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SI Text
This Supporting Information provides additional details, including full mathematical proofs, of the statements in the Main Text
(Results and Methods). It is organised into sections of the same headings as in the Main Text, to which they correspond. We
assume the terminology and notation in the Main Text.

Related Work
We have kept the content as self-contained as possible, by including details on material relatively well known in the graph
theoretic literature, but perhaps not so for an applied audience. The automorphism group of a graph is well studied in
algebraic and spectral graph theory1–3, and the concepts of equitable partitions, characteristic matrix and quotient graph can
be found in e.g.3, 4, including the relation between quotient and parent eigenvalues, and the main ingredients of the spectral
decomposition for binary graphs [3, Remark 3.9.6]. More recently, Francis et al.5, 6 have developed a general theory of equitable
decompositions for automorphism compatible matrices. The geometric decomposition and symmetric motifs were originally
defined in7, and the redundant spectrum and spectral decomposition in8, in both cases for binary adjacency matrices only.

Following the seminal work of MacArthur et al.7, 8, symmetry has been used in empirical networks, for instance to study the
quotient as a coarse graining tool real-world networks9, detect symmetric motifs via symmetry compression10, and reduce
shortest path query computations11. The redundant Laplacian spectrum has been explored for regular degree12 and random
geometric graphs13, and the dynamical implications of eigenvector localisation analysed14. A key motivation of this article has
been to develop the most general common framework for these (and other) results.

SI Symmetry in Complex Networks
On Labels and Symmetries
A network is a combinatorial object which encodes pairwise relations (edges or links) between objects (vertices or nodes). It is
therefore independent of the ordering, or labelling, of the vertices. An ordering is needed to refer to, and work with, a network.
We can choose an ordering simply by enumerating the vertices 1 to n = |V |. Such ordering is needed, for example, to define the
adjacency matrix. Note that a different ordering results in a (possibly) different adjacency matrix of the same network. We
always assume a chosen, and thereafter fixed, labelling 1 to n = |V | of the vertices.

On the other hand, a symmetry, or automorphism, of a network is a permutation of the vertices preserving adjacency. It can
also be thought of as a vertex relabelling, but one that results on the same adjacency matrix. (This is expressed mathematically
by the condition AP = PA, Eq. (1) in the Main Text.) Therefore, to find symmetries, we first fix an initial labelling of the vertices
(and in particular an adjacency matrix), so we can unequivocally refer to the vertices, and then look for further relabelling
preserving the adjacency matrix.

However, as a relabelling, a symmetry or automorphism σ produces the same graph, and, necessarily, vertices i and σ(i),
or edges (i, j) and (σ(i),σ( j)), are indistinguishable from one another and therefore structurally equivalent. In particular,
for a vertex, respectively pairwise, network measure depending on structure alone, we have G(i) = G(σ(i)), respectively
F(i, j) = F(σ(i),σ( j)), for all σ ∈ Aut(G ), and for all i, j ∈V , that is, Eqs. (5) and (3) in the Main Text.

Visually, automorphisms still correspond to symmetries, as perceived by the human eye, in a (suitable) geometric represen-
tation of the network (cf. Figure 1 in the Main Text).

Geometric Decomposition
We now explain the geometric decomposition introduced in Methods, in more detail, following MacArthur et al.7. We start with
some preliminary notions. Each automorphism σ ∈ Aut(G ) is a permutation of the vertices of the graph, and automorphisms
can be composed by applying one permutation after the other, forming a mathematical structure called a group15. The support
of the permutation σ is the set of vertices moved by σ ,

supp(σ) = {i ∈V such that σ(i) 6= i}. (1)
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Two automorphisms σ and τ are support-disjoint if the intersection of their supports is empty, supp(σ)∩ supp(τ) = /0. In
particular, σ and τ commute, that is, the order in which they are applied does not affect the result, mathematically στ = τσ .
Similarly, two arbitrary subsets of automorphisms S,T ⊂ Aut(G ) are support-disjoint if σ and τ are support-disjoint for every
pair σ ∈ S and τ ∈ T .

The geometric decomposition is obtained by partitioning a set of generators X = {σ1, . . . ,σk} of Aut(G ) (that is, every
automorphism σ ∈ Aut(G ) is the product, or composition, of elements in X), which the additional property of being essential
(explained below), into pairwise support-disjoint subsets

X = X1∪ . . .∪Xk. (2)

(How to obtain in practice an essential set of generators, and the support-disjoint partition, is explained in the Network Symmetry
Computation section below). Let us call Mi the set of vertices moved by generators in Xi, that is,

Mi = {i ∈V such that σ(i) 6= i for some σ ∈ Xi}=
⋃

σ∈Si

supp(σ), (3)

and Mi the subgraph induced by Mi (that is, the graph with vertex set Mi, and all edges in G between vertices in Mi). Further,
define Hi = 〈Xi〉, the subgroup generated by Xi (that is, all the permutations obtained by composing elements in Xi) and call it a
geometric factor. The support-disjoint decomposition of X above, (2), gives a direct product15 decomposition of Aut(G ) into
geometric factors

Aut(G ) = H1× . . .×Hk, (4)

called the geometric decomposition of Aut(G ). In other words, every automorphism σ ∈ Aut(G ) can be uniquely decomposed
as a product (composition)

σ = τ1τ2 . . .τk, τi ∈ Hi = 〈Xi〉, (5)

of permutations τi of vertices of Mi only. Hence understanding the symmetries of each subgraph Mi, we recover all automor-
phisms of G . (Of course not every automorphism of Mi, considered as a graph on its own, is an automorphism of G , as it also
depends on how Mi is embedded in G .) The subgraphs Mi are called symmetric motifs since they generate all the network
symmetry. In real-world networks, symmetric motifs are typically small, however, as the network automorphisms consists on
all possible combinations of these localised symmetries, their presence explains the large size, in absolute terms, of Aut(G )
observed empirically (SI Table 1,7).

Proposition 1. The support-disjoint decomposition (2) implies the direct product decomposition (4).

Proof. This is an immediate consequence of the characterisation of direct product of groups15, shown here for m = 2: a group
G is isomorphic to K×L for subgroups K and L if (i) their intersection K∩L is trivial (the identity element only); (ii) every
element in G is a product k l with k ∈ K and l ∈ L; (iii) the elements in K and L commute k l = l k for all k ∈ K, l ∈ L. Since
X is a generating set, condition (ii) is satisfied by H1 = 〈X1〉 and H2 = 〈X2〉, and the support-disjoint condition immediately
implies (i) and (iii). The case m > 2 is a simple generalisation.

Not every vertex participates in a network symmetry, and we write M0 for the set of such fixed vertices, that is,

M0 = {i ∈V such that σ(i) = i for all σ ∈ Aut(G )}. (6)

We then have a partition of the vertex set
V = M0∪M1∪ . . .Mk. (7)

That is, each network can be partitioned into an asymmetric core (the subgraph, typically connected, induced by the fixed
vertices M0) and the symmetric motifs. The asymmetric core is related, but not equal, to the quotient (as a vertex set, the
quotient equals the asymmetric core plus one vertex per orbit, see the Quotient Network section below).

Every symmetric motif can be further decomposed into one or more orbits of structurally equivalent vertices. The orbit of a
vertex i is the set of vertices to which i can be moved to by an automorphism, that is,

{σ(i) such that σ ∈ Aut(G )}. (8)

Every vertex belongs to an orbit (made of just the vertex itself if it is fixed) and if a symmetric motif contains a vertex in an
orbit, then it must contain all the vertices in the orbit.

Proposition 2. If vertices i and j belong to the same orbit, then they also belong to the same symmetric motif.
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Name nG gen aut sm bsm1 bsm2 bsm3+ opm vpm ñQ ñbasic
Q m̃Q m̃basic

Q

HumanDisease 1,419 713 10407 272 259 2 0 1.01 3.68 48.3 52.2 50.4 53.8
Yeast 1,647 380 10218 149 138 10 0 1.07 3.46 76.3 76.4 83.5 83.7
OpenFlights 3,397 732 10373 321 290 10 0 1.03 3.33 77.3 79.7 94.4 95.0
USPowerGrid 4,941 414 10153 302 266 22 6 1.15 2.36 90.2 91.6 91.4 92.5
HumanPPI 9,270 972 10528 437 434 3 0 1.01 3.22 89.5 89.5 96.9 97.0
Astro-Ph 17,903 3,232 101,588 1,682 1672 0 0 1.00 2.93 81.9 82.1 80.5 80.5
InternetAS 34,761 15,587 1015,403 3,189 3,153 32 1 1.01 5.85 55.0 55.1 78.2 78.2
WordNet 145,145 52,152 1024,064 28,456 25,759 375 52 1.03 2.98 60.1 70.2 58.0 63.8
Amazon 334,863 32,098 1012,495 23,302 22,964 286 13 1.01 2.37 90.3 90.4 89.0 89.0
Actors 374,511 182,803 1039,950 36,703 36,683 4 0 1.00 5.98 51.2 51.2 66.4 66.4
InternetAS-skitter 1,694,616 319,738 10258,835 84,675 81,537 2,226 169 1.03 3.82 85.4 85.8 92.7 92.8
CaliforniaRoads 1,957,027 36,430 1011,228 35,210 33,220 1,255 328 1.08 2.04 97.9 98.1 98.5 98.6
LiveJournal 5,189,808 410,575 10197,552 245,211 243,743 1,182 26 1.01 2.67 92.1 92.1 97.5 97.5

Table 1. Symmetry in some real-world networks (continued). In addition the summary statistics shown in Table 1 in the Main
Text, here we report the size of the automorphism group to the closest power of 10 (aut), the number of BSMs with one, two, or more than
two orbits (bsm1, bsm2, bsm3+), the average number of orbits per motif (opm) and vertices per orbit (vpo), and the proportion of vertices
ñbasic
Q and edges m̃basic

Q in the basic quotient.

Proof. We can assume i 6= j. As they belong to the same orbit, there is an automorphism σ with σ(i) = j. Write σ as a product
of generators σ = x1 . . .xl , xi ∈ Xi and argue by induction on l ≥ 1. If l = 1, then x1(i) = j and i 6= j hence i ∈ supp(x1). In
addition, j ∈ supp(x1): otherwise x1( j) = j implies j = x−1

1 ( j) = i, a contradiction. As i, j ∈ supp(x1), they are in the same
symmetry motif, by (3). Suppose now l > 1 and the induction hypothesis. Write k = x2 . . .xl(i) so that j = x1(k). Assume
j 6= k (otherwise remove x1 so that j = x2 . . .xl(i)). By the induction hypothesis, k and i belong to the same symmetric motif,
and, by the same argument as in the case l = 1, j 6= k also belong to the same symmetric motif.

This proposition, implicit in7, proves that the vertices in each symmetric motif can be partitioned into orbits,

Mi =V (1)
i ∪ . . .∪V (mi)

i . (9)

Note that any set of generators can be partitioned into support-disjoint subsets (2), and this gives the direct product
decomposition (4) when Hi = 〈Xi〉. However, this decomposition is not unique (a geometric factor could be further decomposed)
and depends on the choice of generators (for example, adding a generator s1s2 to X , where s1 ∈ X1 and s2 ∈ X2 would
force X ′1 = X1∪X2 and H ′1 = H1×H2, a coarser geometric decomposition). By requiring X to be essential (see below), the
geometric decomposition (4) is unique (up to permutation of the factors Hi), and the finest possible (each Hi cannot be further
decomposed into a direct product of non-trivial support-disjoint subgroups), see Proposition 2.1 in7. In particular, the geometric
decomposition and symmetric motifs are well-defined.

