
Efficient Influence Maximization Under Network
Uncertainty

Soheil Eshghi1, Setareh Maghsudi2, Valerio Restocchi3,4, Sebastian Stein3, and Leandros Tassiulas1

1School of Engineering and Applied Science, Yale University, USA
2Department of Electrical Engineering and Computer Science, Technical University of Berlin, Germany

3Electronics and Computer Science, University of Southampton, UK
4School of Informatics, The University of Edinburgh, UK

Abstract—We consider the influence maximization (IM) prob-
lem in a partially visible social network. The goal is to design
a decision-making framework for an autonomous agent to select
a limited set of influential seed nodes to spread a message as
widely as possible across the network. We consider the realistic
case where only a partial section of the network is visible
to the agent, while the rest is one of a finite set of known
structures, each with a given realization probability. We show
that solving the IM problem in this setting is NP-hard, and we
provide analytical guarantees for the performance of a novel
computationally-efficient seed-selection approximation algorithm
for the agent. In empirical experiments on real-world social
networks, we demonstrate the efficiency of our scheme and show
that it outperforms state-of-the-art approaches that do not model
the uncertainty.

Keywords: Influence Maximization, Social Networks, Partial
Visibility, Uncertainty.

I. INTRODUCTION

Harnessing the power of word-of-mouth communication to
maximize the spread of information across a social network
has shown great promise in diverse fields [1], [2]. To do
this effectively, existing work has extensively studied how to
design autonomous agents to solve the problem of influence
maximization (IM) [3], [4]. Specifically, given a social network
and an influence model, an agent seeks to select a set of
influential seed nodes that maximizes the expected spread of
information. The existing studies typically assume that the
agent is aware of the complete network; however, in practice,
such a scenario is unlikely. In fact, due to the noisy and
imperfect data, the agent has only partial estimates of the
network [5], [6]. When taking uncertainty into account, prior
work has typically focused only on link uncertainty [7], has
assumed the entire network is initially unknown [8], [9] or
has assumed that the network has well-defined community
structure [10].

To address this shortcoming, in this paper we assume that
only a part of the network is visible, with the rest of the
network taking one of several given structures with given
probabilities. The influence maximizing agent seeks to select
seeds within the visible part of the network, in order to
maximize the expected spread of the message in the network.
We also consider the case where the agent seeks to provide
reasonable guarantees on the spread of a seed set regardless
of which of the structures is the correct one.

Given the aforementioned setting, we extend the state of
the art as follows: Based on the well-known algorithm influ-
ence maximization via martingales (IMM) [11], we develop a
method for influence maximization under the aforementioned
type of uncertainty. We show that the problem of seed selection
for influence maximization under partial visibility is NP-hard,
and the best approximation algorithm for seed selection can
only provide a (1− 1

e )-optimality guarantee [12]. We also show
how to efficiently compute a (1− 1

e − ε)-optimal seed set with
high probability in the case where the expected influence of
seed sets is not available and has to be estimated computa-
tionally. We then discuss performance degradation compared
to the full-information setting. Finally, we run simulations on
a real-world network to show the robustness of our algorithm.
Our results suggest that the proposed algorithm performs well
under different types of uncertainty, and also outperforms the
state of the art (IMM) algorithm.

II. RELATED WORK

A. Classical Setting

In the classical influence maximization problem, it is as-
sumed that the network is completely visible, i.e., all possible
links between network entities are known, and all network
entities are available to the influence maximizer as potential
seeds. In addition to the structure of the network, it is assumed
that the activation function is also known, which describes
the spread of influence among nodes. The IM problem is to
select a specific number of most influential nodes, so as to
maximize the influence spread in expectation. In their seminal
work, Kempe et al. [3] formulate the influence maximization
problem as a combinatorial optimization problem and show
its NP-hardness. Under a variety of diffusion models, they
developed a greedy approach, which achieves 1−1/e−ε bound
compared to the optimal solution. However, this approach was
dependent on estimating the expected influence of each subset
of network entities, which is by itself #P -Hard [13], and thus
a brute-force approach to computing its values will negate the
gains from efficient seed selection. As a result, many near-
optimal approximate solutions have been developed which are
more computationally efficient in the expectation computation
phase. Among these, the most important contribution was by
Borgs et al. [13], who proposed the use of random Reverse
Reachable (RR) sets for more efficient computation of an



