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ABSTRACT
Multimodal data occurs frequently in discrete-event simulation input analysis, typ-
ically arising when an input sample stream comes from different sources. A finite
mixture distribution is a simple input model for representing such data, but fit-
ting a mixture distribution is not straightforward as the problem is well-known to
be statistically non-standard. Even though much studied, the most common fit-
ting approach, Bayesian reversible jump Markov Chain Monte Carlo (RJMCMC),
is not very satisfactory for use in setting up input models. We describe an alterna-
tive Bayesian approach, MAPIS, which uses maximum a posteriori estimation with
importance sampling, showing it overcomes the main problems encountered with
RJMCMC. We demonstrate use of a publicly-available implementation of MAPIS,
which we have called FineMix, applying it to practical examples coming from finance
and manufacturing.

Keywords Simulation; statistics; input analysis; mixture models

1. Introduction

Input modelling for discrete-event simulation (DES) aims to identify appropriate prob-
ability distributions for characterising the behaviour of the streams of random vari-
ables that represent the inputs to DES models. A recent review of input modelling
has been given by Cheng (2017a) showing how the topic has grown so that there is
now an extensive literature. The most basic situation is the simple one where input
random variables are independently and identically distributed and drawn from well-
known distributions such as the normal, lognormal, gamma or Weibull. This situation
is discussed in detail in Law (2007). A wider range of distributional shapes has been
discussed in Kuhl et al. (2010). Two generalizations, reviewed by Cheng (2017a), have
been studied in some detail, namely: (i) where the random variables are multivariate,
and (ii) where they are correlated. See for example Deler and Nelson (2001); Ghosh
and Henderson (2001); Nelson and Yamnitsky (1998). A third generalization, though
mentioned in Cheng (2017a) and Kuhl et al. (2010), has not been so well discussed,
where input random variables have a multimodal distribution, and most likely follow a
finite mixture distribution. The purpose of this article is to discuss such distributions
and their modelling in DES.

The article extends preliminary work in which we considered only mixtures of nor-
mal distributions in Cheng and Currie (2003) and relates the ideas presented in Cheng
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(2017b) to the specific application of input modelling for DES. We provide additional
theoretical insights into the problem that are not included in Cheng (2017b) and com-
pare our proposed method MAPIS, which uses maximum a posteriori estimation with
importance sampling, with the most common fitting approach, Bayesian reversible
jump Markov Chain Monte Carlo (RJMCMC), on a selection of examples.

The most common form of finite mixture distribution studied in the literature is
where the probability density function (PDF) is a weighted sum of a finite number
of continuous distributions, which we call the component distributions, each with the
same form for their PDF or base density, g(·). This is a special case of the more general
finite mixture distribution in which each of the base densities may take a different form.

We can write the PDF of the overall finite mixture as

f(y|ψ(k),w(k), k) =

k∑
j=1

wjg(y|ψj), (1)

where ψj(k) = (µj , σj) are the parameters of the base density for component j,
j = 1, . . . , k and ψ(k) = (ψ1, ψ2, ..., ψk)

T . Note that the number of components k
is included as a parameter. The wj are component weights, satisfying 0 ≤ w1, w2, ...,

wk ≤ 1,
∑k

j=1wj = 1 and written as w(k) = (w1, w2, ..., wk)
T . We omit the k de-

pendence of the individual component parameters ψj , wj , j = 1, ..., k, to avoid clumsy
notation. When we do not need to consider ψ(k) and w(k) separately we shall write
θ(k) = (ψ(k), w(k)), referring to this simply as the vector of component parameters
with the weights tacitly included.

There is a focus in the literature on the case where g(·) is the normal density with
just two parameters so that ψj = (µj , σj), where µj and σj are the mean and standard
deviation (SD) of component j. However our method also covers other two-component
base densities: lognormal, extreme value (EV), negative extreme value (NEV), Weibull,
gamma, and inverse Gaussian (IG).

We consider the DES situation where we wish to use an input model obtained under
the following assumption.
Assumption A0: The finite mixture exists and has PDF of the form

f0 = f(·|θ0(k0), k0) (2)

where f is as in Equation (1), with k0, θ0(k0) regarded as a fixed set of true values, but
which are all unknown. We have a random sample y = (y1, y2, ..., yN )T , drawn from
the distribution (2), that we can use to estimate the parameters, including k0.

To obtain an input model based on Assumption A0, we have three requirements for
the output of the fitting algorithm:
Requirement R1: Point estimates k̂, θ̂(k̂). We can then take the input model as

f(·|θ̂(k̂), k̂), generating any random variates required in the simulation from this fitted
distribution.
Requirement R2: An estimate of the distribution of the point estimates. This is
needed if we wish to estimate the uncertainty in the estimated input model.
Requirement R3: The base density is assumed to be unimodal.

The third requirement might be considered to be part of Assumption A0, and is
true for the two-component base densities mentioned previously. Making this explicit
simplifies discussion to unimodal fitted components with parameters whose posterior
distributions are also unimodal.
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Finite mixture models have a wide range of application (see for example McLachlan
and Peel (2000)) and are of particular relevance where the combined overall input is
made up of component distributions representing different types of input. Provided
k and θ(k) are completely known, it is straightforward to generate variates from the
distribution, so that a finite mixture model provides an easily implementable input
model.

To date the most widely studied methods of fitting the finite mixture (1) are max-
imum likelihood (ML) and Bayesian Markov chain Monte-Carlo (MCMC), most no-
tably the reversible jump version (RJMCMC) introduced in Richardson and Green
(1997). Detailed discussion of both approaches are given by McLachlan and Peel (2000)
and Frühwirth-Schnatter (2006). Estimation of the parameters when k is unknown is
recognised to be a non-standard problem. In brief, the issue is that if one attempts to
estimate parameters conditionally for a given k, where k is greater than the true value
k0, (what is called an overfitted model by Rousseau and Mengersen (2011)) we have an
indeterminate problem in which (k−k0) components of the model are non-estimable as
they do not exist. This causes issues for both Bayesian and classical (ML) analysis of
the problem. In the Bayesian case, using MCMC is unsatisfactory when the true value
k0 is unknown, as estimates of the posterior distributions of the component parame-
ters and weights are very difficult to interpret, often becoming multimodal. Richardson
and Green (1997) discuss multimodality in posteriors when using RJMCMC without
coming to any definitive conclusions, and although Rousseau and Mengersen (2011)
provide a much more definitive explanation of the observed multimodality of posteriors
of component parameters, this latter work does not mention multimodality explicitly.
In Section 2.2, we discuss the issue of multimodality in more detail, extending the
discussion in Cheng (2017b) to give a new characterization of multimodality in the
posterior distributions, suggesting why and how it arises using MCMC methods.

