
Learning to learn with active adaptive perception

Abstract

Increasingly, autonomous agents will be required to operate on long-term missions. This
will create a demand for general intelligence because feedback from a human operator may
be sparse and delayed, and because not all behaviours can be prescribed. Deep neural
networks and reinforcement learning methods can be applied in such environments but
their fixed updating routines imply an inductive bias in learning spatio-temporal pat-
terns, meaning some environments will be unsolvable. To address this problem, this
paper proposes active adaptive perception, the ability of an architecture to learn when
and how to modify and selectively utilise its perception module. To achieve this, a generic
architecture based on a self-modifying policy (SMP) is proposed, and implemented using
Incremental Self-improvement with the Success Story Algorithm. The architecture con-
trasts to deep reinforcement learning systems which follow fixed training strategies and
earlier SMP studies which for perception relied either entirely on the working memory or
on untrainable active perception instructions. One computationally cheap and one more
expensive implementation are presented and compared to DRQN, an off-policy deep re-
inforcement learner using experience replay and Incremental Self-improvement, an SMP,
on various non-episodic partially observable mazes. The results show that the simple
instruction set leads to emergent strategies to avoid detracting corridors and rooms,
and that the expensive implementation allows selectively ignoring perception where it is
inaccurate.

Keywords: adaptive perception, inductive bias, self-modifying policies, reinforcement
learning, partial observability

1. Introduction

Imagine a scenario where a robotic agent is given an extended lifetime to explore an
area unreachable to humans due to harsh environmental conditions. The robot is able
to communicate only infrequently and messages are often subject to delay. The human
employers are able to communicate which findings are interesting and which are not, even
though they do not know what they are looking for. These agents will require flexibility
to deal with a larger number of obstacles than a human programmer could prepare them
for and therefore require a general intelligence, or ability to create solutions to their own
problems.

Current approaches to solve such problems include reinforcement learning (RL) (Gos-
avi, 2009; Sutton & Barto, 2018) and deep reinforcement learning (DRL) (Arulkumaran
et al., 2017; Li, 2017; Schmidhuber, 2015; Lecun et al., 2015). Reinforcement learning
takes place in a setting where an agent interacts with the environment to maximise the
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sum of rewards where its behaviour is based on a policy which maps the agent’s obser-
vation, e.g. a pixel-map, to an external action, e.g. one step north. Since the space of
possible observations may be large or ambiguous, additional mechanisms for perceptual
processing are typically used. Active perception, defined as actions to increase the inform-
ation content of sensory data (Gibson, 1966), or more broadly as modeling and control
strategies for perception (Bajcsy, 1988), has been used in several reinforcement learning
studies. For example, special actions can be used for recording additional information
to solve partially observable environments (Whitehead & Ballard, 1990; Crook, 2006) or
for repositioning sensors to better recognise patterns in the environment Shibata et al.
(2001); Mnih et al. (2014). DRL methods use deep neural networks to provide additional
mechanisms for perceptual processing. Among these approaches, LSTM networks that
learn the value of an action in a particular memory state (Sorokin et al., 2015; Hausknecht
& Stone, 2015; Bakker, 2002; Wierstra et al., 2010) have been applied to partially ob-
servable environments and compared favourably over other methods, including Elman
networks (Lin & Mitchell, 1993) and the non-recurrent Deep Q-Networks (DQN) (Mnih
et al., 2015) supplied with past sensor signals as inputs.

Despite their successes, a limitation of current RL agents is that they do not allow
self-modification and self-evaluation; they lack the ability to tune their own learning
mechanisms to the requirements of the environment, meta-learning or learning to learn.
The generality of such approaches is reduced due to the inherent inductive bias in a
single learning algorithm (Wolpert & Macready, 1997; Mitchell, 1980). To address the
limits of specialised AI approaches, research into Artificial General Intelligence (AGI) or
Human-level artificial intelligence (Nilsson, 2005; McCarthy, 2007; Adams et al., 2012;
Baum et al., 2011) is making efforts towards learners with a generality greater or equal
to humans. To achieve AGI, various different approaches have been proposed. Sym-
bolic approaches (Laird, 2012; Shapiro & Rapaport, 1992; Choi & Langley, 2018; Lenat
et al., 1990; Kieras & Meyer, 1997; Anderson et al., 2004) aim to emulate the cognition
by allowing ability to reason about symbols, high-level discrete concepts. Subsymbolic
or emergentist approaches assume that high-level concepts will emerge from element-
ary processes. Some such approaches attempt to reverse engineer the brain (Hawkins,
2004; Karnowski et al., 2010), while others use a developmental robotics (Asada et al.,
2009; Zeng et al., 2002; Sandini et al., 2007) approach. The latter are heavily inspired
by reinforcement learning with intrinsic motivation (Storck et al., 1995; Schmidhuber,
1991; Singh et al., 2004), lifelong reinforcement learning (Bengio et al., 2009; Thrun &
Mitchell, 1995; Silver et al., 2013; Ring, 1994), and developmental psychology, e.g. (Pia-
get, 1952). Still other sub-symbolic approaches, called end-to-end RL, have emphasised
that a variety of human-like functions can emerge even from utilising a single neural
network for deep reinforcement learning (Shibata, 2017). Hybrid systems (Cassimatis,
2002; Franklin et al., 2014; Cassimatis et al., 2004; Goertzel et al., 2011, 2013; Sun &
Zhang, 2004) combine strengths of both approaches by including reasoning on both the
symbolic and subsymbolic level but their flexibility is limited due to the difficulty of
communicating between levels. Unlike previously mentioned approaches, the universalist
approach (Hutter, 2007; Nivel et al., 2013, 2014; Schmidhuber, 2007, 2004; Wang, 2007)
explicitly addresses the inductive bias: universalist learners employ a meta-algorithm
which constructs solution methods to the various challenges in the environment.

One class of universalist learner which allows a general mechanism for shifting induct-
ive bias as well as the ability to learn from quantitative rewards is self-modifying policies
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(SMPs), special kinds of reinforcement learners which learn how to modify their own
policies (Schmidhuber et al., 1997a; Schmidhuber, 2007; Orseau & Ring, 2011; Everitt
et al., 2016). This is achieved by including instructions in the action set which modify the
current policy, rather than just external actions. SMPs therefore have a meta-learning
capability with an unlimited number of meta-levels, since the actions that modify the
policy also modify the use of actions that modify the policy. They can mimic, ex-
pand or integrate other algorithms, taking any algorithmic routine as a single instruc-
tion and learning when to use it. Additionally, SMPs are suitable for non-episodic
learning; this contrasts to traditional reinforcement learners which assume knowledge
of certain terminal states after which a similar task will occurs, and, in making this
assumption, their memory can be safely reset as if no previous history has occurred.
SMPs have proved to be useful for learning in complex domains such as multi-agent
systems (Schmidhuber & Zhao, 1997; Zhao & Schmidhuber, 1998), partially observable
environments (Schmidhuber & Zhao, 1997; Zhao & Schmidhuber, 1998; Schmidhuber,
1999), noisy environments (Zhao, 2002), as well as continual learning, solving problems
of increasing complexity presented sequentially across the lifetime (Schmidhuber et al.,
1997b).

However, current practical SMPs have limited perception capabilities, they do not
integrate sub-symbolic routines which would allow for pattern recognition and function
approximation, or learning operations which improve discrimination between stimuli. In
(Schmidhuber et al., 1997a; Schmidhuber & Zhao, 1997; Zhao & Schmidhuber, 1998),
special active perception instructions are implemented for Incremental Self-improvement
(IS) which check for particular, user specified, objects. This approach is limited because it
assumes the objects that may appear are known in advance, reducing their generality. In
addition the exact implementation of these instructions is not provided and no modifiable
perception module is implemented which would adaptively categorise objects. Other
implementations of IS (Schmidhuber, 1995; Schmidhuber et al., 1996; Schmidhuber, 1999)
rely on a working memory which may be used to store and manipulate information about
previous observations numerically. Although this is more general it can be cumbersome
to learn useful perceptual routines this way. For example, to achieve a procedure similar
to a single forward pass of a neural network, a relatively long sequence of instructions
must be learned, and this does not include the utilisation of the resulting output. This
difficulty may be the source of the observations reported in (Schmidhuber, 1999) that
the learning curve of IS is step-wise. More efficient perceptual routines could potentially
make the learning curve continuous and increase performance.

The above discussion on DRL has highlighted that, due to the particular algorithmic
assumptions on the perceptual system, learners may fail, either completely or for partic-
ular spatio-temporal patterns, when they are subjected to atypical environments where
such assumptions are not met. Agents that would be able to flexibly use and modify
their perceptual system may therefore have an improved performance in atypical envir-
onments, especially when given an extended lifetime to learn how to learn. Therefore,
this paper explores active adaptive perception. Active adaptive perception is :

• An active form of adaptive perception: adaptive perception is the long-term adapt-
ation of perceptual systems to environmental demands. To be an active adaptive
perceiver then means to be able to decide how and when to modify the perceptual
system, based on environmental demands.
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• Active perception: based on Bajcsy et al. (2017), an agent is an active perceiver if
it knows why it wishes to sense, and then chooses what to perceive, and determines
how, when and where to achieve that perception.

To address active adaptive perception, a generic SMP learning architecture is proposed
which uses special instructions to improve its perceptual architecture and to adapt the
learning and use of its perceptual operations based solely on the reinforcement signals
it receives. The proposed architecture is intended for complex, long-term reinforcement
learning problems. To demonstrate the approach (a) a computationally cheap implement-
ation is presented which improves its perception by modifying the weights, topology and
use of a neural network perception module; (b) a more expensive implementation which
allows the learner to choose situations and parameters for training and utilising a deep
recurrent Q-network. Illustrative experiments are performed on non-episodic partially
observable mazes comparing the implementation to DRQN (Hausknecht & Stone, 2015),
an off-policy deep reinforcement learner using experience replay, and Incremental Self-
improvement (Schmidhuber, 1999), representing traditional SMPs. Approaches similar
to this implementation are expected to improve training and construction of neural net-
works.

2. Learning with limited knowledge and sparse feedback

A general learner must be able to consistently rank highly across all problems. An
example where general learners demonstrate some benefits are atypical environments,
where traditional RL assumptions are not valid: terminal states do not exist or are
unknown, the environment is partially observable, and the rewards are incurred on a
sparse basis with the possibility of not getting feedback at all. Further, unlike some
types of Partially Observable Markov Decision Process solvers, such as those in (Kaelbling
et al., 1998; Silver & Veness, 2010; Shani et al., 2013) , but similar to many other RL
methods for partially observable environments, the underlying state space is not known
1. The environments considered here are atypical problems, where it is expected that
general solvers will outperform specialist equivalents.