unbiased estimator for the influence function.
The key remaining question for the Borgs et al. [13] ap-

proach is how many RR sets (samples of network realizations)
are needed to provide performance guarantees for the end-to-
end IM algorithm. The most efficient algorithms to date are
TIM/TIM+ [14], and IMM [11]. These two algorithms use tail-
bounds for the estimation of the probability that the influence
estimator is markedly different from the actual function, with
the difference that [11] provides stronger bounds (and thus
needs fewer RR sets/samples to guarantee the same level of
performance). In both cases, these performance bounds depend
on the (unknown) expected influence of the optimal size-
k seed set. In TIM/TIM+ [14], this value is lower-bounded
from observations to provide a looser bound, while it is
estimated more efficiently in IMM [11], providing even more
computational efficiency. The technical approach of our work
broadly follows IMM [11], but diverges in its domain of
application and sought insights.

B. Partial Information Setting

As mentioned previously, to date, a great majority of the
research investigating the influence maximization problem has
focused on the full-information case, where all the necessary
information is available prior to seed selection. However, in
many real-world applications, such information is extremely
costly to acquire, if possible at all. Moreover, often the widely-
used assumptions on the network structure do not match real
networks, thereby limiting the generality of results. To address
such shortcoming, influence maximization under uncertainty
is an emerging topic of study. This problem corresponds to
selecting a set of nodes to maximize influence spread when
the network (or its characteristics) are only partially visible.
For instance, the probability of influence among each pair of
nodes might be unknown. Below we provide a brief review of
the most important literature in this area.

In [15], for instance, the uncertainty lies in the edge
influence probability. More precisely, in the considered model,
instead of the exact probability of influence, every edge of
the graph is associated with some interval, to which the true
probability belongs. The problem is solved by sampling the
edges uniformly or adaptively, followed by estimating the true
influence probability using the sample set. In the former, the
edges are sampled uniformly at random, whereas in the latter,
critical edges (such as those with possibly-higher influence
probability) are sampled more often. Clearly, the adaptation
is performed according to the historical results of sampling.
Uncertainty with respect to the diffusion probability is also
considered in [7] and [16]. In the former, the problem is
formulated as a maximum likelihood decision, whereas in the
latter, bandit theory is used to address it. Generally-speaking,
a bandit problem can be categorized as an online optimization
problem. In the most seminal setting of this problem, an
agent selects one of the available options sequentially, without
having any prior information. The goal is to maximize the
average (discounted) reward or to minimize the average regret.
A similar work is [17], where a combinatorial bandit model
is used. In [8], the authors define the uncertainty in terms

of partial observability of the network structure. Influence
maximization for unknown social networks is also investigated
in [6], [9], [18].

III. SYSTEM MODEL

In this section, we first formalize the information that is
available to the agent (the influence maximizer), then describe
the influence model we assume and finally summarize the IM
problem under partial visibility.

A. Information Structure

Assume that a directed graph G = (V,E) exists such that
|V | = n. However, only a subset of its nodes, as well as the
edges between such nodes, are visible to the agent. That is,
we have Gv = (Vv, Ev) such that Vv ⊆ V and Ev ⊆ Vv×Vv ,
with the condition that if e = (b, c) ∈ E and b, c ∈ Vv , then
e ∈ Ev . Gv is the only part of the network that is known to the
influence maximizer, corresponding to the real-world scenario
where accurate information is only known about a part of the
network. We assume some information is available about the
graph:
• The number of nodes n is known.
• The structure of the unobserved part of the network
G = (V,E′) is one of M different known graphs
G1, G2, . . . , GM , each with probability q1, q2, . . . , qM
(such that

∑M
i=1 qi = 1). Note that in this case, if

e = (b, c) ∈ E′, then either b /∈ Vv or c /∈ Vv .
Despite being relatively strong, this latter assumption makes
our approach applicable to the settings where a generative
model can produce a finite set of samples of the unseen part
of the network [19] or where multiple real-world sources
of information (surveys, OSNs) are used without knowing
which represents the real method of influence spread. In these
settings, priors for qi’s can be obtained based on the past
success of the various methods/sources.