In this paper we use a Bayesian approach, which we call the MAPIS method, to fit
mixture models to multimodal data. This does not rely on MCMC. Instead point esti-
mators of θ(k) conditional on k, which we shall write as θ̃(k), are obtained for each k
using the maximum a posteriori (MAP) method with k being increased systematically
stepwise. Sufficiently informative priors are used to ensure that the posterior distribu-
tions of θ(k) conditional on k, are all unimodal with modes estimable by MAP. Thus
precisely k components are fitted at each k. Posterior distributions of θ(k) conditional

on k are then obtained using importance sampling (IS), with the MAP estimators θ̃(k)
playing a key role in constructing the candidate distributions used in IS.

We believe MAPIS is sufficiently reliable for practical use, and an implementation of
MAPIS known as FineMix (written in C with an Excel interface) is available for down-
load at http://www.curries.org.uk/christine/. In this article we apply MAPIS to
four examples coming from finance and manufacturing. A library of real data samples
including these examples and over a dozen others from different application areas are
provided with FineMix.

In addition to handling the problem of multimodal posterior distributions of com-
ponent parameters, MAPIS is also able to detect so-called spikes in the frequency
histogram, tight clusters of observations with very similar values. These correspond to
components with small variance and weight. Spikes are hard to detect using MCMC,
even when they are due to a real component, because of multimodality in the posterior
distributions, as we illustrate in Section 4.

We formulate the Bayesian model in Section 2 and discuss multimodality of posterior
distributions in Section 2.2, before describing MAPIS in more detail in Section 3. Its
practical performance is discussed in Section 4 and compared with RJMCMC using
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examples from a range of applications. We then conclude in Section 5.

2. Bayesian Estimation for Finite Mixture Models

In considering Bayesian methods we shall write K for the number of components to
indicate that it is being treated as a Bayesian variable with a prior distribution, and
likewise we write Θ(K) = (Ψ(K),W(K)) for the component parameters and weights.
We use the lower case versions k, θ(k) to indicate given values.

In Bayesian modelling of finite mixtures, the main objective is to estimate the
posterior distributions of K and Θ(K). This is most conveniently done by using some
appropriate method to estimate π(k|y), the posterior distribution of K, and also to
estimate πθ[θ(k)|k,y], the posterior distributions of the component parameter Θ(k)

conditional on k. To satisfy requirement R1, we need to obtain point estimates k̃, θ̃(k)
from these posterior distributions.

We assume that the posterior distribution of Θ(K) and K has the form

π(θ(k), k|y) =
f [y|θ(k), k]π[θ(k), k]

kmax∑
l=1

J(l|y)

, θ(k) ∈ E(k), k = 1, 2, ..., kmax (3)

where

J(k|y) =

∫
E(k)

f [y|θ(k), k]π[θ(k), k]dθ(k), (4)

and π[θ(k), k] is the prior distribution of k and θ(k); with E(k) the Euclidean region
containing all possible θ(k) values, and kmax some finite upper limit that will not be
exceeded by K.

We use the mean M and standard deviation S as the parameters for the seven base
densities g(·) considered in this article: the normal, lognormal, extreme value (EV),
negative extreme value (NEV), Weibull, gamma and inverse gamma (IG). The mean
and standard deviation are not the standard parameters for some of the distributions
we consider and Table 5 in the Appendix includes the transformations from the more
standard parameters. We use this parametrization rather than more conventional ones
for the following reasons: (i) it is usually easier to study and discuss the behaviour
of different components in terms of their location and spread; (ii) it enables the fits
obtained using different base distributions to be more easily compared; and (iii) finally,
and perhaps most importantly, we found that use of the mean and standard devia-
tion gave rise to significantly more stable and consistent behaviour in the numerical
optimization methods used in calculating the posterior distribution.

2.1. Prior Distributions

The choice of priors for finite mixture distributions has been addressed by a number
of authors and we, as far as possible, use the same functional forms for the prior
distributions in MAPIS as given in Richardson and Green (1997) for RJMCMC. This
set up for the prior distributions works well in the situation we consider and enables
a fair comparison of the two methods, as we discuss further in Section 4.
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Prior for K: we use a discrete uniform distribution for K, namely

pK(k) = Pr{K = k} = 1/kmax, k = 1, 2, . . . , kmax

where kmax is a prescribed maximum number of components, which it is assumed will
definitely not be exceeded so that pK(k) = 0 for all other values of k.
Prior for Component Weights W (K): for given K = k we use the Dirichlet
distribution with density

fW (k)(w(k)) =
Γ[(k)δ]

[Γ(δ)]k

k∏
j=1

wδ−1
j , 0 ≤ w1, w2, ..., wk ≤ 1. (5)

We discuss appropriate values for δ in the following section.
Prior for Component Means: In order for MAPIS to be robust to different data
sets, we set the prior distributions for the component means so that they have both
mean and variance that are of the same order as the data. We use two forms of prior
for the parameter M, depending on whether M is unrestricted in range or whether it
has to be positive.

In the case of the normal and EV distributions where M is unrestricted in range,
we use a uniform prior for M . This is where, in handling the multimodality problem,
the corresponding posteriors are least sensitive to the choice of prior. We therefore
use the prior

fM (µ) =

{
(2κs)−1, ȳ − κs < µ < ȳ + κs
0, otherwise

, (6)

where ȳ and s are the sample mean and standard deviation of the data set, and κ is
an arbitrary constant made sufficiently large (κ = 10 in the examples) to ensure that
the range over which the density is positive is greater than the sample range.

For the lognormal, gamma, Weibull and IG distributions, we require M ≥ 0. In
these cases we use the beta distribution of the second kind for the prior:

fM (µ) =
Γ(g + α)

Γ(g)Γ(α)

r(rµ)g−1

(1 + rµ)g+α
, µ > 0, (7)

where r is a scaling parameter and α, g are two shape parameters (g not to be confused
with the base density g(·), this latter always being written with the argument). All
three need to be chosen and we discuss practical choices in Section 4.
Prior for Component SD: For SDs, S, we use the prior

fS(σ) = 2
Γ(α+ g)

Γ(α)Γ(g)

hgσ2g−1

(1 + hσ2)α+g
, (8)

as given by Cheng (2017b), where α, g, and h are the parameters used by Richardson
and Green (1997), only they do not give this PDF explicitly, couching their discussion
in terms of a hyperparametrized prior for S. The values used for the three parameters
are discussed in Section 4.
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In summary, the complete prior is

π[θ(k), k] =


k∏
j=1

[fM (µj)fS(σj)]

 fW (k)[w(k)]pK(k), k = 1, 2, ..., kmax,

where θ(k) = (ψ(k),w(k)) ∈ Θ(k), the latter being the support of the prior distribu-
tion in [ψ(k),w(k)] space.