The maze setting considered in Schmidhuber (1999), and investigated in this paper,
is an example of an atypical environment. The learner has a lifetime going from t = 0 to
t = T without any interruptions. The learner initially wanders around without knowing
what its goal is. At each time-step, it obtains an observation about whether the four
adjacent locations in a Von Neumann neighbourhood are free or blocked and selects an
operator from the set of external actions AE = {north, east, south, west}. After taking
such an external action, a reward of 1.0 is given when the learner finds the goal position,
otherwise a reward of 0.0 is given. The learners task is to maximise the cumulative

1These methods are a subset of Partially Observable Markov Decision Process solvers which estimate
the environment state, which is unknown, from the known observations, usually using the “belief state”
p(st|ht), the probability of the environment’s state given the history of observations and actions. In the
below maze, each (x, y)-coordinate’s probability could be estimated from the previous Vonn Neumann
neighbourhood observations and the previous actions. Such an estimation procedure implies that the
designer has specific domain knowledge of the true environment; in the maze example, the domain
knowledge is that x and y are the main variables of the state space, even though their exact values are
never known.
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reward. Whenever a goal is obtained, the learner is reset to a starting position. However,
the environment appears as non-episodic to the learner since it has no knowledge of this
inherent episodic structure: the goal location is not noted as a terminal state, the memory
is not reset after reaching the goal, and there is no artificial time-out to reset the learner
when the learner does not reach the goal. Instead, the environment appears to the agent
as a single history from t = 0 to an unknown t = T . Another source of ambiguity is that
the learner is reset immediately to a start position without recording an observation at
the goal location.

If the above maze setting is extended to larger mazes with similar obstacle density,
then this problem is challenging: detracting corridors and rooms, an initially faulty policy,
a sparse reward structure, and a non-episodic setting without time-outs, the learning
agent may get stuck in a bad region of the maze and experience thousands of steps without
any rewards. This is significantly different from other partially observable environments
investigated in deep reinforcement learning papers, such as T-maze experiments (Bakker,
2002), the 89-state maze (Wierstra et al., 2010), Atari experiments (Hausknecht & Stone,
2015) and the Invisible Target Capture Task (Shibata & Goto, 2013). Those experiments
are comparatively easy in the sense that: (a) the agent has knowledge of terminal states
and the memory is reset at the start of the episode; (b) to avoid getting stuck without
feedback, there is an artificial time-out such that, after a certain number of time steps
without reaching the goal, the agent is reset to the initial state; (c) there is no corridor
from which it is difficult to escape, instead the space is open or there is a single path;
(d) reward structure is more dense, for example, by giving feedback about whether or
not the step lead closer to goal. Nevertheless, those experiments have difficulties not
addressed in the present maze setting: for example, Atari experiments and the Invisible
Target Capture Task have complex dynamics and a large state-space.

3. Generic architecture for active adaptive perception

This section proposes a generic architecture and an exemplar implementation, il-
lustrated in Figure 1. The generic architecture consists of four basic components: an
instruction module, an evaluation module, a working memory and a perception mod-
ule. It serves as an abstract template for learners with active adaptive perception; the
way the architecture is implemented may alter efficiency but not the property of active
adaptive perception. In the exemplar implementation, the perception module is imple-
mented as a neural network with an evolvable representation as in NEAT (Stanley &
Miikkulainen, 2002), whereas other modules are implemented according to Incremental
Self-improvement (Schmidhuber, 1999). After providing an algorithmic overview and
the rationale, the remainder of the section describes each module and its corresponding
implementation in detail.

3.1. Rationale

To achieve active adaptive perception, an architecture of at least two components is
proposed: first, a universalist meta-algorithm, called the instruction module, utilises ele-
mentary instructions to construct perceptual modification algorithms and to selectively
apply the perceptual apparatus; second, a sub-symbolic system, called the perception
module, is being selectively called by some of the instruction module’s instructions, either
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to make long-term modifications to the sub-symbolic system, perceptual modification,
or to utilise the patterns detected by the perception module to temporarily influence
which instructions are generated by the instruction module, perceptual advice. Using
these instructions, the system can then successfully learn when and how to request fur-
ther perceptual processing and when and how to make long-term modifications to the
perceptual system, thereby achieving active adaptive perception.

Due to fitting the above description, a natural candidate for the instruction module
is the self-modifying policy (SMP) learner, a special reinforcement learning policy. A
reinforcement learning policy P : O → A outputs actions A ∈ A based on the agent’s
observation o ∈ O, thereby maximising a particular utility-function. An SMP is a special
kind of reinforcement learner which includes in A instructions that modify P, and pos-
sibly various other instructions for performing computations. If such a policy successfully
learns when and how to use self-modification instructions, such a policy learns how to
generate changes to itself. This allows learning even when typical reinforcement learning
assumptions are not met, and therefore provides improved generality. Moreover, if such
a policy successfully learns when and how to use perceptual modification and perceptual
advice instructions, according to their above definition, this will achieve active adaptive
perception.

3.2. Algorithmic overview

A learner, L, is put in an environment, E , with the aim of maximising the sum of
rewards. L seeks out rewards by outputting an instruction a from a user-defined set
of instructions A. Instructions are similar to functions used in programming languages
which take several arguments as inputs and then perform some computations based
on these arguments. The following subsection describes how the short-term behaviour,
which is structured into instruction cycles, of L leads to the long-term process of active
adaptive perception, due to the usage of various instruction types.

A single instruction cycle. A single instruction cycle works as follows. The agent, with
its N sensors, receives an observation o ∈ O ⊂ RN from E and writes it directly to the
working memory elements reserved for observation. Based on a fixed subset of working
memory cells, not necessarily the same as observation elements, the instruction module,
based on the instruction module parameters P, generates an instruction A ∈ A and
its arguments a1, . . . , aN , if that instruction has any. The execution of A results in
interactions between modules (internal actions) or between L and E (external actions
A ∈ AE); different types of interactions are described in the following paragraph. As in
reinforcement learning, a critic in the environment E sends a reward r ∈ R, usually only
when an external action is taken. The cycle ends after L has processed the reward in the
evaluation module.

Instruction types. Interactions between modules or between L and E are encoded in the
instructions; the following types of instructions are the minimal requirement for active
adaptive perception:

• External actions (A ∈ AE): interact with E to obtain rewards

• Self-modification (A ∈ AIM ): modify the instruction module parameters P.
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• Working memory manipulation (A ∈ AWM ): change the working memory based
on the sensory inputs and the current working memory

• Perceptual advice (A ∈ APM ): based on the current working memory a part of the
perception module computes outputs which influence instruction generation.

• Perceptual modification (A ∈ APM ): modify the perception module’s parameters,
changing the way perceptions form and interact with the instruction module.

• Evaluation A ∈ AEM ): call the evaluation module to evaluate changes to the
instruction module and the perception module

Steps involved in the learning process. All instructions must be regularly used which
results in the following learning steps:

1. The learner starts with a minimally biased instruction and perception module;

2. Intermittently, changes to instruction generation and the perceptual processes are
made;

3. Once the evaluation module is called, the changes are accepted or rejected based
on evidence of their contribution to reward intake;

4. The instruction module thus learns when to execute the instructions but also how;
the meaning of instructions is optimised as the arguments supplied to the instruc-
tion is changed.

5. This leads to optimisation of the interaction between the various modules. One of
the consequences is perceptual learning, which may be divided into two processes:

• long-term parameter changes: similar to traditional sub-symbolic learners, the
best parameters for a given perceptual operation are learned.

• active adaptive perception: learning how to modify and use the perception
module.

3.3. Instruction Module

The instruction module organises the interactions with the environment but also
with the different modules of the architecture by utilising a user-defined instruction set
A, a set of operations which includes external actions which involve interacting with
the environment, e.g. moving one step north, grabbing an object, or applying sensory
mechanisms; and internal operations to enable memory, learning and inference. The
mechanism of the instruction module is to continously generate instructions based on
the current instruction module parameters P and a set of working memory variables.

Implementation: probability matrix P. The learner’s policy P consists of a number of m
program cells Pi (i = ProgramStart, . . . , P rogramStart+m−1) each of which represent
a discrete modifiable probability distribution over the integers {0, . . . , |A|− 1} initialised
to a uniform distribution but subject to change due to self-modification instructions. Us-
ing the instruction pointer IP , a special working memory variable that points to the cur-
rent program cell, an instruction cycle consists of sampling an integer j ∼ PIP represent-
ing an instruction Aj ∈ A = {A0, A1, . . . , A|A|−1}. After checking how many arguments,
N , are required for executing Aj , integer arguments a1, . . . , aN are generated according
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to the distributions of the following program cells PIP+1, . . . ,PIP+N . After executing
the instruction and its arguments, a new cycle starts with IP ← IP+N+1. Instructions
include various external actions but also internal operations. For self-improvement, the
learner uses self-modification instructions incP and decP which increase and decrease
the probability of a chosen program cell Pi by a chosen amount, respectively. Evaluation
is initiated by endSelfMod which ends the current modification sequence and starts the
evaluation of the latest changes made to the instruction module and the perception mod-
ule. External actions are application-dependent, such as north, east, south and west in
maze-problems. The working memory is manipulated using reading, writing and arith-
metic operations and instructions that change the IP similarly determine the state of
the learner. Perceptual modification and perceptual advice instructions are explained in
Section 3.6, while a complete instruction set is given in Table 2.

3.4. Evaluation Module

The function of the evaluation module is to determine if changes to the instruction
module and the perception module are beneficial by considering evidence of how self-
modifications relate to reward intake.

Implementation: Success Story Algorithm. To allow a learner to incrementally improve
its performance with minimal assumptions on the environment, an empirical evaluation
method called the Success Story Algorithm (SSA) is used which maintains only those
incremental modifications that lead to long-term reward acceleration. At time points
called checkpoints initiated by the instruction endSelfMod, the learner performs an eval-
uation of the current self-modification sequence (SMS). The learner can adapt to tasks
with atypical reward structures because it can determine the frequency of endSelfMod,
learning how much time is required to reliably evaluate a series of modifications. The
evaluation is done using the Success Story Criterion (SSC),

R(t)−R(t2)

t− t2
>
R(t)−R(t1)

t− t1
, (1)

where R(t) =
∑t
τ=0 r(τ) is the cumulative reward, t is the current time and t2 and t1 is

the most and second-most recent checkpoint, respectively. Thus the SSC asserts whether
the reward intake has accelerated since t2 > t1. If this is true, then modifications made
in [t1, t2] will be maintained, otherwise the current modifications are removed and the
old instruction module and perception module before t1 are restored, recursively, until
the SSC is met. The complete list of modifications that survived the SSC is maintained
in the stack S. The recursive procedure of popping entries that do not yield reward
acceleration is illustrated in Algorithm 1.