We consider a discrete-time model, where decisions by the
influence maximizer are made at time 0. The system evolves
from then on according to the influence model that is described
in the following section.

B. Influence Model

We consider the Independent Cascade (IC) and the Weighted
Cascade (WC) models of influence propagation. In the IC
influence model, each edge e = (b, c) of a graph structure is
associated with a probability p(e) that determines the chance
that u successfully influences v at time t + 1, provided that
it has been itself influenced at time t. In the WC model,
this probability is modulated by the in-degree of v (i.e., the
total probability of being influenced by neighbors does not
increase with its number of neighbors). Following the classical
assumptions of [3], the attempt for influence only occurs once
at time t+1, and if unsuccessful, that link will not play a role
in the future spread of influence.

At time 0, the agent activates a node set S ⊆ Vv , with all
other nodes being inactive. These newly activated nodes each
sample from among their outgoing edges to find neighbors
according to the relevant probabilities p(e) and, if successful,



activate them at the next time instance. Activated nodes remain
active henceforth, while only newly activated nodes attempt
to influence their neighbors (for one time-step). Under this
model, we define the function I(·) : 2|Vv| → [0, n] that maps
each subset of visible nodes (i.e., possible seed nodes) to the
number of influenced nodes once the aforementioned process
has concluded. Note that I(S) (such that S ⊆ Vv) is a random
variable, as its value depends on the end result of the activation
pattern (the so-called live-edge graph X [3]). The goal of
the influence maximizer is to maximize the expected spread
E{I(S)} for a seed S ⊆ Vv of size k.

C. Problem Statement

Problem 1 (PV-IM). Given visible graph Gv , possible re-
alizations of the unobserved graph G1, G2, . . . , GM (with
probabilities q1, q2,. . . , qM ) a diffusion model D ∈ {IC,WC}
and influence functions p(e) for each edge e in the realizations,
and a positive integer k, find a node-set Sok of size k that
maximizes E{I(S◦k)}.

IV. INFLUENCE MAXIMIZATION UNDER PARTIAL
VISIBILITY

We show (in §IV-A) that Problem 1 is NP-hard and that
its objective is sub-modular and monotone, and thus it only
admits a (1 − 1

e )-optimal approximate solution. The rest of
this section deals with how to approach this approximate
solution given that the influence of each set of seeds has to
be computationally evaluated before a solution to Problem 1
can be attempted.

A. Complexity of PV-IM

Theorem 1. The PV-IM problem is NP-hard and has a
monotone and submodular objective. A greedy selection of
seeds gives a (1− 1

e )-approximation of the optimal result.

Proof. Define σmX (S) to be the function that maps each subset
of visible nodes (seed set S) to the spread resulting from
them in live-edge realization X of graph Gm ∪ Gv . In [3],
it was shown that for both the IC and LT influence models,
σmX (S) is monotone and sub-modular, and therefore σm(S),
the expected spread under graph Gm ∪ Gv is also monotone
and sub-modular (as it is a weighted linear sum of the σmX (S)
terms). It is also shown that both problems are NP-hard (by
a mapping to Set-Cover and Vertex-Cover, respectively). A
more general result applying for a wider variety of triggering
functions (including WC) was obtained by [20].

First, note that if M = 1 (and q1 = 1), our problem
maps to the original IM problem, which is NP-hard. Therefore,
partially visible IM is also NP-hard. Furthermore, if we define
σ(S) to be the a priori expected spread from S among all
graph realizations, then σ(S) =

∑M
m=1 qmσ

m(S), which is
a linear, positively-weighted sum of monotone, sub-modular
functions. Therefore, σ(S) is also still monotone and sub-
modular, and given the function σ(·) the greedy seed selection
algorithm will give a (1 − 1

e )-approximation to the optimal
solution [12].

This proof, however, assumed that σ(·) is available to the
greedy algorithm, which is not a reasonable assumption as

the computation of this function is itself #P -hard [13]. Thus,
in the next section, we develop computationally-tractable
ways to approximate σ(·), and to provide guarantees for the
performance of a partially-visible IM algorithm considering
the two sources of approximation errors.

