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Abstract We study the rates at which optimal estimators in the sample average
approximation approach converge to their deterministic counterparts in the almost
sure sense and in mean. To be able to quantify these rates, we consider the law of
the iterated logarithm in a Banach space setting and first establish under relatively
mild assumptions almost sure convergence rates for the approximating objective
functions, which can then be transferred to the estimators for optimal values and
solutions of the approximated problem. By exploiting a characterisation of the law
of the iterated logarithm in Banach spaces, we are further able to derive under
the same assumptions that the estimators also converge in mean, at a rate which
essentially coincides with the one in the almost sure sense. This, in turn, allows to
quantify the asymptotic bias of optimal estimators as well as to draw conclusive
insights on their mean squared error and on the estimators for the optimality
gap. Finally, we address the notion of convergence in probability to derive rates
in probability for the deviation of optimal estimators and (weak) rates of error
probabilities without imposing strong conditions on exponential moments. We
discuss the possibility to construct confidence sets for the optimal values and
solutions from our obtained results and provide a numerical illustration of the
most relevant findings.
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1 Introduction

Let (£2, F,P) be a complete probability space on which we consider the stochastic
programming problem

min { (2) := Ex[h(z, )]}, (1)

rzeEX

where X C R™ denotes a nonempty finite-dimensional compact set with the usual
(Euclidean) metric, £ a random vector whose distribution PP¢ is supported on a set
E CR™, and h: X x £ — R a function depending on some parameter z € X
and the random vector £. For f to be well-defined, we assume for every x € X
that h(z, -) is measurable with respect to the Borel o-algebras B(Z) and B(R),
and that it is P*-integrable.

The stochastic problem (1) may arise in various applications from a broad
range of areas, such as finance and engineering, where deterministic approaches
turn out to be unsuitable for formulating the actual problem. Quite frequently, the
problem is encountered as a first-stage problem of a two-stage stochastic program
where h(z,§) describes the optimal value of a subordinate second-stage problem,
see, e.g., Shapiro et al (2014). Naturally, problem (1) may also be viewed as a
self-contained problem, in which h directly results from modelling a stochastic
quantity.

Unfortunately, in many situations, the distribution of the random function
h(-,&) is not known exactly, such that the expected value in (1) cannot be eval-
uated readily and therefore needs to be approximated in some way. Using Monte
Carlo simulation, a common approach (see, e.g., Homem-de-Mello and Bayraksan
(2014) for a recent survey) consists of drawing a sample of i.i.d. random vectors
&1,...,&n, N € N, from the same distribution as £, and considering the sample
average approzimation (SAA) problem

min {fN(x) éh(ﬂc, &)} (2)

as an approximation to the original stochastic programming problem (1). Since
the SAA problem (2) depends on the set of random vectors &1, ..., &N, its optimal
value f % 1s an estimator of the optimal value f* of the original problem (1), and
a solution £} from the set of optimal solutions XN (= argmin,c 5 fN( ) is an
estimator of a solution z* from the set of optimal solutions X* of the original
problem (1). For a particular realisation of the random sample, the approximating
problem (2) represents a deterministic problem instance, which can then be solved
by adequate optimisation algorithms. For this purpose, one usually assumes that
the set X is described by (deterministic) equality and inequality constraints.

An appealing feature of the SAA approach is its sound convergence properties,
which have been discussed in a variety of publications. Considering the consistency
of SAA estimators, which is typically deemed to be a minimal requirement for any
good estimator, Dupacovd and Wets (1988) show in a rather general way that the
sequence of approximating objective function { f N } epi-converges to the true objec-
tive f, which allows to infer the strong consistency of optimal values and of sets of
optimal solutions (Rockafellar and Wets (1998)). A similar approach to consistency
based on the concept of epi-convergence has been pursued by Robinson (1996),
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whereas Bates and White (1985) (cf. also Shapiro et al (2014), Chapter 5) take an
alternative approach and derive the strong consistency of the optimal estimators
by first establishing the almost sure uniform convergence of { fN} to f. Clearly,
the strong consistency of optimal estimators implies their weak consistency.

Given consistency, it is reasonable to further investigate the rates of conver-
gence at which the SAA estimators approach their original counterparts as N tends
to infinity. In this regard, Shapiro (1989, 1990, 1991) and King and Rockafellar
(1993), among others, provide necessary and sufficient conditions for a character-
isation of the asymptotic distribution of the estimators (inter alia, uniqueness of
2™ is assumed in the case of optimal solutions), from which it immediately follows
that {f%} and {#%} converge in distribution to their deterministic counterparts
at a rate of 1/v/N. In particular, the findings of the former author are essentially
based on the central limit theorem in Banach spaces, to which the delta method
with a first and second order expansion of the minimum value function is then
applied, while the latter use a generalised implicit function theorem to achieve
these results.

Rates of convergence have also been studied for the convergence in proba-
bility with respect to different purposes. Especially, once having obtained rates
of convergence in distribution, it is easy to see that the normalising sequences
{VN(fi—f*)} and {V/N (&% —z*)} stay bounded in probability as N — oo, thus
providing insights on the inner deviation rate for optimal estimators, cf. Pflug
(2003). Moreover, the rates of error probabilities, i.e. the deviation probabilities
between the optimal estimators and their corresponding unknown true values, have
been quantified, due to their practical relevance. This has been addressed, for in-
stance, by Vogel (1988, 1992) who uses a large deviation approach to estimate the
probability that the solution set of an approximating problem is not contained
in an e-neighbourhood of the original solution set in a standard stochastic pro-
gramme and to estimate the probability of particular events of both solution sets
in a multiobjective programming framework, respectively. Further results concern-
ing rates of error probabilities have also been provided by Kaniovski et al (1995)
and Dai et al (2000), where exponential bounds for the error probabilities of op-
timal values and solutions are derived by means of the theory of large deviations.
To obtain these results the authors have to make the rather strong but unavoid-
able assumption of an existing moment generating function with a finite value in a
neighbourhood of zero. However, this assumption then allows to derive conserva-
tive estimates for the sample size required to solve the original problem to a given
accuracy with overwhelming probability, see, e.g., Shapiro (2003) or Shapiro et al
(2014), Sections 5.3 and 7.2.10, for further details. Further results on exponential
rates of convergence are obtained by Shapiro and Homem-de-Mello (2000) in the
setting of a convex, piecewise smooth function h and a discrete distribution P?,
and by Homem-de-Mello (2008) in case the underlying sample of random vectors
is non-i.i.d.. Eventually, Vogel (2017) considers approximations of solution sets in
probability with (inner) rate of convergence and (outer) tail behaviour function
within a general multiobjective framework. These results then serve as a prereg-
uisite to construct universal confidence sets for the optimal value and optimal
solutions, see, e.g., Pflug (2003) and Vogel (2008b). However, universal confidence
sets usually rely on some explicit knowledge of the random variables involved,
see, e.g., Vogel (2008a). Therefore, in situations with less information available,
approximate confidence sets are often considered by invoking some central limit
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theorem. Especially estimators for the optimality gap (cf. Mak et al (1999)) have
gained practical interest, see also Homem-de-Mello and Bayraksan (2014) for a
detailed discussion.

Accordingly, all rates of convergence which have been established so far in the
SAA context consider convergence in distribution or convergence in probability,
cf. Table 1 for a brief overview. To the best of our knowledge, rates of convergence

convergence rate of convergence

almost surely v X
in mean (L1) 4 X
in probability v v
in distribution v v

Table 1: Convergence results for the SAA framework for the objective functions, optimal
values, and solutions, under different assumptions on h.

that hold almost surely and thus complement the strong consistency of optimal
estimators with its corresponding rate have not yet been considered in the SAA
framework, with very few exceptions using particular assumptions. Convergence in
mean can be derived in a straightforward manner from convergence in probability
and some uniform integrability condition (e.g. a finite second moment and almost
sure Lipschitz continuity of h in x). However, no rates for this type of convergence
seem to have been established, as far as we are aware of. This is an important
issue, as convergence in mean is the main basis to derive meaningful statements
on the size of the bias of estimators. The most notable related work on almost
sure rates of convergence is Homem-de-Mello (2003), which used the slightly dif-
ferent setting of a variable SAA (VSAA), where in each iteration k the objective
function is approximated by an estimator ka with a newly drawn random sample
of (potentially) different size Nj. In particular, the author derives for any x € X
pointwise sample path bounds on the error |fy, (z) — f(z)|, which in turn allows
to infer almost sure rates of convergence for objective functions. Yet, as the ob-
tained rates hold pointwise, they only apply to finite feasible sets X and cannot
be generalised to universal compact sets that we consider here. Further related
results outside the SAA framework can be found, for instance, in He and Wang
(1995) in the context of M-estimators. Their approach, however, differs consider-
able from ours in that the obtained results are based on necessary and sufficient
first order optimality conditions assuming a sufficiently smooth convex objective
and no constraints. Also, their main result is that an optimal estimator satisfies
the law of the iterated logarithm — a statement which actually excludes faster rates
of convergence in the almost sure sense.

In this paper, we aim at closing the gaps described above, providing rates of
convergence in the almost sure sense and in mean, where possible. As it has to be
expected, rates of convergence that hold almost surely may be derived by means
of the law of the iterated logarithm (LIL), which characterises the extreme fluctu-
ations occurring in a sequence of averages and thus complements the strong law of
large numbers and the central limit theorem (CLT). In particular, by applying the
LIL in a Banach space setting, we are able to obtain rates for objective function
values, optimal values, and solutions, similar to the technique that has already
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been applied in the form of the functional CLT to obtain asymptotic distributions
of the respective quantities, see, e.g., Shapiro (1991). Moreover, we also obtain
convergence in mean of the approximating objective functions and of the optimal
estimators, including their associated rates of convergence. This appears to be one
advantage of using the LIL in Banach spaces. The rates essentially coincide with
the almost sure rates of convergence and may be used to quantify the asymp-
totic bias of the optimal estimators. Further, it is possible to show that the mean
squared errors of optimal estimators converge to zero with known rates of conver-
gence, which again may be used in the particular case of optimal values to show
that the size of the confidence set for the optimality gap of f* converges to zero at
a known rate. As the LIL in Banach spaces also provides an interesting implication
on convergence in probability, we discuss rates of convergence of this kind as well.
We derive rates of convergence in probability (i.e. ‘inside the probability’) for the
deviation of optimal values and solutions, and weak rates of error probabilities
(i.e. ‘outside the probability’) by which we are able to decrease the gap between
rates obtained from first or second moments and rates obtained via exponential
moments. At last, we exploit the inferred rates of convergence in probability to
define confidence sets for the optimal values and solutions, albeit without known
coverage probability.