A set of generators X is essential if (1) it does not contain the identity 1 (trivial permutation); (2) s = gh ∈ X with g and
h support-disjoint implies g = 1 or h = 1; and (3) if X ′ ⊂ X generates H1×H2 support-disjoint (as sets), then X ′ = X1∪X2
(necessarily support-disjoint) with Xi generating Hi. Graph automorphism algorithms such as NAUTY produce essential sets
of generators (Theorem 2.34 in16) and so does SAUCY, at least in practice (see the Network Symmetry Computation section
below). Having said this, all the results in the Main Text are independent of whether the geometric decomposition is indeed the
finest possible or not, and hence, any decomposition into a (possibly large) number of small symmetric motifs can be used to
exploit network symmetry as explained in this article.

In real-world networks, symmetry is localised at small subgraphs (the symmetric motifs) and thus generated by low degree
vertices. The universality of power-law degree distributions17 guarantees the abundance of such low degree vertices and justifies
the large (in absolute terms) automorphism groups observed in real-world networks. Indeed, the authors in18 show how a
Barabasi-Albert model reproduces the characteristic symmetry found in real-world networks. On the other hand, without
a power-law degree distribution, we can find real-world networks with trivial automorphism group, such as the Blue Brain
connectome19, which has hardly any low degree vertices (neurons). Even with a power-degree distribution, we found networks
with relatively low symmetry, such as CaliforniaRoads, where only 4% of all the vertices participate in any symmetry (Table 1
in the Main Text).
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Basic Symmetric Motifs
In theory, any finite group can be the automorphism group of a graph1. In real-world networks, however, Aut(G ) is the direct
(occassionally, semidirect) product of symmetric groups Sn

7. Moreover, most symmetric motifs are made of orbits of the same
size with the geometric factor realising every possible permutation of the vertices in each orbit. Formally, a symmetric motif Mi
is called basic if it consists of one or more orbits of n vertices, and the symmetric factor Hi is the symmetric group Sn realising
all the n! permutations of each orbit. (We then call Mi a basic symmetric motif of type n.) Most (over 90%) of symmetric
motifs in our test networks are basic (Table 1 in the Main Text), similar to the results in7.

Basic symmetric motifs (BSMs) have a very constrained structure:

• every orbit is a complete or an empty graph;

• each pair of orbits in the same symmetric motif can only be connected in one of four possible ways (each vertex in one
orbit connected to either all, none, one, or n−1 vertices in the other orbit);

• every vertex not in the symmetric motif joins either all or none of the vertices in an orbit, for each orbit.

(For a proof, see8, or the more general Theorem 2 below.) It is easy to show (or see Theorem 2 ) that the third property holds for
any symmetric motif, basic or not. Also note that for a BSM with only two orbits, the ‘all-to-all’ or ‘none-to-none’ connectivity
need not be considered, since in that case the orbits can be classified as two separate BSMs of one orbit each.

Non-basic symmetric motifs are called complex; they are rare in real-world networks and can be studied on a case-by-case
basis. Typical complex symmetric motifs are branched trees (M7 in Figure 1 in the Main Text), among others7.

Weighted and Directed Networks
The adjacency matrix of a network can encode arbitrary weights and directions, as explained in the Main Text, making a
general n×n real matrix A the adjacency matrix of some (weighted, directed) network. The definition of automorphism group,
geometric decomposition, geometric factor, symmetric motif and orbit, and their properties, as they are defined only in terms of
A, carry verbatim to arbitrarily weighted and directed networks. In this setting, a symmetry (automorphism), respects not only
adjacency, but weights and directions. In particular, the automorphism group is smaller than (a subgroup of) the automorphism
group of the underlying undirected, unweighted network. By introducing edge weights or directions, some symmetries will
disappear, removing (and occasionally subdividing) geometric factors, symmetric motifs and orbits.

Theorem 1. Let Aw = (wi j) be the adjacency matrix of an arbitrarily weighted and directed network Gw, and A = (ai j) the
adjacency matrix of the underlying undirected and unweighted network G , that is, ai j = sgn(|wi j|+ |w ji|). Consider the
geometric decomposition

Aut(G ) = H1× . . .×Hm, respectively

Aut(Gw) = H ′1× . . .×H ′m′ ,

with symmetric motifs with vertex sets M1, . . . , Mm, respectively M′1, . . . , M′m′ . Then for every 1 ≤ i ≤ m′ there is a unique
1≤ j ≤ m such that H ′i ⊆ H j and, consequently, M′i ⊆M j. In other words, the geometric decomposition of Gw is a refinement
of that of G . Similarly, each vertex orbit in Gw is a subset of a vertex orbit in G .

Proof. First we show that the automorphism group of Gw is a subgroup of the automorphism group of G . If σ : V →V is a
permutation of the vertices, then

wσ(i)σ( j) = wi j =⇒ aσ(i)σ( j) = ai j

by considering two cases: wi j 6= 0 implies wσ(i)σ( j) 6= 0 which gives ai j = aσ(i)σ( j) = 1; wi j = 0 implies wσ(i)σ( j) = 0 which
gives ai j = aσ(i)σ( j) = 0 (note wi j 6= 0 ⇐⇒ ai j = 1). Hence Aut(Gw)⊂ Aut(G ), which immediately gives the result on orbits.

For the geometric decomposition, we choose essential sets of generators S, respectively S′, of Aut(G ), respectively Aut(Gw),
with support-disjoint partitions

X = X1∪ . . .∪Xm, respectively X ′ = X ′1∪ . . .∪X ′m′ .

It is enough to prove the statement for these sets: given i, there is unique j such that X ′i ⊆ X j. Let x′ ∈ X ′i ⊆ Aut(Gw)⊆ Aut(G )
thus we can write x′ = h1 · . . . ·hm with hk ∈ Hk = 〈Xk〉. Since X ′ is an essential set of generators, there is an index j such that
hk = 1 (the identity, or trivial permutation) for all k 6= j, so that x′ = h j. Given any other y′ ∈ X ′i , the same argument gives
y′ = hl for some 1≤ l ≤ m. We claim j = l, as follows. The partition of X , respectively X ′, above are the equivalence classes
of the equivalence relation generated by σ ∼ τ if σ and τ are not support-disjoint permutations. Since x′,y′ are in the same
equivalence class, so are h j and hl and thus j = l.
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The same result applies to networks with other additional structure, not necessarily expressed in terms of the adjacency
matrix, such as arbitrary vertex or edge labels, by restricting to automorphisms preserving the additional structure. We obtain
fewer symmetries, and a refinement of the geometric decomposition, symmetric motifs, and orbits as above. The results in this
paper, although applicable in theory, become less useful in practice as further restrictions are imposed, reducing the number of
available network symmetries.

SI Structural Network Measures
As explained in the Main Text, a (pairwise) structural network measure F applied to a network G inherits all the symmetries
of G . It is possible that further symmetries will appear in F(G ), the network representation of F (a trivial example would be
F(i, j) = c, a constant, for all i, j), but so rare in practical situations that we only consider symmetries directly inherited from
G . (A few additional symmetries would only result on a slightly finer geometric decomposition of F(G ).) Consequently, we
can assume that F(G ) has the same automorphism group as G , Aut(F(G )) = Aut(G ), and, in particular, the same geometric
decomposition and geometric factors Hi. The symmetric motifs in F(G ) have the same vertex sets and orbits, but with edges
weighted by F(i, j), and possibly directed if F(i, j) 6= F( j, i). As F(G ) inherits all the symmetries of G , the basic symmetric
motifs in F(G ) still have a very constrained structure, explained below (cf. Theorem 1 in Methods).

Theorem 2. Let M be the vertex set of a BSM of a network G (that is, a symmetric motif made of one or more orbits of size n
with geometric factor the symmetric group Sn realising all the permutation in each orbit), and F a structural network measure.
Then the graph induced by M in F(G ) is a BSM of F(G ), and satisfies:

(i) for each orbit ∆ = {v1, . . . ,vn}, there are constants α and β such that the orbit internal connectivity is given by
α = F(vi,v j) for all i 6= j and β = F(vi,vi) for all i;

(ii) for every pair of orbits ∆1 and ∆2, there is a labelling ∆1 = {v1, . . . ,vn}, ∆2 = {w1, . . . ,wn} and constants γ1, γ2, δ1, δ2
such that γ1 = F(vi,w j), γ2 = F(w j,vi), δ1 = F(vi,wi), and δ2 = F(wi,vi), for all i 6= j;

(iii) every vertex v not in the BSM is joined uniformly to all the vertices in each orbit {v1, . . . ,vn} in the BSM, that is,
F(v,vi) = F(v,v j) and F(vi,v) = F(v j,v) for all i, j.

Moreover, property (iii) holds in general for any symmetric motif.

Note that, if G is undirected and F is symmetric, γ1 = γ2 and δ1 = δ2 and, in the terminology of the Main Text, each orbit is
a (α,β )-uniform graph Kα,β

n and each pair of orbits form a (γ,δ )-uniform join, explaining Figure 2(a-b) in the Main Text. Also
note that, for unweighted, undirected graphs without loops, we recover the statements in the previous section: every orbit is an
empty or complete graph (β = 0, α = 0,1), and every pair of orbits are joined in one of the four possible ways (γ,δ = 0,1).

Proof of Theorem. As F(G ) inherits all the symmetries of G , M has the same orbit decomposition and the geometric factor is
Sn acting in the same way, hence M induces a BSM in F(G ) too. For the internal connectivity, note that every permutation of
the vertices vi is realisable. Thus, given arbitrary 1≤ i, j,k, l ≤ n, we can find σ ∈ Aut(G ) such that σ(vk) = vi and, if j 6= i
and l 6= k, additionally satisfies σ(vl) = v j. This gives

F(vi,v j) = F(σ(vk),σ(vl)) = F(vk,vl),

as F is a structural network measure. The other case, i = j and k = l, gives

F(vi,vi) = F(σ(vk),σ(vk)) = F(vk,vk).