B. Performance Guarantees for PV-IM

We now characterize ways of providing reasonable approx-
imations for σ(·) given the uncertainty in the realization of
the invisible part of the network. We first adapt the notion of
Reverse Reachable sets [13] to the partial visibility setting, and
then show how many RR sets are necessary for adequate per-
formance guarantees on the greedy seed selection algorithm.

Definition 1. A Reverse Reachable (RR) Set P i(q) for a node
q in graph realization Gi ∪ Gv is the set of nodes that can
reach q in a sampled live-edge graph gi created from Gv∪Gi.
A Random Reverse Reachable Set P i is an RR set generated
for a random node q in Gv ∪Gi.

Let S be any set of nodes in Vv . Define xij(S) ∈ {0, 1}
to be the indicator variable that determines whether the j−th
random RR set P i generated for graph realization Gv ∪ Gi
overlaps with any of the nodes in S.

Borgs et al. [13] showed that the probability that S influ-
ences a node v when Gi is the structure of the unobserved
graph (the generic setting with an observable graph) is equal to
the probability that S overlaps with an RR set for graph Gv ∪
Gi generated for v. Therefore, E{I(S)|Gi} = n.E{xi(S)|Gi},
where xi(S) is a random RR set (generated uniformly at
random for some v ∈ V ) and the expectations are conditional
on the structure of the invisible part of the network being Gi.
Thus, if we have θi random RR sets generated for structure
Gi respectively for all i, by the linearity of expectation we
will have:

E{I(S)|Gi} =
n

θi
.E{

θi∑
j=1

xij(S)|Gi}. (1)

Thus, using the law of total expectation:

E{I(S)} =
M∑
i=1

qi
n

θi
.E{

θi∑
j=1

xij(S)|Gi}. (2)

Define F iR(S) := [
∑θi
j=1 x

i
j(S)]/θi, the fraction of RR sets

generated for Gv ∪Gi that overlap seed-set S, with FR(S) :=∑M
i=1 qiF

i
R(S) being the weighted average of these fractions.

By (1), n.FR(S) is an unbiased estimator of E{I(S)}.
For the greedy seed selection algorithm to be able to use this

approximation to deliver the sought-after (1− 1
e −ε)- approxi-

mate solution with high probability, we need this estimator of
the influence function to be close enough to its expected value
that the greedy algorithm can only choose a seed-set within the
acceptable performance range. In TIM/TIM+ [14] and IMM
[11], this is accomplished in two steps: 1) by choosing enough
RR sets to ensure that the estimator of the influence of the
optimal size-k seed set is close to its expected value with
high probability, and 2) by (if necessary) choosing more RR
sets to ensure that the influence estimators of all “extremely



sub-optimal” (i.e., worse than (1− 1
e −ε)-approximation) seed

sets will also be close to their expected values. Looking at the
union of these two conditions, we can then say that the size-k
seed set chosen by the greedy algorithm, Sgk , will only not be
within the required (1− 1

e − ε) ratio if either condition fails,
the probability of which can be upper-bounded by the sum
of each condition’s failure probabilities. We formalize these
intuitions following the outline of [11]:

Definition 2. Let p◦ be the expected influenced fraction of
nodes for the optimal size-k seed set S◦k , p◦ := E [I(S◦k)] /n.

Definition 3. Let p◦i be the expected influenced fraction of
nodes for the optimal seed set selection when the invisible
part of the network has structure Gi: p◦i := E [I(S◦k)|Gi] /n.

Therefore,

p◦ = E [I(S◦k)] /n =

M∑
i=1

qip
◦
i . (3)

We now specify how many sample RR sets, denoted θ, are
needed to guarantee that FR(S◦k) is close to p◦ with high
probability, and how they should be divided between the
different possible realizations of the unobserved network:

Lemma 1. For δ1 ∈ (0, 1), and ε1 > 0, if

θ∗ :=

∑M
i=1 q

2
i p
◦
i (1− p◦i )∑M

i=1 q
2
i (p
◦
i )

2

log(1/δ1)

ε21
, (4)

then for θ ≥ θ∗, we have n(FR(S
◦
k)) ≥ (1 − ε1).np

◦ with
probability at least 1− δ1, each realization being sampled

θ∗i := θ∗
qi

2
√
p◦i (1− p◦i )∑M

j=1 qj
2

√
p◦j (1− p◦j )

(5)

times.