2.2. Multimodality and Overfitted Models

Rousseau and Mengersen (2011) show that f0, the true PDF of the finite mixture
of Equation (1), is consistently estimable under Assumption A0 but their Theorem
1 shows that when using MCMC in an overfitted model (k > k0), the component
parameters and weights are nonidentifiable. What happens depends critically on δ,
the shape parameter in the Dirichlet weight prior, (5).

We summarize Part (ii) of their Theorem 1 as follows. When δ > 1, so that the
weight prior can be regarded as informative, the sum of the weights of the (k−k0) fitted

components with the smallest weights (Ω = minλ
∑k−k0

j=1 wλ(k), where λ(k) indicates

the position of weight wk in a non-decreasing list of the weight values), will not tend
to zero but will remain positive asymptotically. Thus k′ component weights, where
k′ > k0 will remain positive, so that identification of the k0 true components will be
very difficult, no matter how large the data sample size.

Rousseau and Mengersen (2011) do not discuss the multimodality of posterior of
component parameters. However, as they show that f0 is consistently estimable, their
Theorem 1(ii) must mean that, in overfitted models, f0 is a mixture of k′ > k0 compo-
nents, even asymptotically. The k0 true components must therefore be split up over the
k′ fitted components, and this is how multimodality arises in the posterior distribu-
tions for the component parameters. We show in the Appendix how the true mixture
f0(y) =

∑k0
j=1w0jg(y|ψ0j) has many alternative representations involving k′ > k0

components:

f0(y) = f [y|k′, θ(k′)] =

k′∑
i=1

wihi(y|w0, ρi, ψ0), (9)

where each hi (see Equation 13 in the Appendix) is made up of different fragments of
the true components g(y|ψ0j), j = 1, 2, ..., k0, explaining why fitted posterior parameter
distributions may be multimodal.

Procedures that result in multimodal posterior distributions for parameters do not
satisfy requirements R1 and R2 listed previously.

As pointed out by Richardson and Green (1997), an immediate effect of parameter
posterior distributions being multimodal is that parameter values are more spread out.
This makes an estimate of f0(y) over-smooth if it is calculated using parameter and
weight values that are average values based on such posteriors. Often such an estimate
does not even correspond sensibly to the shape of the sample histogram.

There is a further ramification of multimodality, that the posterior distribution of
K will have probabilities π(k|y) that are biased high for k > k0. This means that the
overall posterior distribution π(k|y) k = 1, 2, ..., kmax is an unreliable indication of the
comparative merits of the different k component fits. In particular it is quite likely
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that the largest π(k|y) will occur at a value of k > k0 so that the point estimate k̃ is
biased high.

For this reason Rousseau and Mengersen (2011) prefer the noninformative choice
δ < 1 although recent work by van Havre et al. (2015) demonstrates that this choice
has its own problems. In contrast, Frühwirth-Schnatter (2006) considers the benefits of
informative priors, and we focus on such priors in this paper. In the following section
we describe why MAPIS does not suffer from the same issues of multimodality in the
posterior distributions using the informative choice δ > 1 .

Label switching is another awkward problem that arises with MCMC when using
symmetric priors, as is the case in finite mixtures. Our proposed alternative approach
uses MAP estimation to directly estimate ψ(k) and w(k) conditional on k. As pointed
out by Jasra et al. (2005), MAP does not suffer from the label switching problem.
Although Jasra et al. (2005) do not recommend MAP, our method of applying MAP
circumvents the concerns they raise.

3. The MAPIS Method

As already mentioned, in MAPIS two steps are used to determine the posterior dis-
tribution for the parameters of the mixture model. In the first step, we use the MAP
method of to obtain the point estimate θ̃(k), of θ(k) = (ψ(k),w(k)), corresponding to
the mode of the posterior distribution conditional on k for each of the allowed values
of K. Then in the second step, the posterior distributions of component parameters
are estimated using importance sampling (IS), making use of the estimates θ̃(k) to set
up importance sampling distributions. The structure of MAPIS has previously been
described in Cheng (2017b) but we provide a short description here for convenience.

3.1. MAP estimation

In the MAP step, posterior point estimates of parameter components are obtained
directly by fitting k-component mixtures sequentially for increasing k = 1, 2, ..., kmax,
with MAP reoptimization carried out at each k. We use the Nelder Mead optimization
routine (Nelder and Mead (1965)) to maximize the log posterior, ln(p[y|θ(k), k]) for
each k.

For k = 1, the Nelder Mead is started at µ0 = ȳ and σ0 = s, the respective sample
mean and sample standard deviation of the sample y. At each subsequent step the
difference between the k-component fit obtained so far and the data sample is examined
to see how a meaningful additional component might be added that would best reduce
the discrepancy between the data and fitted model. This is then used as the starting
point for the Nelder Mead optimization. Details of the optimization method are given
in the Appendix, but the advantage of parametrizing the base distribution using its
mean and standard deviation is now evident, as it makes this process of introducing
additional components a straightforward one.

Given k, the MAP estimator θ̃(k) comprises the parameter values which maximize

the posterior distribution conditional on k. Calculation of θ̃(k) is simplified by noting

that in the maximization of π(θ(k), k|y) we can omit the denominator
∑kmax

l=1 J(l|y)
as it is a summation over all k. The MAP estimator, conditional on each k, k =
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1, 2, ..., kmax, is therefore

θ̃(k)= arg max
θ(k)
{f [y|θ(k), k]π[θ(k), k]} (10)

for k = 1, 2, ..., kmax, where we can write

p[y|θ(k), k] = f [y|θ(k), k]π[θ(k), k]

as the posterior of θ(k) conditional on k.
At each k, using MAP, the problem is thus effectively a standard estimation of

parameters of the mixture (1) with precisely k components, so that posteriors become
unimodal as data sample size increases. The only possible alternative representation (9)
is where two fitted components are identical with exactly the same original functional
form g(·) and identical ψ. This can happen when k′ > k0 but even then only rarely
as the MAP procedure favours fitting to different features. This is easily detected and
allowed for, as is done in FineMix, the MAPIS implementation described in Section 4.