The remainder of this paper is organised as follows. In Section 2, we set the
stage for later results and briefly review basic concepts of random variables with
values in a Banach space, as well as the CLT and the LIL in Banach spaces. To
better compare our findings, Section 3 first outlines known results on the con-
vergence in distribution of the SAA estimators and its corresponding rates. In
analogy to these results, we then derive within the same setting by virtue of the
LIL rates of convergence for the SAA estimators that hold almost surely and in
mean. In Section 4, we establish immediate consequences of the obtained rates of
convergence in the almost sure sense and in mean, providing an improved analysis
of the estimator for the optimality gap and the construction of confidence sets.
In Section 5, we illustrate some selected results by a numerical simulation, while
Section 6 contains our conclusions.

2 Probability in Banach Spaces

We first introduce some basic concepts of Banach space valued random variables
and corresponding results of limit theorems in Banach spaces to be used through-
out this paper. For a more detailed discussion on these subjects and further refer-
ences, let us refer to the excellent monograph of Ledoux and Talagrand (1991).

2.1 Banach Space Valued Random Variables

Let B denote a separable Banach space, i.e. a vector space over the field of real
numbers equipped with a norm ||-|| with which the space is complete and which
contains a countable dense subset. Its topological dual is denoted by B’ and duality
is given by g(y) = {(g,y) for g € B’, y € B. The dual norm of g € B’ is also denoted
by ||g|| for convenience.
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A random variable X on B, or B-valued random variable in short, is a mea-
surable mapping from the probability space (2, F,P) into B equipped with its
Borel o-algebra B(B) generated by the open sets of B. Thus, for every Borel set
U € B, we have X '(U) € F. A B-valued random variable X is said to be
strongly (or Bochner) integrable if the real-valued random variable || X|| is inte-
grable, i.e. Ep[||X||] < co. The variable is said to be weakly (or Pettis) integrable
if for any g € B’ the real-valued random variable g(X) is integrable and there
exists a unique element y € B such that g(y) = Ep[g(X)] = [ g(X)dP. If this is
the case, then the element y is denoted by Ep[X] and called the expected value
of X. A sufficient condition for its existence is that Ep[||X||] < oco. Given that
Ep[g(X)] = 0 and Ep[¢g?(X)] < oo for all g € B’, the covariance function of X is
defined by (Cov X)(g1,92) := Ep[g1(X)g2(X)], 91,92 € B’, which is a nonnegative
symmetric bilinear form on B’'.

The familiar notions of convergence of random variables on the real line ex-
tend in a straightforward manner to Banach spaces. As such, a sequence {Xn}
of random variables with values in B converges in distribution (or weakly) to

a random variable X, denoted by Xy 4 x , if for any bounded and contin-
uous function ¢ : B — R, Ep[¢)(Xn)] — Ep[¢(X)] as N — oo. Moreover,
{Xxn} converges in probability to X, in brief Xy % X, if for each € > 0,
limy 00 P(J| X~ — X|| > €) = 0. The sequence is said to be bounded in prob-
ability if, for each € > 0, there exists M¢ > 0 such that supy P(|| Xn|| > M) < e
Similarly, {Xn} is said to converge P-almost surely to a B-valued random vari-
able X if P(limyoo Xy = X) = 1, and it is P-almost surely bounded if
P(supy || Xn]|| < o0) = 1. Finally, denoting by Li(B) = L1(£2, F,P; B) the space
of all B-valued random variables X on ({2, F,P) such that Ep[|| X||] < co, we say
that the sequence {Xn} converges to X in Lq1(B) if Xn,X are in Li(B) and
Ep[|| XN — X||]] = 0 as N — oo.

For a sequence {Xn} of i.i.d. B-valued random variables with the same distri-
bution as X, we define Sy := vazl X; for N € N. We write Log(z) to denote the
function max{1,logz}, x > 0, and let LLog(z) stand for Log(Log(z)). Further, we
set for N € N,

ay  +/2LLog(N)
.= \/2N LLog(N == =Y
an og(N) and by N Wi

2.2 Basic Limit Theorems

Based on the notions of convergence of random variables, the CLT and the LIL on
the real line can be extended subject to minor modifications to random variables
taking values in a separable Banach space. However, the necessary and sufficient
conditions for these limit theorems to hold in the Banach case are fundamentally
different from those for the real line.

For the sake of generality, the following discussion is phrased in terms of a
generic separable Banach space B. However, to establish rates of convergence for
the SAA setup, we will from Section 3 onwards only work in the separable Banach
space C(X) of continuous functions ¢ : X — R, endowed with the supremum norm
%]l = supgex|¥(2)], and in the separable Banach space C'' (X) of continuously
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differentiable functions 1, defined on an open neighbourhood of the compact set
X and equipped with the norm

911,00 = sup|e(z)| + sup [V ()],
TEX TEX

where Vi)(z) denotes the gradient of the function 1 € C*(X) at the point z.
Instead of the generic B-valued random variables X and the i.i.d. copies X;, i =
1,..., N, we will then consider the random variables X := h(-,&) — Ep[h(-,£)]
and X; = h(-,&) — Eplh(-,&)], respectively, to which the limit theorems in the
particular Banach spaces are applied.

2.2.1 The Central Limit Theorem

A random variable X with values in B is said to satisfy the CLT if for i.i.d. B-
valued random variables {Xn} with the same distribution as X, there exists a
mean zero Gaussian random variable Z with values in B such that

S
—Ni>Z, as N — oo.

VN

Here, by definition, a B-valued random variable Z is Gaussian if for any g € B’,
g9(Z) is a real-valued Gaussian random variable. In particular, note that all weak
moments of Z thus exist for any g € B’, and it follows from Fernique’s theorem
(see Fernique (1970)) that Z also has finite strong moments of all orders, i.e.
Ep[|Z||’] < oo for p > 0. If X satisfies the CLT in B, then for any g € B’
the real-valued random variable g(X) satisfies the CLT with limiting Gaussian
distribution of variance Ep[g?(X)] < co. Hence, the sequence {Sx/v/N} converges
in distribution to a Gaussian random variable Z with the same covariance function
as X, i.e. for g1,g2 € B’, we have (Cov X)(g1,g92) = (Cov Z)(g1, g2)-

For general Banach spaces, no necessary and sufficient conditions such that a
random variable X satisfies the CLT seem to be known. In particular, as mentioned
e.g. by Kuelbs (1976a), the moment conditions Ep[X] = 0 and Ep[|| X ||*] < co are
neither necessary nor sufficient for the CLT, as opposed to real-valued random
variables. (See Strassen (1966) for the equivalence.) Nevertheless, sufficient condi-
tions can be given for certain classes of random variables, such as for mean zero
Lipschitz random variables X with square-integrable (random) Lipschitz constant
on the spaces C(X) and C*(X), see Araujo and Giné (1980), Chapter 7.

2.2.2 The Law of the Iterated Logarithm

For the LIL in Banach spaces, essentially two definitions may be distinguished.
The first definition naturally arises from Hartman and Wintner’s LIL for real-
valued random variables, see Hartman and Wintner (1941), and says that a random
variable X satisfies the bounded LIL if the sequence {Sn/an} is P-almost surely
bounded in B, or equivalently, if the nonrandom limit (due to Kolmogorov’s zero-
one law)

A(X) := limsup (ERT
N—oo AN

is finite, P-almost surely (cf. Ledoux and Talagrand (1991), Section 8.2).
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Strassen’s sharpened form of the LIL for random variables on the real line,
see Strassen (1964), however, suggests a second natural definition of the LIL in
Banach spaces, which is known as the compact LIL. Accordingly, X satisfies the
compact LIL if the sequence {Sn/an} is not only P-almost surely bounded in B,
but P-almost surely relatively compact in B. While coinciding in finite dimensions,
both definitions clearly differ from each other in the case of infinite-dimensional
Banach spaces. Kuelbs (1976a) further showed that when the sequence {Sn/an}
is P-almost surely relatively compact in B, then there is a convex symmetric and
necessarily compact set K in B such that

lim dist (S—NK> =0, and CP ({S—ND = K, (3)
N— oo an anN

each P-almost surely, where dist(y, K) = infgek||ly — g|| for any point y € B
and CP({yn}) denotes the set of all limit points of the sequence {yny} in B.
This characterisation may be seen as an equivalent definition of the compact LIL
(e.g., Ledoux and Talagrand (1991), Theorem 8.5). In particular, we then have
AQX) = sup, e .

The limit set K = Kx in (3) is known to be the unit ball of the reproducing
kernel Hilbert space H = Hx C B associated to the covariance of X, and can
briefly be described as follows, see Kuelbs (1976a) and Goodman et al (1981) for
further details. Assuming that for all g € B’, Ep[g(X)] = 0 and Ep[g*(X)] < oo,
and considering the operator A = Ax defined as A : B — Ly = La(£2, F,P),
Ag = g(X), we have

Al = sup (Belg”(X))"* = o(X), (®)

and by a closed graph argument that A is bounded. Moreover, the adjoint A" = A’y
of the operator A with A’¢ = Ep[¢X] for ¢ € L2 maps L2 into B C B”. The space
A’(L2) C B equipped with the scalar product (-,-)x transferred from Ly and
given by (A'C1, A'¢)x = (C1,¢2) ., = Ep[¢1¢2], with ¢1,(2 € L2, then determines
a separable Hilbert space H. Latter space reproduces the covariance structure
of X in that for g1,92 € B’ and any element y = A'(g2(X)) € H, we have
91(y) = Eplg1(X)g2(X)]. In particular, if X; and X3 are two random variables
with the same covariance function, it follows from the reproducing property that
Hx, = Hx,. Eventually, the closed unit ball K of H, i.e. K = {y € B : y =
Ep[¢X], (Ep[|[¢]|?])}/? < 1}, is a bounded and convex symmetric subset of B, and
it can be shown that

sup ||y = o(X).
yeK

As the image of the (weakly compact) unit ball of Ly under A’, the set K
is weakly compact. Tt is compact when Ep[||X||*] < oo, as shown by Kuelbs
(1976a), Lemma 2.1, and if and only if the family of random variables {g?(X) :
g € B’,|lg|]l <1} is uniformly integrable, see, e.g., Ledoux and Talagrand (1991),
Lemma 8.4.