Proof. Step 1: We prove that:

Pr [n(FR(S
◦
k)) ≤ (1− ε1)np◦] = Pr[

M∑
i=1

θi∑
k=1

(qi
∏
j 6=i

θj)·

[xik(S
◦
k)− p◦i ] ≤ −ε1(

M∏
j=i

θj)

M∑
i=1

(qip
◦
i )], (6)

by using the definition of F iR(S
◦
k), multiplying both sides

inside the probability by
∏M
j=1 θj , and grouping of terms.

Step 2: For r ≤ θ :=
∑M
j=1 θj , define: mr := min{l ∈

{1, . . . ,M}|
∑l
i=1 θi ≥ r}, and

Yr :=

mr∑
i=1

r−
∑mr−1

d=1 θd∑
k=1

(qi
∏
j 6=i

θj)[x
i
k(S
◦
k)− p◦i ]. (7)

With this definition, (6) becomes

Pr [n(FR(S
◦
k)) ≤ (1− ε1).np◦] =

Pr[Yθ ≤ −ε1(
M∏
j=i

θj)

M∑
i=1

(qip
◦
i )]. (8)

Step 3: We show that that the sequence Y1, Y2, . . . is a
Martingale, and appeal to a Martingale tail-bound for Yθ to
upper-bound the right-hand side of (8):

Lemma 2. [21, Theorem 18]: Let the sequence Z1, Z2, . . .
be a Martingale and let there exist a, b such that for some i
and for all 1 < j ≤ i, |Z1| ≤ a, |Zj − Zj−1| ≤ a, as well
as Var[Z1] +

∑i
k=2 Var[Zk|Z1, . . . , Zk−1] ≤ b. Then, for any

γ > 0, we have Pr [Zi − E{Zi} ≥ γ] ≤ exp
( −γ2

2
3γa+2b

)
.

Appealing to Lemma 2 for −Yθ and combining the resulting
bound with (8) and simplifying, we obtain:

Pr [n(FR(S
◦
k)) ≤ (1− ε1)np◦]

≤ exp
(
−

ε21[
∑M
i=1(qip

◦
i )]

2

2
∑M
i=1

q2i p
◦
i (1−p◦i )
θi

)
(9)

Step 4: We choose {θ1, . . . , θM} to minimize such an error
probability given a total number of possible RR sets θ, leading
to the following optimization problem:

min

M∑
i=1

q2i p
◦
i (1− p◦i )
θi

s.t.
M∑
i=1

θi = θ, θi ≥ 0

Solving the above using the KKT conditions, we will have

θ∗i = θ∗
qi

2
√
p◦i (1− p◦i )∑M

j=1 qj
2

√
p◦j (1− p◦j )

(10)

Replacing these values into an upper-bound of δ1 for (9) gives
us the desired value of θ∗ (4).

Step 4∗: If the different graphs Gi ∪ Gv have similar
expected normalized influence spreads p◦i = p◦, the optimal
number of RR sets to draw from each possible realization is
directly proportional to its probability of occurrence (θ∗i =
qiθ
∗). Furthermore replacing this result into (9) gives us the

following:

Pr [n(FR(S
◦
k)) ≤ (1− ε1)np◦] ≤ exp

(
− ε21θ

∗p◦

2

)
,

which recovers the same bound as in [11, Lemma 3] for
small p◦i . Therefore, we can see that uncertainty about the
invisible part of the graph does not, in many cases, degrade
performance, a surprising result.

Corollary 1. If the expected influence of the optimal set is
equal in all graph realizations, it is optimal to sample each
realization in accordance with its probability of occurrence.

Replacing p◦i from Definition 3 in (4), we also see that:

Corollary 2. θ∗ increases at most linearly in network size n.

This mirrors a result in [11]. It is important to note that these
results are only possible through intelligently choosing the
number of samples θ∗i to allocate to each of the realizations,
which is a contribution of this paper.

