiation resistance matrix R̂.

IV. INVERSE ESTIMATION OF THE RADIATION RESISTANCE MATRIX US-371

ING PRESSURE AND STRUCTURAL VELOCITY MEASUREMENTS372

In practical applications, it may be beneficial to avoid the requirement to measure the373

acoustic particle velocity, which requires a costly measurement probe. This can be achieved374

by assuming that the velocity of the vibrating structure is equal to the acoustic particle375

velocity immediately in front of it. Based on this assumption, in this section, an alternative376

approach to identifying the radiation resistance matrix using only near-field acoustic pres-377

sure and structural velocity measurements is presented. Following the formulation of the378
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proposed estimation method, a simulation based investigation and experimental validation379

are carried out.380

A. Formulation381

As suggested above, by making the approximation that the structural velocity, v, is

equal to the particle velocity, u, immediately in front of it, the matrix of responses between

structural velocities and acoustic particle velocities, H̃u, becomes equal to an identity matrix.

In this case, following the derivation presented in Section IIIA, the radiated sound power

can be approximated as

W ≈

(
Ae

2

)
IRe[vHH̃

H

p v], (15)

≈

(
Ae

4

)
vH [H̃

H

p + H̃p]v = vHR̂pv, (16)

where the radiation resistance matrix in this case is R̂p = (Ae/2) IRe[H̃p]. As detailed in382

Section IIIA, the transfer response matrix, H̃p, cannot be directly measured and must be383

estimated through the solution of an inverse problem, which is given by the first part of Eq.384

12.385

It should be noted that the approximation in Eq. 15 relies on the assumption that the386

structural velocities are equivalent to the particle velocities measured at the same points as387

the acoustic pressures. Thus, if it were possible to measure the pressures on the surface of388

the structure, as assumed in the theoretical formulation in Section II, then this assumption389

would be perfectly accurate. However, in practice, the pressures will be measured at a finite390
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distance from the surface of the structure and this assumption will only be approximate;391

this will be demonstrated in the following section.392

B. Simulation based investigation393

Using the simulation environment described in Section IIIB, the performance of the394

radiation resistance matrix identified using the method outlined in Section IVA has been395

validated. For conciseness, this investigation is only presented using a single arrangement of396

forces and sensors, because the same trends are observed for this method as were shown in397

Section IIIB. Therefore, in this case, the 10 × 8 arrays of forces, structural velocities and398

acoustic pressures were used to estimate the radiation resistance matrix.399

Fig. 13 shows the sound power radiated by the plate, along with the sound power esti-400

mated using the radiation resistance matrix, R̂p, when the array of pressure measurements401

are evaluated at various distances from the plate. When the pressures are evaluated at402

0.01 m from the surface of the plate, it can be seen that the estimated radiation resistance403

matrix, R̂p, provides an accurate measure of the radiated sound power. In this case, there-404

fore, the approximation that the structural velocity is equal to the acoustic particle velocity405

is reliable over the full frequency range presented. However, it can also be seen from the406

results presented in Fig. 13 that as the array of pressure sensors is moved away from the sur-407

face of the plate, the accuracy of the sound power estimate reduces. This indicates that the408

approximation becomes increasingly less accurate as the pressure measurements are moved409

away from the radiating surface and the upper frequency at which the approximation is410

reliable can be related to the acoustic wavelength.411412
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FIG. 13. (color online) Sound power radiated by the plate when excited by an incident acoustic

plane wave. The blue solid line shows the directly evaluated sound power, the solid, dot-dashed,

dashed and dotted black lines show the sound power estimated using the estimated radiation

resistance matrix, R̂p, when the pressures are measured at 0.01, 0.2, 0.4 and 0.6 m respectively.