While for a real-valued or, more generally, finite-dimensional random vari-
able X the LIL is satisfied if and only if Ep[X] = 0 and Ep[||X|*] < co (see
Strassen (1966) and Pisier and Zinn (1978)), the moment conditions are neither
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necessary nor sufficient for a B-valued random variable to satisfy the LIL in an
infinite-dimensional setting, see Kuelbs (1976a). Yet, conditions for the bounded
LIL to hold were initially given by Kuelbs (1977), asserting that under the hy-
pothesis Ep[X] = 0 and Ep[|| X||?] < oo, the sequence {Sy/ax} is P-almost surely
bounded if and only if {Snx/an} is bounded in probability. Similarly, Kuelbs also
showed under the same assumptions that {Sy/an} is P-almost surely relatively
compact in B (and thus (3) holds for the unit ball K of the reproducing kernel
Hilbert space associated to the covariance of X) if and only if

Sn/an 20, as N — oo, (5)

which holds if and only if
Ep[||Sn|l] = o(an). (6)

An immediate consequence of this result is that, given the moment conditions, X
satisfying the CLT implies that X also satisfies the compact LIL (Pisier, 1975),
but not vice versa (Kuelbs, 1976b). Specifically, the former statement holds since
convergence in distribution of {Sx /v/N} to a mean zero Gaussian random variable
in B entails that the sequence is bounded in probability, from which then (5)
follows directly.

Considering the necessary conditions for the random variable X to satisfy the
LIL in Banach spaces, however, it turns out that the moment condition Ep[|| X ||*] <
oo is unnecessarily restrictive in infinite dimensions and can hence be further
relaxed. This leads to the following characterisation of the LIL in Banach spaces,
providing optimal necessary and sufficient conditions, cf. Ledoux and Talagrand
(1988), Theorems 1.1 and 1.2. In this regard, note that since the boundedness in
probability of {Sn/an} comprises Ep[X] = 0, cf. Ledoux and Talagrand (1988),
Proposition 2.3, the latter property is already omitted in condition (i) of both
respective statements.

Theorem 1 (Ledour and Talagrand, 1988). Let X be a random wvariable with
values in a separable Banach space.

a) The sequence {Sny/an} is P-almost surely bounded if and only if (4)
Ep[|| X ||/ LLog(| X|))] < oo, (i) for each g € B’, Ep[g*(X)] < oo, and (iii)
{Sn/an} is bounded in probability.

b) The sequence {Sn/an} is P-almost surely relatively compact if and only if
(é) Ep[||X|[*/ LLog(IX )] < oo, (i) {g°(X) : g € B',|lgll < 1} is uniformly
integrable, and (iii) Sn/an 250 as N — co.

To highlight the relation between the CLT and the compact LIL in Banach
spaces by means of Theorem 1, note that if the CLT holds, then condition (iii)
of assertion b) is fulfilled, as described above. Also, condition (ii) follows from
the CLT, as the limiting Gaussian random variable Z with the same covariance
as X has a strong second moment, due to the integrability properties of Gaussian
random variables. This implies that K, the unit ball of the reproducing kernel
Hilbert space associated to X, is compact and that the family {g?(X) : g €
B',|lgll < 1} is uniformly integrable, as remarked previously. Hence, necessary
and sufficient conditions for the compact LIL in the presence of the CLT reduce
to condition (i) of Theorem 1b), cf. Ledoux and Talagrand (1988), Corollary 1.3.
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In the subsequent analysis, we will use the compact LIL to derive almost sure
convergence rates, even though the bounded LIL, guaranteeing the P-almost sure
finiteness of A(X), would be sufficient to establish most of our results. However,
by working with the compact LIL, we find ourselves in the same setup in which
the CLT and thus convergence rates in distribution have already been established.
Another advantage of using the compact LIL in our setup is the ability to describe
the set of limit points K by the P-almost sure relation A(X) = sup, ¢k [lyl| = o(X),
allowing for a better interpretation. Finally, the compact LIL also leads to slightly
better convergence rates in probability.

3 Rates of Convergence

In this section, we establish rates of convergence in the almost sure sense and in
mean for the SAA setting introduced in Section 1. Since our results are closely re-
lated to rates of convergence in distribution, which have mainly been investigated
within the asymptotic analysis of optimal values and solutions by Shapiro (1989,
1990, 1991), we first review the main results of these studies in Section 3.1. By use
of the compact LIL in the Banach spaces C(X) and C*(X), we then provide in
Section 3.2 our main findings on almost sure rates of convergence for estimators
of optimal values and solutions. Eventually, in Section 3.3, we infer from a charac-
terisation of the compact LIL that these quantities also convergence in mean and
derive the corresponding rates of convergence. In particular, these rates can be
used to quantify the asymptotic bias of optimal estimators, and to obtain quanti-
tative estimates of the bias without the additional (strong) assumption of uniform
integrability.

3.1 Rates of Convergence in Distribution

On the space C(X), we initially make the following assumptions with respect to
the random function h:

(A1) For some zo € X we have Ep [hQ(zo,g)} < 00.

(A2) There exists a measurable function G : & — Ry such that Ep[GZ(£)] < oo
and

h(21,8) = h(z2,§)] < G(E)[|21 — w2, Vai, 22 € X,

P-almost surely.

Assumptions (A1) and (A2) imply that Ep[h(z, )] and Ep[h?(x,£)] are finite-
valued for all z € X. Moreover, assumption (A2) provides that f is Lipschitz
continuous on X and, as X is assumed to be compact, thus guarantees that the
set of minimisers X'* of the original problem (1) is nonempty. Further, it follows
from the compactness of X and assumption (A2) that f& and X} are measur-
able and that the latter set is nonempty, P-almost surely, cf. Aliprantis and Border
(2006), Theorem 18.19. Above all, a particular solution &3 of the SAA problem (2)
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may thus be viewed as a measurable selection &3 € X ~- Eventually, both assump-
tions (Al) and (A2) also imply that the variance of h(z,&) compared to that of
h(xo,&) can only grow as fast as the quadratic distance between x and zo.

Note that assumptions (A1) and (A2) cover the following important special
cases: (i) non-smooth convex optimisation over a convex compact set, (ii) smooth
convex optimisation over a convex compact set, and finally (iii) smooth global
optimisation over an arbitrary compact set. However, the treatment of unbounded
domains is beyond our framework. In such a setting it would be more benefi-
cial to directly analyse the necessary first order conditions. Further, methods like
stochastic gradient methods are also not covered by our setting and, as we re-
quire Lipschitz continuity of h in x, indicator functions cannot be used as h either.
Finally, note that in the specific case of a two-stage stochastic program with subor-
dinate linear second-stage, (A1) and (A2) are typically satisfied if the second stage
problem has a feasible set which is P-almost surely contained in a sufficiently large
compact set, see, e.g., Shapiro et al (2014), Chapter 2.

Most notably, assumptions (A1) and (A2) are sufficient to ensure that the
C(X)-valued random variable X = h(-,&) — Eplh(-,£&)] satisfies the CLT in this
Banach space, see Araujo and Giné (1980), Corollary 7.17. It thus holds

\/N(fof)&Z, as N — oo, (7)

where Z denotes a C(X)-valued mean zero Gaussian random variable which
is completely defined by the covariance of X, that is by (Cov )?)(ghgz) =
Ep[g1(X)g2(X)] for gi,g92 € C(X)'. Note that assertion (7) implies that {fy}
converges in distribution to f, at a rate of 1/v/N. In particular, for any fixed
x € X, we have that {v/N(fn(z) — f(z))} converges in distribution to a real-
valued normal distributed random variable Z (z) with mean zero and variance

Ep[h2($7 5)] - E]p[h(x, 5)]2
3.1.1 Rate of Convergence of Optimal Values

Provided that {v'N(fx — f)} converges in distribution to a random variable Z
with values in C(X), the convergence in distribution of {v/N(f¥% — f*)} can be
assessed using a first order expansion of the optimal value function, see Shapiro
(1991). To this end, let the minimum value function ¥ : C(X) — R be defined
by d(¢) := infgex ¥(z), ie. fxy = H(fn) and f* = ¥(f). Since X is compact,
the mapping ¥ is continuous and hence measurable with respect to the Borel o-
algebras B(C(X)) and B(R). Moreover, ¢ is Lipschitz continuous with constant
one, ie. [9(¢¥1) — I(¢2)| < ||[¢1 — 2]l for any 91,92 € C(X), and it can be
shown that 9 is directionally differentiable at f with

9 = inf x), e C(Xx), 8
s = il i), v eOw) ®)
where X*(f) = X* = argmin,cy f(z), see Danskin’s theorem (e.g., Danskin

(1966)). For a general definition of directional differentiability and related notions
as used hereinafter, we refer to Shapiro et al (2014), Section 7.2.8. By the Lipschitz
continuity and directional differentiability, it then follows that 1 is also direction-
ally differentiable at f in the Hadamard sense, see, e.g., Shapiro et al (2014),
Proposition 7.65. Hence, an application of the first order delta method for Banach
spaces with ¥ to (7) yields the following result, cf. Shapiro (1991), Theorem 3.2.
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Theorem 2 (Shapiro, 1991). Suppose that assumptions (A1)-(A2) hold. Then,
VN(fx = ) % 95(Z), as N — oo, (9)

where Z denotes the C(X)-valued mean zero Gaussian random variable as obtained
by (7) in C(X), and U} is given by (8). In particular, if X*(f) = {z"} is a
singleton, then

\/N(fz*\;—f*)gZ(x*), as N — oco. (10)

Formulas (9) and (10) specify the asymptotic distribution of {V/N(f% — f*)},
which is asymptotically normal if uniqueness of a minimiser z* is assumed. More-
over, both formulas allow to deduce that the speed of convergence in distribution
of {f}'{,} to f* can be quantified by the rate 1/v/N.

3.1.2 Rate of Convergence of Optimal Solutions

Under more restrictive assumptions, it is possible to specify the rate of convergence
of optimal solutions as well. The derivation of this result is essentially based on
the CLT in the Banach space C''(X), to which the delta method with a second
order expansion of the optimal value function ¥ is applied. This then provides a
first order expansion for optimal solutions of the SAA problem.