Now assume that these θ∗ RR-sets are used to select a size-
k seed Sgk set via a greedy approach. As the objective of this



selection problem is also monotone and submodular, we will
have the following guarantee with probability 1− δ1:

nFR(S
g
k) ≥ (1− 1

e
)nFR(S

◦
k) ≥ (1− 1

e
)(1− ε1).np◦

= (1− 1

e
)np◦ − ε1(1−

1

e
).np◦ (11)

Thus, the result of a greedy optimization on θ∗ RR-sets can
fall a factor of (1− 1

e )(1− ε1) below the optimal value in the
worst case with probability 1− δ1. We now guarantee that no
extremely sub-optimal seed set (much worse than a (1 − 1

e )-
approximation of the optimal seed-set) will be picked by a
greedy algorithm: we show how many RR sets are needed so
that that the estimators of all extremely sub-optimal seed sets
will be close to their expected values (as in [11]).

Using the same methodology as in the proof of Lemma 1,
we can bound the probability that the unbiased estimator of
the sub-optimal set is very far (expressed as a multiple of the
optimal value for computational reasons) from its expected
value. First, we define what we mean by an extremely-sub-
optimal seed set at level ε > ε1(1− 1

e ) > 0:

Definition 4. A size-k seed set Sk is extremely sub-optimal
at level ε > 0 (ESOε) if E[I(Sk)] ≤ (1 − 1

e − ε)np◦ =
(1− 1

e )np
◦ − εnp◦.

The number of such seed-sets is upper-bounded by
(
n
k

)
, the

total number of size-k seed sets. Therefore, if we bound the
probability that each ESOε seed set is selected with probabil-
ity δ2/

(
n
k

)
for some δ2 > 0, then the total probability that an

ESOε seed set is selected will be at most δ2. Alternatively,
this means that with probability 1− δ2, the selected node set
will not be ESOε. We now clarify how many RR-sets are
needed so that each ESOε seed set is selected with probability
δ2/
(
n
k

)
:

Lemma 3. For δ2 ∈ (0, 1), ε > ε1(1 − 1
e ) > 0, if Lemma 1

holds,

θ′ :=
2 log(

(nk)
δ2

)[(1− ε1)(1− 1
e )−

2
3ε]

(ε− ε1(1− 1
e ))

2p◦
, (12)

and θ′i := qiθ
′ (sampling according to realization probabil-

ities), then for θ ≥ θ′ and ESOε seed set k, we will have
E{I(Sgk)} ≥ (1 − 1

e − ε).E{I(S
◦
k)} with probability at least

1− δ2.

Proof. Step 1: As θ ≥ θ∗, from (11) nFR(S
g
k) ≥ (1− 1

e )np
◦−

ε1(1 − 1
e )np

◦. We bound the probability that nFR(Sk) ≥
(1 − 1

e )np
◦ − ε1(1 − 1

e )np
◦ for Sk ∈ ESOε (i.e., that such

a set could be chosen by the greedy algorithm), which is the
complement of the statement in the lemma. As E{I(Sk)} ≤
(1− 1

e − ε)np
◦, we will have

nFR(Sk)− E{I(Sk)} ≥ np◦ε2, (13)

where ε2 := (ε− ε1(1− 1
e )) > 0.

Step 2: We first make to definitions:

Definition 5. Define p to be the expected influenced fraction
of nodes resulting by the size-k seed set Sk ∈ ESOε: p :=

E [I(Sk)] /n ≤ (1− 1
e )p
◦ − εp◦.

Definition 6. Define pi to be the expected influenced fraction
of nodes resulting from seed set Sk when the invisible part of
the network has structure Gi:

pi := E [I(Sk)|Gi] /n. (14)

We then show that for γ := ε2p
◦

p :

Pr [nFR(Sk)− E{I(Sk)} ≥ np◦ε2] = (15)

Pr

 M∑
i=1

θi∑
k=1

(qi
∏
j 6=i

θj)[x
i
k(Sk)− pi] ≥ γ(

M∏
j=i

θj)

M∑
i=1

qipi


Note that γ ≥ ε2

(1− 1
e−ε)

as Sk ∈ ESOε.
Step 3: We define mr and Yr as in (7) (but with Sk

replacing S◦k and p replacing p◦) and appeal to Lemma 2
again to bound the right-hand side of (15):

Pr [nFR(Sk)− E{I(Sk)} ≥ ε2np◦]

≤ exp
( −γ2p2

2
∑M
i=1

q2i pi(1−pi)
θi

+ 2
3γp[maxl

ql
θl
]

)
(16)

Step 4: We again choose {θ1, . . . , θM} to minimize the
right-hand side of (16), equivalent to minimizing the denom-
inator of the exponent. Obtaining a closed form in this case
is difficult, but we can see that the first term is minimized by
(10) (with θ′ replacing θ∗) and the latter by θ′i = qiθ

′ for all
i, which may be similar if pi is the same over all realizations.

