The University of Southampton
University of Southampton Institutional Repository

Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics

Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics
Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics
Semiconductor Quantum Dots (QDs) are promising materials for photovoltaic applications because they can be engineered to absorb light from visible to near infrared and single absorbed photons can generate multiple excitons. However, these materials suffer from low carrier mobility, which severely limits the prospects of efficient charge extraction and carrier transport. We take advantage of the optical properties of QDs and overcome their drawback by using a hybrid photovoltaic device. This photovoltaic configuration exploits the absorption of solar photons in the QDs and the transfer of excitons from the QDs to a silicon p-n junction. We study the Resonance Energy Transfer (RET) mechanism to inject excitons from the QDs into the depletion layer of a silicon p-n junction. Lead sulphide (PbS) nanocrystals are deposited onto the silicon substrate and the efficiency of Resonance Energy Transfer (RET) from the PbS nanoparticles to bulk silicon is investigated. We study the efficiency of this transfer channel between the PbS nanocrystals and silicon by varying their separation distance. These results demonstrate RET from colloidal quantum dots to bulk silicon. Temperature measurements are also presented and show that the RET efficiency is as high as 44% at room temperature. Such a hybrid photovoltaic device makes a potentially inexpensive scheme for achieving high-efficiency and low-cost solar-cell platforms.
Hybrid photovoltaics, quantum dots, energy transfer, lead sulfide, silicon
0277-786X
Andreakou, P.
9a6d6dea-bb9a-46e1-b50b-b200bcfd5b6c
Brossard, M.
8081f6a5-50c8-419c-9c97-1fccbee48bda
Bernechea, M.
2c5a44ab-32fe-4d11-9a4d-3311c5979dab
Konstantatos, G.
381216f1-ceee-4a97-8f05-9097854202b9
Lagoudakis, P.
ea50c228-f006-4edf-8459-60015d961bbf
Andreakou, P.
9a6d6dea-bb9a-46e1-b50b-b200bcfd5b6c
Brossard, M.
8081f6a5-50c8-419c-9c97-1fccbee48bda
Bernechea, M.
2c5a44ab-32fe-4d11-9a4d-3311c5979dab
Konstantatos, G.
381216f1-ceee-4a97-8f05-9097854202b9
Lagoudakis, P.
ea50c228-f006-4edf-8459-60015d961bbf

Andreakou, P., Brossard, M., Bernechea, M., Konstantatos, G. and Lagoudakis, P. (2012) Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics. Proceedings of SPIE, 8256. (doi:10.1117/12.908357).

Record type: Article

Abstract

Semiconductor Quantum Dots (QDs) are promising materials for photovoltaic applications because they can be engineered to absorb light from visible to near infrared and single absorbed photons can generate multiple excitons. However, these materials suffer from low carrier mobility, which severely limits the prospects of efficient charge extraction and carrier transport. We take advantage of the optical properties of QDs and overcome their drawback by using a hybrid photovoltaic device. This photovoltaic configuration exploits the absorption of solar photons in the QDs and the transfer of excitons from the QDs to a silicon p-n junction. We study the Resonance Energy Transfer (RET) mechanism to inject excitons from the QDs into the depletion layer of a silicon p-n junction. Lead sulphide (PbS) nanocrystals are deposited onto the silicon substrate and the efficiency of Resonance Energy Transfer (RET) from the PbS nanoparticles to bulk silicon is investigated. We study the efficiency of this transfer channel between the PbS nanocrystals and silicon by varying their separation distance. These results demonstrate RET from colloidal quantum dots to bulk silicon. Temperature measurements are also presented and show that the RET efficiency is as high as 44% at room temperature. Such a hybrid photovoltaic device makes a potentially inexpensive scheme for achieving high-efficiency and low-cost solar-cell platforms.

This record has no associated files available for download.

More information

Published date: 2012
Keywords: Hybrid photovoltaics, quantum dots, energy transfer, lead sulfide, silicon

Identifiers

Local EPrints ID: 430542
URI: http://eprints.soton.ac.uk/id/eprint/430542
ISSN: 0277-786X
PURE UUID: c2db7804-9b09-4aca-b98e-004eb97d0a67
ORCID for P. Lagoudakis: ORCID iD orcid.org/0000-0002-3557-5299

Catalogue record

Date deposited: 03 May 2019 16:30
Last modified: 16 Mar 2024 01:33

Export record

Altmetrics

Contributors

Author: P. Andreakou
Author: M. Brossard
Author: M. Bernechea
Author: G. Konstantatos
Author: P. Lagoudakis ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×