Note that although MAPIS is still Bayesian, it is different from MCMC in that the
objective of the MAP stage is to produce point estimates of the set of component
parameter values θ(k) for each k, satisfying requirement R1. This is achieved by esti-
mating precisely k possible components of base component form g(·|ψj), j = 1, 2, ..., k
and a corresponding weight wj at each given k, each component being non-degenerate
and unimodal as in R3. (The ψj and wj being different at different k.)

In order to ensure components are non-degenerate and unimodal, prior parameters
are chosen such that the prior distributions are sufficiently informative to ensure the
maximum of the posterior distribution of θ(k) tends to zero at the boundary of the

parameter space Θ(k). The MAP estimator θ̃(k), with k given, will then be an in-
ternal point of Θ(k) corresponding to a k component mixture with all components
nondegenerate.

The boundary is approached if any component mean µj → µ0 (where µ0 is a given
lower bound of µ), or if any SD σj → 0, or if any weight wj → 0. Setting δ > 1 and
g > 0.5 in the Dirichlet and SD priors of Equations (5) and (8) ensures that all priors
remain bounded and at least one tends to zero as the boundary of Θ(k) is approached.
This guarantees that the maximum of the posterior distribution of θ(k) tends to zero
as the boundary of Θ(k) is approached.

3.2. Importance Sampling

To evaluate the full posterior distribution (3) we need to estimate the J(k|y) integral
of (4) for all k. IS is a numerical method for evaluating a general integral

∫
Θ h(θ)dθ,

an early reference for which is Hammersley and Handscomb (1964). In IS, samples
are drawn from a candidate distribution and weighted by the ratio of the integrand
h(θ) evaluated at the sample point, to the value of the candidate distribution at that
point. If the candidate distribution is chosen correctly, this results in the sampling
being concentrated in parts of parameter space at which the integrand is large, i.e.
more important parts of parameter space.

We use the method introduced by Geweke (1989) to estimate a posterior distribution
using importance sampling. As pointed out in Cheng (2017b), because each sampled
point in IS is obtained independently of all other points, we can find the normalising
constant for each of the posterior distributions, conditional on k, for each value of k,
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independently of one another. Therefore, when running the importance sampling, we
first sample the number of components, k, with equal probability 1/kmax of choosing k
in the range 1, . . . , kmax. Then we sample from the candidate distribution for the model
with k components ck[θ(k)], a multivariate Student t-distribution, centred on the mode
of the posterior, as calculated by the optimization routine, with covariance matrix set
equal to minus the inverse of the Hessian of the log posterior density evaluated at the
mode of the posterior distribution conditional on k. Details of this procedure are given
in the Appendix.

One of the benefits of our IS routine is that both the prior for k and the importance
sampling of k are uniform, therefore we have no need to calculate the normalising
integrals of the posterior distribution over the (ψ(k),w(k)) space explicitly. This allows
us to take the most likely k,

k̃ = arg max
k

π̃(k|y), (11)

as the best estimate of k.
To cope with the possibility that the resulting IS distribution is a poor represen-

tation of the posterior distribution, Geweke (1989) suggests adjustments of the IS
distribution in each direction of each parameter axis. We have not implemented this
more elaborate version but report results using just the Student t-distribution. We
would expect results to be satisfactory when k = k0, but for k different from k0 it is
likely to introduce a bias in estimating π(k|y) making it smaller than the true value.
Thus our method will produce an estimate of the posterior distribution of k that is
likely to be more concentrated about k0 than with an MCMC method.

4. Examples

This section describes how MAPIS is used in practice via FineMix, our implementation
of the theory described previously. It also serves as a comparison between MAPIS and
RJMCMC, demonstrating examples of multimodality in the posterior distributions
as discussed previously in Section 2.2. We consider four examples: (1) An artificial
sample of size 500 drawn from a four-component normal mixture with all components
and weights known; (2) a Lot-Size example: this is given in Wagner and Wilson (1996a)
and is a sample of 2083 lot-sizes, in thousands, of surface mounted capacitors being
stored in a facility while waiting for their insulation resistance to be tested; (3) an
Activity-Cycle example: 1500 activity-cycle times observed in the production process
of a car manufacturer; (4) a Credit Risk example: a subsample of size 2000 drawn from
a larger complex financial data set comprising the loss given defaults (LGD) of 7051
clients.

We shall compare MAPIS and RJMCMC in each example, but before considering
the examples we make some general comments about fitting using MAPIS.

As discussed in Section 3, MAPIS requires setting δ > 1. Low values of δ enable
identification of components with small variance but if set too low, can result in the
fitting of spurious spikes to random clusters in the sample. This latter issue is not
usually a problem for k > k0, so a simple fitting strategy is to select δ near to unity,
checking the fit of the CDF to the EDF and ensuring that the posterior parameter
and weight distributions are unimodal for all k, then stopping and reducing kmax,
if a spurious fit arises. FineMix also includes a diagnostic check on the size of the
coefficient of variation of each component and suggests either using a smaller kmax
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or refitting with δ (and possibly g) increased so that the problem is not encountered
for the range of k considered. We recommend a maximum value for δ of 5 based on
practical experience.

In our examples we find that the fits are not sensitive to the precise values of the
three remaining parameters g, α and h. Although in Section 3 we state that g > 0.5,
in practice this does not seem as important as the condition δ > 1. We have therefore
used the value g = 0.5 as our default, but have used g = 0.2, the default value of
Richardson and Green (1997), in one example, and g = 2 (with g = δ) in another
example. We set α = 2, the default value used by Richardson and Green (1997). It
will be seen from the prior of S, as given in Equation (8), that h is a scaling parameter
of S2. Richardson and Green (1997) used h = 10/R2, where R is the data range and
we use the same value in our examples.

FineMix includes three further diagnostic checks. The first determines how distinct
the fitted components are with a flag being raised if two adjacent mean estimates
mj ,mj+1 and corresponding SD estimates sj+1, sj satisfy

(m2
j+1 +m2

j )
−1/2(mj+1 −mj) + (s2

j+1 + s2
j )
−1/2(sj+1 − sj) < 0.001.

The second check is used to determine whether the optimization routine has found
an optimal solution (even if only a local optimum). The eigenvalues of the negative of
the Hessian of the posterior distribution evaluated at the optimal point are examined
and any found to be negative are reported. If all of the eigenvalues are positive, this is
an indication that at least a local optimum has been obtained. It is possible, especially
when k is much larger than needed, for the posterior to become rather flat and the
Nelder Mead routine can terminate before all the eigenvalues become positive. The
importance sampling can still return a useful estimate of the posterior distribution of
k in this case as a negative eigenvalue is usually associated with a k that is an extreme
value for which pk is very small.