For the orbit connectivity result (ii), we generalise the argument in [20, p.48] to weighted directed graphs with symmetries,
particularly F(G ). We assume some basic knowledge and terminology about group actions15 and symmetric groups Sn. Given
two orbits ∆1 = {v1, . . . ,vn} and ∆2 = {w1, . . . ,wn} and 1≤ i≤ n, define

Γi =
{

w j ∈ ∆2 |F(vi,w j) 6= 0
}
,

the vertices in ∆2 joined to vi in F(G ). If a finite group G acts on a set X , the stabiliser of a point Gx = {g ∈ G |gx = x} is a
subgroup of G of index [G : H] = |G|

|H| equals to the size of the orbit of x. Hence the stabilisers Gvi or Gw j are subgroups of Sn of
index n, for all i, j. The group Sn has a unique, up to conjugation, subgroup of index n if n 6= 6. In this case, Gv1 is conjugate
to Gw1 so Gv1 = σGw1σ−1 = Gσw1 for some σ ∈ Sn. Relabelling σw1 as w1 we have Gv1 = Gw1 . Similarly, we can relabel
the remaining vertices in ∆2 so that Gvi = Gwi for all i: write v2 = σ2v1, v3 = σ3v1, . . . and relabel w2 = σ2w1, w3 = σ3w1, . . .,
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noticing there cannot be repetitions as σkw1 = σlw1 for k 6= l implies σkσ
−1
l ∈ Gw1 = Gv1 and thus vk = σkv1 = σlv1 = vl , a

contradiction. Fix 1≤ i≤ n. The stabiliser Gvi fixes vi but it may permute vertices in ∆2. In fact, the set Γi above must be a
union of orbits of Gvi on ∆ j: if w ∈ Γi and σ ∈ Gvi then

0 6= F(vi,w) = F(σvi,σw) = F(vi,σw)

so σw also belongs to Γi. The orbits of Gvi = Gwi in ∆2 are {wi} and ∆2 \{wi}, as Gwi fixes wi and freely permutes all other
vertices in ∆2. The case n = 6 is similar, except that S6 has two conjugacy classes of subgroups of index 6, one as above, and
the other a subgroup acting transitively on the 6 vertices, which gives a unique orbit ∆2. In all cases, the set ∆2 \{wi} is part of
an Gvi -orbit, which gives the connectivity result, as follows. Fix 1≤ i≤ n. For 1≤ j,k≤ n different from i, the vertices w j and
wk are in the same Gvi -orbit so there is σ ∈ Gvi with σw j = wk and, therefore,

F(vi,w j) = F(σvi,σw j) = F(vi,wk).

The argument is general, so we have shown ai = F(vi,w j) is constant for all j 6= i. It is enough to show ai = a1 for all i. Choose
j 6= i, then

ai = F(vi,w j) = F(σiv1,σ jw1) = F(v1,σ
−1
i σ jw1) = a1

as long as σ
−1
i σ jw1 6= w1, which cannot happen as otherwise σ

−1
i σ j ∈Gw1 = Gv1 implies σ

−1
i σ jv1 = v1 or v j = σ jv1 = σiv1 =

vi, a contradiction. Hence we have shown F(vi,w j) is a constant, call it γ1, for all i 6= j. In addition,

F(vi,wi) = F(σiv1,σiw1) = F(v1,w1)

is also a constant, call it δ1, for all i. The cases γ2 = F(w j,vi) and δ2 = F(wi,vi) are identical, reversing the roles of ∆1 and ∆2.
Property (iii) holds for any symmetric motif, not necessarily basic, as follows. By the definition of orbit, for each pair i, j

we can find an automorphism σ in the geometric factor such that σ(v j) = vi. Since v is not in the support of that geometric
factor, it is fixed by σ , that is, σ(v) = v. Therefore

F(v,vi) = F(σ(v),σ(v j)) = F(v,v j),

and similarly F(vi,v) = F(v j,v).

Consequently, every orbit in a BSM is characterised by three parameters: its size n, the connectivity between any pair of
distinct vertices α , and the connectivity of a vertex with itself β . In the terminology and notation of the Main Text, every orbit
is a (α,β )-uniform graph, Kα,β

n , the graph with adjacency matrix

Aα,β
n = α Cn +β In (10)

where Cn is the adjacency matrix of a complete graph (0 diagonal and 1 off-diagonal entries), and In the identity matrix. For
example, a (1,0)-uniform graph is a complete graph, and a (0,0)-uniform graph is an empty graph.

Similarly, every pair of orbits in the same BSM form a (γ1,δ1,γ2,δ2)-uniform join of two uniforms graphs Kα1,β1
n and

Kα2,β2
n , that is, the graph with adjacency matrix, possibly after a suitable reordering of the vertices,

A =

(
Aα1,β1

n Aγ1,δ1
n

Aγ2,δ2
n Aα2,β2

n

)
, (11)

where the submatrices are given as per (10).
This constrained structure will be important when we discuss the quotient network, and the spectral signatures of symmetry.

SI Redundancy in Network Measures
Quotient Network
If A is the n×n adjacency matrix of a graph G , the quotient network with respect to a partition of the vertex set V =V1∪ . . .∪Vm
is the graph Q with m×m adjacency matrix the quotient matrix Q(A) = (bkl) defined by

bkl =
1
|Vk| ∑

i∈Vk
j∈Vl

ai j, (12)
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the average connectivity from a vertex in Vk to vertices in Vl . That is, the quotient amalgamates the vertices of each Vk into a
single vertex, and have edges representing average connectivity.

There is an explicit matrix equation for the quotient. Consider the n×m characteristic matrix S of the partition, that is,
[S]ik = 1 if i ∈Vk, and zero otherwise, and the diagonal matrix Λ = diag(n1, . . . ,nm), where nk = |Vk|. Then

Q(A) = Λ
−1ST AS. (13)

They are other ways of taking the average in (12), such as 1/nl or 1/(
√

nk
√

nl) instead of 1/nk = 1/|Vk|, giving slightly
different, but spectrally equivalent, quotient matrices ST ASΛ−1 respectively Λ−1/2ST ASΛ−1/2. We refer to our choice as the
left quotient (matrix or network), and the other two as the right respectively symmetric quotient, writing Ql(A), Qr(A) or Qs(A)
when necessary. (Note that Qr(A) = Ql(A)T if A is symmetric.) Occasionally, it will be convenient to ignore weights and
directions: we call unweighted quotient to the underlying unweighted, undirected quotient network, and, if we also remove
self-loops (so that two orbits are connected if they are distinct and at least one vertex of one orbit is connected to a vertex of the
other orbit) this is the quotient skeleton in Figure 1 in the Main Text (the s-skeleton in9). Finally, in the context of quotient
networks, we call G the parent network of Q.

Note that the (left) quotient Q is a directed and weighted network even if the parent network G is not: bi j 6= b ji 6∈ {0,1} in
general. However, Ql(A) is spectrally equivalent to the symmetric matrix Qs(A), hence in particular is has real eigenvalues if G
is undirected (SI Spectral Signatures of Symmetry).

A natural quotient in the context of symmetries is given by the partition of vertices into orbits, Eqs. (7) and (9). Note
that this partition is finer than the one associated to the geometric decomposition, as each symmetric motif consists of one or
more orbits, and that each fixed point in V0 (the asymmetric core) becomes its own orbit, that is, it is not identified with any
other vertex in the quotient. From now on, we will implicitly refer to this quotient unless stated otherwise. Occasionally, we
will consider the quotient with respect to a subgroup of Aut(G ) (cf. Theorem 1), or only certain symmetric motifs (e.g. basic
quotient, explained below).

A crucial property of the quotient with respect to orbits is that it removes all the symmetries from the network: if σ(i) = j,
then i and j are in the same orbit and hence represented by the same vertex in the quotient network, which is then fixed
by σ . (Although new symmetries might appear in the quotient, these are rare and would not be symmetries of the parent
network, and hence of no interest to us.) We can, consequently, infer and quantify properties arising from redundancy alone
by comparing a network with its quotient. This is the approach taken in7 for spectral properties, which we will generalise
to undirected, arbitrarily weighted, networks with symmetries, such as the network representation of a network measure (SI
Spectral Signatures of Symmetry).

As we explain in the the Main Text, we can also exploit the quotient in the context of network structural measures for
compression (storage savings), and for computational reduction (time and memory savings).

Quotient Compression and Recovery
The network representation of a structural network measure F(G ) inherits all the symmetries of G , which present themselves as
redundancies, namely as repeated values. For instance, for each symmetric motif M , the values F(u,v) are constant, for each u
not in M and each v in the same orbit of M . If the network has n vertices, this means (n− k)l ≈ nl repeated values for each
orbit of size l in a symmetric motif motif of size k (typically k and l are very small). The internal connectivity of a symmetric
motif can also be efficiently encoded, for instance each orbit in a BSM can be recovered from three values, its size n and
constants α and β , and the connectivity between pairs of orbits in the same BSM from two or four values (undirected/directed
case), and a permutation of the second orbit (Theorem 2). All this can be exploited in a compression algorithm that eliminates
redundancies induced by symmetries in an arbitrary network structural measure, as we explain next. We first observe that this is
most useful for full measures, since for sparse structural measures, the values F(u,v) as above are mostly 0 and hence a sparse
representation of F(G ) will account for most of the aforementioned redundancies.

Average Compression and Recovery
If we are not interested in the internal symmetric motif connectivity, or it can be recovered easily by other means (e.g. locally
one motif at a time), a simple algorithm (Algorithm 1) compresses and recovers all but the internal symmetric motif connectivity,
which is replaced by the average connectivity, as the next result (Theorem 2 in Methods) shows.

Theorem 3. Let A = (ai j) be the n×n adjacency matrix of a (possibly directed and weighted) network with vertex set V . Let
S be the n×m characteristic matrix of the partition of V into orbits of the automorphism group of the network, and Λ the
diagonal matrix of column sums of S. Define B = ST AS and Aavg = RBRT = (āi j) where R = SΛ−1. Then,

(i) if i, j ∈V belong to different symmetric motifs, āi j = ai j.

7/24



(ii) if i, j ∈V belong to orbits i ∈ ∆1 and j ∈ ∆2 in the same symmetric motif,

āi j =
1
|∆1|

1
|∆2| ∑

u∈∆1
v∈∆2

auv. (14)

Before proving this statement, we make a few observations. The column sums of S equal the sizes of the vertex partition
sets, that is, the matrix Λ in the statement is the same as in the definition of quotient matrix, (13), and can be obtained easily
from S. The matrix S is very sparse and can be stored very efficiently, as it has at most n non-zero elements (each row has
a unique non-zero entry). Case (i) covers the vast majority of vertex pairs (external edges) for a network measure (see exts
and int f in Table 1 in the Main Text). In (ii), the case ∆1 = ∆2 is allowed. The matrix B = ST AS is symmetric with integer
entries if A is too, hence generally easier to store than Ql(A) = Λ−1ST AS. However, the theorem still holds for the left, right
and symmetric quotient, as

Aavg = SΛ
−1ST ASΛ

−1ST = SQl(A)Λ
−1ST = SΛ

−1 Qr(A)ST = SΛ
−1/2 Qs(A)Λ

−1/2ST . (15)

Proof of Theorem. Let V = ∆1∪ . . .∪∆m be the partition into orbits, and write nk = |∆k|. Clearly, the row sums of S equals
n1, . . . ,nm. Writing [M]i j for the (i, j)-entry of a matrix M, matrix multiplication gives

[R]ik = ∑
l
[S]il [Λ−1]lk

l=k
= [S]ik

1
nk

=

{
1
nk

if i ∈ ∆k,

0 otherwise.

Similarly, assuming i ∈ ∆k and j ∈ ∆l , we have

āi j = [RBRT ]i j = ∑
α,β

[R]iα [B]αβ [R] jβ =
1
nk

1
nl
[B]kl =

1
nk

1
nl

∑
u∈∆k
v∈∆l

auv.

This expression reduces to ai j if the orbits belong to different symmetric motifs, since in this case all the summands in
∑u∈∆k,v∈∆l

auv are equal to one another. Indeed, given i1, i2 ∈ ∆k and j1, j2 ∈ ∆l , we can find, by the definition of orbit and
symmetric motif, automorphisms σ and τ such that σ(i1) = i2 while fixing j1, and τ( j1) = j2 while fixing i1. This gives

ai1 j1 = aτσ(i1)τσ( j1) = aτ(i2)τ( j1) = ai2 j2 .