3.5. Working Memory

A working memory is used to store and manipulate information from various parts of
the learning structure as well as the environment. Variables in the working memory are
updated regularly or at self-chosen times by the instruction module and the environment.
The working memory provides other modules with historic information, contributing to
non-Markovian learning and decision-making.
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Algorithm 1 Success story algorithm for evaluating self-modification sequences (SMSs).
Note that when sp = 1, the top entry is compared to the initial entry
S[0] = (t = 0, R = 0,X = ∅, first = 0, address = ∅).
sp← length(S)− 1

while True do

if sp = 0 then
break; . no modifications left; SSC satisfied

else
i← S[sp].first; . first index of the top SMS
j ← S[i− 1].first; . first index of the second-top SMS

if R(t)−S[i].R
t−S[i].t > R(t)−S[j].t].R

t−S[j].t then

break; . reward accelerates; SSC satisfied
else

while sp ≥ i do
if S[sp].X is a modification of P then
Paddress1 = S[sp].X ; . restore probability vector at index address1.

else
restore the parameters of the perception module using S[sp].X .

delete S[sp];
sp← sp− 1;

Implementation: addressed integers. The implementation of the working memory is a
number of storage cells, each with a unique address in [Min,Max] store integer values
in [−MaxInt,MaxInt], initialised randomly and then changed by fixed routines or self-
chosen instructions. The functionality of the working memory can be categorised into
four types, illustrated in Figure 1. Each of the cells have particular integer address to
access them, and Appendix B indicates how to obtain the exact addresses used in the
experiments. Input cells are special working memory cells that are updated every cycle
and which store the current observation as well as other information, i.e., the instruction
pointer IP , the time t, the reward r and the length of the stack S. Output cells store the
history of recent actions: when PIP has generated an integer, this number is written to
the output cell that is addressed by IP . Working cells provide more long-term memories,
only being modified when special instructions in AWM manipulate them. Register cells
have the same function but additionally they are used for a process called double-indexed
addressing: because P generates arguments in the limited range [0, |A| − 1], the values
of the register cells in [0, |A|−1] are used to address the entire range of working memory
cells. Working memory contents are used extensively in the execution of the various
instructions. For example, the instruction add(a1,a2,a3) first reads the contents of the
register cell at address a1 and then fetches the value at the address ca1 , as notated by cca1

;
then similarly reads cca2

; finally, adds both cca1
+cca2

and stores this sum on the address
ca3 . Similar to the above example, many other instructions, including instructions used
for self-modification and perceptual modification, also use working memory contents to
determine how the instructions are executed.
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To illustrate how the processing of the working memory can be used for processing
observations to influence external actions, an illustrative example is mentioned for the
maze example of Section 2.1:

1. first, the agent records an observation and a reward in its input cells, indicating
whether the neighbouring positions are obstacles or free spaces and whether or not
it reached a goal;

2. then, it uses working memory operators to manipulate the memory, based on vari-
ous cells including the working cells;

3. an execution of jumpEq or jumpLower then sets the instruction pointer IP based
on working memory contents;

4. eventually, an external action is executed based on IP .”

3.6. Perception Module

The perception module is a modifiable sub-symbolic module whose function is to
advise the instruction module, using special instructions relevant for active adaptive per-
ception. It supplies bottom-up perception to the architecture by analysing sensory inputs
and working memory variables in terms of high-level concepts to help decision-making.
For example, successive layers of a neural network may process elementary visual stimuli
such as edges into shapes and objects, and a configuration of free and blocked spaces in a
maze may be processed in terms of a narrow corridor or a wide area. By interacting with
the working memory and the instruction generation, it can influence the decisions made
by the instruction module, using perceptual advice instructions. The architecture and
the parameters of the perception module are subject to long-lasting modifications when
the instruction module calls special perceptual modification instructions. By learning
when to use which perceptual advice and perceptual modification instruction, various
strategies for utilising and training the perception module will emerge from experience,
active adaptive perception. Two implementations were made to demonstrate that the
architecture of the perception module and the instructions for the perceptual advice and
modifications can vary while still providing active adaptive perception. The first im-
plementation would likely be more suitable for real-time environments where learning
should not consume too much time, whereas the second implementation is more compu-
tationally expensive but makes better use of its experiences. The relevant instructions
are displayed in Table 2, in the group APM .

Implementation 1: NEAT neural network. The first implementation considers simple
instructions to use and modify a NEAT feed-forward network. To achieve perceptual
advice in this implementation, a special instruction getOutput() performs forward pass
of the perception module’s feedforward neural network which takes as input the eight
input cells of the working memory and then outputs activations act(a) for each external
action. Based on these output activations an advisory action Aadv is selected to be
executed at the next instruction cycle. A unit u, an elementary node in the network,
activates its incoming activation node-input(u, t) at time t according to:

u(t) = typeu(node-input(u, t)), (2)
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where typeu is the transfer function of u. If unit u is situated at layer `, the node input
is defined by:

node-input(u, t) =
∑

v∈U l<`

wuvv(t) (3)

where U l<` is the set of nodes at a layer lower than `.To achieve perceptual modific-
ation, the learner uses computationally cheap instructions weightChange, addNode and
addConnection to modify both topology and weights of a neural network. Each change
to the network is recorded on the stack S such that it can be evaluated later by the evalu-
ation module. This is done with a special representation similar to NEAT, where a neural
network consists of two sets of genes. Connection genes are tuples of (from, to, weight):
from and to represent the connections input and output unit respectively and weight rep-
resents the interconnection weight. Node genes are tuples of (type, bias, response, layer):
type is the transfer function used to output at the neuron, bias encodes a number to be
added to the activation independent of all other incoming activations , response is a
number that the neuron multiplies with all its incoming weights and layer is used to ad-
equately structure the connections. Together, the node genes and the connection genes
represent the neural network which is being learned, allowing the use of constructive
operators addNode and addConnection, shown in Figure 2a and 2b, respectively. Other
parameters not changed by the above instructions were fixed, with type being sigmoid
for non-inputs and identity for inputs, and bias = 0 and response = 4.92 for all neurons.
The weight-range and the response are selected based on the peas-neat implementation,
cf. https://github.com/noio/peas/blob/master/peas/methods/neat.py, as they are
commonly used settings.

Implementation 2: DRQN with modifiable experience set. The second implementation
embeds the learning of the Deep Recurrent Q-Networks (Hausknecht & Stone, 2015), a
recurrent extension to Deep Q-Networks (Mnih et al., 2015), and a modifiable experience
set as its perception module. The experience set E is a database of interesting experiences
which serve as goals after which network use is halted. This enables selective network
usage, learning when to rely on the Q-network, as well as goal-based exploration, learning
when to use which exploration rate.
While observing and acting, DQN fills a buffer B with experiences (o,A, r, o′), which
are tuples of observation, chosen action, observed reward, and the following observation.
DQN minimises a loss function

L(θ) = E(o,A,r,o′)∼U(B)[(r + γmax
A′

Q(o′, A′; θ̂)−Q(o,A; θ))2] , (4)

where experiences are sampled uniformly from the buffer B for the next mini-batch up-
date, a process called experience replay; Q is the value-function for Q-learning (Watkins
& Dayan, 1992); γ is the discount used to compute the discounted future cumulative re-

ward
∑∞
i=0 γ

iri; θ contains the current parameters whereas θ̂ contains the parameters of
the target network which are updated only infrequently, increasing stability. In DRQN,
the loss function is the same but the observations are passed through a recurrent network
including a Long Short-Term Memory layer (Hochreiter & Schmidhuber, 1997), such that
the history of observations affects the internal state of the learner. The experience replay
thus is modified in DRQN to randomly sample a history of unroll consecutive experi-
ences rather than a single experience.
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Perceptual advice in the second implementation consists of a single instruction
doQuntil. When the instruction module performs the doQuntil instruction the DRQN
network takes the observation o as its only input, with no other working memory vari-
ables, and outputs the Q-values of the different actions from which it determines the
advised action. An ε-greedy strategy is used such that with probability 1− ε the chosen
action is Aadv = argmaxA′∈AE Q(o,A′) whereas with probability ε a random action is
chosen. This is done repeatedly until a self-chosen experience tuple ea1 = (o,A, r, o′)
is achieved or until a number of self-chosen time-steps are reached without matching
ea1 . The arguments of the doQuntil instruction determine three important parameters:
a1 determines which experience is taken from the experience set E to end the loop, a2

determines the number of maximal steps of the loop, and a3 determines the exploration
ε. Perceptual modification consists of two instructions. The first, trainReplay, is
the typical experience replay procedure as is performed in DRQN, but with the added
flexibility that the instruction module determines the batch size. This instruction is not
followed by pushing the network modification onto the stack S since this instruction
already combines updating with an immediate evaluation. The second, setExperience,
adapts the set of experiences E by replacing the experience at index a1, Ea1 , by the
current experience. This instruction then pushes this modification to the stack to allow
the evaluation module to perform long-term evaluation of the new E. Note that E is
initialised with experiences randomly drawn from the experience buffer just before the
replay-start at t = 50000.

3.7. How the exemplar learns

Instructions incP and decP modify the probability of a particular entry Pij , and
normalisation is then performed ensuring

∑
k Pik = 1. This results in a change of

the probability distribution of instructions for a given program cell i. In turn, this
changes the system’s response to the internal state IP = i, a variable changed by the
various jump instructions and incremented by executing instructions. The probability
changes affect not only external but also the internal behaviours due to the choice of
instructions and arguments for working memory manipulation, evaluation, perceptual
advice, perceptual modification, and self-modification. For self-modification instructions,
this leads to a self-referential recursion, meta-meta-...-learning: changes to P affect how
P will be changed, and so on. In particular, self-modifications may affect the probability
of incP, decP or its arguments for a given internal state IP and given working memory
state, implying a context-sensitive learning of (a) self-modification probability; (b) which
program cell should be modified; (c) which entry in the program cell’s distribution should
be incremented or decremented; (d) how large the increment or decrement should be.
Because the Success Story Algorithm repeatedly evaluates previous self-modifications and
maintains only those self-modifications that result in lifetime reward acceleration, early
self-modifications result in better generators of self-modifications later on; Assuming the
instructions cover all aspects of learning and behaviour, this means P improves itself.

4. Experimental set-up

All experiments took place in the examplary non-episodic maze setting explained in
Section 2. However, it is assumed that each action consumes one time-step and com-
putational processes do not consume time, diverging in this respect from (Schmidhuber,
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1999). This facilitates interpretation and also comparison to traditional reinforcement
learning which have the same assumption. The section further justifies the selection of
experimental conditions and learners used in the experiments.

4.1. Experimental conditions

There are four experimental conditions based on the dimensions easy vs difficult
and fixed vs random. Easy problems have shorter optima, 4-8 steps vs 11-30 for difficult
problems, often with lower ambiguity and fewer free spaces to get lost in. The difficulty is
used to test the hypothesis that self-modifying policies are beneficial when environments
have higher ceilings of performance. Higher ceilings are defined as a higher potential to
increase the reward intake speed compared to a random learner which for every 104 time
steps had 30-120 rewards for easy and 1-10 rewards for difficult problems. The second
dimension, fixed vs random, describes what happens after goal achievement, concretely
whether or not the next starting position is fixed or chosen randomly. Ten easy and
ten difficult mazes were generated according to Algorithm 2, found in the Appendix A,
on a grid of dimensions 13 × 13. The resulting mazes had a variety of features: wide
open spaces, narrow straight corridors and intersecting corridors which results in central
decision points.