The third check is designed to alert the user to the presence of very low variance
and low weight fitted components. Warnings are given for any fitted component where
σ < R/1000 or where w < 1/n where R and n are the sample range and sample size.

For RJMCMC we used the NMix simulation implementation (downloadable from
https://people.maths.bris.ac.uk/~mapjg/Nmix/), to which we added an Excel
front-end interface, which can be accessed via FineMix. Default parameters were used
to match those used in FineMix, except where specified in the examples.

4.1. Example 1: Four Normals Mixture

This is a sample, of size 500, drawn from the four-component normal mixture with
known parameters (µ,w) = (5.0, 0.4), (9.0, 0.3), (13.0, 0.2) and (17.0, 0.2), all with
the same SD σ = 1.5. We fitted the normal mixture model using both RJMCMC and
MAPIS. In order to illustrate how the output varies for different values of δ, we give
results for δ = 1.1, 2, and 4, with g = 0.5 held fixed.

For all combinations of method and δ, run lengths of 50, 000 replications were used.
In the RJMCMC cases there was an additional burn-in of 5, 000 replications. In or-
der to improve the accuracy of run times, we measured the durations with 100,000
replications, and an additional burn-in of 10,000 replications for RJMCMC. One run
took 99 seconds for RJMCMC and 123 secs for MAPIS using an Intel Pentium G2030
running at 3GHz.
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Table 1. Artificial four normals example: estimated posterior distribution of k, obtained by fitting a mixture

of normal distributions using RJMCMC and MAPIS using δ = 1.1, 2, 4; g = δ

δ k 3 4 5 6 7 8 9
1.1 π̃MC(k|y) 0.277 0.281 0.198 0.120 0.061 0.031
2.0 π̃MC(k|y) 0.004 0.298 0.306 0.191 0.105 0.053 0.024
4.0 π̃MC(k|y) 0.002 0.288 0.305 0.202 0.109 0.050 0.023
1.1 π̃IS(k|y) 0.173 0.815 0.02
2.0 π̃IS(k|y) 0.103 0.883 0.008
4.0 π̃IS(k|y) 0.181 0.775 0.041 0.001

Figure 1. Four Normals Artificial Example: CDFs and PDFs and Posterior Parameter and Weight Probability
Distributions for the 5-component RJMCMC best fit (upper charts) and the 4-component MAPIS best fit (lower

charts). It is clear in the RJMCMC case, that the second true component has split in two, appearing together
with a small part of the first true component as the second fitted component and together with a small part

of the third true component as the third fitted component.

Table 1 shows the posterior distributions of π̃MC(k|y), π̃IS(k|y), k = 3, 4, ..., 9, esti-
mated by RJMCMC and MAPIS respectively using each δ value. They show that the
choice of δ makes negligible difference in terms of drawing statistical inferences. RJM-
CMC suggests the best choice for the number of components, the k where π̃MC(k|y is
maximized, to be k̃MC = 5, whilst MAPIS gives k̃IS = 4.

Figure 1 shows the best-fit CDFs and PDFs for RJMCMC and MAPIS, correspond-

11



Table 2. Lot-Size example: Posterior probability distribution of the number of components k calculated using

RJMCMC and MAPIS

k 5 6 7 8 9 10 11 12
π̃MC(k|y) 0.004 0.177 0.318 0.246 0.139 0.069 0.030
π̃IS(k|y) 0.348 0.375 0.252 0.024

ing to k̃MC = 5 (upper charts) and k̃IS = 4 (lower charts) respectively. The posterior
distributions of the fitted component parameters are shown to the right of the fig-
ure. These are unimodal in the MAPIS case and correspond quite well to the true
parameter values. Conversely for RJCMC, there is evidence of multimodality in the
fitted posterior distributions where the posteriors of the means of the first three true
components have split, with the first contributing to both the posteriors of the first
and second fitted means, the second to the posteriors of the second and third fitted
means and the third to the posteriors of the third and fourth fitted means. Although
RJMCMC suggests k = 5 to be the optimal value, the fit of the model is actually
noticeably poorer than that for k = 4, which we do not reproduce here, and moreover
in this k = 4 case, all the RJMCMC component parameter posteriors are unimodal.

4.2. Example 2: the Lot-Size Example

The second example is a real data set given in Wagner and Wilson (1996b) who use
it to illustrate use of PRIME, a method that they propose for fitting multimodal
data using a sum of Bézier curves to represent the fitted CDF. Wagner and Wilson
(1996a) used to supply a very user-friendly implementation of PRIME with a graphical
interface but this no longer appears to be available. We emphasize that PRIME, though
easy to use, can only be regarded as an exploratory tool, and is not suitable for our
fitting purposes as it does not satisfy requirements R1 and R2, making it difficult for
generating random variates to use in a simulation.

Wagner and Wilson describe the lot-size sample as being bimodal and the frequency
histogram of the data set depicted in Figures 6 and 8 of their article seems to show
this; however their Figure 10, which also depicts the frequency histogram but using a
smaller bin width, seems to show a more multimodal behaviour and this is what we
explore.

We again compare fitting a normal mixture model using the RJMCMC and MAPIS
methods. In this example run lengths of 100, 000 were used, with RJMCMC using an
additional 10, 000 replications for the burn-in. As with the other examples, the choice
of δ and g is not too critical because of the relatively large sample size of n = 2083.
We did try different δ as we have recommended above, but as the results were similar
and to save space, we only report the comparison between MAPIS and RJMCMC in
which δ = 2, g = 0.5 were used for both methods.

Table 2 gives the probability distributions of k obtained using RJMCMC and
MAPIS, which can be seen to be quite different, with k̃MC = 8 and k̃IS = 6. The
CDFs and PDFs of the fitted models for MAPIS and RJMCMC are given in Figure 2,
together with EDFs and frequency histograms. Though the fits are similar, there are
small but clearly visible discrepancies between the EDF and the 8-component RJM-
CMC fitted CDF. In fact, though not shown here, the discrepancies are not apparent
in the 6-component RJMCMC fit, which is similar to the MAPIS 6-component fit
in Figure 2. So the two additional components have resulted in a counter-intuitive
degradation of the RJMCMC fit. We do not show the posterior distributions for the
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Figure 2. Lot-Size example: CDFs and PDFs of the MAPIS fitted 6-component and RJMCMC fitted 8-

component normal mixture distributions with frequency histograms and EDFs.

component parameters for this example but there is again a presence of multimodality
in the posterior distributions obtained by RJMCMC for k = 8, explaining why k = 8
is chosen over k = 6.