For keeping our exposition on convergence of optimal solutions in this and
the related Subsection 3.2.2 as comprehensive as possible, we follow the general
approach of Shapiro (2000). In particular, we make the following additional as-
sumptions on the underlying random function A and its gradient V;h, facilitating
convergence in distribution in C!(X):

(A3) The function A(-,&) is continuously differentiable on X', P-almost surely.

and

(A1) For some z¢ € X we have Ep[||Vah(zo,€)||*] < cc.

(A2’) The gradient V h(-,£) is Lipschitz continuous with constant G (§) on X,
P-almost surely, and Ep[GZ(£)] < oo.

Assumption (A3) implies that fy is a random variable with values in C!(X),
and assumptions (A1)—(A3) together imply that f is continuously differentiable
on X and that Vf(x) = Ep[Vzh(x, )] for x € X (e.g., Shapiro et al (2014), Theo-
rems 7.49 and 7.53). Moreover, all assumptions (A1)—(A3) and (A1%)—(A2’) entail
that X = h(-,&) — Ep[h(-,£)] also satisfies the CLT in the Banach space C*(X),
such that (7) holds for a C*(X)-valued mean zero Gaussian random variable Z.

Note that by considering the class C*(X) of continuously differentiable func-
tions and assumptions (A1’)—(A2’), we implicitly assume that the objective func-
tions f and fN and their gradients are sufficiently well-behaved. This presents a
reasonable regularity condition in order to derive general rates of convergence. If
an objective function does not meet these criteria, a similar deduction becomes
considerably more difficult.

Aside from conditions on h and V;h, let us further consider the following
regularity assumptions for the original problem (1):
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(B1) The problem (1) has a unique optimal solution z* € X.

(B2) The function f satisfies the second-order growth condition at x*, i.e. there
exists a > 0 and a neighbourhood V of z* such that

f(z)> f@®) +allz —z*|]?, VzexnV.

(B3) The set X is second order regular at z*.

(B4) The function f is twice continuously differentiable in a neighbourhood of
the point z*.

Assumptions (B1)—(B4) represent standard second order optimality conditions
to be found in common literature on perturbation analysis of optimisation prob-
lems, see, e.g., Bonnans and Shapiro (2000). While assumptions (B1) and (B4)
are self-explanatory, the growth condition in assumption (B2) involves that z* is
locally optimal and that f increases at least quadratically near x*. This condition
can be ensured to hold in several ways by assuming second order sufficient condi-
tions, as given, for instance, in Section 3.3 of Bonnans and Shapiro (2000). Finally,
the second order regularity of X in (B3) concerns the tangent set Tx(z*,d) to X
at ¥ in direction d and guarantees that it is a sufficient good second order ap-
proximation to X in direction d. In the context of two-stage stochastic problems as
mentioned in the introduction, note that sufficient conditions for assumptions (B1)
and (B2) are rather problem-specific, while (B3) and (B4) are not often satisfied.

By imposing (B1)—(B4), a second order expansion of the minimal value func-
tion ¥, now mapping C*(X) into R, can be calculated, along with a first order
expansion of the associated optimal solution function « : Cl(é\f’) — R", where
k(¥) € argmingcy(x), v € C'(X). More precisely, under (B1)—(B4), ¥ is
shown to be first and second order Hadamard directionally differentiable at f,
with 9% (1) = ¥(z*) and

W) = inf {207Vl +d V@Al w0V )
for ¢ € C'(X), and where Cy~ is the critical cone of problem (1), V2 f(z*) the
Hessian matrix of f at z*, and T%(z*,d) denotes the second order tangent set
to X at z* in direction d (see, e.g., Shapiro (2000), Theorem 4.1). Moreover, if the
problem on the right-hand side of (11) admits a unique solution d*(¢), then the
mapping & is also Hadamard directionally differentiable at f, and ' (¢) = d* ()
holds. Hence, using a second order delta method for ¥ on the convergence (7) in
C*(X) provides the following asymptotic results for {f%} and {i}}, cf. Shapiro
(2000), Theorems 4.2 and 4.3. Note that {Z} } denotes any sequence of measurable
selections &3 from the sets of optimal solutions X N, respectively.

Theorem 3 (Shapiro, 2000). Suppose that assumptions (A1)-(A3), (A1’)-(A2’)
and (B1)-(B4) hold. Then,

N(fx — fin@) % 309(Z), as N — oo,

where Z denotes the CY(X)-valued mean zero Gaussian random variable as ob-
tained by (7) in C1(X), and 19}' is given by (11). Further, suppose that for any
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¥ € CHX), the problem on the right-hand side of (11) has a unique solution
d*(¢). Then,

VN(EN —2") S d*(Z), as N — oc. (12)

Remark 1 It has to be noted that assertion (12) yields the usual convergence rate
for an optimal solution in distribution. This, however, does not directly imply
any result on convergence in mean, nor on the bias. Although the expectation of
the right-hand side is finite, this is not necessarily the case for the limit of the
expectations of the upscaled difference of the optimal solutions on the left. The
limit of the expectations of the left-hand side only exists and equals the expectation
of the right-hand side if and only if the upscaled sequence is uniformly integrable,
see, e.g., Serfling (1980), Theorem 1.4A. However, making such an assumption for
{VN(@% —2*)} is actually already equivalent to imposing a convergence order of
O(1/+/N) for {3 — x*} to zero in the Li-sense.

3.2 Almost Sure Rates of Convergence

We now turn to almost sure convergence and first observe that in the specific case
of C(X)-valued random variables, the compact LIL is satisfied under exactly the
same assumptions as the CLT in the Banach space setting, see Kuelbs (1976a),
Theorem 4.4. In this context, note that the compactness of the feasible set X
is crucial. Given assumptions (Al) and (A2), we thus have for the C'(X')-valued
random variable X = h(-,¢) — Ep[h(-,£)] and the related sequence of i.i.d. copies
{X,} that

1\}i_r)nmdist<f]\;;f,K§>:0, and CP({M}>=K)},

bn
each P-almost surely, where K ¢ denotes the unit ball of the reproducing kernel
Hilbert space H ; associated to the covariance of X and K g is compact. In line

with Section 2, it follows from this result that

Iy = floe _ 5

A(X) = limsup o(X), (13)

N—o0 bn
P-almost surely, where o(X) = sup”gugl(Ep[gQ()N()])l/z, g € C(X)". Now, by
virtue of Riesz’s representation theorem (e.g., Albiac and Kalton (2006), Theo-
rem 4.1.1), the dual space C(X)’ can be identified with the space M (X) of all finite
Borel measures on the compact space X, with total variation norm ||u|| = |u|(X),
w € M(X). Moreover, for ;1 € M(X), the extreme points of the subset defined by
|12l < 1 are the Dirac measures = +6,, where 8, (X) = X (z) for a C(X)-valued
random variable X (e.g., Albiac and Kalton (2006), Remark 8.2.6) and = € X.
Hence,
~ ~ 1/2
o(X) = sup (Ep [XQ(x)]) , (14)
zeX

which is finite-valued by assumption.
By definition of the limit superior, equation (13) implies the following observa-
tion, specifying the speed of convergence of the approximating objective function

in the almost sure sense.
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Lemma 1 Suppose that assumptions (A1)-(A2) hold. Then, for any e > 0, there
exists a finite random variable N* = N*(¢) € N such that

YN >N*: |fx = fll. < (14 e)byo(X), (15)

P-almost surely. Here, o(X) is given by (14) for the C(X)-valued random variable
X.

In particular, inequality (15) reveals that the almost sure convergence of { fn '}
to f occurs at a rate of O(by), by = v/2LLog(N)/vN, which is only marginally
slower than the rate 1/ V/N obtained from convergence in distribution. To get an
idea for the scale involved, note that /log(log(10°?)) ~ 2.33. Yet, unlike the rate

1/v/N, the rate bx holds P-almost surely, which is a different notion of convergence
than convergence in distribution. Although not explicitly stated in Lemma 1, let
us emphasise that as the compact LIL holds, we also know that the almost sure
rate of convergence of { fN} to f is exactly by and cannot be faster.

Remark 2 Note that it is not possible to exactly determine the value of the finite
random time

N*(e):=inf{n € N|VE>n:||fr — fll < (1 +e)bro(X)}
or the related last exit time
7(e) == sup {n € N| || fn — flloo > (1 + €)bno(X)}

(if f1 and fo are not identical to f, then N*(¢) = 7*(¢) 4 1), as this depends on
the particular realisation of the underlying random sequence {&;}. Yet, the last
exit time 7" (€) may be linked to the counting variable

T(e) = [{neN: |[fa = fllo > (1 +e)bno(X)}]

by 7*(€) > J*(€), of which we know that Ep[(J*)*] = oo for any A > 0 if f is a real-
valued object, cf. Slivka (1969). This might be taken as a strong indication that a
similar result also holds in the Banach space case, telling us that the asymptotic
rate only holds for very large V.

3.2.1 Rate of Convergence of Optimal Values

Once having assertion (15), the rate of convergence of the optimal value {f;{,}
to f* is easily obtained by recalling the Lipschitz continuity of the continuous
minimum value function ¥(¢) = infzex (), with f& =9(fn) and f* = 3(f).
We thus have the following result, in analogy to Theorem 2.

Theorem 4 Suppose that assumptions (A1)-(A2) hold. Then,
VNeN: |ff =1 <Ifv ~ Flle

In particular, it holds that {fj(]} converges to f*, P-almost surely, at a rate of

O(by).
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3.2.2 Rate of Convergence of Optimal Solutions

Next, we proceed with analysing the rate of convergence of optimal solutions in
the almost sure sense. Considering the space C(X) of continuous functions on X,
we note first of all that if the random function h only satisfies the moment and
Lipschitz conditions (A1) and (A2), respectively, then a slower rate of almost sure
convergence can be obtained under the regularity conditions (B1) and (B2), as the
following proposition shows.

Proposition 1 Suppose that assumptions (A1)-(A2) and (B1)-(B2) hold. Then,
there exists a finite random variable N* € N such that

* Ak * 22
YN >N*: iy -2 < E”fN — fllso> (16)

P-almost surely. In particular, it holds that {25} converges to x*, P-almost surely,

at a rate of O(v/by).