For easy problems, each learner was given a lifetime of 5 million time steps because
initial experiments suggested learners had converged by then. For difficult problems,
optimal path lengths increased approximately four times, and the actual path lengths,
and thus the time to learn from rewards, relates exponentially to the optimal path length
due to the increase in possible misleading explorations. 80 million time steps were judged
to be a reasonable number without excessive computational expense. Experiments on
the difficult problems lasted 20-60 hours for most SMP runs, 20-25 days for SMP-DRQN
runs and 40-50 days for DRQN runs, on the IRIDIS4 supercomputer (University of
Southampton, 2017).

4.2. Learners

To investigate the impact of various learning properties in the mentioned environ-
ments, the following learners were implemented in python code:

• SMP: the above-mentioned implementation of the generic architecture without
perception module is used as the baseline SMP. This is the same as Incremental
Self-improvement (IS) in (Schmidhuber, 1999), except the instructions jump, effects
of which can be achieved using other instructions, and getP, an instruction which
is rarely included in other experiments.

• SMP-Fixed: A perception module is added to the above SMP, to generate an
exemplar of active adaptive perception. The perception module is a single feed-
forward neural network which outputs external actions whenever the instruction
getOutput is called, taking as inputs the input cells in the working memory. Thus,
the instruction module may generate external actions directly, for example by gen-
erating north, or indirectly by calling getOutput. The network is a fully connected
network with two hidden layers of 10 neurons each.
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• SMP-Constructive: This condition further adds network construction instruc-
tions addNode and addConnection to the SMP-Fixed architecture. Similarly to
NEAT, the networks start as a fully connected network without any hidden units.

• DRQN: this condition replicates the Deep Recurrent Q-Network with random
bootstrapped updates (Hausknecht & Stone, 2015). It was included as an off-
policy deep reinforcement learner, using experience replay to more efficiently learn
by sampling experiences from an experience buffer and using a target network for
improved stability. Two changes were made due to the domain: first, because
the observation is small and has no spatial correlations, the convolutional layer
was replaced with a dense layer, resulting in a topology of two hidden layers,
one dense with 50 RELU-neurons and one LSTM with tanh-neurons; second, due
to the non-episodic setting, the experience buffer is organised as a single episode
rather than a multitude of episodes. To implement DRQN, existing code from
VizDoom-Keras-RL, cf. https://github.com/flyyufelix/VizDoom-Keras-RL/
blob/master/drqn.py, was modified to the non-episodic setting and to allow the
utilisation of the target-network in experience replay.

• SMP-DRQN: to provide a second example of the perception module, this learner
utilises the same network as the DRQN condition, but enables the SMP to utilise
it selectively as a special loop instruction doQuntil, with self-chosen exploration
rate and self-chosen termination conditions. The DRQN network is modified us-
ing trainReplay which performs experience replay with a self-chosen batch size
while setExperience is used to construct a set of useful experiences for finishing
doQuntil.

Parameter settings are mentioned in Appendix B.

5. Experimental demonstration of active adaptive perception

Behavioural assessment. Choices of the agents were visually inspected on heat-maps with
arrows indicating the most frequently chosen action at each position. In the easy mazes,
methods using an LSTM network, namely SMP-DRQN and DRQN are able to memorise
the path to the goal, while the other SMPs only learn a basic sense of direction. In the
difficult mazes, more differences between the learners emerge:

• SMP has a probabilistic preference for single default direction which is best leading
to the goal;

• SMP-Fixed and SMP-Constructive briefly check detracting corridors before avoid-
ing them, and frequently visit the best corridors. These methods are not completely
able to disambiguate their current state, but rather their networks are similar to a
Markovian policy in which faulty choices usually do not lead away from goal, and
their P-matrix is similar to the SMP, choosing a single direction;

• Early in the lifetime, DRQN memorises the path towards the goal nearly optim-
ally in 4 out of 10 unique mazes, but gets stuck frequently in the other mazes.
The detracting corridors and rooms in those mazes were either greater in number
or further from goal. Towards the end, two of those unique mazes keep causing
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problems with getting stuck. These findings were consistent in the sense that the
stuck frequency depended reliably on the maze’s topology rather than on network
initialisation;

• SMP-DRQN similarly has nearly optimal behaviour on those 4 mazes, and only
rarely gets stuck in other mazes. The network’s output is similar to DRQN but on
detracting corridors, where DRQN fails, the method ignores the network and relies
on the P-matrix for a global sense of direction, similar to the SMP;

This illustrates the difficulty of traditional SMPs with perception, the difficulty of deep
reinforcement learners in atypical environments, and that active adaptive perception
may remedy these problems.

A representative example of the final policy is included for one of the most challenging
mazes in Figure 3, illustrating that methods of active adaptive perception avoid mislead-
ing corridors and rooms more often than other methods. Figure 4 illustrates behaviours
observed for SMP-DRQN during the early to middle stages of the lifetime, showing how
SMP-DRQN used its perception module less frequently when it was not reliable. Video
material 2 shows the behaviours of DRQN and SMP-DRQN on the mentioned example
mazes.

Correctness and perception-correctness. The correctness, the proportion of moves that
lead the agent closer to the goal, is displayed in Table 3. Methods utilising an LSTM
network, DRQN and SMP-DRQN, were characterised by relatively high correctness, and
their performance was highly correlated with correctness, indicating their performance
is dependent on memorising a correct path. For difficult environments SMP-DRQN did
not have a positive correlation, suggesting additional strategies beyond path memor-
isation. This is in line with the observation that the SMP-DRQN had a performance
advantage compared to DRQN in the difficult-random condition, where path memor-
isation is more challenging. As exemplified in Figure 4b, it can be observed that the
perception-correctness, the correctness of the external actions taken due to the percep-
tion module’s advise, ignoring external actions directly output by the instruction module,
varied strongly over the map. The DRQN system, illustrated in Figure 4f, had a low
correctness in detracting corridors and rooms, and a high correctness close to the goal,
and the same finding was observed for the DRQN network when used as the perception
module of SMP-DRQN. The explanation for this finding is that initially in the challen-
ging mazes, the system gets stuck for prolonged time in detracting corridors and rooms,
without obtaining any rewards. This leads to erroneous and low Q-values for the visited
locations on the map. When later the DRQN system more regularly obtains reward,
the detracting corridors and rooms maintain such Q-values for a longer time since they
usually do not lead to near-term rewards: far from goal, those corridors and rooms have
the lowest Q-values; while close to goal they had lower Q-values than locations which
were distant but on path to the goal. Later in the lifetime, SMP-DRQN’s perception-
correctness was higher than DRQN in environments such as those in Figure 3, where the
DRQN got stuck indefinitely. This is because DRQN remains inside a detracting room or

2https://www.youtube.com/watch?v=xRh-ZXkUJ2Y
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corridor and does not reach the reward location, filling the experience buffer with useless
experiences. By contrast, SMP-DRQN was able to escape detracting rooms and corridors
throughout the lifetime due to the mechanisms of selective network usage and goal-based
exploration, and this helped to provide the perception module with useful experiences
to learn more efficiently. Therefore, because the experiences are added to the experience
buffer at each time step, regardless of whether or not the perception module was used,
both mechanisms contribute to an intelligent exploration mechanism. An additional ob-
servation in the heatmaps is that when the learner was on the dead-end spaces the DRQN
module had low correctness, despite there being only a single action that does not lead
to bumping into an obstacle; this occurred either when it was used alone or embedded
into SMP-DRQN. This behaviour is due to the combination of two reasons: compared
to some other works, for example the T-mazes reported in Bakker (2002), there is no
negative reward incurred for bumping into obstacles or any other incorrect actions, and
there is no positive reward for correct actions; in addition, the incorrect actions do not
lead away from the goal at these locations and therefore these actions only delay the
reward achievement by one time step, resulting in smaller differences between the differ-
ent actions’ Q-values; this makes dead-end locations more difficult to learn than other
locations for which incorrect actions lead to significant delays in reward achievement.
The SMP-DRQN was better able to escape such dead-ends by using a high exploration
rate and low network-usage at those locations.

Comparatively, SMP-Fixed and SMP-Constructive have a low correctness and, in
difficult environments, the random policy, despite its poor performance, has higher cor-
rectness than these two methods. Their perception-correctness was high in strategic
locations such as paths leading up to the area with the reward or away from a detract-
ing corridor or room, and incorrect decisions usually are not detrimental to performance
as can be observed numerically by the absence of positive correlation between reward
speed and correctness. This is related to the visual observations that the decisions made
usually did not lead further into wrong corridors, which helps to explain the paradox
that although the correctness of SMP-Fixed and SMP-Constructive is low their perform-
ance is good. For all conditions, the standard deviation of the correctness over mazes
was considerably higher for SMP-Fixed and SMP-Constructive than for other methods.
This higher variability may indicate that the learning strategy is more dependent on the
features of the environment.

Network nodes and connections. In the network construction of SMP-Constructive a
pattern emerged in which the runs with good performance form a greater number of con-
nections, 2000-4000, and maximise the number of nodes nnodes in the network, specifically
176 for easy problems and 276 for difficult problems (cf. Appendix B for parameter set-
tings). The runs with bad performance would end up with a small number of neurons,
20-90, with the difficult-random condition yielding the lowest cumulative reward and the
lowest number of nodes, 20-40. This is supported by the correlation between the number
of nodes and the reward speed which was medium to high, 0.60-0.93, over the various
conditions. However, there were several exceptionally small networks which resulted in
excellent performance. For example, in the difficult-fixed condition, a network of 34 neur-
ons resulted in a lifetime average reward of 0.089 on maze 1 which was much larger than
for SMP-Fixed, 0.037, and SMP, 0.013. Since SMP-Fixed was able to perform well with
just 20 hidden units, this suggests that constructive modifications were only accepted
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by the evaluation module to the extent other modification types introduced during that
modification sequence were useful.