A more satisfactory fit can be obtained for this example using a mixture of Weibull
components with π̃IS(5|y) = 0.994, making k̃IS = 5 the obvious best choice for k.
Though the two-parameter Weibull distribution has a fixed lower threshold of zero, its
flexible shape, which includes both negative and positive skewness, makes it a more
suitable base distribution for this example than the normal, but does not allow it to
be compared with RJMCMC which only fits normal mixtures.

4.3. Example 3: the Activity-Cycle Example

This is a sample of an activity-cycle time observed in the production line of a UK
car manufacturer. Management expected a particular informal work pattern to affect
activity-cycle time, and a preliminary visual examination suggested the presence of
a low-variance component of small weight corresponding to this behaviour. We use a
relatively small sample to provide a stringent test for any finite mixture model fitting
routine in that the small-variance component is then not very obviously present at
first sight.

We fitted the normal mixture model using both RJMCMC and MAPIS. In both we
used δ = 2 and g = 0.2, where g is set to the default value used by Richardson and
Green (1997).

We applied RJMCMC and MAPIS, using 100, 000 replications with each method,
again with an additional 10, 000 replications for the burn-in in the RJMCMC case. In
this example, a run with 100,000 replications, with an additional 10,000 replications
burn-in for RJMCMC, took 415 secs for RJMCMC, and 530 secs for MAPIS using
an Intel Pentium G2030 running at 3GHz. Table 3 gives π̃MC(k|y) and π̃IS(k|y), the
posterior distribution of k obtained by each method. As can be seen, MAPIS gives a
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Table 3. Activity-Cycle example: estimated posterior distribution of k, obtained by fitting a mixture of

normal distributions using RJMCMC and MAPIS.

k 3 4 5 6 7 8 9 10
π̃MC(k|y) 0.002 0.473 0.316 0.146 0.045 0.014 0.004
π̃IS(k|y) 0.027 0.037 0.934 0.002 0.000

clear maximum posterior value of π̃IS(5|y) = 0.934, making k̃IS = 5 the best MAPIS
estimate of k.

Figure 3 depicts the CDFs and PDFs of the 5-component and 6-component models
fitted by each method, and the fits for MAPIS appear to be very good. In particu-
lar the fourth component fitted by MAP is a spike with estimated parameters: mean
=1.25, SD=0.006 and weight=0.03, so that SD and weight are both small. In com-
parison the RJMCMC fit is not satisfactory, failing to find this spike, and none of its
fitted components having SD this small. Table 3 shows that the maximum posterior
probability of k is also obtained at k = 5, though less definitively as π̃MC(5|y) = 0.447,
with π̃MC(6|y) = 0.316 and π̃MC(7|y) = 0.146 not negligible. However there is one
serious concern. In contrast to MAPIS, neither the 5 nor the 6-component RJMCMC
fits has identified the component found by MAPIS with the small SD.

Figure 4 depicts, for the case k = 6, the estimated posterior distributions of all the
component parameters and weights obtained by each method. The reason we choose
to display the posterior distributions for k = 6 rather than k = 5 (the best choice of k
for both methods) is to give RJMCMC as much opportunity as possible for detecting
the spike with mean approximately 1.25. These show that the posterior distributions
estimated by MAPIS are essentially all unimodal, mostly with a small spread, indi-
cating unambiguous parameter values assigned to the fit, including the component
with a mean of approximately 1.25 (component 4 in Figure 4), which corroborates
the behaviour anticipated by the management team. RJMCMC produces component
parameter and weight posterior distributions that are unsatisfactory. Although the
estimated sixth component, highlighted with the label ‘wc = 0’ in the figure, is con-
centrated at w = 0, the component is not a spike as the SD is too large. Instead, this
seems to imply that the true k0 < 6, so that a meaningless component with weight
near zero has been fitted, instead of the component with small SD and weight, and
mean 1.25 identified by MAPIS and corresponding to real system behaviour. There is
also evidence of multimodality in the RJMCMC posterior distributions for the case
k = 6, making them difficult to use for input modelling.

Multimodality leads to the estimated posterior probability values π̃(k|y), when esti-
mated by RJMCMC, being overlarge when k > k0. In our example, though we have not
included plots, multimodality occurs in many fitted parameter posterior distributions
for all k ≥ 6 that we have examined. This would explain the high π̃MC(k|y) values for
k = 6, 7, ... given in Table 3 compared with the negligibly small corresponding π̃IS(k|y)
values. Due at least in part to multimodality, the problem of oversmooth predictive
densities also arises with the RJMCMC results. The left-hand plots in Figure 3 show
this oversmoothness clearly in the case of the 6-component fit and also provide further
evidence that RJMCMC has not picked up the spike component.
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Figure 3. Activity-cycle example: frequency histogram and fitted 5 and 6-component normal mixture distri-
butions using RJMCMC and MAPIS.

Figure 4. Activity-Cycle Example: frequency histogram and fitted parameter posterior probabilities for the
6 component model. RJMCMC posteriors - black, MAPIS posteriors - red.
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4.4. Example 4: the Credit Risk Example

This example uses a data sample that, like the activity-cycle sample, contains a tightly
clustered, distinctive subsample arising in a real context. We consider all seven base
distributions that our method implements to illustrate how the Bayesian Information
Criterion (BIC) might be used in practice when comparing fits using different base
distributions. (See Schwarz (1978) and McLachlan and Peel (2000) for more discus-
sion of the BIC). As a result we do not compare MAPIS with RJMCMC, omitting
RJMCMC altogether as it is only able to fit normal mixtures.

The data are the loss given default (LGD) arising from 2000 clients at a bank. The
sample includes only those cases where a non-zero loss was incurred. An LGD of 1
corresponds to the debtor having paid off their loan in full, but if fees and legal costs
have been incurred the LGD can be greater than 1, which is the case for approximately
15% of the non-zero losses. The data histogram includes a small spike with mean
approximately 0.15, representing the behaviour of a certain kind of client. We used a
relatively high value for the smoothing parameters with δ = 2 and g = 2, to avoid
fitting to spurious clusters.

We use MAPIS to estimate the BIC values for each of the k-component fits using
MAP estimators, defining k̃BIC as the k at which the BIC value is maximized. The
number of importance sampling replications is set at 50, 000. Table 4 lists k̃BIC , k̃IS
and the BIC for each base distribution. There is fairly close agreement between k̃BIC
and k̃IS , with only the gamma and inverse Gaussian distributions having a higher k̃IS
value. Our advice is to use BIC principally as a method for determining which base
distribution to use in the mixture. The overall maximum value of the BIC, taken over
the seven base distributions, was obtained with a mixture of EV distributions, with
k = 4.