Proof By assumptions (A1)—(A2) and (B1), {Z} converges to ™, P-almost surely,
for N — oo (e.g., Shapiro et al (2014), Theorems 5.3 and 7.53). This implies that
T3 € V holds P-almost surely for N > N*, for some finite random N* € N. Hence,
the second-order growth condition (B2) at * with a > 0 yields

lox —o"I1* < — (F(ER) - f()
< —(F@) — fx (@) + F (@) - £a))
<~ (f(@#) — Fw(ER) + fula’) - 1))
< (k) = F@ER)] + v = £6)
< 2w = oo

where IN(EY) has been added and subtracted from the first line to the second
and fn(2y) < fn(z™) has been used from the second line to the third. This
proves (16), and the remaining assertion then follows from Lemma 1. O

To achieve a faster rate of almost sure convergence, stronger assumptions on h
and the gradient VA in the subspace Cl(X ) are required, as described in Sec-
tion 3.1.2 for convergence in distribution. Specifically, if, in addition to assump-
tions (A1) and (A2), we assume that h is also continuously differentiable on X,
i.e. assumption (A3) holds, then f is an element of the Banach space C'!(X) and
fN is Cl(?( )-valued. Consequently, on condition that the moment and Lipschitz
assumptions of V,h in (A1’) and (A2’), respectively, are also fulfilled, X satisfies
the compact LIL in C*(X) and we can state the following, cf. Lemma 1.

Lemma 2 Suppose that assumptions (A1)-(A8) and (A1’)-(A2’) hold. Then, for
any € > 0, there exists a finite random variable N* = N*(¢) € N such that

VN> N": |Ifn = flly e < (1+€bno(X),

P-almost surely. Here, 0'(5(:) is given in general form by (4) for the C*(X)-valued
random variable X .
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Moreover, we further consider the regularity assumptions (B1) and (B2) on the
original problem (1), where we marginally strengthen the latter according to:

(B2?) The function f satisfies the second-order growth condition at z*, i.e. there
exists @ > 0 and a neighbourhood V' of z* such that

f(z)> fz®) +allz —z*|]>, VzexnV.
Further, V can be chosen such that X NV is star-shaped with center x*.

We are then able to derive the following result on the speed of convergence of
optimal solutions of the SAA problem. Note that this result holds in parallel to
Theorem 3 in the almost sure case.

Theorem 5 Suppose that assumptions (A1)-(A3), (A1°)-(A2’°), (B1) and (B2’)
hold. Then, there exists a finite random variable N* € N such that

* Ak * 1 ;
VN2 N": gy -7 < Zlifwv = flly oo (17)

P-almost surely. In particular, it holds that {Z73} converges to x*, P-almost surely,
at a rate of O(bn).

Proof Again, by assumptions (A1)—(A2) and (B1), {# } converges to z*, P-almost
surely, for N — oo. This implies that 3 € V holds P-almost surely for N > N*,
for some finite random N* € N. Hence, the second-order growth condition (B2’)
at z* with o > 0 yields

ok = o"l1* < — (F@ER) - £@)
< —(f@) — Fu (@) + f (@) - £)
< ~(f(ER) = nlaR) + fu (") = 1)
< (@R — (k) - (FG) = f (@),

and therefore ) R
£ (k) — I (@) = (F") = In )|

all#y — ||

[

Since (f — fn) is assumed to be differentiable on X, P-almost surely, and X NV
is star-shaped with centre x*, it further holds by the mean value theorem (e.g.,
Dieudonné (1960), Theorem 8.5.4) that

|f(@EN) — In(@N) = (f") = In(@"))]

of|#% — 2|
< = sup V(@ +tla" — i) - fn (@ + 2" - 33)|
0<t<1
X :
<- mes;}r)]v||v(f(9ﬁ) - fn(@))]]-

Thus, by definition of the norm |[|-||; ., the latter then provides inequality (17),
and applying Lemma 2 yields the statement on the rate of convergence. a
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Note that the results established in Proposition 1 and Theorem 5 require fewer
assumptions on the objective function f than the corresponding Theorem 3 on
convergence in distribution, while providing almost sure convergence instead of
convergence in distribution. This becomes most notable in that the former results
are able to dispense with assumptions (B3) and (B4), while these are necessary for
the second order Hadamard directional derivative 19’f' in the latter. In particular,
we are thus able to deal with an optimal solution on the boundary of the feasible
set X without requiring any regularity condition for X.

It is to be expected from the above analysis that improved almost sure conver-
gence rates for the difference of the optimal values might be obtained in a similar
manner as for convergence in distribution by the second order delta method under
analogous assumptions. We leave this question for future research, and instead
focus on rates of convergence in mean in the following.

3.3 Rates of Convergence in Mean

By recalling that the C'(X)-valued random variable X = h(-, &) — Ep[h(-,£)] sat-
isfies the compact LIL under assumptions (A1) and (A2), we can apply Kuelbs’s
equivalence (6) (cf. also Kuelbs (1977), Theorem 4.1) to obtain

N
e |3 %ol | = ofax).
i=1
This, in turn, directly leads to the following proposition.

Proposition 2 Suppose that assumptions (A1)—(A2) hold. Then,

. Ifx = fllo ] _
Jim B[ 1 e <o )
i.e. Bp[||fn — fllo] = o(bn), and in particular {fn} converges to f in L1(C(X))
at a rate of o(bn).

Let us emphasise that Proposition 2 constitutes an important and novel result
which can be directly obtained from the compact LIL without any further techni-
calities. To the best of our knowledge, only the convergence in mean of { fN} to f,
i.e. Ep[||fx — fll.] = 0 as N — oo, was known thus far, albeit without specifying
any rate. Such a result may be obtained, for instance, by convergence in distribu-
tion of {fx'} to f and additional assumptions like (A1) and (A2), yielding uniform
integrability of the sequence { fy}. Deducing uniform integrability for an upscaled
sequence like {(fN — f)/bn}, however, is not possible in such a way, which renders
the above result (18) and its implication even more noteworthy.

3.3.1 Rate of Convergence of Optimal Values and Biasedness

By the Lipschitz continuity of the minimum value function ¥(¢)) = infzecx ¥ (z),
1 € C(X), and Proposition 2, we immediately arrive at the corresponding result
for the convergence of optimal values.
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Theorem 6 Suppose that assumptions (A1)-(A2) hold. Then, {f%} converges to
" in L1, and Ep[|f5 — f*[] = o(b). In particular, one has that the bias of fy
vanishes at the same rate, i.e. |Ep[fx] — f*| = o(bn).

As we have seen, Theorem 6 states that f}(, is an asymptotically unbiased
estimator of f* and that the bias E[f%] — f* is of order o(by). In contrast to
classical results, cf. Shapiro et al (2014), pp. 185, these results on the bias do not
need the additional strong assumption of uniform integrability of the sequence
{VN(f% — )} Instead, one deduces here directly that {v/N//2 LLog(N)(fx —
f5)} is uniformly integrable (as it is convergent in L1, see, e.g., Bauer (2001),
Theorem 21.4).

We also want to stress the fact that Theorem 6 puts non-technical discus-
sions about the asymptotic bias of the optimal value on a sound theoretical basis,
cf. Homem-de-Mello and Bayraksan (2014), and especially their discussion follow-
ing Example 8 in Section 2.2.

Remark 3 The well-known fact that Ep[f3] < ]Ep[f]’(,+1] < f* for any N € N, cf.
Mak et al (1999), can be combined with the above proposition to obtain that for
any € > 0, there exists an N* = N*(e) such that

VYN > N*: Ep[fa] <Ep[fai1] < F° < Ep[fX] + ebn, (19)
which brackets the unknown optimal value f* in a interval of known size.

Remark 4 Under the additional assumption that f* > 0, one can obtain further
insight into the speed at which Ep[fa;] approaches f*. For this purpose, let us first
observe that

L N1
fns1r < fvw(@n) = N+l ; h(Zn,&)

TN+

1

N 1h(i}kv7§N+1)-

Taking expectations on both sides and using the fact that Ep[f5] > 0 for suffi-
ciently large N (as f* > 0), we then arrive at

_a
N+1
with the constant ci := Ep[||h(-,&n)[|]- In summary, we thus have derived an

upper bound for the difference of subsequent expected minimum function values,
showing that these expected values grow at most at a logarithmic speed.

E]P[f]tf—&-l] < E]P’[f;l] +

It is also of importance to consider the second moment of fj'\}, e.g., for construct-
ing confidence intervals for f* or for bounding the optimality gap, cf. Mak et al
(1999), Section 3. To obtain such results, a version of the CLT is usually invoked
to estimate Ep[f5], which is only valid under the assumption that Ep[(fx)?] < co.
However, while the latter is often (implicitly) assumed and not treated explicitly,
e.g. Mak et al (1999), formula (6), only Homem-de-Mello and Bayraksan (2014),
Section 4.1, seems to carefully consider the finiteness of the second moment of
f}f] To the best of our knowledge, there is no result known on the asymptotic
behaviour of E[(f5)?]. The following proposition closes this gap by providing an
asymptotic rate on the standard deviation std(f3) of f.
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Proposition 3 Suppose that assumptions (A1)—(A2) hold. Then
std (fi) < 1/, < oo (20)

Further, if in addition assumptions (B1)-(B2) are satisfied and if there exists
vs := Ep[G(£)?T°] < oo for some § > 0, then, with p =2+ 4/5, it holds

std (fx) = o(bN"). (21)
Proof Let us start by considering the inequality
1F% L, < v @ER) = In @), + 1 @),

Using the Lipschitz continuity of h, we have for the first term on the right-hand
side that

N
Iin ) = P, <l Do G v — 21,
=1

N
< diam(%) || S G @),
=1

where diam(X) := sup{||z1 — z2|| : 1,22 € X'} denotes the finite diameter of X.
For the second term, we easily get

In @2, = Var (fi(a) + Es[fw(@)]” = 5 Var (h(a", ) + ()%,

such that we obtain assertion (20) under the respective assumptions (A1)—(A2).
To prove (21), we use the subadditivity of the standard deviation to get

std (fx) < std (fx(@N) — (@) +std (fv(z™)). (22)

For the first term on the right-hand side of inequality (22) we proceed as above,
but eventually apply the generalised Holder inequality to obtain

std (fn (&%) — fn (=) < [|fn(@n) = fn ()],

L.