Network usage. The neural network usage, which is the proportion of times the percep-
tion module was used to output an external action, developed similarly in SMP-Fixed
and SMP-Constructive. It started out small at 20%, but gradually the system started to
rely on the network for its instructions, reaching 30% for easy problems and 40% for diffi-
cult problems. The discrepancy between easy, 30%, and difficult, 40%, is possibly due to
the longer learning time. The heat-maps indicated that the network usage was uniformly
spread over the different locations on the map, meaning the learner relied consistently
on the perception module. The network usage of SMP-DRQN is higher as advice on sev-
eral steps are given after a single call of doQuntil. In easy environments, SMP-DRQN
starts with 5-20% network usage and develops up to 50-70%. In difficult environments,
eventually the learner relied on the perception module 90% of the time. Unlike the other
methods, the network usage of SMP-DRQN was not evenly spread, especially during the
early to middle stages of the lifetime: on areas close to the goal, the network usage was
70-90%, whereas on detracting corridors the network usage was between 20 and 60%.
Combined with the fact that the network correctness was much lower in those areas, as
illustrated in Fig 4a, this means that SMP-DRQN applied DRQN when it was reliable,
such as the paths close to the goal location, but applied a more basic sense of direction
where DRQN was not reliable, such as the detracting corridors. This explains why SMP-
DRQN performs better in environments where DRQN gets stuck. During the end of the
lifetime, the network’s correctness in corridors was improved and this resulted in more
uniformly high network usage.

Valid modifications. Those modifications maintained at the end of the lifetime, the valid
modifications, yield insights into how the agent is learning as they record those changes
that accelerated reward intake. These include P-modifications which alter the instruction
modules probability matrix and network-modifications which change the network of the
perception module. The valid modifications are illustrated in Figure 6 and Figure 7. In
easy problems, the number of valid modifications is spread evenly across time with the
different learners making a similar number of valid modifications. The valid modifications
are illustrated for the difficult-random environments in Figure 7. For all SMPs, a brief
initial learning effect is observed, similar to the initial performance gains observed in all
learners, since improving on an initial faulty policy is easy. After the initial learning
has passed, learning to learn is taking place: the learners increasingly learn to generate
difficult-to-find modifications that will further accelerate future reward intake. At the
end of the lifetime there is a recency effect, a sudden peak in valid modifications as a
direct result of halting the lifetime at that point: since recent modifications have only
been evaluated a few times, the SSA has not yet removed changes which do not accelerate
reward in the long run. Compared to the difficult-random condition, the results for the
difficult-fixed condition are more monotonously increasing over time but similarly had
a brief initial and final peak. A difference between the learners emerges in the second
phase where SMP-Fixed and SMP-Constructive have a much greater number of valid
P-modifications, with typical peaks of 25-50 and 50-75, respectively, compared to the
traditional SMP with peaks of 5-15. For SMP-DRQN there is a continuously increasing
curve, eventually reaching a peak of nearly 700 modifications. This higher amount of
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P-modifications of the active adaptive perception implementations indicates that most
of the useful policy changes involve finding out when and how to modify and utilise
the neural network perception module. SMP-Fixed and SMP-Constructive also display
a similar pattern on the network-modifications, indicating they have learned how to
perform useful modifications to the network weights and topology. Other SMP-DRQN
development statistics are mentioned in the following subsection.

SMP-DRQN development statistics. The SMP-DRQN system performs two types of per-
ceptual modifications: trainReplay and setExperience. trainReplay is similar to
DRQN’s usual experience replay and therefore is not proposed to be the main mechanism
behind the performance advantage of SMP-DRQN; this is supported by the lower training
frequency exhibited by SMP-DRQN. setExperience makes changes to the experience
set which are later evaluated by SSA. The setExperience and doQuntil instruction
appeared to be key to SMP-DRQN’s performance advantage by enabling selective net-
work usage and goal-based exploration. The selective network usage, using DRQN only
where it has reliably memorized the path to the termination experience selected by the
instruction module, allows the perception module to be used only when the DRQN is ad-
vantageous. In areas where DRQN performs poorly the instruction module can directly
output external actions. This allows, for example, escaping rooms where the DRQN is
stuck. A second factor is goal-based exploration. This allows the instruction module to
determine which exploration rates should be chosen together with which termination ex-
periences, meaning that high exploration rates can be set in areas where the learner does
not recognise where it is or what is the best action. In the maze tasks, these two factors
allow the system to escape detracting corridors and rooms, finding more rewards. Due
to reaching the reward location more often initially, these learners can also accumulate
more useful experiences compared to learners which get stuck.

The selective network usage is enabled by the instruction module selecting the
doQuntil instruction and its two key parameters: the term experience, an experience
taken from the experience set E, and the until parameter, a time limit to network usage.
The doQuntil instruction then repeatedly requests external actions from the perception
module until the current experience matches term or until the loop time exceeds until
time steps. The results of this matching process are illustrated in Figure 4e, where it
can be seen that the successfully reached term experiences include strategic locations on
the path from start to the goal, avoiding usage in detracting corridors. When the term
experiences are not matched, the network is not used for prolonged amounts of time
in detracting corridors and rooms due to the time limit of until time steps. Figure 5a
further illustrates that the system was able to better match the self-chosen termination
experiences over time. This is not only due to the setExperience instruction modifying
the experience set E and the increasing network-correctness due to the experience replay,
but also, as illustrated in Figure 5b, due to the P-modifications, which increase the until
parameter to allow itself more time to reach the more difficult goals. Figure 5b also
illustrates why towards the end of the lifetime, the network usage is uniformly high: as
the network’s correctness increases, the system learns it can boost the reward speed by
increasing the until parameter and the frequency of the doQuntil instruction.

The goal-based exploration is enabled by the instruction module’s choice of the ex-
ploration rate, as the third parameter of the doQuntil instruction, together with the
self-chosen term experience which serves as a goal. Illustrative of this principle, the
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exploration rate was dependent on the difficulty of the environment and the chosen
termination experiences: in easy environments rates were lower, with some experiences
having an exploration rate between 0.02 and 0.05, most around 0.05-0.11, and the highest
average exploration rate is ε = 0.12, whereas in difficult environments, most experiences
were associated with an exploration rate between 0.09 and 0.12, some were between 0.02
and 0.08, and others between 0.13 and 0.16. This suggests that the system learns which
termination experiences are more difficult to achieve and therefore require more explora-
tion. This finding is supported by exploration maps such as those in Figure 4c, where it
can be observed that detracting corridors have relatively high exploration rates compared
to DRQN.

Average performance. The development plots in Figures 8 and 9 display the development
of reward speed, the average reward per time step, divided by the optimal reward per
time step. On the easy mazes, SMP-DRQN and DRQN obtains the highest reward
speeds. DRQN obtains a final reward speed close to 0.70 while SMP-DRQN is just above
0.60. Other SMP conditions are just above 0.30. In the difficult problems SMP-DRQN
and DRQN are by far the top performers on the average reward speed. DRQN obtains
a final reward speed around 0.4 while SMP-DRQN obtains reward speeds of 0.4 and 0.5
in the fixed and random condition, respectively. Compared to the development in easy
problems, more differences emerged between the different SMPs. SMP-Fixed and SMP-
Constructive are continuously improving across the lifetime while SMP only initially
found good policy improvements. In the fixed condition, this leads to a final reward
speed of 0.1 for SMP-Fixed and 0.08 for SMP-Constr, while SMP a speed of 0.025. The
random starting position gives a similar performance for SMP, 0.02 across the lifetime,
.08 for SMP-Fixed and 0.07 for SMP-Constructive. In difficult problems, it can also
be observed that while SMP-Constructive initially learns more quickly, its learning rate
slows down compared to SMP-Fixed after around 5 ∗ 106 steps.

As illustrated in Table 4, DRQN obtained the best lifetime average in the easy envir-
onments, 0.615 (fixed) and 0.572 (random), but SMP-DRQN obtained the best lifetime
average in difficult environments, 0.310 (fixed) and 0.361 (random). Table 4 further shows
pair-wise F -tests conducted on the lifetime average reward speed to analyse whether or
not between-condition variability was significantly higher than within-condition variab-
ility. For the easy problems, no significant effects are found except for the SMP-DRQN
and DRQN learners which significantly outperform all other learners. In the difficult
problems, the performance of both SMP-Fixed and SMP-Constructive leads to signific-
ant effects when compared to SMP. This indicates that rather than maze variability, the
principle of active adaptive perception explains why SMP-Fixed and SMP-Constructive
outperform SMP. In turn, the difference between SMP-DRQN and DRQN was not signi-
ficant while pair-wise differences of these learners to SMP-Fixed and SMP-Constructive
were significant.

Other performance metrics. The average reward speed, even when normalised, does not
necessarily imply superiority, because an excellent relative performance in the most dif-
ficult environment will not contribute as much as an excellent absolute performance in
a less challenging environment. To resolve this issue, additional metrics illustrate this
comparison in Table 5. In the easy mazes, it is clear that DRQN performs the best on all
metrics, followed closely by the SMP-DRQN; a more extended lifetime could potentially

19



overcome this given the trend in both development plots. In the difficult mazes, SMP-
DRQN has the best average rank, scoring among the top performers consistently, and
is followed by DRQN and SMP-Fixed which had the same average rank. The perform-
ance ratio, the ratio of the method’s average performance to the average performance
of the best ranked method, illustrates that SMP-DRQN has the best relative perform-
ance, followed by DRQN. Finally, the stuck frequency measures how prone the learner is
to get stuck without obtaining rewards; on this metric, the DRQN learner clearly per-
forms worst. To illustrate the statistical significance of the stuck frequencies, pair-wise
F-tests comparing the SMPs to the DRQN learner yielded p = 0.092 for SMP, p = 0.036
for SMP-Fixed, p = 0.065 for SMP-Constructive and p = 0.094 for SMP-DRQN in the
difficult-fixed condition, and p = 0.063 for SMP, p = 0.035 for SMP-Fixed, and p = 0.034
for SMP-Constructive and p = 0.033 for SMP-DRQN in the difficult-random condition.
This means that based on a threshold for significance α = .05, all learners with active
adaptive perception had significantly lower stuck frequency in the difficult-random con-
dition, supporting observations that they avoided detracting corridors and rooms more
easily.