A similar proof to case (i) above shows that, if Ql(A) = (bkl) is the left quotient, then

ai j =
1
nl

bkl =
1
nk

blk,

where vertex i, respectively j, belongs to an orbit of size nk, respectively nl . As in the proof, each summand in ∑u∈∆k,v∈∆l
auv is

constant and, therefore,

bkl =
1
|∆k| ∑

u∈∆k,v∈∆l

auv =
1
|∆k|
|∆k||∆l |ai j = |∆l |ai j,

which gives the first equality. The second equality follows from observing that, although Ql(A) = (bkl) is non-symmetric,
bkl =

nl
nk

blk for all k, l.
As in the Main Text, we quantify the redundancy in an arbitrary sparse, respectively full, network measure using

csparse =
mQ

mG
= m̃Q and cfull =

n2
Q

n2
G

= ñ2
Q.

These are therefore the compression ratios obtained by using the quotient to represent a sparse, respectively full, network
measure on G . The values of csparse = and cfull for our test networks are given in Table 1 in the Main Text.

In summary, we have a simple compression/decompression procedure (Algorithms 1 and 2 below, or 2 and 3 in Methods)
that eliminates the symmetry-induced redundancies in a network measure, and achieves exact recovery for external edges (the
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vast majority of edges, or vertex pairs), and average recovery for internal edges.

Input: adjacency matrix A, characteristic matrix S
Output: quotient matrix B

B← ST AS

Algorithm 1: Average symmetry compression.

Input: quotient matrix B, characteristic matrix S
Output: adjacency matrix Aavg

Λ← diag(sum(S))
R← SΛ−1

Aavg← RBRT

Algorithm 2: Average symmetry decompression.

Lossless Compression and Recovery
We can achieve lossless compression if we recover the exact internal motif connectivity as well. This can be done by exploiting
the structure of BSMs, which account for most of the symmetry in real-world networks. If the motif is basic, we can preserve
the exact parent network connectivity in an annotated quotient, as follows. Each orbit in a BSM is a uniform graph Kα,β

n which
appears in the quotient as a single vertex with a self-loop weighted by (n−1)α +β (Figure 2 (c, top) in Main Text). Hence if
we annotate this vertex in the quotient by not only n but also α , or β , we can recover the internal connectivity. Similarly, the
connectivity between two orbits in the same symmetric motif is given by two parameters γ , δ (undirected case) and appears
in the quotient as an edge weighted (n−1)γ +δ (Figure 2 (c, bottom) in Main Text) and thus can also be recovered from a
quotient with edges annotated by γ , or δ .

There is no general formula for an arbitrary non-basic symmetric motif, and for those we can either record their internal
connectivity separately, or, alternatively, leave them unchanged in the quotient, by taking a partial quotient, the basic quotient,
written Qbasic, with respect to the partition of the vertex set into orbits in BSMs only (vertices in non-basic symmetric motifs
become fixed points and become part of the asymmetric core). The annotated (as above) basic quotient achieves most of the
symmetry reduction in a typical empirical network (ñbasic

Q ≈ ñQ, m̃basic
Q ≈ m̃Q, see SI Table 1) while retaining all the parent

network connectivity. However, to maintain the same vertex labelling as in the parent network, we also need to record, for each
pairs of orbits in the same symmetric motif, the corresponding permutation of the second orbit (Theorem 2(ii)), as otherwise we
loose vertex identity on each orbit.

Similarly to average compression, we introduce compression ratios for lossless compression with respect to the basic
quotient

cbasic
sparse =

mQbasic

mG
= m̃basic

Q and cbasic
full =

n2
Qbasic

n2
G

= (ñbasic
Q )2, (16)

and note that typically cbasic
sparse ≈ csparse and cbasic

full ≈ cfull for a real-world network (SI Table 1).
Algorithms for lossless compression and recovery with vertex identity based on the basic quotient are described below

(Algorithms 3 and 4), and MATLAB implementations for BSMs up to two orbits are available at21. The results reported in
Figure 3 in the Main Text are with respect to these implementations, and the actual compression ratios reported include the size
of the annotation data for lossless compression with vertex identity (a very small fraction of the size of the quotient in practice,
adding at most 0.02% to the basic full compression ratio in all our test cases).

SI Computational Reduction
Network symmetries can also be used to reduce the computational time of a network measure F . Recall that a sparse, respectively
full, network measure consists on at most mG , respectively n2

G , non-zero values F(i, j). Since F(i, j) = F(σ(i),σ( j)) for
each σ ∈ Aut(G ), we essentially need to evaluate F on mQ, respectively n2

Q, orbit representatives only. This amounts to a
computational reduction ratio between csparse and cfull. Of course, this assumes that the calculation on each pair of vertices is
independent of one another, which is often not the case. Moreover, the calculation on each pair F(i, j) is still performed on the
whole network G . Next we investigate whether we could perform the calculation on the quotient instead, which would lead to
greater computational gains by evaluating F on a smaller graph.

We call a network measure F partially quotient recoverable if it can be applied to a quotient network and all the external
edges of F(G ) can be recovered from F(Q), for all networks G . (Here Q is a quotient of G , possibly basic or annotated.)
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Input: adjacency matrix A, characteristic matrix for the basic quotient S, list of BSMs motifs
Output: quotient matrix B, annotation structure a

B← ST AS

extract orbits from S
foreach orb in orbits do

rep← min(orb)
β ← A(rep, rep)
store β in annotation structure a

end

kmax← max(size(motifs)) maximal number of orbits in a motif
for k← 2 to kmax do

extract k-BSM (list of BSMs with k orbits) from motifs
foreach bsm in k-BSM do

foreach pairs of distinct orbits V1,V2 in bsm do
compute δ and permutation of V2 perm such that A(k,perm(k)) = δ for all k ∈V1
store orbit numbers (with respect to S), δ and perm in annotation structure a

end
end

end
Algorithm 3: Lossless symmetry compression.

Input: quotient matrix B, characteristic matrix S, annotation structure a
Output: adjacency matrix A

Λ← diag(sum(S))
R← SΛ−1

A← RBRT

extract orbits from S
foreach orb in orbits do

n← size(orb)
extract β from a
compute α from B, β and n (using [B]orb,orb = n((n−1)α +β ))

construct adjacency matrix of the orbit Aα,β
n

A(orb,orb)← Aα,β
n

end

extract pairs of orbits in the same BSM from a
foreach (V1,V2) in pairs do

n← size(V1)
extract δ , perm from a
compute γ from B, δ and n (using [B]V1,V2 = n((n−1)γ +δ ))

construct matrix Aγ,δ
n

A(V1,perm)← Aγ,δ
n

A(perm,V1)← Aγ,δ
n

end
Algorithm 4: Lossless symmetry decompression.
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Since the quotient averages the network connectivity, we can often recover the average values of F between orbits as well. We
call F average quotient recoverable if, in addition to external edges, the average intra-motif edges can be recovered from F(Q).
A typical situation is when F(Q) equals the quotient representation of F , Q(F(G )), that is, in symbols,

F(Q) = Q(F(G )). (17)

(Recall that we can recover the external edges, and the average internal edges, of F(G ) from Q(F(G )), for any version of the
quotient, by Theorem 3 and (15)). We will show that communicability is average quotient recoverable (see the Communicability
section below), and shortest path distance is partially, but not average, quotient recoverable (see the Shortest Path Distance
below). Not every measure can be (partially) recovered from the quotient, for example the number of distinct paths between
two vertices. Note that the word ‘partially’ can be misleading: typically almost all edges are external (see exts and int f in Table
1 in the Main Text).

Finally, we call F fully quotient recoverable if the external and internal edges intra-motif edges, that is, the whole network
representation F(G ), can be obtained from F(Q), for every network G . Technically, the parent network G can be fully
recovered from an annotated basic quotient (see e.g. lossless compression above), so by full recoverability we mean, beyond
evaluating F(Q), a local (hence parallelizable) computation on each symmetric motif (typically a very small graph). For
example, communicability is fully quotient recoverable (see Communicability), and the shortest path distances by reconstructing
each motif at a time (see Shortest Path Distance). When quotient recoverability holds, there is a substantial computational
reduction by evaluating F on a smaller graph. For instance, if F has time complexity O( f (n,m)), then we can evaluate F on Q
on a fraction f (ñQ, m̃Q) of the time. In Figure 4 in the Main Text, we report the computational time reduction of evaluating F
on the quotient for the network measures, and the test networks, considered in this article.

SI Spectral Signatures of Symmetry
Preliminaries
Symmetry naturally produces high-multiplicity eigenvalues: if v is an eigenvector of the adjacency matrix A of a (possibly
weighted, directed) network G with eigenvalue λ , so is Pv,

APv = PAv = λPv, (18)

for any P permutation matrix representing an automorphism of G , and v and Pv will generally be linearly independent. In8,
the authors formalise and quantify the effects of network symmetry on the spectrum and eigenvectors of real-world networks,
predicting the observed ‘peaks’ in spectral density and showing that symmetry explains most of their multiplicity. Here we
explain how the spectral results in8 generalise to weighted networks with symmetries, such as the network representation F(G )
of a structural network measure F .

Let A = (ai j) be the n× n adjacency matrix of an arbitrarily weighted and directed network, B = (bkl) its m×m (left)
quotient matrix with respect to the orbit partition V1∪ . . .∪Vm, and S the n×m characteristic matrix of the partition. A vector
v ∈ Rn, respectively w ∈ Rm, can be seen as a vector on (the vertices of) the parent, respectively quotient, network. Then Sw is
the vector w lifted to the parent network by repeating the entries on each Vj. Similarly, ST v (where ST is the matrix transpose)
is the vector v projected to the quotient by adding all its entries on each Vj. Note that Sw 6= 0 if w 6= 0. We call the vector v
orthogonal to the partition if its projection ST v is zero, that is, the sum of the entries of v on each orbit is zero.

The partition into orbits satisfy important regularity conditions. A partition of the vertex set V = V1 ∪ . . .∪Vm is left
equitable if

∑
j∈Vl

ai1 j = ∑
j∈Vl

ai2 j for all i1, i2 ∈Vk, for all 1≤ k, l ≤ m, (19)

that is, if the connectivity from a node in Vi to all nodes in Vj is independent of the chosen node in Vi. Similarly, the partition is
right equitable if

∑
i∈Vk

ai j1 = ∑
i∈Vk

ai j2 for all j1, j2 ∈Vl , for all 1≤ k, l ≤ m. (20)

Clearly, if A is symmetric, being left and right equitable are equivalent properties. Next we show matrix characterisations of left
and right equitability, and that the partition into orbits is both left and right equitable.

Proposition 3. Let V =V1∪ . . .Vm be a partition of the vertex set of a graph with adjacency matrix A = (ai j), and let S be the
characteristic matrix of the partition. Write Ql(A), respectively Qr(A) for the left, respectively right, quotient with respect to
the partition.

(i) The partition is left equitable partition if and only if AS = SQl(A).
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(ii) The partition is right equitable partition if and only if AT S = SQr(A)T .

(iii) The partition into orbits of the automorphism group V = ∆1∪ . . .∪∆m is left and right equitable.

Proof. (i) Fix 1≤ i≤ n and 1≤ k ≤ m, and suppose i ∈Vl . Then

[AS]ik = ∑
j∈Vk

ai j,

and, using the left equitable condition,

[SQl(A)]ik = [Ql(A)]lk =
1
|Vl | ∑

i1∈Vl
j∈Vk

ai1 j =
1
|Vl |
|Vl | ∑

j∈Vk

ai j = ∑
j∈Vk

ai j.