1 N
<[5 Y6 lan - |
i=1

lax — 2"l -

1 N
<&@l |
=1

The first factor of the latter expression can then be bounded according to the
assumption by

N
1 248
FIECPEEE

1=
while for the second factor it holds ||| — ™| Iz, = o(b}v/p), due to Theorem 7 (as
proved independently in the next subsectiqn). For the second term on the right-
hand side of inequality (22), it holds std(fx(z*)) = 1/V/N std(h(z*,£)), as seen
above. Hence, in summary, we obtain std(f%) = o(b}\,/p)7 which proves (21). O
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An immediate consequence of this proposition is the important insight that
the standard deviation of fj'(] converges to zero for N to infinity. This implies that
the mean squared error of f}t] converges to zero at a known rate, thus implying
La-convergence of {fx} to f*.

A further implication of the above proposition is related to the optimality gap:
the upper bound of the usual confidence set to bound the optimality gap converges
to zero for sufficiently large IV, see Section 4.2.1 for more details.

3.3.2 Rate of Convergence of Optimal Solutions

Finally, if assumptions (A1)—(A2) are met together with (B1)-(B2), then conver-
gence of optimal solutions {Zx} to z* in any L,, 1 < p < oo, is easily obtained.

Proposition 4 Suppose that assumptions (A1)-(A2) and (B1)-(B2) hold. Then,
{&N} converges to ™ in Ly, 1 <p < o0, i.e.

Ep [[|2x — 2" ||P] = 0, as N — oo.

In particular, this implies that T3 is an asymptotically unbiased estimator for x*
and that the mean squared error Ep[||@#% — x*||?] vanishes asymptotically.

Proof From Proposition 1, we know that {Z73} converges to z*, P-almost surely,
i.e. for each 1 < p < oo, we have || — z*||P — 0, P-almost surely. Further, due
to compactness of X, we have ||} — z*||” < diam(X)P. The main statement now
follows directly from Lebesgue’s dominated convergence theorem (e.g., Serfling
(1980), Theorem 1.3.7). The remaining statements are easy consequences. a

Remark 5 The above proposition relies on the initially made assumption that the
set X is compact. Considering unbounded X, it is quite easy to construct a coun-
terexample to the above result. More specifically, one can construct a uniformly
convex quadratic objective function, where optimal solutions still converge almost
surely but not in mean.

To further derive the corresponding rates for the convergence of {Z3} to ™ in
L,, we additionally require the following lemma. It quantifies the probability that
27 lies outside the set V of the second-order growth condition (B2), in terms of
the rate by .

Lemma 3 Suppose that assumptions (A1)-(A2) and (B1)—(B2) hold. Then, there
exists a § > 0 (depending on V'), such that for all x € X,

flx)< f(z")+d6 = zeV.

Further, it holds
Py ¢ V) = o(bn).

Proof We prove the first statement by contradiction, assuming that there exists
no such 6. Then we can find a sequence {dx} which converges monotonically to
0, together with a sequence {zn} € X\V with f(zny) < f(z*) +0n. As X\V is
compact, the sequence has a least one cluster point Z # z* with f(z) < f(z*).
This, however, yields the contradiction to the uniqueness of «*, as assumed by (B1).
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Now, let us consider the following chain of inequalities

P(in ¢ V) <P(f(2N z") > 0)
= P(f(2N fN(fEN)JrfN(ﬂfN) (z") > 9)
<P(|f(@N) — fn@N)]+ | v (a” )— f(@")] = 9)
<PQ2llf - fNIIOo > 6)
< QEP[“f(S_fN”oo}’

where we have used Markov’s inequality in the last step. Proposition 2 now yields
the claim. 0

Finally, we are now in position to state the following result on rates of conver-
gence in L, for optimal solutions.

Theorem 7 Suppose that assumptions (A1)-(A2) and (B1)-(B2) hold. Then,
{ZN} converges to x* in L1 at a rate of o(x/bn) and in Ly, 2 < p < oo, at a
rate of o(bn), i.e.

o[ 1En — 2]l & — ||
0, and Ep| =N 11| 40,
\/b]v bN

respectively, as N — oo.
Moreover, if assumptions (A1)-(A3), (A1°)-(A2’), (B1) and (B2’) are satis-
fied, then the rate for convergence in L1 is o(bn).

Proof Under the assumptions (A1)—(A2) and (B1)-(B2), we only need to prove
the statement for p = 2. The case p > 2 follows from the case p = 2 using
|25 — z*|| < diam(X); the case p = 1 follows directly from Holder’s inequality.
Accordingly, in analogy to the proof of Proposition 1, we have

e I I léx =
By || = e [ | o [

QM[WN—ﬂmH

IN

TyEV}

2% — =
Ep {Tlmem :

The first term of the latter expression already shows the proposed rate according
to Proposition 2. For the second term, we use

bn

bn

§2%[WN—ﬂm
o

2PN €V)

&5 — =*|* ] :
Ep | ————14« < diam(X
P[ . Geyevy| < ()=

which, together with Lemma 3, shows the claim for convergence in Lo.
Finally, assuming (A1)—(A3), (A1’)—-(A2’), (B1) and (B2’), the stronger rate of
o(bn) can be obtained analogously for convergence in L1, cf. Theorem 5. a
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4 Further Implications

In addition to the previous section on rates of convergence that hold almost surely
and in mean, we now derive some further results from our analysis of the LIL
in Banach spaces. Specifically, by exploiting the obtained rates of convergence in
mean, we first infer in Section 4.1 rates of convergence in probability for the se-
quences of optimal estimators as well as (slow) rates of error probabilities under
considerably mild conditions. This is opposed to other approaches yielding (fast)
exponential rates of convergence but relying on a strong exponential moment con-
dition (or boundedness condition). In Section 4.2, we then provide novel insights
into the size of the optimality gap and show, most importantly, that the confi-
dence set for the optimality gap ultimately converges to zero at a known rate in
the almost sure sense. We also reconsider more traditional confidence sets for the
optimal value and the optimal solution, and discuss their validity and potential to
form universal confidence sets.

4.1 Convergence in Probability

From the well-known fact that almost sure convergence implies convergence in
probability, all convergence rates obtained in Section 3.2 also hold in probability.
However, slightly better convergence results can be obtained by making use of the
rates of convergence in mean (or equivalently, by equivalence (5) of the compact
LIL), see Section 4.1.1. By referring to related results from the literature on the LIL
in Banach spaces, Section 4.1.2 provides some further insights into the asymptotic
behaviour of error probabilities. The main difference between the first and the
second subsection is that the former considers rates for the size of the deviation
corridor (i.e. inside the probability), whereas the latter is concerned with rates of
a fixed deviation probability (i.e. outside the probability).

4.1.1 Rates of Convergence in Probability

Applying the results from Section 3.3 immediately yields the following result.

Proposition 5 Suppose that assumptions (A1)-(A2) hold and let 6 > 0 be arbi-
trary. Then,

P(M>6) — 0, as N — oo.
bn
Further, if in addition assumptions (B1)-(B2) are satisfied, then we have

Ak * (12
P(M>5> — 0, as N — oo.
bn
Finally, if assumptions (A1)—-(A3), (A1°)-(A2’), (B1) and (B2’) are satisfied, then
1t holds

P(”beiH > 5) — 0, as N — oc. (23)
N

Proof The results follow straightforwardly from Proposition 2, and Theorems 6
and 7. O
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Note that, by Theorems 2 and 3 on the asymptotic distribution of {\/N(f;{, —
)} and {V/N (23 —z*)}, it immediately follows under the respective assumptions
that the sequences are also bounded in probability as N tends to infinity. Also,
considering the case of optimal solutions under the assumptions (A1)—(A3), (A1")-
(A2’), (B1) and (B2’), it is already possible to infer from assertion (23) of the
above proposition that {(£x — z*)/bn} is bounded in probability, thus providing
a slightly weaker rate under weaker assumptions.

Remark 6 In addition to Proposition 5, the rate of convergence in probability ob-
tained from the compact LIL may be further characterised in terms of sums of
probabilities, see, e.g., Li (1991) or Li et al (2007). In particular, given assump-
tions (A1) and (A2), it follows from Corollary 2.1 in Li (1991) that the sequence
{(fn — f)/bn} must also satisfy for all § > ¢(X) that

Z LLOg(N) P ||fN _fHoo > 5) < 0,
N bn
N=1
and
I f — £l 1
o0 > —
P(:BRbk >0 o 7LLog(N) , as N — oo,

where o(X) is given by (14) for the C(X)-valued random variable X'. Under the
relevant assumptions, these characterisations of the rate of convergence may then
be transferred to the respective optimal estimators.

Note that under strong exponential moment conditions on ||X|| and further
weak requirements, it is also possible to derive exponential rates of convergence
in probability by a large deviation principle, cf. Theorem 2.3 in de Acosta (1992).
For every closed set F' of C(X), it then holds that

N N
limsup—Qlog]P(M € F> < — inf I(z),
N—oco Aj bn TEF
where I denotes the corresponding rate function of the Hilbert space H ; associated
to the covariance of X.

4.1.2 Rates of Error Probabilities

Related rates of error probabilities for the difference in objective function values,
in optimal values, and in optimal solutions can also be derived from Section 3.3
on rates of convergence in mean. To this end, reconsider equality (18) under as-
sumptions (A1)-(A2), implying that for any € > 0 there exists a deterministic
N* = N*(¢) € N such that

YN 2N B[l - fll] < e (24)
N

In consequence of this inequality, we are then able to formulate the following
probabilistic estimates for the differences in objective function values, where we
distinguish between the case when no further moment conditions on the random
variable X = h(-,&) —Ep[h(-,£)] are available (to apply Markov’s inequality) and
the case when higher moment conditions on X are satisfied (to use an inequality
by Einmahl and Li (2008)).
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Theorem 8 Suppose that assumptions (A1)—(A2) hold and let § > 0. Then, the
following statements hold:

a) For any € > 0, there exists an N* = N*(¢) € N such that
NN P(|fy = fllo 2 8) < S (25)

b) If Ep[|X||°] < oo for s > 2 then there exists an N* = N*(6) € N such that for
all N> N*:

A N§? c s
P(Ify = fllc > 6) < exp {—W@} + g 151, o

where o(X) is given by (14) for the C(X)-valued random variable X and cy is
a positive constant.