Step 5: We obtain an upper-bound to the right-hand side of
(16), using θ′i = qiθ

′:

Pr [nFR(Sk)− E{I(Sk)} ≥ ε2np◦] ≤ exp
(−γ2pθ′
2 + 2

3γ

)
.

Setting the right-hand side to less than δ2
(nk)

leads to (12) after

suitable replacements, as γp = ε2p
◦, ε2 = (ε−ε1(1− 1

e )) > 0,
and γ ≥ ε2

(1− 1
e−ε)

.
Therefore, in this setting too the optimal number of RR

sets to draw from each possible realization of the invisible
part of the graph is closely proportional to its probability of
occurrence (θ∗i = qiθ is close to optimal).

Thus, among the unbiased estimators we consider, the most
efficient (in terms of guarantees per number of RR set samples)
samples each possible Gi in proportion to its probability of
occurrence qi.

Putting Lemmas 1 and 3 together, we state the following
theorem:

Theorem 2. For ε > ε1(1 − 1
e ) > 0, δ1, δ2 ∈ (0, 1) and

δ1 + δ2 = δ, if θi > max{θ∗i , θ′i} for all i, then our greedy
algorithm will return a (1− 1

e − ε) solution to Problem 1 with
probability at least 1− δ.

Algorithm 1 describes the steps needed to solve Problem
1. First, the requisite number of RR sets are created for each
realization to match both Lemma 1 and Lemma 3, allowing
the algorithm to achieve the bound in Theorem 2. We then



describe the greedy approximation algorithm that once applied
to the empirically generate RR coverage fraction functions
(with suitable adjustments) will give us the (1 − 1

e − ε)−
approximation performance with high probability.

Algorithm 1 Pseudocode of Partial Visibility IM Agent.
1: Data: Gv , G1, G2, . . . , GM (q1, q2,. . . , qM ), D, p(e), k, δ, ε.
2: Result: Algorithm for picking Sg

k seed set, which is (1− 1
e
−ε)-

optimal with probability 1− δ.
3: Set FR(S) = 0, F i

R(S) = 0 for all sets, all i, Sg
k = ∅;

4: for i = 1, . . .M do
5: for j = 1, . . .max{θ∗i , θ′i} do
6: Generate a random RR set for Gv ∪Gi;
7: Update F i

R(S) for all nodes;
8: end for
9: Update FR(S) for all nodes;

10: end for
11: for i = 1, . . . k do
12: Add node q with maximum FR(q) to seed set Sg

k ;
13: for j = 1, . . .M do
14: for l = 1, . . .max{θ∗i , θ′i} do
15: if xjl (q) = 1) then
16: Decrease F i

R(S);
17: end if
18: end for
19: Update FR(S) for all nodes;
20: end for
21: end for
22: Return Sg

k ;

Corollary 3. Note that θ∗ & θ′ in Lemmas 1 and 3 do not, in
general, scale with the number of candidate realizations M .

However, when M is exponentially large, it is inescapable
that the number of total RR-set samples may increase exponen-
tially. This latter case is less amenable to the PV-IM approach,
as stated in the introduction.

V. SIMULATIONS

We showed analytically that in certain cases, it is optimal
to sample RR sets from realizations in accordance with the
realization’s probability of occurrence given a fixed total num-
ber of RR sets. Here, we compare the empirical performance
of such an approach with more naive variants. Note that
as our agent was designed with performance guarantees in
expectation in mind, it is not guaranteed to be optimal in any
particular case. However, we have seen experimentally that in
many real data-sets, it performs just as well as other widely-
used heuristics.

A. Experimental Setting

To illustrate the impact of sampling proportions on the
spread of influence, we run simulations on two different
networks, G1 and G2. G1 has a probability q1 to be the true
network, and probability q∗1 = q1 + a to be sampled when
computing an RR set. Also, to model uncertainty in G2, we
rewire G1 by removing existing links and reassigning them to
other nodes.