For the converse, note that [AS]il does not depend on i but on the orbit of i. Namely, given i1, i2 ∈Vk,

∑
j∈Vl

ai1 j = [AS]i1l = [Ql(A)]kl = [AS]i2l = ∑
j∈Vl

ai2 j.

(ii) Similarly, with i, k and l as above,

[AT S]ik = ∑
j∈Vk

a ji,

and, using the right equitable condition,

[SQr(A)T ]ik = [Qr(A)]kl =
1
|Vl | ∑

i1∈Vl
j∈Vk

a ji1 =
1
|Vl |
|Vl | ∑

j∈Vk

a ji = ∑
j∈Vk

a ji.

For the converse, let j1, j2 ∈Vl , then

∑
i∈Vk

ai j1 = [AT S] j1k = [Qr(A)]kl = [AT S] j2k = ∑
i∈Vk

ai j2 .

(iii) Given i1 and i2 in the same orbit ∆k, choose an automorphism σ such that σ(i1) = i2. Then, since automorphisms respect
the adjacency matrix,

∑
j∈∆l

ai1 j = ∑
j∈∆l

aσ(i1)σ( j) = ∑
j∈∆l

ai2σ( j) = ∑
j∈∆l

ai2 j,

where the last equality follows from the fact that an element in a group permutes orbits, in this case, { j : j ∈ ∆l}= {σ( j) : j ∈
∆l}. Hence the partition into orbits is left equitable. A similar argument shows that it is right equitable as well.

Note that (iii) holds for any subset of orbits or any subgroup of the automorphism group (in particular, for the basic
quotient).

Spectral Decomposition Theorem
The key spectral property of the quotient into orbits of the automorphism group (or any subgroup) is that its eigenvalues are a
subset of the eigenvalues of the parent network. Namely, if v is a right (respectively left) eigenvector of Ql(A) (respectively
Qr(A)) with eigenvalue λ , then Sv (respectively vST ) is a right (respectively left) eigenvector of A with the same eigenvalue.
(These two statement are obviously equivalent if A is symmetric.) This follows immediately from the matrix characterisation of
equitability above:

Ql(A)v = λv =⇒ A(Sv) = SQl(A)v = λSv, and (21)

vQr(A) = λv =⇒ AT (SvT ) = SQr(A)T vT = S(vQr(A))T = λSvT ⇐⇒ (vST )A = λvST . (22)

(Recall that Sv 6= 0 if v 6= 0.) All in all, the spectrum of the quotient is a subset of the spectrum of the graph, with eigenvectors
lifted from the quotient by repeating entries on orbits. Moreover, we can complete an eigenbasis with eigenvectors orthogonal
to the partition (adding up to zero on each orbit), at least in the symmetric case.
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Theorem 4. Suppose that A is an n×n real symmetric matrix and B the m×m (left) quotient matrix with respect to an equitable
partition V1∪ . . .∪Vm of the set {1,2, . . . ,n}. Let S be the characteristic matrix of the partition. Then A has an eigenbasis of
the form

{Sv1, . . . ,Svm,w1, . . . ,wn−m} ,

where {v1, . . . ,vm} is any eigenbasis of B, and ST wi = 0 for all i.

Proof. Recall that Sv 6= 0 if v 6= 0 (S lifts the vector v from the quotient by repeating entries on each orbit) so the linear map

Rm→ Rn,v 7→ Sv

has trivial kernel and hence it is an isomorphism onto its image. In particular, B = {Sv1, . . . ,Svm} is also a linearly independent
set, and they are all eigenvectors of A, since AS = SB as the partition is equitable. To finish the proof we need to complete B
to a basis {Sv1, . . . ,Svm,w1, . . . ,wn−m} such that each w j is an A-eigenvector orthogonal to all Svi. As B is a basis of Im(S),
this would imply wi ∈ Im(S)⊥ = Ker(ST ), giving ST wi = 0 for all i, as desired. Since A is diagonalisable, Rn decomposes
as an orthogonal direct sum of eigenspaces, Rn =

⊕
λ Eλ . In each Eλ , we can find vectors w j such that they complete

Vλ = {Svi ∈ B |vi λ -eigenvector} to a basis of Eλ and that are orthogonal to all vectors in Vλ (consider the orthogonal
complement of the subspace generated by Vλ in Eλ ). Repeating this procedure on each Eλ , we find vectors {w1, . . . ,wn−m} as
needed.

The statement and proof above holds for arbitrary matrices A by replacing ‘eigenbasis’ by ‘maximal linearly independent
set’ and removing the condition ST wi = 0. It would be interesting to know whether the condition ST wi = 0 holds for motif
eigenvectors in the directed case as well (the proof above is no longer valid).

We call {Sv1, . . . ,Svm} quotient eigenvectors of G : they arise from a quotient eigenbasis by repeating values on each orbit;
and we call {w1, . . . ,wn−m} redundant eigenvectors of G : they arise from the symmetries in the network (and they ‘disappear’
in the quotient), and add up to zero on each orbit (ST wi = 0). Similarly, we use the terminology quotient and redundant
eigenvalues for their associated spectrum.

Further to the spectral decomposition theorem, we can give an even more precise description of the redundant spectrum: it
is made of the contributions from the spectrum of each individual symmetric motif, as we explain next.

Redundant Spectrum of Symmetric Motifs
As stated in the Main Text (Theorem 3 in Methods), the redundant spectrum of a graph M is a subset of the spectrum of any
(undirected) network G containing M as a symmetric motif. This essentially follows from the condition ST w = 0 for redundant
eigenvectors of M .

Theorem 5. Let M be a symmetric motif of a (possibly weighted) undirected graph G . If (λ ,w) is a redundant eigenpair of
M then (λ , w̃) is a eigenpair of G , where w̃ is equal to w on (the vertices of) M , and zero elsewhere.

Proof. Since (λ ,v) is an M -eigenpair,

∑
j∈V (M )

[AM ]i jw j = λwi ∀ i ∈V (M ),

where AM is the adjacency matrix of M . We can decompose M into orbits,

V (M ) =V1∪ . . .∪Vm,

and, by the spectral decomposition theorem above applied to M , w is orthogonal to each orbit, that is,

∑
j∈Vi

w j = 0 ∀1≤ i≤ m.

We need to show that (λ , w̃) is a G -eigenpair. Let us write A for the adjacency matrix of G (recall M is a subgraph so A
restricts to AM on M ). We need to show Aw̃ = λ w̃. Given i ∈V (G ), we have two cases. First, if i ∈V (M ),

∑
j∈V (G )

[A]i jw̃ j = ∑
j∈V (M )

[A]i jw̃ j + ∑
j∈V (G )\V (M )

[A]i jw̃ j

= ∑
j∈V (M )

[A]i jw j = λwi = λ w̃i,
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since w̃ equals w on M , and is zero outside M . The second case, when i ∈V (G )\V (M ), gives

∑
j∈V (G )

[A]i jw̃ j = ∑
j∈V (M )

[A]i jw j,

as before, and then we use the decomposition of M into orbits,

∑
j∈V (M )

[A]i jw j =
m

∑
k=1

∑
j∈Vk

[A]i jw j =
m

∑
k=1

αk ∑
j∈Vk

w j .

Here we have used that the vertex i, outside the motif, connects uniformly to each orbit (see Main Text), that is, Ai j1 = Ai j2 for
all j1, j2 ∈Vk, and we call this quantity αk. Finally, recall that w is orthogonal to each orbit, to conclude

∑
j∈V (M )

[A]i jw j =
m

∑
k=1

αk ∑
j∈Vk

w j = 0 = λ w̃i .

Therefore, the redundant spectrum of G is the union of the redundant eigenvalues of the symmetric motifs, together with
their redundant eigenvectors localised on them. Since most symmetric motifs in real-world networks are basic, most symmetric
motifs in the network representation of a network measure will be basic too. Given their constrained structure, one can in fact
determine the redundant spectrum of BSMs with up to few orbits, for arbitrary undirected networks with symmetry. This is
what we do next.

Redundant Spectrum of a 1-orbit BSM

A BSM with one orbit is an (α,β )-uniform graph Kα,β
n with adjacency matrix Aα,β

n = (ai j) given by ai j = α and aii = β for all
i 6= j. Then Kα,β

n has eigenvalues (n−1)α +β (non-redundant), with multiplicity 1, and −α +β (redundant), with multiplicity
n−1. The corresponding eigenvectors are 1, the constant vector 1 (non-redundant), and ei, the vectors with non-zero entries
1 at position 1, and −1 at position i, 2≤ i≤ n (redundant). This can be shown directly by computing Aα,β

n 1 and Aα,β
n ei, and

noting that 1, e2, . . . , en are linearly independent (although not orthogonal) and thus form an eigenbasis. Indeed, Aα,β
n 1 is the

vector of column sums of the matrix Aα,β
n , which are constant (n−1)α +β , and Aα,β

n ei is the constant 0 vector, except possibly
at positions 1, which equals β −α , and i, which equals α−β .

Note that, for unweighted graphs without loops (β = 0, α ∈ {0,1}), we recover the redundant eigenvalues 0 and −1
predicted in8.

Redundant Spectrum of a 2-orbit BSM
A BSM with two orbits is a uniform join of the form

Kα1,β1
n

γ,δ←→ Kα2,β2
n . (23)

Define a = α1−β1, b = α2−β2, c = γ−δ , and note that c 6= 0: otherwise γ = δ and we can freely permute one orbit while
fixing the other, that is, this would not be a BSM with two orbits but rather two BSMs with one orbit each. As above, let ei be
the vector with non-zero entries 1 at position 1, and −1 at position i, for any 2≤ i≤ n.

Lemma 1. The following set of vectors is linearly independent

{(κ1 ei |ei),(κ2 ei |ei) | 2≤ i≤ n}

for all κ1 6= κ2 ∈ R.

Proof. Define the (n−1)×n matrix
Bn =

(
1 | −Idn−1

)
where 1 is a constant 1 column vector, and Idn−1 the identity matrix of size n−1. The set of vectors in the statement can be
arranged in block matrix form as (

κ1 Bn Bn
κ2 Bn Bn

)
.
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This matrix has a minor of order 2(n−1),

det
(
−κ1 Idn−1 −Idn−1
−κ2 Idn−1 −Idn−1

)
.

Using that det
(

A B
C D

)
= AD−BC whenever A, B, C, D are square blocks of the same size and C commutes with D22, this minor

equals

det
(
−κ1 Idn−1−κ2 Idn−1

)
= (−1)n−1(κ1 +κ2)

n−1 6= 0 ⇐⇒ κ1 6= κ2.

Next we derive conditions for a vector vi = (κei|ei) to be an eigenvector of the uniform join (23), that is, Avi = λvi, for
some λ ∈ R, where A is the (symmetric) adjacency matrix of the uniform join,

A =

(
Aα1,β1

n Aγ,δ
n

Aγ,δ
n Aα2,β2

n

)
. (24)

The jth entry of the vector Av is

κβ1−κα1 +δ − γ =−(κa+ c) j = 1
κα1−κβ1 + γ−δ = κa+ c j = i

κδ −κγ +β2−α2 =−(κc+b) j = n+1
κγ−κδ +α2−β2 = κc+b j = n+ i

0 otherwise.