6. Discussion

Similar to earlier SMPs, the proposed architecture is coordinated by a self-modifying
policy which interacts with itself and other functional components by means of instruc-
tions. This is a general approach due to the way in which any sort of instruction may be
utilised for learning how to maximise the cumulative reward. The results of the experi-
ments have provided evidence that the addition of active adaptive perception as an addi-
tional mechanism in SMPs makes the architecture more suitable for recognising complex
situations and constructing perceptual learning strategies. A first implementation with
a feedforward network using computationally cheap instructions and trained without an
explicit loss function was implemented to illustrate emergence of simple strategies: rather
than learning correct responses across the map, the learners discovered how to adjust the
neural network to maintain only those modifications that lead to lifelong reward accel-
eration, by focusing on those areas where learning yields the most benefits. In the maze
experiments this manifested itself by the selective optimisation of the network for partic-
ular parts of the map. As the neural network was adapted in this way, it was used more
often as time went by. The fact that even simple instructions allowed consistent learning
in difficult environments is a strong statement, since more efficient instructions are likely
to yield greater benefits. A second implementation utilised a recurrent Q-network select-
ively where it is reliable and the SMP’s probabilistic sense of direction otherwise, allowing
direct performance benefits but also indirect benefits by providing useful experiences to
improve the Q-network’s accuracy. The learner was also able to select the exploration
rate for epsilon-greedy action selection dependent on its self-chosen goals and found that
difficult goals require higher exploration rates. Earlier studies with SSA (Schmidhuber,
1999; Schmidhuber et al., 1997b) have demonstrated the ability to optimise the real-time
performance. Because the SSA is part of the active adaptive perception implementation,
it is expected that the current implementation is suitable for real-time environments.
Additionally the proposed architecture is a novel method for composing training and
construction algorithms for neural networks, it can evolve a network in non-episodic en-
vironments, unlike Topology and Weight Evolving Artificial Neural Networks such as
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NEAT (Stanley & Miikkulainen, 2002), and compared to Constructive Neural networks
(Sharma & Chandra, 2010; Vamplew & Ollington, 2005; Lahnajarvi et al., 2002; Fanguy
& Kubat, 2002; Parekh et al., 2000; Fahlman & Lebiere, 1990; Frean, 1990; Ring, 1997)
the architecture does not need heuristic criteria for updating and is suitable for reinforce-
ment learning. Lastly, the architecture for active adaptive perception has demonstrated
features typically associated with continual learning, particularly (a) the ability to learn
in a single lifetime with no known terminal states, and (b) the ability to learn how to
learn incrementally. Although the current experiments have not provided evidence for
the ability to learn multiple tasks, the extension to continual and lifelong learning is feas-
ible since an earlier SMP study, utilising the Incremental Self-improvement which serves
as the basis for the current implementation, demonstrated the ability to solve different
problems of increasing complexity using inductive transfer (Schmidhuber et al., 1997b).

Comparatively, adding adaptive perception as an additional mechanism in SMPs
yielded a continuous learning curve and significant performance gains. For a traditional
SMP, it was difficult to find valid self-modifications relating to instructions that did
not help the learner perceive the environment, and although it had an overall sense of
direction, its working memory operations did not enable it to develop a search strategy.
Compared to active perception instructions used in earlier SMPs (Schmidhuber et al.,
1997a) , the perception module similarly influences the instruction generation but allows
long-term adaptation and does not rely on knowledge of the environment.

The deep reinforcement learners included in the study use an LSTM network to learn
an action value-function (Sutton & Barto, 2018), an estimate of the discounted cumulat-
ive reward for a given history and a given action. These learners were able to memorise
the sequence from start to goal when path lengths were short, but did not perform so
well when paths were longer and when there were more detracting corridors and rooms.
Providing the action-value as the target for backpropagation-through-time is problem-
atic in complex continuing environments. This is because it makes the limited trace
length of back-propagation and the discounted cumulative reward imply events in the
distant future do not affect action selection. Similarly, although LSTMs do not tend
to suffer from the vanishing gradient compared to traditional recurrent neural networks
(Bengio et al., 1994; Hochreiter & Schmidhuber, 1997), comparable issues may occur
due to the exploding gradient (Sutskever et al., 2014). The proposed implementations
of active adaptive perception avoid these problems by either not requiring a target, or
by selectively applying the action-value network only when it is correct. Even though
the DRQN system is normally trained on episodic environments, still this system was
successful in the non-episodic environments with sparse feedback. This is attributed to
two factors: first, the stability of the Q-function is increased by only updating the target
network periodically to the parameters of the model-network which is updated during
training; second, the problem of learning even when there is a low diversity of experi-
ences, such as when stuck in a detracting corridor, is addressed by sampling from the
experience buffer which stores experiences over a long period of time. Despite this, in the
most challenging mazes DRQN gets stuck in detracting corridors and rooms for extended
periods of time. SMP-DRQN did not suffer from this problem which is attributed to (a)
the ability to ignore the network when it is not reliable; (b) SSA evaluating the agent
in the long-term; and (c) goal-based exploration allowing to set the exploration rate de-
pending on a particular target experience chosen by the learner. Although SMP-DRQN
overcame some of the issues, several strategies used in deep reinforcement learning are
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useful for the non-episodic scenario with limited knowledge and sparse feedback: priorit-
ised experience replay (Schaul et al., 2016) may focus training on the most problematic
experiences; exploration may be stimulated by intrinsic motivation (Singh et al., 2004)
or exploration bonuses (Bellemare et al., 2016); average reward reinforcement learning
(Yang et al., 2016; Mahadevan, 1996) may be used to avoid the problems with discount-
ing the future experiences; for decorrelating experiences, asynchronous methods (Mnih
et al., 2016) may be used as an alternative to experience replay which is suitable for
both off- and on-policy methods and which may make use of parallellism for improved
real-time performance.

There are some limitations for the current exemplar method including its reduced re-
lative performance on simple environments, likely because the universality of the method
implies that it takes longer to find narrow behaviours from the larger behavioural rep-
ertoire. Due to modifying the perception module one parameter at a time, the NEAT
implementation is not suitable for large-scale experiments. Larger scale experimentation,
whilst maintaining the incremental network parameter updates with long-term evalu-
ations, would be possible by utilising instructions which modify a functional, abstract rep-
resentation of a network rather than a network itself, similar to HyperNEAT. Moreover,
its random increments to the network parameters could be improved: a straightforward
extension to the NEAT implementation could be to, in addition to learning which para-
meters are in need of update, also learn how to increment or decrement the parameters by
including the increment as an additional argument to the instruction. The feedforward
structure did not solve partial observability, despite including historical variables, and
instead additional working cells as inputs or a recurrent structure should be considered.
In addition, despite often introducing more complexity, the performance of the construct-
ive network was comparable to a network with fixed topology. One reason may simply
be due to the nature of constructive neural networks which tend to learn fast initially
but resulted in a similar even sometimes lower final performance due to overfitting on
the initially small network (Franco & Conde, 2008; Junior et al., 2016). In addition, the
observed relation between reward intake and addition of nodes and connections suggests
that SSA is not noticing small negative effects of constructive changes that go together
with large positive effects of weight and instruction probability changes, due to the eval-
uation of modification sequences rather than individual modifications. The SMP-DRQN
implementation addresses some of the above issues, particularly the efficient use of exper-
ience, state disambiguation, and the selective application of perception. A limitation of
the evaluation module implementation, SSA, is that it uses a stack which can in principle
grow indefinitely. While compression of stack entries can reduce memory in practice, this
limitation highlights the need for practical long-term evaluation of self-modifying rein-
forcement learning policies. Also the current system is limited in predictive capabilities:
the trial-and-error self-modification yields many unsuccessful self-modifications and there
is no extensive world model.

The key conjecture of this paper is that active adaptive perception is preserved even
when the implementation is changed significantly; different implementations may be used
for each of its four components, as long as the functional requirements are satisfied. For
example, the evaluation module need not be the Success Story Algorithm. The percep-
tion module may consist of not one but several sub-symbolic components such as neural
networks, support vector machines or clustering methods, and perceptual advice does
not necessarily output external actions but may be any operation which temporarily
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influences instruction generation. For example, it may make temporary changes in the
probabilities of neighbouring cells or change the contents of internal variables to generate
instructions based on a classification of the agent’s state. The instruction module may
generate its programmatic instructions using a representation different than a probability
matrix. The working memory could be implemented differently to use real numbers in-
stead. Similarly, the interactions between the components may be directed by a different
set of instructions. Additional components suitable for cognitive architectures may be
added for further gains in complex tasks.

7. Conclusions

To address the need for universal reinforcement learners, this paper investigated how a
self-modifying reinforcement learning policy may benefit from active adaptive perception,
the ability to modify and utilise perceptual modules in completely self-chosen ways.
This ability enables a learner to invent strategies for discriminating various situations to
help achieve goals in complex environments. It does this by learning how to modify its
own learning operations based on incoming rewards. As an illustration, two exemplar
systems with active adaptive perception were compared to other methods on non-episodic
partially observable mazes with sparse reward structures. The first exemplar learned to
modify and use a feedforward network with a simple instruction set based on long-term
reward intake of the self-modifying policy, instead of traditionally training the network
on an explicit loss function. This lead to simple strategies to avoid detracting corridors
and rooms, comparing favourably over a traditional self-modifying policy. A second
exemplar system was more computationally expensive, using a recurrent network and
experience replay. This system used instructions to determine when and how to apply
and update a DRQN network. It learned to selectively apply the DRQN where it was
reliable and to select the exploration factor depending on its current goal. This was
beneficial compared to DRQN on the most difficult problems where DRQN got stuck
in detracting corridors and rooms. The architecture also constitutes a novel framework
for training and constructing neural networks by learning to use elementary user-defined
instructions.
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Appendix A: Maze Generation

Mazes were created according to algorithm below. In the fixed condition, the starting
position S and G are selected manually such that the distance d(S,G) is in the desired
distance range, 4-8 steps for easy vs 11-30 for difficult mazes. In the random condition,
the goal location G is the same and a starting point S is sampled from the set of open
spaces with a distance in [α ∗ d(S,G), β ∗ d(S,G)]. Due to the restricted set of locations
in easy problems, setting α = .5 and β = 1.2 for easy and α = .90, β = 1.10 for difficult
resulted in a sufficient number of starting locations.

Algorithm 2 Procedure for generating mazes. Note: / is the integer division.

1: sizeX ← 13; sizeY = 13;
2: compl← .10; density ← .10;
3: length← floor(complexity ∗ (5 ∗ (sizeX + sizeY )));
4: islands← floor(density ∗ ((sizeX/2) ∗ (sizeY/2)));
5: Fill borders with obstacles;
6: for i← 0 to islands− 1 do
7: (y, x)← get-random-position();
8: set obstacle on (y,x);
9: for j ← 0 to length− 1 do

10: neighbours← ∅;
11: if x > 1 then
12: neighbours.append((y, x− 2);

13: if x < sizeX − 2 then
14: neighbours.append((y, x+ 2));

15: if y > 1 then
16: neighbours.append((y − 2, x));

17: if y < sizeY − 2 then
18: neighbours.append((y + 2, x));

19: if length(neighbours) > 0 then
20: ỹ, x̃← random-neighbour();
21: if (ỹ, x̃) is free then
22: set obstacle on (ỹ, x̃);
23: ȳ = ỹ + (y − ỹ)/2;
24: x̄ = x̃+ (x− x̃)/2);
25: set obstacle on (ȳ, x̄);
26: (y, x)← (ỹ, x̃)

27: Pick start S and goal G manually.
28: if condition=Random then
29: Initialise α < 1, β > 1
30: reachable← reachable-from(G);
31: dref ← dist(S,G);
32: starts← ∅
33: for p ∈ reachable do
34: if dist(p,G) ∈ [αdref , βdref ] then
35: starts.append(p);
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Appendix B: Parameter settings

For the SMPs using Incremental Self-improvement, the number of program cells m
was set to 50 for easy and 100 for difficult problems. A minimal probability minP =
.0005 ensured all instructions were regularly computed. The total number of working
memory cells Nwm, including input, working, register and output cells, was 130 for easy
and 220 for difficult problems. A small change was made to IS to encourage learning
over the lifetime, namely, duplicates of each of the self-modification instructions incP

and decP were added to the instruction set A. For the SMP condition, both were
duplicated 10 times, yielding |A| = 39 and 22 modification instructions; For the SMP-
Fixed condition, both were duplicated 9 times resulting in |A| = 39 instructions, 21 of
which were modification instructions; For the SMP-Constructive, both were duplicated 8
times resulting in |A| = 39 instructions, 21 of which were modification instructions; For
the SMP-DRQN, both were duplicated 9 times resulting in |A| = 40, 22 of which were
modification instructions. The effect of duplication is dicussed in Appendix C. In SMP-
Constructive, addition of nodes was limited to a maximum of max = 2MaxInt neurons,
leading to 176 for easy and 276 for difficult problems. Using the above information,
the following parameters were set to determine the addresses of the working memory:
Max = A+m; Min = Max−Nwm; RegisterStart = 0; InputEnd = Min+8. The input
cells had addresses in Min, . . . , InputEnd, the working cells had addesses in InputEnd+
1, . . . , RegisterStart − 1, the register cells had addresses in RegisterStart, . . . , |A| − 1,
and the output cells had addresses in |A,Max|. The range of representable numbers
[−MaxInt,MaxInt] was set usingMaxInt = max(|Min|,Max) whereMin is the lowest
address and Max is the highest address in the working memory.