We present only results obtained by using a network with
negative assortativity to model G1, random rewiring to gener-

ate G2, and 10% partial visibility for both networks. Specifi-
cally, we choose to use NetHept1, a network that consists of
15k nodes and 31k edges, representing citations in the high
energy physics community, as it has been widely used to show
the performance of influence maximization algorithms [14],
[22]. Several other combinations of data sources, rewiring
methods, and visibility parameters were tested and yielded
qualitatively similar results.2

Each simulation consists of four steps. First, NetHept is
assigned to represent G1, and G2 is generated according to
the random rewiring algorithm. Second, θ RR sets are created,
with each being created from G1 (resp. G2) with probability
q∗1 (resp. 1 − q∗1). Third, the seeds are chosen greedily by
the algorithm. Fourth, the realization of the uncertain network
is chosen between G1 and G2 with probability q1 and 1 −
q1, respectively, and the influence process is simulated. This
process is repeated T=1000 times for each value of q1 and q∗1 ,
to ensure the robustness of the results.

B. Benchmarks

To evaluate our algorithm, we compare its performance with
those of three benchmarks:

• IMM: this algorithm, which represents the state of the
art, samples θ RR sets on the network with the highest
realization probability, and chooses those nodes with the
highest expected spread [11].

• AVERAGEDEGREE: the k nodes with highest degrees di,
computed as di = di,1q1+di,2q2 when node i has degree
di,1 in G1 and di,2 in G2, are selected as seed nodes

• RANDOM CHOICE: all seed nodes are selected randomly.

C. Results

Interestingly, although our results apply for worst-case
guarantees and are approximate, we find that sampling RR
sets with probabilities qm in this setting leads to a marginal
improvement of the influence spread than under- and over-
sampling G1 (Figure 1). In other simulations on smaller
networks, we found that undersampling sometimes leads to a
slightly larger influence propagation (up to 10%). These results
suggest that our algorithm is broadly robust to uncertainty in
realization probabilities qm and that a good seed set will be
provided even when qm are not estimated accurately.

Our algorithm outperforms IMM by up to 14.9%, when
uncertainty on the network is highest (i.e., q1 = q2 = 0.5).
Importantly, the influence spread becomes similar only under
low uncertainty (q1 > 0.8). Our algorithm significantly out-
performs the proposed heuristics at all levels of uncertainty,
with a performance increment between 38.5% and 45.1%, and
has the advantage of providing theoretical guarantees.

1The data set is downloadable at https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/02/weic-graphdata.zip.

2We conducted a number of experiments with NetHept and two other real-
world networks using two rewiring algorithms for the unknown part of the
network: one removes and reassigns links randomly, shifting G2 towards
a random network, whereas the other reassigns links such that the degree
distribution of G2 is the same as that of G1. We also varied the proportion
of observable nodes.
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Fig. 1. Average spread given the realization probability q of G1, a choice
of k = 10 seeds, and a corresponding sampling frequency of q∗ = q + a
(with imposed boundaries 0 ≤ q∗ ≤ 1). The error bars are the same size or
smaller than the line.

VI. CONCLUSIONS AND FUTURE WORK

We extended the results from influence maximization with
full-information to the case where only a part of the network is
visible to the decision-maker. We established that the problem
remains NP-hard with a monotone and submodular objective.
Moreover, we showed that the efficient algorithms devised
to approximate the optimal solution in the full-information
case have efficient analogs under our general setting. We also
identified the effect of network uncertainty on the required
number of samples from possible network realizations, estab-
lishing novel results on scaling behaviors for the expectation
maximization framework, including showing that total run
time of the algorithm does not, in general, scale with the
number of possible realizations. We showed analytically that
generating random RR sets for realizations according to their
probability of occurrence is broadly optimal in terms of perfor-
mance guarantees for the IMM algorithm, and also performs
well in practice on real data-sets. In future work, we seek to
compare the results of our approach to other robust models
that optimize against the worst case realization of uncertainty
(akin to playing a game with nature), while seeking to more
efficiently exploit shared information in possible network
realizations to further decrease the computational burden. We
will also investigate a case where the M graphs represent the
unobservable network realization with probability 1 − δ for
δ � 1.
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