Comparing these with the entries of the vector λvi, we obtain

Avi = λvi ⇐⇒ (κa+ c =−λκ and κc+b =−λ ) , (25)

The two equations on the right-hand side are satisfied if and only if λ =−κc−b and κ is a solution of the quadratic equation

cκ
2 +(b−a)κ− c = 0, (26)

which has two distinct real solutions

(a−b)±
√

(a−b)2 +4c2

2c
, (27)

since c 6= 0, as explained above. Together with the lemma, we have shown the following (Theorem 4 in Methods).

Theorem 6. The redundant spectrum of a symmetric motif with two orbits Kα1,β1
n

γ,δ←→ Kα2,β2
n is given by the eigenvalues

λ1 =−b− cκ1 =
−(a+b)+

√
(a−b)2 +4c2

2
, and,

λ2 =−b− cκ2 =
−(a+b)−

√
(a−b)2 +4c2

2
,

each with multiplicity n−1, and eigenvectors (κ1ei|ei) and (κ2ei|ei) respectively, where κ1 and κ2 are the two solutions of the
quadratic equation cκ2 +(b−a)κ− c = 0, a = α1−β1, b = α2−β2 and c = γ−δ 6= 0.

It is interesting to note that the redundant eigenvalues of uniform graphs and joins depend on the differences (α1−β1,
α2−β2, γ−δ ) rather than the particular coefficients. Therefore, for redundant spectrum calculations, we can assume all BSMs
to be loop-less (β = 0), and uniform joins of type (0,δ ).

For unweighted graphs without loops, we recover the redundant eigenvalues for BSMs with two orbits predicted in8, as
follows. We have β1 = β2 = 0, α1,α2,γ,δ ∈ {0,1} and thus a,b ∈ {0,1} and c ∈ {−1,1}. If a = b, the quadratic equation
becomes κ2−1 = 0 with solutions κ =±1 and thus λ =−b− cκ ∈ {−2,−1,0,1}. If a 6= b we can assume a = 1, b = 0 and
the quadratic cκ−κ− c = 0 has solutions ϕ and 1−ϕ if c = 1, −ϕ and ϕ−1 if c =−1, where ϕ = 1+

√
5

2 is the golden ratio.
In either case, the redundant eigenvalues λ =−b− cκ =−cκ are −ϕ and ϕ−1. Altogether, the redundant eigenvalues for
2-orbit BSMs are {−2,−ϕ,−1,0,ϕ−1,1}, which equals the redundant eigenvalues RSpec2 in the notation of8.
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We omit the calculation of the redundant spectrum of BSMs with three (or more) orbits, as it becomes much more elaborate,
and its relevance in real-world networks is less justified (SI Table 1).

For real-world networks, we predict symmetry to explain most of the discrete part of the spectrum (observed as ‘peaks’ in the
spectral density) of the network representation of any network measure F (this can be quantified by comparing high-multiplicity
eigenvalues in the parent versus the quotient network). This is shown for the Laplacian eigenvalues on six of our test networks
in Figure 5 in the Main Text, with 89% to 97% of the discrete spectrum explained by the underlying network symmetry.

Let us define RSpecF
1 and RSpecF

2 as the sets of redundant eigenvalues of F(G ) associated to BSMs of one, respectively
two, orbits, for any network G , given by formulae above (or Table 2 in the Main Text). Our results predict most of the discrete
part of the spectrum of F(G ) to occur at the values of these sets (cf. Figure 5 in the Main Text). For specific choices of F
(communicability, Laplacian, shortest path), we will be able to describe these sets in more detail, and for the adjacency matrix,
as explained above, we recover the sets RSpec1 and RSpec2 in8.

Eigendecomposition Algorithm
We can use the spectral decomposition theorem above to compute the spectrum and eigenbasis of a weighted undirected network
with symmetries (equivalently, a diagonalisation of the symmetric adjacency matrix A =UDUT ), such as F(G ), from those of
the quotient, and the redundant ones of the symmetric motifs. The algorithm (Algorithm 5 below, or 4 in Methods) computes
the spectral decomposition (eigendecomposition) of the quotient matrix, then, for each motif, the redundant eigenpairs.

Input: adjacency matrix A, characteristic matrix S, list of motifs
Output: spectral decomposition A =UDUT

initialise U , D to zero matrices
Λ← diag(sum(S))
Bsym← Λ−1/2ST ASΛ−1/2

[Uq,Dq]← eig(Bsym) so that Bsym =UqDqU−1
q

Uq← ΛUq

U ←
(
SUq 0

)
D←

(
Dq 0
0 0

)
foreach motif do

Asm← A(motif,motif)
compute orbits from motif and S
Ssm← S(motif,orbits)
[Usm,Dsm]← eig(Asm)
for λ ∈ unique(diag(Dsm)) do

Uλ ← λ -eigenvectors from Usm

Z← null(ST
smUλ )

d← ncol(Z)
if d > 0 then

store Uλ Z in U
store λ in D with multiplicity d

end
end

end
Algorithm 5: Eigendecomposition algorithm.

In more detail, we first compute the spectral decomposition eig of the symmetric quotient Bsym = Λ−1/2ST ASΛ−1/2 where
Λ is the diagonal matrix of the orbit sizes (which can be obtained as the column sums of S). This matrix is symmetric and has
the same eigenvalues as the left quotient. Moreover, if Bsym =UqDqU−1

q then the left quotient eigenvectors are the columns of
ΛUq. These become, in turn, eigenvectors of A by repeating their values on each orbit, we can be obtained mathematically by
left multiplying by the characteristic matrix S. Then, for each motif, we compute the redudant eigenpairs using a null space
matrix (see below), storing eigenvalues and localised (zero outside the motif) eigenvectors.

Only redundant eigenvectors of a symmetric motif (that is, those which add up to zero on each orbit) become eigenvectors of
A by extending them as zero outside the symmetric motif (Theorem 5). Therefore, we need to construct redundant eigenvectors
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from the ouput of eig on each motif (the spectral decomposition of the corresponding submatrix). If Uλ =
(
v1 . . . vk

)
are

λ -eigenvectors of a symmetric motif with characteristic matrix of the orbit partition Ssm, we need to find linear combinations
such that

ST
sm (α1v1 + . . .+αkvk) = 0 ⇐⇒ ST

smUλ

α1
...

αk.

 . (28)

Therefore, if the matrix Z 6= 0 represents the null space of ST
smUλ , that is, ST

smUλ Z = 0 and ZT Z = 0, then the columns of Uλ Z
are precisely the redundant eigenvectors. This is implemented in Algorithm 5 within the innermost for loop.

SI Vertex Measures
The network representation we have exploited so far does not apply directly to a vertex measure G, unless G is defined via a
pairwise network measure (this is often the case). We still have, however, symmetry-induced compression, and computational
reducibility, as mentioned in the Main Text and detailed below.

As a vertex measure G is constant on orbits, we only need to store one value per orbit. Let S be the characteristic matrix of
the partition of the vertex set into orbits, and Λ the diagonal matrix of orbit sizes (column sums of S). If G is represented by
a vector v = (G(i)) of length nG , we can compress it by storing only one value per orbit, formally w = Λ−1ST v, a vector of
length nQ. We recover v = ST w, as the next result guarantees (Theorem 5 in Methods).

Theorem 7. If v is a vector of length nG constant on orbits, then SΛ−1ST v = v.

Proof. First, note that ST S = Λ (this holds for any partition of the vertex set),

[ST S]αβ = ∑
i
[ST ]αi[S]iβ = ∑

i
[S]iα [S]iβ =

{
0 if α 6= β ,
|Vα | if α = β .

As v is constant on orbits, it is already of the form v = Sw for some w. Therefore

SΛ
−1ST v = SΛ

−1ST Sw = Sw = v.

In terms of computational reduction, we only need to evaluate G once per orbit, achieving an ñQ time reduction, assuming
G is evaluated at vertices independently, which is often not the case. More interesting is the case when G can be recovered from
its value at the quotient network. We call G quotient recoverable if G(G ) can be obtained from G(Q), where Q is a (possibly
annotated, or basic) quotient of G , for all networks G . Not every vertex measure is quotient recoverable, but when one is, it can
lead lead to a significant computational time reduction (Figure 4 in the Main Text).

SI Applications
Network Symmetry Computation
The results in the Main Text depend on an effective computation, storage and manipulation of the symmetries on an (unweighted,
undirected, possibly very large) network G . Here we present our approach, based in the geometric decomposition of the
automorphism group of the graph. Full implementations of the algorithms outlined below are available at21. (For weighted or
directed network, see concluding remarks in this section.)

We obtain the geometric decomposition in three steps. First, we use a graph automorphism algorithm to compute generators.
Secondly, we partition the generators into disjoint-support classes (each class corresponds to a symmetric motif). Thirdly, we
compute symmetric motif orbits and types from the generators and their disjoint-support partition. Below we explain each step
in more detail.

We use saucy323 to compute a list of generators of the automorphism group from an edge list. Other open-source software
tools are available, such as nauty16, 24, traces24, 25 or bliss26. Although saucy does not compute a canonical labelling
(relevant to the graph isomorphism problem but not to the geometric decomposition), it is extremely fast for large but sparse
networks27 such as the ones representing real-world systems. In practice, we found a list of generators in less than two seconds
for all our test networks, except our largest example LiveJournal, in just over eight seconds (Table 1 in the Main Text). Due to
the similarities with nauty, it would be interesting to know whether the set of generators produced by saucy is also essential,
which would guarantee that the geometric decomposition below is optimal; this seems to be the case in practice for all our test
networks.
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The next step is to partition the set of generators X into support-disjoint classes X = X1 ∪ . . .∪Xk. For that, we use a
bipartite graph representation of vertices V and generators X . Let B be the graph with vertex set V ∪X and undirected edges
{i,σ} whenever i ∈ supp(σ). Clearly, the finest partition into support-disjoint classes of generators correspond to the connected
components of B (as vertex sets intersected with X). Using for instance Tarjan’s algorithm, we have an efficient procedure to
find the support-disjoint decomposition in linear time. In practice, this step took less than five seconds for each of our test
networks. Each class in the support-disjoint partition above corresponds to (the vertex set of) a symmetric motif, by Eqs. 2 and
3.

The last step consists of computing the orbits and type of each symmetric motif. This was done in GAP28, but any computer
algebra system that can manipulate permutation groups can be used. We applied Algorithm 6 (Algorithm 1 in Methods) to
each Xi in the support-disjoint decomposition above (this can be done in parallel). The pseudocode in Algorithm 6 assumes a
computer algebra system that can compute the group generated by a set of permutations, its orbits, and whether the induced
action on an orbit is a natural symmetric group (that is, a group acting as the symmetric group on its moved points). If that is
the case, and all orbits are of the same size m, it is a basic symmetric motif of type m, that is, the corresponding geometric
factor is Sm. If this is not the case, it is a complex symmetric motif and we set m = 0. Algorithm 6 outputs a list of orbits, and
the integer m. Note that the second part of the algorithm (the outermost if-then-else loop) is only necessary if we need the
orbit types, for example in order to later compute the basic quotient. In terms of computational time, our GAP non-parallel
implementation computes about 2,000 generators per second in our small and medium networks, which suggests at most 205
seconds for our largest network (and divided by the number of processors available in a parallel implementation). Unfortunately,
the generator-per-second rate decreases with the size of the network (up to 10 generators per second for the largest network)
due to the internal representation of permutation groups in GAP. Fixing this issue is beyond the scope of the present article, but
perhaps other choice of software should be considered for computations involving large integers.