For DRQN, all parameter settings, mentioned in Table 6, were the same as in
(Hausknecht & Stone, 2015), except the unroll parameter, the trace-length for prediction
and backpropagation through time, was set to 25 and 40 for easy and difficult mazes,
respectively. The only exception is that the exploration frame of 106 time steps used
in DRQN, in which the exploration rate is decreased linearly from ε = 1 to ε = .10,
is not required for SMP-DRQN, since (a) the SMP does not necessarily rely on the
Q-network; and (b) the exploration rate is controlled by the instruction module via ar-
guments to doQuntil. The batch size and exploration rate were adapted dynamically by
SMP-DRQN, starting initially from a uniform distribution with the same average as the
original DRQN setting, namely, batchsize = 32 and ε = .10.

Appendix C: Effect of duplication

Duplication of incP and decP is suggested to improve the performance of Incremental
Self-improvement. Comparative results with and without duplication are shown in Table
1. They illustrate that, even without duplication, the active adaptive perception meth-
ods always outperforms the traditional SMP in the difficult environments. However,
duplication provides an additional positive effect on performance. This positive effect
is attributed to a greater flexibility in change sizes. For example, if a particular entry
has .001 as a probability, performing decP on this entry shrinks the entry to between
.00001 and .00099, whereas performing decP on another entry with a probability .10 will
decrease its probability to between .001 and .099, which is a much larger absolute de-
crease. Moreover, there are favourable side-effects: (a) there is a higher initial probability
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of self-modification instructions since they have multiple entries in the matrix; (b) the
combined minimal probability of self-modification is higher since each entry in the prob-
ability matrix must have a probability greater than minP ; (c) an enhanced syntactical
correctness, resulting in more correct executions of the self-modification instructions.

Condition Learner Dupl No Dupl
Easy-Fixed SMP .313 .362*

SMP-Fixed .325 .323
SMP-Constructive .312 .306

Easy-Random SMP .284 .257
SMP-Fixed .308 .258
SMP-Constructive .314* .272

Difficult-Fixed SMP .023 .023
SMP-Fixed .069* .041
SMP-Constructive .056 .048

Difficult-Random SMP .021 .018
SMP-Fixed .054* .039
SMP-Constructive .050 .051

Table 1: Effect of duplication of the incP and decP instructions on the lifetime average of the
normalised reward speed. Bold font is used to illustrate the best-performing learner without du-
plication. A * sign indicates the best-perfoming learner in general, duplication or no duplication.
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impl.: NN f(c′), with c′ = c−16:−9,
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SSA evaluates the policy P:
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0. if the stack has only the initial entry
at t = 0, stop; else continue 1-4.

1. get the times of the two most recent
checkpoints in stack, t1 and t2,
t1 > t2.

2. get the cumulative rewards at the
checkpoints: R(t1) and R(t2).

3. if
R(t)−R(t1)

t−t1
>

R(t)−R(t2)
t−t2

then

SSC←True.
4. if not SSC: pop away all stack entries

with times t ≥ t1, restoring the old
policy Pt1

A ∈ AEM

reward=0 &

A ∈ AE

reward=0

Figure 1: Diagram of the generic architecture for active adaptive perception, and its current
implementation on the maze problem. Based on the current instruction pointer as an internal
state, the instruction module generates an instruction and its arguments. Working memory
elements, integers in [−16, 16], are then used to process the arguments for context-sensitive in-
struction execution. The instruction is then performed, calling the evaluation module to perform
SSA, the perception module to modify it or to request an advised action, the working memory
to make historical notes, the instruction module to self-modify, or an external action in the en-
vironment. When perceptual advice is requested, the perception module’s neural network outputs
an advised action after taking the input cells’ contents, normalised in [−1, 1], as inputs. Input
cells are the current reward, the binary observation bits indicating whether north, east, south,
and west are free positions or obstacles, and internal variables for disambiguating the state based
on the history, namely the time, the stacklength and the instruction pointer. Note that (a) a
simplified representation is given because the number of working memory cells and program cells
is larger in the experiments; (b) in the SMP-DRQN implementation, the inputs to the perception
module is the history of observations instead of all current input cells, and additional perceptual
modifications are done on a set of useful experiences.
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Instruction Type Explanation
north AE take one step north
east AE take one step east
south AE take one step south
west AE take one step west
getOutput() APM forward inputs c−16:−9 through the perception module network, yielding activations act(A) for

all A ∈ AE . Set Aadv ← argmaxA∈AE act(c′); Next cycle the instruction module will execute
Aadv.

doQuntil(a1,a2,a3) APM if looping = True or t < replayStart return; else, set looping ← True, the termination
experience term ← Ea1 as the a1’th element of the experience set E, the maximal number of
looping cycles until ← narr(a2, [1, unroll/2]), and ε← a3 ∗ .005. The next cycles, the DRQN
network outputs as the activations act(A) the Q-values Q(s, a) for all A ∈ AE with s denoting
the history of observations, and then the ε-greedy strategy, with the self-chosen ε, selects the
next external action. The loop is terminated when the current experience is term or when
until time steps have passed.

weightChange(a1,a2) APM add a copy of the current network to the stack S. set i ← narr(cca1
, [0, nnodes − 1]),j ←

narr(cca2
, [0, nnodes−1]); set wij ← clip(wij +N (0, σw); rangew) with rangew = [−50, 50] and

σw = 5.50.
addNode(a1,a2) APM add a copy of the current network to the stack S. set i ← narr(cca1

, [0, nnodes − 1]),j ←
narr(cca2

, [0, nnodes − 1]) ; perform switch(i, j) ; if layer(j) > layer(i) + 1 then delete the
old connection (from = i, to = j, w = wij), add a new node k in layer layer(i) + 1 and add
connections (from = i, to = k,w = 1) and (from = k, to = j, w = wij).

addConnection(a1,a2) APM add a copy of the current network to the stack S. set i ← narr(cca1
, [0, nnodes − 1]),j ←

narr(cca2
, [0, nnodes − 1]); perform switch(i, j); create a new connection gene (from, to, w)

with w ∼ N (0, σw)
setExperience(a1) APM if t < replayStart, return; else, add the current value of Ea1 to the stack S, the a1’th element of

the experience set, to the stack and replace it with the current experience: Ea1 ← (o,A, r, o′),
with o the previous observation, A the previous external action, r the current reward, and o′

the current observation.
incP(a1, a2, a3) AIM push the current probability distribution Pca1

to the stack S. Then, set Pca1
,ca2
← 1 − .01 ∗

cca3
∗ (1− Pca1

,ca2
), with ca1 ∈ {0, . . . , |A| − 1} ;

Pca1 ,i
← .01 ∗ cca3

∗ P for all i ∈ {0, . . . , |A| − 1} \ ca2 . Reject the modification if Pca1 ,i
<

minP = 0.0005 for any i ∈ {0, . . . , |A| − 1}
decP(a1, a2, a3) AIM push the current probability distribution Pca1

to the stack S. Then, set Pca1
,ca2
← .01 ∗ cca3

∗
Pca1

,ca2
, with ca1 ∈ {0, . . . , |A| − 1}; Pca1

,i ← Pca1
,i ∗ (1 − .01 ∗ cca3

∗ Pca1
,ca2

)/(1 − Pca1
,ca2

)
for all i ∈ {0, . . . , |A| − 1} \ ca2 . Reject the modification if Pca1 ,i

< minP = 0.0005 for any
i ∈ {0, . . . , |A| − 1}.

endSelfMod() AEM evaluate the current self-modification sequence with SSA
jumpHome() AWM set IP ← ProgramStart
jumpEq(a1, a2, a3) AWM if cca1

= cca2
, set IP ← cca3

.
jumpLower(a1, a2, a3) AWM if cca1

= cca2
, set IP < cca3

.

add(a1, a2, a3) AWM cca3
← clip(cca1

+ cca2
; [MinInt,MaxInt])

sub(a1, a2, a3) AWM cca3
← clip(cca1

− cca2
; [MinInt,MaxInt])

mult(a1, a2, a3) AWM cca3
← clip(cca1

∗ cca2
; [MinInt,MaxInt])

div(a1, a2, a3) AWM cca3
← clip(cca1

//cca2
; [MinInt,MaxInt])

rem(a1, a2, a3) AWM cca3
← clip(cca1

mod cca2
; [MinInt,MaxInt])

mov(a1, a2) AWM cca2
← cca1

init(a1) AWM ca2 ← a1 − ProgramStart− 2
inc(a1) AWM cca1

← clip(cca1
+ 1; [MinInt,MaxInt])

dec(a1) AWM cca1
← clip(cca1

− 1; [MinInt,MaxInt])

Table 2: List of instructions used for the instruction set A in the SMP learners. Instructions
are divided in categories based on the module it directly affects: E for environment, PM for
perception module, IM for instruction module, and WM for working memory. The SMPs
included in the experiments used a different subset of APM , the instructions relevant for active
adaptive perception, and the set A \ APM are instructions commonly used in Incremental Self-
improvement. Function and operator definitions: c is the working memory tape, often
indexed by double/indirect-addressing; layer(i) obtains the layer index of node i; narr(a, [b, c])
performs a narrowing conversion from a ∈ [0, |A| − 1] to an integer in [b, c]; switch(from, to)
switches from and to when from > to or aborts the instruction when from = to; N (µ, σ) is
the normal/Gaussian distribution; clip(a; [b, c]) clips a to an integer in the range [b, c]. a//b
returns sign(a) ∗MaxInt if b = 0 and integer division otherwise; a mod b returns a if b = 0
and a − b ∗ floor(a/b) otherwise. Note: some operations yield invalid addresses or numbers
according to rules of syntactical correctness (cf. (Schmidhuber, 1999)); if these conditions are
not met the operation does nothing except for the usual increments to the instruction pointer
IP . 32
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Figure 2: Illustration of the network construction operators. For simplicity, only two input
nodes are shown and the bias unit is shown without its connections. Network connections are
restricted such that the layers satisfy from < to. Blue nodes indicate input units, grey-brown
nodes indicate output nodes, and white nodes indicate hidden nodes. Input units use the identity
function (denoted by ide) as a transfer function, while non-input units use the sigmoid function
(denoted by sig). The added connection is emphasised in red bold.