Table 4. Credit Risk example: k̃BIC is the number of components corresponding to the maximum BIC value;

‘BIC’ is the BIC value obtained for each base model; k̃IS is the best k as estimated by MAPIS.

Base
Model k̃BIC BIC k̃IS

Base
Model k̃BIC BIC k̃IS

Normal 5 -422.8 5 Lognormal 4 -400.5 4
EV 4 -391.8 4 NEV 6 -466.1 6
Weibull 5 -427.6 5 Gamma 4 -403.4 5
IG 4 -402.4 5

In a practical situation, running FineMix for each of the seven possible base distri-
butions to obtain BIC values is a time-consuming process. Consequently, it is advisable
to make a sensible initial choice for the base distribution, such as a distribution that
has a shape that is similar to that of the individual peaks in the data. A visual check
of the plots of the CDF of the fitted model and the EDF of the original data usually
provides some indication of whether several components are being used to obtain the
right shape for just one individual component.

The plots of the 4-component MAP fitted predictive densities for the EV distribution
are given in Figure 5 and show that the component matching the spike of observations
clustered at 0.15 with estimated parameter values (µ̃, σ̃, w̃) = (0.152, 0.0084, 0.028) is
visible in the plot as a tall, narrow spike. The estimates for the parameters of this
spike component are very stable, remaining essentially unchanged for k = 5, 6, ..., 10
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Figure 5. Credit Risk example: frequency histogram and fitted models for the Extreme Value (EV) fits with

k = 4, using MAPIS.

and for all of the base distributions.

5. Conclusion

Finite mixture models are ideally suited for describing multimodal data and are partic-
ularly appropriate in simulation input modelling because of the ease of incorporating
them into any simulation package. An entity in the simulation model will have a dura-
tion or other characteristic that follows a mixture model if the simulation first allocates
it to a component with probability equal to the component weight and then samples
from that component’s distribution.

We describe a fitting method, MAPIS, that uses maximum a posteriori estimation of
parameters and weights, conditional on k, for a range of values for k. In these examples
we assume that k is unknown and MAPIS uses importance sampling to calculate its
posterior distribution and from this, a point estimate of k.

The behaviour of MAPIS is compared in detail with RJMCMC in three examples:
the first an artificial example with known parameter values and the remaining two
arising from real data. The results demonstrate some of the issues with using RJM-
CMC when fitting multimodal input models; in particular oversmooth fits, a tendency
to over-estimate the number of components k by including spurious components with
very low weights, and the presence of multimodality in the posterior distributions for
the component parameters. These issues make RJMCMC unsatisfactory when param-
eterizing input models for DES, in not providing reliable point estimators of k, the
number of components, nor estimators of component parameters and weights. Similar
issues have not been encountered with MAPIS.

The choice of base distribution is discussed in the final example describing a data
set of loss given defaults. Typically a good choice of base distribution will result in
a mixture with a smaller number of components but the results show that the BIC
also provides a good guide when choosing a base density. Where there are discrepan-
cies between the k value suggested by the BIC and that recommended after the IS
procedure, this is usually due to the posterior probabilities for both k values being
relatively similar. In these cases a little more care needs to be taken when running the
simulation model to ensure that full account is taken of the posterior uncertainty in
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k.
The investigations we present in Section 2.2 indicate the difficulty in dealing with

overfitted models where k > k0. Problems occur in overfitted models because more
components k are being fitted than there are true components k0. Rousseau and
Mengersen (2011) identified two issues in this situation, one where the fitted pos-
terior distributions indicate some component weights are small, and the other issue,
which is discussed in this paper, where the posterior distributions associated with a
true component become split between the posterior distributions associated with two
or more fitted components. In both cases some of the supposed posterior distributions
generated by MCMC methods do not correspond to meaningful possible components,
so that point estimates of parameter values of true components are not properly iden-
tified. MAPIS works better because it identifies features in the data that could arise
from actual components, assigning posterior distributions and weights to such pos-
sible components in a way that reflects how well the fitted posterior distributions
then explain the data overall. Parameter estimates obtained using MAPIS are readily
interpretable in terms of characteristics appearing in the data sample.

The FineMix implementation of MAPIS can be downloaded from the authors’ web-
site (http://www.curries.org.uk/christine/), with seven different options for the
base component distribution. FineMix is robust and is able to cope with a wide range
of data features; in particular the presence of small, but real, spikes in the distribution
function. The use of seven base distributions also increases its flexibility and allows it
to better model skewed data than using just a finite mixture of normal distributions.
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Appendix

1.1. Transformation of Base Densities from Standard Parameterisation

Table 5. Conventional parametrizations of base distributions considered in the paper, and these parameters

as functions of the mean, µ, and standard deviation, σ, of the distribution; γE is Euler’s constant, ω(·) is as in

eqn. 12

Base
Distribution PDF α(µ, σ) β(µ, σ)

Normal 1√
2πβ2 exp

[
−(y − α)2/2β2

]
µ σ

Lognormal 1
β
√

2πy
exp

[
−1

2( ln y−α
β )2

]
lnµ− 1

2 ln(1 + (σµ)2)
√

ln(1 + (σµ)2)

EV 1
β exp{−(y−αβ )− exp[−(y−αβ )} µ− (γE

√
6/π)σ (

√
6/π)σ

Weibull α
β (y/β)α−1 exp [− (y/β)α] ω(σ/µ) µ/Γ

[
1 + 1

ω(σ/µ)

]
Gamma yα−1β−α exp(−y/β)

Γ(α) (µ/σ)2 σ2/µ

IG
√

α
2πy3 exp

[
−α(y/β−1)2

2y

]
µ3/σ2 µ

For the base distributions we consider, it is easy to express the mean µ and stan-
dard deviation σ in terms of the standard parametrizations appearing in the literature,
and, except in the case of the Weibull, these relationships are easily inverted to give
the conventional parameters in terms of µ and σ. Table 5 lists these relationships.
Thus it is easy to set out our numerical procedures in terms of how µ and σ are up-
dated, but calculate actual density and probability values in terms of the conventional
parametrization.

For the Weibull case, the shape parameter, α in Table 5, is an explicit function of
the coefficient of variation γ = σ/µ. We write this function as α = ω(γ). A simple
approximation for ω(γ) is given in Cheng (2017b)

ω(γ) ' exp
(

0.5282− 0.7565t− 0.3132
√

6.179− 0.5561t+ 0.7057t2
)

(12)

where t = ln(1 + γ2), which has a relative error of less than 1% in the range 0.0001 ≤
γ ≤ 1000. Using this approximation we are thus able to express the usual parameters
in terms of µ and σ over a reasonably practical range of values, so that in the Bayesian
analysis the Weibull distribution can be handled in exactly the same way as the other
base distributions.