Input: X a set of permutations of a symmetric motif
Output: O1, . . . ,Ok orbits, and type m, of the symmetric motif

H← Group(X)
{O1, . . . ,Ok}← Orbits(H)

m← min(size(O1), . . . ,size(Ok))
if m == max(size(O1), . . . ,size(Ok)) then

for i← 1 to k do
if not IsNaturalSymmetricGroup(Action(H,Oi)) then

m← 0
break

end
end

else
m← 0

end
Algorithm 6: Orbits and type of a symmetric motif.

In terms of data structures, we represent vertices by integers 0 to nG − 1, and an undirected, unweighted graph by an
edgelist of vertex pairs, which saucy transforms into a list of generators, each written as a list of vertex transpositions. The
support-disjoint partition genpartition is simply a integer array such that genpartition(i) = j if the ith generator belongs to X j.
Finally, each symmetric motif is store in motifs as a list of orbits, and their type in an integer vector motiftype. Alternatively,
we could store each orbit (a list of integers) separately in a list orbits and the assignment of orbits to motifs in an integer array
orbpartition. Also note that the partition of the vertex set into orbits can be also represented by its characteristic matrix S. This
is an n×m matrix with at most n non-zero entries, hence it can be stored and manipulated very efficiently in sparse form.

We end this section with a few remarks. The network symmetry computation is a pre-processing step that needs to be
calculated only once for each network, and can be stored efficiently as explained above (e.g. 16.3MB for our largest test network,
compared to 700MB for the edge list). As mentioned before, most of the results in this paper can be applied to networks with
edge weights or directions, or other edge or node labels, by restricting to the symmetries preserving the additional structure. In
that situation, one can incorporate the restrictions to the automorphism group calculation (saucy admits vertex colouring, and
nauty both vertex colouring and directed edges), or compute the geometric decomposition of the underlying unweighted,
undirected graph and then incorporate the restrictions one symmetric motif at a time (cf. Theorem 1).
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Communicability
Communicability is a measure of network connectivity between pairs of vertices which takes into account all possible walks
from one vertex to the other by using the powers of the adjacency matrix A. Namely, if we choose coefficients ak such as the
matrix series

∞

∑
k=0

ak Ak (29)

converges, then the (i, j)-entry of this limit matrix is a weighted sum of all the walks from i to j, and thus can be used as a
network connectivity measure. We normally expect coefficients ak such that we obtain positive values for the communicability,
and which give less weight to longer walks. An standard choice is the factorial coefficients ak = 1

k! , which guarantees
convergence for any matrix A and, in fact,

eA =
∞

∑
k=0

Ak

k!
, (30)

the exponential matrix of A. The diagonal entry [eA]ii is called the subgraph centrality of vertex i29, and its sum over all the
vertices the Estrada index of the network30. In general, one can define communicability for an arbitrary real analytic function
(such as f (x) = ex) within its radius of convergence R around 0,

f (x) =
∞

∑
k=0

ak xk |x|< R . (31)

Given such a function f , we define the f -communicability matrix of a network with adjacency matrix A as

f (A) =
∞

∑
k=0

ak Ak if ‖A‖< R , (32)

where ‖ · ‖ is a given matrix norm, and the power series convergence is with respect to that norm. (For a detailed treatment of
matrix norms and convergence see22.) From now on we will implicitly assume all calculations to be within the convergence
radius of f , possibly by normalising the matrix A. The f -communicability from vertex i to vertex j is thus the (i, j)-entry of the
communicability matrix, [ f (A)]i j. For consistent terminology, we will call the f -communicability of a vertex with itself its
f -centrality, inherently a network centrality measure. (We consider other centrality measures, including subgraph centrality,
and the effect of symmetry on them, below.) Note that matrix functions f (A) can be defined in more generality31, however the
power series definition is the one with an obvious graph theoretic interpretation.

Structural Properties
We represent communicability as a network on the same set of nodes. Namely, we define the f -communicability graph of G ,
written f (G ), as the graph with adjacency matrix f (A), which we call the communicability matrix. This is a weighted, complete
(and possibly directed, if A is not symmetric) graph with loops. For every i 6= j, there is an edge from vertex i to a vertex j
weighted by the communicability from i to j, and a self-loop at every vertex weighted by its f -centrality. The f -communicability
network, although dense, inherits all the symmetries of G and hence f (G ) has the same geometric decomposition, symmetric
motifs, and orbits. For real-world networks, most symmetric motifs will be basic and, as induced graphs, the basic symmetric
motifs are uniform joins of orbits, and each orbit is a uniform graph hence characterised by two parameters, the subgraph
centrality of each vertex, and the communicability between different vertices, within the orbit. In particular, this explains
what we observed in our toy example, Figure 1 in the Main Text. In terms of post-processing compression, as a full network
measures, average symmetry compression with ratio cfull and lossless symmetry compression with ratio cbasic

full apply, accounting
for the symmetry-induced redundancy present on f (G ), or f (A).

Quotient Recoverability
Communicability satisfies average quotient recoverability, as it ‘commutes’ with the quotient, that is, the communicability of
the quotient is the quotient of the communicability, in symbols,

f (Q(A)) = Q( f (A)). (33)

This is (17) for communicability, and implies exact recovery for external edges, and average recovery for internal edges. To
prove (33), let B = Q(A) be the (left) quotient matrix with respect to the partition into orbits. Since the partition is equitable,
we have AS = SB, and hence AnS = SBn. Now, using the matrix definition of the quotient, we have

Q( f (A)) = Λ
−1ST

(
∞

∑
n=0

anAn

)
S =

∞

∑
n=0

an
(
Λ
−1ST AnS

)
=

∞

∑
n=0

an
(
Λ
−1ST SBn)= ∞

∑
n=0

anBn = f (B), (34)
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since Λ−1ST S is the identity matrix.
Exact recovery for vertices within the same symmetric motif cannot be done in general, as the internal connectivity,

replaced by the average connectivity, is lost in the quotient. However, as mentioned in the Main Text, we can use the spectral
decomposition algorithm to reduce the computation of the communicability, as A =UDUT clearly implies f (A) =U f (D)UT .
The computational time reduction of this approach is displayed in Figure 4 in the Main Text, for the exponential function.

Spectral Properties
The f -communicability network has eigenvalues f (λ ), where λ is an eigenvalue of the original network, and same eigenvectors:
Av = λv implies f (A)v = f (λ )v (equivalently, A =UDUT implies f (A) =U f (D)UT ). In particular, its redundant spectrum
consists of the function f applied to the redundant spectrum of G , together with the redundant eigenvectors localised on the
symmetric motifs. In particular, for undirected, unweighted networks,

RSpec f -comm
1 = { f (λ ) | λ ∈ RSpec1}= { f (0), f (−1)}, and (35)

RSpec f -comm
2 = { f (λ ) | λ ∈ RSpec2}= { f (−2), f (−ϕ), f (−1), f (0), f (ϕ−1), f (1)}, (36)

account for most of the discrete part of the spectrum of the matrix f (A), for the adjacency matrix A of a typical real-world
network.

Shortest Path Distance
Let A = (ai j) be the adjacency matrix of an unweighted, but possibly directed, network G . A path of length n is a sequence
(v1,v2, . . . ,vn+1) of distinct vertices, except possibly v1 = vn+1, such that vi is connected to vi+1 for all 1 ≤ i ≤ n− 1. The
shortest path distance dG (u,v) is the length of the shortest (minimal length) path from u to v. (Technically, it is only a distance,
or metric, if G is undirected.) If p = (v1,v2, . . . ,vn) is a path and σ ∈ Aut(G ), we define σ(p) = (σ(v1),σ(v2), . . . ,σ(vn)),
also a path since σ is a bijection. A subpath of p is a path of the form (vk,vk+1, . . . ,vl) for some 1≤ k ≤ l ≤ n. A path p is a
shortest path if it is of minimal length between its endpoints.

The following result contains the claims in the Main Text (Theorem 6 in Results).

Theorem 8. Let A = (ai j) be as above. Then

(i) if (v1,v2, . . . ,vn) is a shortest path from v1 to vn and σ ∈ Aut(G ), then (σ(v1),σ(v2), . . . ,σ(vn)) is a shortest path from
σ(v1) to σ(vn);

(ii) if (v1,v2, . . . ,vn) is a shortest path from v1 to vn, and v1 and vn belong to different symmetric motifs, then vi and vi+1
belong to different orbits, for all 1≤ i≤ n−1;

(iii) if u and v belong to orbits U, respectively V , in different symmetric motifs, then the distance from u to v in G equals the
distance from U to V in the unweighted (or skeleton) quotient Q.

These statements mean that (i) automorphisms preserve shortest paths and their lengths; (ii) shortest paths do not contain
intra-orbit edges; and (iii) shortest path distance is a partially quotient recoverable structural measure.

Proof of Theorem. (i) Since automorphisms are bijections and preserve adjacency, (σ(v1),σ(v2), . . . ,σ(vn)) is a path from
σ(u) to σ(v) of the same length. If there were a shorter path (σ(u) = w1,w2, . . . ,σ(v) = wm), m < n, the same argument
applied to σ−1 gives a shorter path (u = σ−1(w1),σ

−1(w2), . . . ,v = σ−1(wm)) from u to v, a contradiction.
(ii) Any subpath of a minimal length path is also of minimal length between its endpoints. Arguing by contradiction,

there exists a subpath p = (w1,w2, . . . ,wn) (or p = (wn,wn−1, . . . ,w1)), such that w1 and w2 belong to the same orbit, and
wn belongs to a different symmetric motif. Hence, we can find σ ∈ Aut(G ) with σ(w2) = w1 and fixing wn. This implies
σ(p) = (σ(w1),σ(w2) = w1,σ(w3), . . . ,σ(wn) = wn), a shortest path by (i), of length n−1. The subpath (w1,σ(w3), . . . ,wn)
has length n−2, contradicting p being a minimal length path from w1 to wn. (The case p = (wn,wn−1, . . . ,w1) is analogous.)

(iii) Let p = (u = v1,v2, . . . ,vn+1 = v) be a shortest path from u to v, so that dG (u,v) = n. Let Vk be the orbit containing
vk, for all k. By (ii), Vk 6= Vk+1 for all 1 ≤ k ≤ n thus q = (U = V1,V2, . . . ,Vn+1 = V ) is a path in Q and dQ(U,V ) ≤ n. By
contradiction, assume there is a shorter path in Q from U to V , that is, (U =W1,W2, . . . ,Wm+1 =V ) with m < n. The we can
construct a path in G from u to v of length m (a contradiction), as follows. For each 1≤ i≤ m, Wi is connected to Wi+1 in Q,
hence there is a vertex in Wi connected to at least one vertex in Wi+1. Since vertices in an orbit are structurally equivalent, any
vertex in Wi is then connected to at least one vertex in Wi+1 (formally, if w ∈Wi is connected to w′ ∈Wi+1 then σ(w) ∈Wi is
connected to σ(w′) ∈Wi+1). This allows us to construct a path in G from u to v of length m < n, a contradiction.
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Distances between points within the same motif cannot in general be directly recovered from the quotient, not even for
BSMs. (Consider for instance the double star, motif M1, in Figure 1 in the Main Text. The distance from the top red to the
bottom blue vertex is three, while in the quotient is one.) In general, therefore, the shortest path distance is partially, but not
average, quotient recoverable. Intra-motif distances, if needed, could still be recovered one motif at a time. (If we are only
interested in large distances, computing them in the quotient suffices as one can show that d(i, j) ≤ 2k for i, j vertices in a
symmetric motif with k orbits.)