Environment
Method Easy-Fixed Easy-Random Difficult-Fixed Difficult-Random

Ci Cf r Ci Cf r Ci Cf r Ci Cf r
DRQN .48 .79 .75 .47 .77 .87 .41 .56 .40 .40 .55 .40
Random .32 .32 -.69 .33 .33 -.74 .36 .36 .16 .36 .36 .14
SMP .44 .43 .89 .42 .42 .89 .34 .33 -.67 .33 .32 -.74
SMP-Fixed .41 .38 .54 .41 .42 .62 .32 .32 .26 .30 .30 .18
SMP-Constructive .40 .37 .15 .39 .38 .47 .31 .29 -.58 .32 .32 -.06
SMP-DRQN .61 .72 .93 .58 .71 .95 .38 .55 .06 .37 .62 -.27

Table 3: The correctness metric for the different learners, indicating the proportion of choices
made that bring the agent closer to the goal. Ci and Cf are the values of the correctness metric
averaged over the various runs during the first and last time slice. The time slice is 1 million
time steps for easy and 16 million time steps for difficult. r is the correlation between the lifetime
average correctness measure and the lifetime average reward speed.
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(a) SMP-DRQN (b) SMP-Fixed

(c) DRQN (d) SMP

Figure 3: Heat-map of the final policy on a maze from the difficult-random condition; SMP-
Fixed is here taken to represent the first implementation of active adaptive perception since
its behaviour is comparable to SMP-Constructive. Though not visible to the agent, the goal
location is illustrated by “G” while white boxes indicate starting positions. The legend displays
the meaning of the colours of the heat-map in terms of visitations per time unit times the number
of unique visited locations. →: arrows indicate the direction of the most frequently chosen action
(north, east, south, or west).
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(a) SMP-DRQN net-
work usage (Pr)

(b) SMP-DRQN
Perception-
correctness (Pr)

(c) SMP-DRQN Ex-
ploration rate (Eps)

(d) SMP-DRQN
Heatmap (V is)

(e) SMP-DRQN ter-
mination experiences
(V is)

(f) DRQN Correct-
ness (Pr)

(g) DRQN Explora-
tion rate (Eps)

(h) DRQN Heatmap
(V is)

Figure 4: Illustration of the mechanisms behind SMP-DRQN’s performance. The first principle
is the selective network usage: panel (a) shows that the proportion of perception module usage
is particularly low in detracting corridors, whilst panel (e) shows that this due to how the system
matches termination experiences on paths to the goal, halting the network usage before reaching
detracting corridors; panels (b) and (f) illustrate the perception-correctness of SMP-DRQN and
the correctness of DRQN is high on paths close to the goal and highly incorrect far from goal
and in detracting corridors; together these illustrate that SMP-DRQN uses its perception module
selectively on locations with high perception-correctness, ignoring it when it is not reliable. The
second principle is the goal-based exploration: panels (c) and (g) illustrate the exploration
rate of SMP-DRQN is often higher than DRQN in difficult environments, and especially so on
detracting corridors. Together these two principles allow SMP-DRQN to better escape detracting
corridors than DRQN, as illustrated in panels (d) and (h). Note: the color of the plots is
variable across figures, and their units are mentioned in parentheses; Pr is the proportion, Eps
is the ε parameter for the ε-greedy action selection, and V is is the visitations per time unit times
the number of unique visited locations.
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Figure 5: Illustration of the perception module’s goal-matching in the difficult-random condi-
tion. Panel (a) illustrates increasing goal-matching: the left y-axis illustrates the number of net-
work usage terminations due to match, the number of times the system matches the self-chosen
termination experience and due to time, when the looptime of the doQuntil instruction exceeds
the self-chosen until parameter ; the right y-axis illustrates the valid number of modifications
to the experience set E which contains the termination experiences. Panel (b) illustrates how the
duration for match and time increase over time, indicating the learner selects a higher until
parameter for the doQuntil instruction, and how in-between, the time in between doQuntil

loops, decreases over time as the perception-correctness becomes high across the map.

Method Performance Comparison
DRQN SMP-Constr. SMP-Fixed SMP Random

Easy-Fixed SMP-DRQN 0.592± 0.132 < p = 0.644 > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
DRQN 0.615± 0.069 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.312± 0.120 / / < p = 0.807 < p = 0.982 > p < 0.001
SMP-Fixed 0.325± 0.111 / / / > p = 0.813 > p < 0.001
SMP 0.313± 0.106 / / / / > p < 0.001
Random 0.046± 0.019 / / / / /

Easy-Random SMP-DRQN 0.542± 0.164 < p = 0.649 > p = 0.003 > p = 0.001 > p < 0.001 > p < 0.001
DRQN 0.572± 0.113 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.314± 0.142 / / > p = 0.923 > p = 0.611 > p < 0.001
SMP-Fixed 0.308± 0.124 / / / > p = 0.657 > p < 0.001
SMP 0.284± 0.118 / / / / > p < 0.001
Random 0.042± 0.019 / / / / /

Difficult-Fixed SMP-DRQN 0.310± 0.109 > p = 0.909 > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
DRQN 0.304± 0.135 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.056± 0.027 / / < p = 0.425 > p = 0.001 > p < 0.001
SMP-Fixed 0.069± 0.041 / / / > p = 0.002 > p < 0.001
SMP 0.023± 0.013 / / / / > p < 0.001
Random 0.010± 0.004 / / / / /

Difficult-Random SMP-DRQN 0.361± 0.075 > p = 0.294 > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
DRQN 0.295± 0.176 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.050 + 0.030 / / > p = 0.765 > p = 0.011 > p < 0.001
SMP-Fixed 0.054± 0.029 / / / > p = 0.003 > p < 0.001
SMP 0.021± 0.013 / / / / > p = 0.008
Random 0.010± 0.004 / / / / /

Table 4: Life-time averaged normalised reward speed. < and > are used to indicate whether
the method’s performance is higher or lower than its comparison, while d is the effect size and
p denotes the significance value of the pair-wise F -test.
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(a) P-modifications
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Figure 6: Development of the valid modifications in the easy-fixed condition. Valid modifica-
tions are those changes that were successful according to the Success Story Criterion, indicating
lifetime reward acceleration. Each point in the plot thus represents the number of modifications,
introduced in a particular time interval [t, t + δ] with t ∈ [0, T ), which remained in use at the
end of the lifetime T , after repeated SSA evaluations.
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(a) P-modifications

0.0 0.2 0.4 0.6 0.8
time 1e8

0

20

40

60

80

100

120

#v
al

id
 n

et
wo

rk
-m

od
ifi

ca
tio

ns

SMP-Fixed
SMP-Constr.
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Figure 7: Development of the valid modifications in the difficult-random condition. Valid
modifications are those changes that were successful according to the Success Story Criterion,
indicating lifetime reward acceleration. Each point in the plot thus represents the number of
modifications, introduced in a particular time interval [t, t + δ] with t ∈ [0, T ), which remained
in use at the end of the lifetime T , after repeated SSA evaluations.
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(a) Fixed
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(b) Random

Figure 8: Development plots of the reward speed for the easy-fixed and the easy-random con-
dition, over the lifetime of 5 million time steps. For each plot reward speed, the average reward
per time step, is averaged over 20 runs, 2 repetitions for each of the 10 mazes, and normalised
in [0, 1] such that the optimal speed gives performance of 1.0.
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(a) Fixed
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Figure 9: Development plots of the reward speed for the difficult-fixed and difficult-random
condition, over the lifetime of 80 million time steps. For each plot reward speed, the average
reward per time step, is averaged over 20 runs, 2 repetitions for each of the 10 mazes, and
normalised in [0, 1] such that the optimal speed gives performance of 1.0.
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Fixed Random
rank ratio stuck rank ratio stuck

DRQN 1.2± 0.4 .97± .08 0.0± .0 1.4± 0.5 .97± .06 0.0± .0
Random 6.0± 0.0 .07± .03 0.0± .0 6.0± 0.0 .07± .03 0.0± .0
SMP 3.9± 0.8 .49± .16 0.0± .0 4.3± 0.8 .46± .16 0.0± .0
SMP-Fixed 3.9 + 0.8 .50± .16 0.0± .0 3.7± 0.8 .51± .18 0.0± .0
SMP-Constructive 4.2± 0.8 .48± .16 0.0± .0 3.8± 0.8 .52± .21 0.0± .0
SMP-DRQN 1.7 + 0.4 .91± .12 0.0± .0 1.7± 0.7 .90± .14 0.0± .0

(a) Easy

Fixed Random
rank ratio stuck rank ratio stuck

DRQN 1.9± 1.4 .63± .43 .20± .25 2.3± 1.9 .74± .39 .24± .29
Random 5.8± 0.5 .04± .07 .01± .01 5.7± 0.4 .05± .03 .01± .01
SMP 4.8± 0.6 .08± .09 .04± .12 4.9± 0.5 .06± .03 .05± .10
SMP-Fixed 3.2± 0.5 .22± .16 .02± .03 3.2± 0.5 .14± .08 .03± .06
SMP-Constructive 3.6± 0.9 .20± .20 .04± .07 3.3± 0.7 .13± .08 .04± .06
SMP-DRQN 1.7± 0.9 .83± .23 .05± .05 1.5± 0.5 .93± .09 .03± .02

(b) Difficult

Table 5: Additional performance metrics, illustrated with the average and standard-deviation
across runs, for the different conditions (a) easy, and (b) difficult. rank indicates the rank,
ranging between 1.0, always best, and 6.0, always worst. ratio indicates the ratio of performance
to the performance of the best of both, yielding 1 if it is the best, otherwise a number in [0, 1).
stuck is the proportion of consequent samples in which the cumulative reward did not increase,
with a sampling rate of once every 10000 time steps.

Parameter Setting
unroll 25 (easy), 40 (difficult)
batch size 32
replay memory size 400000 experiences
initial exploration rate 1.0
final exploration rate 0.1
exploration frame 1000000 time steps
optimisation algorithm AdaDelta (Zeiler, 2012)
learning rate 0.1
momentum 0.95
clip gradient absolute value exceeding 10
replay start 50000 time steps
update frequency 4 time steps
target update frequency 10000 time steps

Table 6: DRQN parameters.
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