C. Experimental validation413

In this section, the sound power radiated from the acoustically excited plate shown in414

Fig. 11 has been estimated using the radiation resistance matrix, R̂p, which is identified415

as formulated in Section IVA. This validation has been carried out using the same 4 × 3416

experimental setup shown in Fig. 11, with the pressures measured at a distance of 0.01 m417

from the surface of the plate. Fig. 14 shows the sound power estimated using the identified418

radiation resistance matrix, R̂p, plotted along with the directly evaluated sound power. It419

can be seen from these results that the estimated sound power, again, is reasonably accurate.420

In this case, the majority of the resonance frequencies have been identified, however, the level421

of the sound power estimate, across the presented frequency range, is slightly less accurate422

than when calculated using the radiation resistance matrix that utilises the particle velocity423
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in the identification process. This is due to the approximation used in the present method,424

which assumes that the structural velocity is equal to the acoustic particle velocity.425

10
2

10
3

Frequency, Hz

20

30

40

50

60

70

80

90

S
W

L
, 
d
B

Directly evaluated sound power

Sound power estimate

FIG. 14. Sound power radiated by the plate when acoustic excited with broadband noise. The

solid line shows the measured sound power and the dashed line shows the sound power calculated

using the proposed radiation resistance matrix R̂p.

426

427

V. CONCLUSIONS428

The radiation resistance matrix allows for an accurate estimation of the sound radia-429

tion from a structure using only structural measurements. A number of formulations have430

been presented in previous work that enable the estimation and measurement of the radia-431

tion resistance matrix. However, these methods have not been widely applied to practical432

structures due to either limitations in their accuracy due to modelling requirements or the433

complexity of the measurement procedure for practical structures. Therefore, in this pa-434

per, a method of estimating the radiation resistance matrix from measurable structural and435

acoustic responses has been proposed. This method does not require a bespoke measurement436
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device, does not require the measurements to be conducted in a free-field environment and437

is functional over the frequency range of interest for ASAC.438

Two approaches to the radiation resistance matrix identification problem have been pre-439

sented; the first requires measurement of both the acoustic particle velocity and structural440

velocity, whilst the second approach assumes that these are equal. Both methods are based441

on solving an inverse problem that is used to estimate the transfer response matrix between442

a number of structural and acoustic responses. In both methods, a series of response mea-443

surements are required when the structure is excited by a distribution of independent forces,444

but no knowledge about the operational structural excitation is assumed.445

To assess the limits on the accuracy of the proposed radiation resistance matrix identi-446

fication methods, a series of simulations for a flat rectangular plate have been carried out,447

as this provides a well-known benchmark. Within this framework, to investigate the prac-448

tical requirements of the proposed estimation procedures, the numbers of forces and both449

acoustic and structural sensors used during the identification procedures were altered both450

independently and simultaneously. As the number of structural sensors used is decreased,451

the sound power level is overestimated at higher frequencies. As the number of forces used is452

decreased, the sound power level is underestimated at higher frequencies. In both instances,453

however, the resonance frequencies of the radiating modes are generally well estimated. As454

the number of acoustic sensors is decreased, the sound power estimate remains accurate over455

the presented frequency range, since the acoustic wavelengths within this range are much456

larger than the bending wavelengths in the plate and so sampling resolution limits are not457

met.458
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Although the requirements in terms of the density of forces and sensors used in both459

methods are equivalent, it has also been shown that the second method, which makes the460

assumption that the structural velocity is equal to the particle velocity, is also sensitive to461

the distance of the acoustic sensor array from the structure. Specifically, as the acoustic462

pressure sensors are moved further away from the radiating surface, the accuracy of this463

identification method reduces and the sound power at frequencies where the distance between464

the surface and the acoustic pressure sensors is comparable to the acoustic wavelength is465

underestimated. Despite this limitation, this method may be more practicable in certain466

situations than the identification method that requires both acoustic pressure and particle467

velocity measurements.468

Finally, to validate the simulation-based study, an experimental rig was set up to measure469

the radiation resistance matrix for a flat rectangular plate mounted on an enclosure. Based470

on the simulation study, three forces, structural sensors and acoustic sensors per the shortest471

acoustic wavelength were used to identify the radiation resistance matrix using the two472

approaches. This number was chosen as it provides a practicable configuration, but also473

provides insight into the practical accuracies and limitations of the proposed methods. The474

results of this experimental study have shown that the proposed identification methods able475

to accurately estimate both the level and resonance frequencies of the radiating modes up476

to around 400 Hz, which corresponds to 8 forces/sensors per acoustic wavelength. At higher477

frequencies, the accuracy begins to reduce and, although the frequencies of the radiating478

modes are generally well estimated, errors in the estimated sound power level begin to479

occur.480

31



ACKNOWLEDGMENTS481

This research was partially supported by an EPRSC iCASE studentship (Voucher num-482

ber 15220040) and an EPSRC Prosperity Partnership ( EP/S03661X/1). All data sup-483

porting this study are openly available from the University of Southampton repository at484

https://doi.org/10.5258/SOTON/D0879485

REFERENCES486

REFERENCES487

1A. Roure and A. Albarrazin, “The remote microphone technique for the active noise cot-488

nrol,” in Active 99, International Symposium on Active Control of Sound and Vibration489