Note that these results can be exploited for other graph-theoretic notions defined in terms of distance, for example
eccentricity (and thus radius or diameter), which only depends on maximal distances and thus it can be computed directly in the
quotient (see section Eccentricity below).

In terms of post-calculation compression, the quotient compression ratio cfull applies, accounting for the amount of structural
redundancy due solely to symmetries. The spectral results, although perhaps less relevant, still apply for d(G ), the graph
encoding pairwise shortest path distances. The adjacency matrix d(A) = (dG (i, j)) is nonzero outside the diagonal, hence d(G )
is a all-to-all weighted network without self-loops and integer weights, and so is each symmetric motif. Using the formula in
Theorem 6, we can compute values of the most significant part of the discrete spectrum (redundant eigenvalues) of d(A),

RSpecd
1 = {−2,−1}, and RSpecd

2 =

{
−3,−2,−1,0,−2±

√
2,−3±

√
2,
−3±

√
5

2
,
−5±

√
5

2
,
−5±

√
13

2

}
. (37)

The shortest path distance can be generalised to positively weighted matrices, and then (i) and (ii) above still hold, with
similar proofs, but not (iii), as weights along a path are not preserved in the quotient. In would be interesting to incorporate
network symmetry to current shortest path algorithms, although this is outside the scope of the present article.

Laplacian Matrix
The Laplacian matrix L = D−A can be seen as the adjacency matrix of a Laplacian network L , which inherits the symmetries
of G as explained in the Main Text. The symmetric motifs are almost identical in L , except that all edges are weighted by
−1, and all vertices have self-loops weighted by their degrees in G . In particular, the motif structure depends on the how it
is embedded in the network. For example, an orbit in a BSM in G , originally a complete, respectively empty, graph in G ,
becomes a uniform graph Kε,d

n where ε =−1, respectively ε = 0, and d is the degree in G of a (and hence any) vertex in the
orbit. In particular, the symmetric motifs in L are not quite the Laplacian of the original motifs, as per the next result. Define
the external degree of a vertex as the number of adjacent vertices outside the motif it belongs to. The next result is Theorem 7
in Results.

Theorem 9. Let M be the vertex set of a symmetric motif M in a graph G . Then M induces a symmetric motif in the Laplacian
network L with adjacency matrix

LM +
(
d1Im1 ⊕ . . .⊕dkImk

)
,

where LM is the ordinary Laplacian matrix of M considered as a graph on its own, and d1, . . . ,dk are the external degrees
of the k orbits of M of sizes m1, . . . ,mk. (Here In is the identity matrix of size n and we use ⊕ to construct a block diagonal
matrix.)

(The proof of this theorem should be clear from the comments above.) Note that, for a motif with one orbit, this is the
Laplacian of the motif translated by a multiple of the identity. In particular, the redundant eigenvalues of a BSM with one orbit
are the redundant (high multiplicity) Laplacian eigenvalues of an empty or complete graph of size n plus the external degree d,
that is, d, respectively d +n. In particular,

RSpecL
1 = Z+, (38)

and we expect ‘peaks’ in the Laplacian spectral density at (small) positive integers, which indeed agrees what we observed in
our test networks (Figure 5 in the Main Text). Using the formula in Theorem 6, we could compute the redundant spectrum for
2-orbit BSMs, and for other versions of the Laplacian (e.g. normalised, vertex weighted), but we believe this is out of the scope
of the present article.

Observe that spectral decomposition applies, since L inherits all the symmetries of A, so Algorithm 5 provides an efficient
way of computing the Laplacian eigendecomposition with an expected sp = ñ3

Q (see Table 1 in the Main Text) computational
time reduction.
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Degree Centrality
The degree of a node (in- or out-degree if the network is directed) is a natural measure of vertex centrality. As expected, the
degree is preserved by any automorphism σ , which can also be checked directly,

di = ∑
j∈V

ai j = ∑
j∈V

aσ(i)σ( j) = ∑
j∈V

aσ(i) j = dσ(i), (39)

as automorphisms permute orbits (so j ∈ V and σ( j) ∈ V are the same elements but in a different order). In particular, the
degree is constants on orbits.

We can recover the degree centrality from the quotient, as the out-degree of the left quotient (or the in-degree of the right
quotient), as follows. (This is for illustration purposes rather than a worthwhile computational gain in using the quotient for
degree calculations.) Let B = (bαβ ) be the adjacency matrix of the left quotient, and V = V1 ∪ . . .∪Vm the partition of the
vertex set into orbits. If i ∈Vα , then

dG
i = ∑

j∈V
ai j = ∑

j∈V1

ai j + . . .+ ∑
j∈Vm

ai j =
1
n1

∑
j∈V1
i∈Vi

ai j + . . .+
1

nm
∑

j∈Vm
i∈Vi

ai j = bi1 + . . .+bim = dQ,out
α . (40)

Eccentricity
Although not discussed in the Main Text, the reciprocal of the eccentricity is a natural centrality measure. The eccentricity of
a vertex is the maximal (shortest path) distance to any vertex in the network. As shortest path distance is partially quotient
recoverable, and eccentricity depends on large distances only, so in practice we can ignore intra-motif distances and therefore
recover eccentricity directly from the (unweighted, or skeleton) quotient as

eccG (i) = eccQ(α) if i ∈Vα . (41)

In particular, the diameter (maximal eccentricity) and radius (minimal eccentricity) of a network coincides with that of the
(unweighted, or skeleton) quotient.

Closeness Centrality
The closeness centrality of a node i in a graph G , ccG (i), is the average shortest path length to every node in the graph. As
symmetries preserve distance, they also preserve closeness centrality, explicitly,

cc(i) =
1

nG
∑
j∈V

d(i, j) =
1

nG
∑
j∈V

d(σ(i),σ( j)) =
1

nG
∑
j∈V

d(σ(i), j) = cc(σ(i)) , (42)

and centrality is constant on each orbit, as expected. Moreover, closeness centrality can be recovered from the quotient (shortest
paths does not contain intra-orbit edges, except between vertices in the same symmetric motif, see Theorem 8), as

ccG (i) = ∑
l 6=k

nl

nG
dQ(Vk,Vl)+

ni

nG
dk (43)

if i belongs to the orbit Vk and dk is the average intra-motif distance, that is, the average distances of a vertex in Vk to any vertex
in M , the motif containing Vk. By annotating each orbit by dk, we can recover betweenness centrality exactly. Alternatively,
as dk� n (note that dk ≤ m if M has m orbits), we can approximate ccG (i) by the first summand, or simply by the quotient
centrality ccQ(α), in most practical situations.

Eigenvector Centrality
Since the Perron-Frobenius eigenvalue is always simple, it cannot be a redundant eigenvalue. Hence it is a quotient eigenvalue,
and, as those are a subset of the parent eigenvalues, it must still be the largest (hence the Perron-Frobenius) eigenvalue of
the quotient. Its eigenvector can then be lifted to the parent network, by repeating entries on orbits. That is, if (λ ,v) is the
Perron-Frobenius eigenpair of the (left) quotient, then (λ ,Sv) is the Perron-Frobenius eigenpair of the parent network ((21)). In
practice, we use the symmetric quotient Bsym = Λ−1/2ST ASΛ−1/2 for numerical reasons (Algorithm 7), obtaining significant
reductions in computational times (Figure 4 in the Main Text). If A is not symmetric (but irreducible), Algorithm 7 (Algorithm 5
in Methods) gives the right Perron-Frobenius eigenpair of A, and replacing Bsym by Λ−1/2ST AT SΛ−1/2 and Rw by its transpose,
we obtain the left Perron-Frobenius eigenpair of A.
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Input: adjacency matrix A, characteristic matrix S
Output: (right) Perron-Frobenius eigenpair (λ ,v) of A

Λ← diag(sum(S))
R← SΛ−1/2

Bsym← RT AR
(λ ,w)← eig(Bsym,1) eigenpair of the largest eigenvalue
v← Rw

Algorithm 7: Eigenvector centrality from the quotient network.

SI Weighted and Directed Networks
We have presented our results on undirected, unweighted networks and symmetric network measures in the Main Text. For
networks with edge (or node) weights, labels or directions, we can restrict to symmetries respecting those, giving a smaller
geometric decomposition, and fewer symmetric motifs (Theorem 1), but otherwise our results either directly apply, or can
be easily adapted. This is also the case for an undirected network measure (F(i, j) 6= F( j, i)) as its network reprentation
F(G ) is directed even if G is not. However, F(G ) still inherits all the symmetries of G and therefore has the same geometric
decomposition, orbits, and symmetric motifs (as vertex sets) — see the Weighted and Directed Networks subsection in SI
Symmetry in Complex Networks.

FURTHER ACKNOWLEDGEMENTS
Thanks to Yamir Moreno and Emanuele Cozzo, whose ‘simple’ question inadvertently prompted this lengthly answer more than
a year later, and to Gareth Jones for reminding the author that S6 has two conjugacy classes of subgroups of index 6. Special
thanks to my wife Kate for her unwavering support.

References
1. Biggs, N. Algebraic graph theory (Cambridge University Press, 1993).

2. Godsil, C. & Royle, G. F. Algebraic graph theory (Springer, 2013).

3. Cvetkovic, D. M., Rowlinson, P. & Simic, S. An introduction to the theory of graph spectra (Cambridge University Press,
2010).

4. Brouwer, A. E. & Haemers, W. H. Spectra of graphs (Springer, 2011).

5. Barrett, W., Francis, A. & Webb, B. Equitable decompositions of graphs with symmetries. Linear Algebra Appl 513,
409–434 (2017).

6. Francis, A., Smith, D., Sorensen, D. & Webb, B. Extensions and applications of equitable decompositions for graphs with
symmetries. Linear Algebra Appl 532, 432–462 (2017).

7. MacArthur, B. D., Sánchez-Garcı́a, R. J. & Anderson, J. W. Symmetry in complex networks. Discrete Appl Math 156,
3525–3531 (2008).

8. MacArthur, B. D. & Sánchez-Garcı́a, R. J. Spectral characteristics of network redundancy. Phys Rev E 80, 026117 (2009).

9. Xiao, Y., MacArthur, B. D., Wang, H., Xiong, M. & Wang, W. Network quotients: Structural skeletons of complex systems.
Phys Rev E 78, 046102 (2008).

10. Wang, J., Huang, Y., Wu, F.-X. & Pan, Y. Symmetry compression method for discovering network motifs. IEEE/ACM
Trans Comput Biol Bioinf 9, 1776–1789 (2012).

11. Xiao, Y., Wu, W., Pei, J., Wang, W. & He, Z. Efficiently indexing shortest paths by exploiting symmetry in graphs. In
Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology,
493–504 (ACM, 2009).

12. Karalus, S. & Krug, J. Symmetry-based coarse-graining of evolved dynamical networks. Europhys Lett 111, 38003 (2015).

13. Nyberg, A., Gross, T. & Bassler, K. E. Mesoscopic structures and the laplacian spectra of random geometric graphs. J
Complex Networks 3, 543–551 (2015).
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