1.2. Alternative Representations of f0 in Overfitted Models

Each of the PDFs, g(y|ψ0j), j = 1, 2, ..., k0 of the original mixture of k0 true compo-
nents can be viewed as a mixture of k′ > k0 versions of itself.

g(y|ψ0j) =

k′∑
i=1

ρijg(y|ψ0j) where

k′∑
i=1

ρij = 1,
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only with the ith version or fragment counted as part of the fitted ith component.
Thus the true mixture f0(y) =

∑k0
j=1w0jg(y|ψ0j) has alternative representations

f0(y) = f [y|k′, θ(k′)] =

k′∑
i=1

wihi(y|w0, ρi, ψ0), (13)

where wi =
∑k0

j=1w0jρij and hi(y|w0, ρi, ψ0) = w−1
i

∑k0
j=1w0jρijg(y|ψ0j) for i =

1, 2, ..., k′. This makes
∫
hi = 1 for i = 1, 2, ..., k′, so in (13) the hi are all PDFs.

Thus, as
∑k′

i=1wi = 1, these alternative representations are still mixtures, only with
k′ > k0 rather than k0 components, but each of which is a different mixture of the
original components g(y|ψ0j), j = 1, 2, ..., k0.

This characterizes non-identifiability as where the mixture representation of f0 is
not unique with different mixtures possible all precisely matching f0 overall.

1.3. Importance Sampling: Further Details

To be unambiguous we shall write the candidate distribution specifically as c̃k(·) to
indicate when it has been obtained using MAP estimators in this way. In what follows
some care is needed to distinguish the parameters θ(k) as they appear in the mixture

PDF, the MAP estimator θ̃(k) and the parameters treated as variates generated by
the importance sampling, which we shall denote by θ∗(k). A typical parameter point
obtained in this way has the form

θ∗ =

(
ψ∗

w∗

)
=

(
ψ̃
w̃

)
+ θ∗0, (14)

where

θ∗0 = P̃1R̃z
∗
ν ,

with z∗ν a vector of ν = 3k − 1 independent Student-t variates, each normalized to
have mean zero and variance unity. We do not really need the asterisk in the case of
zν but we have added it just to emphasize that it is the source of the randomness
in the IS samples. (All quantities should carry a k subscript but for simplicity this is
omitted.) The matrices P̃1 and R̃ can be calculated explicitly from the eigenvectors and

eigenvalues respectively of the Hessian matrix H̃ = H(θ̃(k), k) of second derivatives of

L[θ(k), k] = ln(p[y|θ(k), k]) evaluated at θ̃(k).

Var(θ0) is singular as the component weights satisfy
∑k

i=1wi = 1. A simple way
to remove this singularity is to reduce the dimensionality of θ by one in such a way
that

∑k
i=1wi = 1 is automatically satisfied. Thus we let ω be the (k − 1) dimensional

vector of the reduced set of weights formed from the first (k − 1) components of w,
and work with φ =(ψ, ω) instead of θ in the importance sampling. We have

φ∗=

(
ψ∗

ω∗

)
=

(
ψ̃
ω̃

)
+ Q̃z

∗
ν

where Q̃ is the matrix P̃1R̃ but with the last row omitted. This equation is a
nonsingular linear transform of z∗ν to φ∗. The Jacobian of the transformation is
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|∂[ψ, ω]/∂(zν)|φ=φ̃ = det(Q̃) so that the PDF of φ∗, in the importance sampling,
is

f̃(φ∗) =

∣∣∣∣∂(ψ, ω)

∂(zν)

∣∣∣∣−1

φ=φ̃

gzν (z
∗
ν) = [det(M̃)]−1gν(z∗ν), (15)

where gν is the PDF of zν .
Use of (14) to generate IS variates does not guarantee that parameters which should

be positive necessarily are positive, nor that all weights necessarily satisfy 0 < wj < 1.
This is easily handled by rejecting any θ∗ sample where any such constraint which
should be satisfied is not, restricting the support of the IS distribution to precisely
the region where all parameter constraints are satisfied. The IS sampling is therefore
an acceptance/rejection procedure. Given k, the IS distribution actually sampled is
modified from (15) to

c̃Rk [ψ(k), ω(k)] = [det(Q̃(k))]−1gν(zν)/R̃(k) (16)

where we have now included dependency on k explicitly, and R̃(k) is an estimate of
R(k), the probability that a parameter point sampled from (15) is accepted (because
it falls in the support of the k component form of the mixture model being fitted). A
simple estimate of R(k) is easily obtained from the IS sampling as

R̃(k) =
(# of replications sampled from (15) for the given k and accepted)

Ik
, (17)

where Ik = (# of replications sampled from (15) for the given k).
This gives φ∗, with θ∗, when needed in the IS calculations simply taken as (φ∗, w∗k)

with the last weight w∗k = 1−
∑k−1

j=1 w
∗
j .

Let f(·) be the mixture PDF of eqn (1). The importance sampling procedure with
sample size I is as follows.

IS1. Draw I values of k : ki, i = 1, 2, ..., I independently and uniformly distributed
over 1, 2, ..., kmax.

IS2. Draw values θ∗(ki) from the distribution with density c̃ki [φ
R(ki)], as in eqn (16),

for i = 1, 2, ..., I.
This produces a sequence of independent and identically distributed random

variables (θ∗i (ki), ki) i = 1, 2, ..., I.

For each k record the acceptance probabilities R̃(k) of eqn (17).
IS3. From (θ∗i (ki), ki), i = 1, 2, ..., I, calculate the importance sampling ratios

ρ[θ∗i (ki), ki] =
p[y|θ∗i (ki), ki]
c̃Rki [φ

∗
i (ki)]

for i = 1, 2, ..., I, (18)

with p[y|θi(ki), ki] the posterior distribution and c̃Rk [ψ(k), ω(k)] as in eqn (16).
IS4. Estimate π(k|y) by

π̃(k|y) =

∑
ki=k

ρ[θ∗i (ki), ki]

I∑
i=1

ρ[θ∗i (ki), ki]

, k = 1, 2, ..., kmax, (19)
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where, as both the prior for k and the importance sampling of k are uniform, we
have no need to calculate the normalising integrals of the posterior distribution
over the (ψ(k),w(k)) space explicitly. As with RJMCMC, we can take the most
likely k,

k̃ = arg max
k

π̃(k|y),

as the best estimate of k.
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