Proof Assertion a) follows directly from Markov’s inequality and inequality (24).

To show b), we first observe that according to inequality (24), for § > 0 and
some arbitrary but fixed 0 < n < 1 there exists an N* = N*(4,1) € N such that
for all N > N*,

P(Ify = fllc > 6) < IF’<||fN ~ flloo = 1+ mE{lfy — fllo] + g)
i ; 5
< P<1g}€a§XNka = flloo = L+ 0)Ee ||| fv — fll] + 5)7

where the second inequality follows from maX1gk§N||fk —fll > IIf~ = fII- By
applying Theorem 4 of Einmahl and Li (2008) (with § = 1 and ¢ = §/2) on the
C(X)-valued random variables X; /N under the moment condition Ep[|| X ||*] < oo,
we then obtain VN > N*:

P( max [|fi — fll > (1+ Bl fx — fll] + é)

1<k<N 2
N§* =
<exps — =+ _012 s Ep [”XHS} )
1202(X) |~ N*7(3)
with the specified constants o(X) and cz. O

Interestingly, while the error probability of fN with respect to f in (25) has
essentially the usual rate by, the rate is of order 1/N*~! in (26) provided that
s < oo. However, it has to be noted that in both cases the exact number N* needed
for the validity of both estimates is not known. Moreover, given N > N*, both
inequalities imply that for sufficiently small values §, the condition N > 1/62 is
sufficient to obtain reasonably small probabilities for errors larger than 6.

Remark 7 Given Theorem 4, both estimates (25) and (26) in Theorem 8 can
further be used to infer rates in error probability for the absolute error of the
optimal values, i.e. ]P’(|f}§, — f*| > ). Moreover, Markov’s inequality can be ap-
plied to obtain similar rates for the error probability of the optimal solutions
P(||#y — 2™|| > 0), based on Theorem 7.
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4.2 Confidence Sets for Optimal Values and Solutions
4.2.1 Bounding the Optimality Gap

In what follows, we reconsider the idea of the optimality gap to derive a confidence
interval for f*, presumably first considered by Mak et al (1999). Given our results
of Section 3.3, especially Theorem 6 and Proposition 3, we are able to improve
known results on the optimality gap and to state that the size of the corresponding
confidence set converges to zero with known rate, almost surely.

Definition 1 The optimality gaps of a point & € X with respect to problems (1)
and (2) are defined as

@) :=f@ - f° and In(@):=fn@) - fr,
respectively.

Based on the results of Sections 3.2 and 3.3, some important properties of the
nonnegative estimator I'n (Z) for I'(Z) can be derived.

Proposition 6 Suppose that assumptions (A1)-(A2) hold, and let T € X be fized.
Then, it holds:

a) I'n(z) — I'(Z) = O(by), P-almost surely, and Ep[|I'n(z) — I'(Z)|] = o(bn).
b) 0 < Ep[l'n ()] — I'(Z) = o(by).

Further, if in addition assumptions (B1)-(B2) are satisfied and if there exists
75 1= Ep[G(£)?T?] < 0o for some § > 0, then, with p =2+ 4/§, it holds

¢) std(In (@) < g std(h(,€)) +std(fi) = o(by").
Proof To show the statements, let us rearrange Iy (z) —I'(z) as
In@) - I'(@) = (fn(@) - @) + (/" = ).

By this representation, the first part of statement a) is a direct consequence of
Lemma 1 and Theorem 4, and the second part follows analogously by Proposition 2
and Theorem 6. The first inequality of statement b) follows from Ep] fj{;] < fr,
while the rate of the bias follows from the second part of statement a). Finally,
the last statement is due to the subadditivity of the standard deviation and the
second part of Proposition 3, under the additionally made assumptions. o

The main idea for bounding the optimality gap for a given candidate point &
was introduced in Mak et al (1999), Section 3.2: for a given € > 0 find a (random)
upper bound uy = un(€) for Ep[I'n(Z)] with

P(uN > Ep [fN(:z)]) >1—¢,
since then Proposition 6b) implies that
P(f(z) < f"4un) >1—¢

providing a performance guarantee for the candidate point  with high probabil-
ity. Mak et al (1999) suggest to find un by means of the CLT: sample M i.i.d.



On rates of convergence for sample average approximations 27

realisations I’ N (Z) of the random variable I '~ (Z) by independent batches with
length N each, then estimate

Hp, = Ep [f‘]\](i')], and Op, = std (ﬁN(:I_S))
by the classical estimators
1 < 1 &
N 5 - .2 2
Y ::MZFJ"N(I), and 63 Z quyM) ,
j=1 ]:1
respectively, and set
~ ~ Ze A
Un,M = fp ot N

Here, ze is the corresponding (1 — €)-quantile of the ¢-distribution with M — 1
degrees of freedom. If the CLT holds for r '~ (Z) and if M is chosen large enough,
the upper bound uy can be approximately computed by asymptotic normality in
a standard manner. More formally, if the CLT holds for I'n(Z), then

N P(awar > Ep[Tn(@)]) 2 1—¢, as M — oo,

For the CLT to hold, it is required that the random variable Iy (z) has a finite
second moment, a property which is guaranteed, for example, by Proposition 6c¢).

Interestingly, concerning the asymptotic behaviour of iy ar, we have not been
able to identify any investigations concerning the asymptotic behaviour of 4y as.
However, based on the results obtained in this exposition, especially Proposition 6,
we are able to characterise the asymptotic behaviour more precisely.

Proposition 7 Suppose that assumptions (A1)-(A2) hold, and let T € X be fized.
Then, for any fixed M > 1 we have

in,m = 1'(Z) + O(bn),
P-almost surely.

Proof From Proposition 6a), we immediately have that g, = I'(Z) + O(bw),
P-almost surely, as this holds for each term of the sum in the definition of /i Py M-
Similarly, let us consider

|ﬁy}N(f) - /lfN,M{ = ’(fJN(f) - F(f)) - (ﬂfN,M - F(f)”

For the first term on the right-hand side, we have by Proposition 6a) that

|fj,N(a_:) — I'(z)| = O(bn), P-almost surely, while for the second term we have
already obtained an almost sure asymptotic rate of O(by). Combining these re-
sults proves the statement. a

This shows that even for a fixed M (as typically suggested in the SAA litera-
ture), an arbitrarily exact upper bound 4n,a can be found. Thus, the choice of
M seems to be mainly important for the quality of the normal approximation,
but not for the size of the uncertainty set. Nevertheless, let us remark that a
more careful analysis of the almost sure asymptotic behaviour of /i Py M will yield
that the above rate can be further improved to include rates in M as well. These
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kind of estimates can be obtained, e.g., by applying a LIL in M (under some
slightly stronger assumption on the existence of fourth moments) to I'; x(Z) and

(LN (@) = i )™

The above idea can be taken one step further to obtain a proper (i.e. consistent
and degenerate) confidence interval for f*: instead of fixing a candidate point Z, an
independent estimate Zy on a further (independent) batch based on N samples
could be computed. Then, conditional on Zx, the above analysis remains com-
pletely valid, with the exception that now we also have to consider the asymptotic
behaviour of I'(Zy). Using Lipschitz continuity of f and the rate of the almost
sure convergence of Ty to x*, it holds that I'(Zny) = O(b}\{Q) or I'(Zn) = O(bn),
depending on the specific assumptions made. In summary, this leads to

ano = OMN?), or  dna = O(by),

each P-almost surely. The final step to obtain a consistent confidence set is the
replacement of 1/v/M by 1/bys, which replaces the upper bound by some slightly
larger upper bound. According to previous considerations, this then leads to a
100% coverage in the limit, see also the subsequent section for similar construc-
tions.

4.2.2 Confidence Sets

Let us briefly discuss the possibility to derive confidence sets for the optimal
value f* and an optimal solution z* (provided the latter is unique) by other
methods, where we mainly follow ideas by Lai (1976), Pflug (2003) and Vogel
(2008b). To avoid a lengthy discussion of measurability issues, we focus on random
convex compact sets. As notation sometimes differs among authors, we first recall
the following definitions to avoid any ambiguity.

Definition 2 Let {Cn} be a sequence of random convex compact subsets of R'.
For an unknown fixed vector ¢ € R!, the sequence {Cn'} of random sets is called

(i) consistent if P(q € Cn) — 1 for N — oo,
(ii) degenerate if diam(Cy) — 0, P-almost surely, as N — oo, and
(iii) a proper confidence sequence if it is consistent and degenerate.

It is further called

(iv) an ultimate e-level confidence sequence if
P{VN €N: ge Cn}) >1—¢, and
(v) a universal e-level confidence sequence if
VNeN: PlgelCn)>1—c

Of course, the quantities of interest in our context are the optimal value f*
and the optimal solution z*. Let us also recall in this context that it is well-known
that in case a CLT holds, the classical confidence sets on this basis must fail the
condition for an ultimate confidence if a LIL also holds. Therefore, it is reasonable
to aim instead for universal confidence sets in the sense of Pflug and Vogel.
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Unfortunately, the approach followed in this paper does not seem to be able to
yield explicit estimates which could be exploited for the construction of universal
confidence sequences. Nevertheless, the existence of a tail behaviour function in
the sense of Pflug (2003) is guaranteed by the following argumentation. According
to Theorem 6 and by applying the Markov inequality, we obtain for all § > 0 that

fr_ px E R
supIP’('beNf|>5><lsup]PM10f

b
NEN NEN by 0

with unknown constant c- = supyey Ee[|f — f*|]/bn < oco. If some upper
bound on cg- is known, a universal confidence set can be constructed from this
inequality along the lines described by Pflug (2003) and Vogel (2008b).

In any case, based on the results from the previous section, it is straightforward
to show that proper confidence sequences can be easily obtained.

Corollary 1 Suppose that assumptions (A1)—(A2) hold and let 6 > 0 be arbitrary.
Then, .
Cyn={z€R: |z— fy| <dbn}

yields a proper confidence sequence for f*.

Proof This follows directly from the first statement of Proposition 5. a

Two main comments are in order. First, a similarly sized proper confidence
sequence can be easily obtained from the CLT approach under the same assump-
tions; for the above corollary though, the CLT has not been used. Second, in
contrast to the approach via the CLT, here no approximate estimate of the cover-
age probability of C is available, while after all no kind of variance estimate is
necessary for its construction.