(1999), pp. 1233 – 1244.490

2S. Elliott and A. David, “A virtual microphone arrangement for local active sound control,”491

in MoVic, International conference on Motion and Vibration Control (1992), pp. 1027 –492

1031.493

3D. Moreau, B. Cazzolato, B. Zander, and C. Petersen, “A review of virtual sensing algo-494

rithms for active noise control,” Algorithms 1 69–99 (2008).495

4J. Garcis-Bonito, S. Elliott, and C. Boucher, “Generation of zones of quiet using a virtual496

microphone arrangement,” The Journal of the Acoustical Society of America 101(2), 3498–497

3516 (1997).498

32



5S. Elliott and J. Cheer, “Modelling local active sound control with remote sensors in499

spatially random pressure fields,” The Journal of the Acoustical Society of America 137(4),500

1936–1946 (2015).501

6F. Fahy and P. Gardonio, Sound and structural vibration (Academic Press Oxford, 2007).502

7W. T. Baumann, F.-S. Ho, and H. H. Robertshaw, “Active structural acoustic control of503

broadband disturbances,” The Journal of the Acoustical Society of America 92(4), 1998504

– 2005 (1992).505

8J. Cheer and S. Daley, “Active structural acoustic control using the remote sensor method,”506

Journal of Physics: Conference Series 744(1), 012184 (2016).507

9D. R. Hendricks, W. R. Johnson, S. D. Sommerfeldt, and J. D. Blotter, “Experimental508

active structural acoustic control of simply supported plates using a weighted sum of spatial509

gradients,” The Journal of the Acoustical Society of America 136(5), 2598–2608 (2014).510

10P. Aslani, S. D. Sommerfeldt, and J. D. Blotter, “Active control of simply supported511

cylindrical shells using the weighted sum of spatial gradients control metric,” The Journal512

of the Acoustical Society of America 143(1), 271–280 (2018).513

11S. Elliott and M. E. Johnson, “Radiation modes and the active control of sound power,”514

Acoustical Society of America 94(4), 2194–2204 (1993).515

12J. B. Fahnline and G. H. Koopmann, “A lumped parameter model for the acoustic power516

output from a vibrating structure,” The Journal of the Acoustical Society of America517

100(6), 3539 – 3547 (1996).518

33



13J. B. Fahnline and G. H. Koopmann, “Numerical implementation of the lumped param-519

eter model for the acoustic power output of a vibrating structure,” The Journal of the520

Acoustical Society of America 102(1), 179 – 192 (1997).521

14G. H. Koopmann and J. B. Fahnline, Designing Quiet Structures A Sound Power Mini-522

mization Approach (Academic Press London, 1997).523

15A. Berkhoff, “Broadband radiation modes: Estimation and active control,” The Journal524

of the Acoustical Society of America 111(3), 1295–1305 (2002).525

16P. Gardonio, Y. S. Lee, S. Elliott, and S. Debost, “Active control of sound transmission526

through a panel with a matched pvdf sensor actuator pair,” in Active 99 (1999), pp. 341527

– 354.528

17K. Henrioulle and P. Sas, “Experimental validation of a collocated pvdf volume velocity529

sensor/actuator pair,” Journal of Sound and Vibration 265, 489–506 (2003).530

18L.E. Kinsler, A.R. Frey, J.V. Sanders and A.B. Coppens, Fundamentals of Acoustics (John531

Wiley and Sons, 1999).532

19O. Heuss, “Identification of power transfer matrices for active structural acoustic contorl,”533

The Twentieth International Congress on Sound and Vibration (2013).534

20R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach (John535

Wiley and Sons, 2012).536

34