Corollary 2 Suppose that assumptions (A1)-(A2) and (B1)-(B2) hold and let
0 > 0 be arbitrary. Then,

Cy={z€R": ||z—&N| < Vébn} (27)

yields a proper confidence sequence for x*. Under the assumptions (Al)-

(A8), (A1’)-(A2’), (B1) and (B2’), it further holds that
Cny={z€R": ||z—&N| < obn} (28)
also yields a proper confidence sequence for x*.

Proof Again, this follows directly from the second and the third statement of
Proposition 5. a

Note that, for sufficiently large N, the confidence set (28) is much smaller than
the set (27), as dbny < v/dbn for N large enough.

The main novelty of the latter results lies in the fact that they allow to de-
rive a proper confidence sequence for the optimal solution z* under quite weak
assumptions. These assumptions are indeed weaker than those which lead to con-
fidence sets of z* via asymptotic normality, cf. Theorem 3. Again, let us point out
that although under asymptotic normality approximate coverage probabilities are
available, no exact knowledge of the coverage probability is available here in either
case.
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Remark 8 Suppose 8 is chosen such that § > o(X) for f* or § > %a()?) for z*,
where o > 0 denotes the constant of either the second-order growth condition (B2)
or of (B2’). Then, ultimately, on each sample path, the confidence set Cy covers f*
or z* from some random N™ onwards, see, e.g., Serfling (1980), Section 1.10, for a
discussion. These upper estimate for o(X) might be derived, for instance, via (14)
or from the boundedness of h. As already pointed out above, this behaviour of
the confidence sequence is in contrast to the classical confidence sets provided by
asymptotic normality; here, the quantities f* or z* drop out of the confidence
interval infinitely often on each sample path.

In summary, we thus have seen that the approach followed here is not able to
yield universal confidence sets (for instance, by deriving explicit tail behaviour of
the estimators), but is able to provide proper confidence sequences.

5 Numerical Illustration

In this section we illustrate the main results of our analysis by means of the well-
known newsvendor problem. To this end, we consider the problem in its most
simple version:
min  Ep[cz — r min(z, )], (29)
z€[0,z,]

where ¢ denotes the random demand for a certain good (newspaper), ¢ the costs
associated with keeping the good in stock, r the price at which the good can be sold,
and x, the maximum amount of goods that can be stored. The objective function
which is to be minimised represents the expected negative revenues from deciding
to keep x goods in stock. For a more detailed treatment of the newsvendor problem
including several visualisations, we refer to the thorough review by Homem-de-
Mello and Bayraksan (2014) and the references therein.

For our numerical experiments, we set the parameters as ¢ = 2, r = 5, and
z,, = 100, and assume that £ is distributed according to a lognormal distribution
with parameters p,y = 0 and o, 5 = 1, that is { ~ LN(0, 1). The optimal solution
to (29) is then given by the 60%-quantile of the lognormal distribution, i.e. by * =
F;Nl(oyl)(O.G) ~ 1.288330 with optimal value f* &~ —3.753092 (which can also be
calculated analytically in our specific case). To approximatively solve problem (29)
by the SAA approach, we choose N = 1,2,4,8, ..., N™ with N™* = 224 and
set thelgumber of batches (independent repetitions to solve the SAA problem) to
M =2,

5.1 Illustrations on the CLT and the LIL
5.1.1 Convergence in Distribution

Let us start with an illustration of the asymptotic distribution of the sequences
{VN(f% — f*)} and {V/N(&% — x*)}, for which we have plotted in Figure 1 the
quantities VN (fj — f*) and VN (&} — 2*) for a small and a large N each.

As expected by Theorems 2 and 3, it can be observed from Figure 1 that the
distributions of v N (fx—f*) and v N (i —*) look already quite normal for small
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Fig. 1: Distribution of W(f;;, — f*) (upper half) and of VN(2} —z*) (lower half) for N = 32
(left) and N = N™a* (right). Note that in the considered example approximate normality can
already be obtained for small N.

N and very close to normal for large N. By contrast, however, as < fn(x®),
Theorem 3 also tells us that we cannot expect that {N(fx — fnv(z™))} converges
in distribution to a normal distribution, cf. Figure 2.
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Fig. 2: Distribution of N(f;{, — fn(a*)) for N = 32 (left) and N = N™a* (right). Note that
convergence in distribution to a non-normal distribution can be observed empirically.

5.1.2 Almost Sure Convergence

Next, we illustrate the behaviour of {f%} and {#X} in the almost sure sense. To
this end, we have plotted in Figure 3 the first 500 sample paths (out of M) of
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the upscaled quantities (f — f*)/bx and (2% — 2*)/bn for the grid of different
sample sizes N. Note that the remaining paths behave very similarly.

Fig. 3: Plots of the first 500 sample paths of (f;\‘, —f*)/bn (top) and (&3 —2*)/bn (bottom) for
the different sample sizes N (in logy-scale). Note that for f* the standard deviation of h(z*, &)
may be used as a good upper bound, while no such estimate is readily available for *, due to
the unknown « in the second-order growth condition (B2’). Therefore, a conservative estimate
of oo = 2 has been used.

In accordance with theory, cf. Theorems 4 and 5, it can indeed be observed
from Figure 3 that most upscaled sample paths remain within a band of width
equal to the standard deviation. Note that for the case of f}{,, we have been able
to use the standard deviation of h(z*,&) as an upper bound, cf. Theorem 4 and
Remark 8. However, as the positive constant « in the second-order growth con-
dition (B2’) is usually not known in the case of #3 (and no readily available
estimate is available), we have taken an estimate of « corresponding to function
f N, leading to a = 2. Considering Figure 3, we note that the almost-sure speed of
convergence is of course already implied by the fact that the upscaled sequences
stay bounded. By closer inspection, we can further observe that we cannot expect
a better convergence rate as the confidence band is almost completely covered by
each path.

Finally, in accordance with the construction of the confidence sets in Sec-
tion 4.2.2 and Remark 8, we can see from Figure 4 that the probability of falling
outside these confidence bands drops to zero.
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Fig. 4: Plots of IF’((f;,—f*)/bN ¢ CF) (left) and P((2% —z*)/by & C®) (right) for the different
sample sizes N (in logy-scale), where the fixed confidence bands C/ and C* are constructed
according to Figure 3. Note that these probabilities converge to zero as N — oo, as expected.

5.1.83 Convergence in Mean

We illustrate the convergence in mean of the sequences { fj{,} and {23} by consid-
ering the average of fj{; and £ for the different sample sizes N over the M batches
and together with the standard error of the corresponding estimator. The results
obtained are presented in Figure 5, where we again have plotted the upscaled
quantities for better visibility.

Fig. 5: Plots of the averages of f;{/ (top) and &%, (bottom) over M batches, centred at f* and
*

x*, respectively, and upscaled by 1/by, for the different sample sizes N (in logy-scale). The
dashed lines represent the corresponding sample standard deviations, again upscaled by 1/by .

Note that the negative bias of fAX, is clearly visible but vanishes asymptotically, as suggested
by its order o(by).
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From Figure 5, a few interesting insights can be gained. First, the negative bias
of fj'(] can be visually identified in the top panel. Second, in full accordance with
Theorems 6 and 7, we observe that the upscaled sequences {(fx — f*)/bn} and
{(&n — z¥)/bn} still converge to zero, confirming the convergence order o(by).
Third, it seems that the corresponding standard deviations of both estimators,
upscaled by 1/bn, remain at least bounded — a much better behaviour than could

be expected from assertion (21) (where a scale of 1/ b}\{p is considered).

5.2 Further Illustrations

5.2.1 Convergence in Probability

Considering the last mode of convergence to be discussed, convergence in probabil-

ity, Figure 6 depicts how fast the deviation probabilities in Proposition 5 converge
to zero.

0.8 4

o6 — T > :

02t . _— ]

0.6 4

0.4

e [ 1

0 5 10 15 20

Fig. 6: Plots of P(\f;{, — f*|/bn > 6) (top) and P(||2} — z*||/by > 6) (bottom) for the
different sample sizes N (in log,-scale) and 6 € {1/2,1,2}. Note that the convergence of these
probabilities to zero is in accordance with Proposition 5.

It can clearly be observed that P(| f3 — f*|/bx > 8) — 0 and P(|| 2% —z*|| /bx >
d) — 0 holds in accordance with Proposition 5.

5.2.2 Estimation of the Optimality Gap

As a final illustration and application of our results, let us investigate the behaviour
of the optimality gap. For this purpose, Figure 7 illustrates the behaviour of u Py
OFy and 4y, for different sample sizes N.
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Fig. 7: Plots of By /b (top), OFy /bn (middle) and @y, ar/bn (bottom) (in logyg-scale) for
different sample sizes N (in log,-scale), obtained by averaging over M batches. Note that all
upscaled sequences converge to zero in our specific example, as expected.

First, we can observe that the upscaled sequences {u5 /bn} and {of /bn}
appear to converge to zero at a rate of at least o(by), as indicated by Proposi-
tion 6b). Second, for the example considered, it can further be observed that the
scale of o P is comparable to the one of Py For already small M, we thus have
UN,M =~ firy. In general, if M is chosen large enough, it is expected that this is
always the case, i.e. it generally holds that @n ar = fir,, as the second term in
the definition of 4, vanishes.

6 Conclusion

In this paper, we have derived rates of convergence almost surely and in mean for
optimal estimators in the SAA approach, a matter which has not been investigated
so far. Both rates can essentially be quantified as y/LLog(N)/vN and may be
inferred under rather mild assumptions by applying a version of the LIL in Banach
spaces, similar to the case of the functional CLT that allows to derive asymptotic
distributions and related convergence rates for the optimal estimators. On the basis
of the obtained convergence results in mean, we have been able to quantify the
asymptotic bias and the mean squared errors of the optimal estimators. Moreover,
from the rates of convergence in mean, we have derived convergence in probability
for the deviation of the optimal estimators from their respective counterparts and
rates of error probabilities that are rather weak but do not rely on the strong
exponential moment conditions as in other approaches. We have also analysed the
idea of constructing confidence sets for optimal values and solutions by bounding
the optimality gap and by more traditional methods. Finally, we have provided
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a numerical illustration of our results by considering the well-known newsvendor
problem.
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