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ABSTRACT

Virtually all network analyses involve structural measures between pairs of vertices, or of the vertices themselves, and the large
amount of symmetry present in real-world complex networks is inherited by such measures. This has practical consequences
which have not yet been explored in full generality, nor systematically exploited by network practitioners. Here we study the
effect of network symmetry on arbitrary network measures, and show how this can be exploited in practice in a number of
ways, from redundancy compression, to computational reduction. We also uncover the spectral signatures of symmetry for
an arbitrary network measure such as the graph Laplacian. Computing network symmetries is very efficient in practice, and
we test real-world examples up to several million nodes. Since network models are ubiquitous in the Applied Sciences, and
typically contain a large degree of structural redundancy, our results are not only significant, but widely applicable.

Network models of real-world complex systems have been
extremely successful at revealing structural and dynamical
properties of these systems'. The success of this approach
is due to its simplicity, versatility, and surprising universal-
ity, with common properties and principles shared by many
disparate systems” ™.

One property of interest is the presence of structural re-
dundancies, which manifest themselves as symmetries in a
network model. Symmetries relate to system robustness>®,
as they identify structurally equivalent nodes, and can arise
from replicative growth processes such as duplication’, evolu-
tion from basic principles®, or functional optimisation’, and
can be arbitrarily generated in model graphs!®. It has been
shown that real-world networks possess a large number of
symmetries® 114, and that this has important consequences
for network structural'!, spectral'® and dynamical'>~'® prop-
erties, for instance cluster synchronisation'*20-23,

Crucially, network symmetries are inherited by any measure
or metric on the network, that is, any structural measurement
between pairs of vertices (such as distances), vertex-valued
measurements (such as centrality) or even matrices derived
from the network (such as the graph Laplacian). However,
the effects of symmetry on arbitrary network measures is not
yet fully understood nor exploited in network analysis, even
though the network symmetry of the large but sparse graphs
typically found in applications can be effectively computed
and manipulated.

In this article, we show how a network representation of
an arbitrary pairwise measure inherits the same symmetries
of the original network, and uncovers the structural and spec-
tral signatures of symmetry on this network representation.
Namely, for an arbitrary network measure, we identify sub-
graphs where the symmetry is generated (symmetric motifs)
and their structure, use the network quotient to quantify the
redundancy due to symmetry, develop general compression
algorithms that eliminate this redundancy, and study the re-
duction in computational time obtained by exploiting the pres-
ence of symmetries. The eigenvalues and eigenvectors of a

network measure also reflect the presence of symmetry: we
show how symmetry explains most of the discrete spectrum
of an arbitrary network measure, predict the most signifi-
cant eigenvalues due to symmetry, and use this to develop
a fast symmetry-based eigendecomposition algorithm. We
achieve remarkable empirical results in our real-world test
networks: compression factors up to 26% of the original size,
over 90% of the discrete spectrum explained by symmetry,
and full eigendecomposition computations in up to 13% of
the original time, demonstrating the practical use of symme-
try in network analysis. We also discuss the implications of
network symmetry in vertex measures. We illustrate our ap-
proach in several network measures, providing novel results
of independent interest for the shortest path distance, com-
municability, the graph Laplacian, closeness centrality and
eigenvector centrality. To facilitate dissemination, we provide
full implementations of all the algorithms described in this
article®®. Our results supersede!!""!3 and help to understand
other network symmetry results thereafter'>>7-3!. We focus
on structural and spectral properties, and symmetries com-
monly found in real-world networks: For a more general study
of arbitrary symmetry in (networks of) dynamical systems,
see!>~18_ To keep our account as self-contained as possible,
we include material well known in the algebraic graph theory
literature e.g.>>~3, without any originality claim.

Results

Symmetry in complex networks

The notion of network symmetry is captured by the mathe-
matical concept of graph automorphism®?. This is a permu-
tation of the vertices (nodes) preserving adjacency, and can
be expressed in matrix form using the adjacency matrix of
the network. If a network (mathematically, a finite simple
graph) ¢ has n vertices, labelled 1 to n, its adjacency matrix
A = (a;;) is an n x n matrix with (i, j)-entry a;; = 1 if there is
an edge between nodes i and j, and zero otherwise. A graph
automorphism ¢ is then a permutation, or relabelling, of the



vertices v — o (v) such that (o(i),o(j)) is an edge only if
(i, j) is an edge, or, equivalently, a;; = as ;o (;) for all i, j. In
matrix terms, this can be written as

AP=PA, (D

where P is the permutation matrix corresponding to o, that
is, the matrix with (i, j)-entry 1 if 6 (i) = j, and O otherwise.
The automorphisms of a graph form a mathematical structure
called a group, the automorphism group of ¢. In principle,
any (finite) group G is the automorphism group of some graph
«32_ but, in practice, real-world networks exhibit very specific
types of symmetries generated at some small subgraphs called
symmetric motifs'!. Namely, we can partition the vertex set
into the asymmetric core of fixed points Vj (an automorphism
o moves a vertex i € V if o(i) # i, and fixes it otherwise), and
the vertex sets M; of the symmetric motifs,

V=VoUM U...UM,, 2)

as shown in Fig. 1a for a toy example. Equation (2) is called
the geometric decomposition of the network!!.

Real-world networks typically exhibit a core of fixed points
(asymmetric core), and a large number of relatively small
symmetric motifs, where all the network symmetry is gener-
ated, and hence the size of the automorphism group is often
extremely large, in stark contrast to random graphs, typically
asymmetric®®. However, each symmetry is the product (com-
position) of automorphisms permuting a very small number of
vertices within a symmetric motif. For example, the toy graph
in Fig. 1a has 27 x 3! x 4! = 18,432 symmetries (size of the
automorphism group) but they generated by (all combinations
of) just 10 permutations, each permuting a few vertices within
a symmetric motif (one permutation per motif except two for
My, Ms and M7).

Each symmetric motif can be further subdivided into orbits
of structurally indistinguishable nodes (shown by colour in
Fig. 1a), which play the same structural role in the network
and, therefore, contribute to network redundancy and thus
to the robustness of the underlying system. Our notion of
structurally indistinguishable nodes (nodes in the same orbit
of the automorphism group) extends the notion of structurally
equivalent nodes found in the social sciences??, that is, nodes
with the same set of neighbours. It is not equivalent: nodes
in the same orbit may not have the same neighbours (e.g. M,
Mg or M7 in Fig. 1a).

Network symmetries of (possibly very large) real-world
networks can be effectively computed, stored and manipu-
lated (see Methods). For instance, we computed generators
of the automorphism group, and the subsequent geometric
decomposition, for real-world networks up to several million
nodes and edges in a few seconds (see 71 and f, in Table 1).

Most symmetric motifs in real-world networks (typically
over 90%, see the bsm column in Table 1) are of a very specific
type, called basic'': they are made of one or more orbits
of the same size, and every permutation of the vertices in
each orbit is realisable, that is, can be extended to a network
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Figure 1. Toy example of a symmetric network. (a)
Decomposition into asymmetric core (white nodes) and 7 symmetric
motifs M| to M7. Each motif can be decomposed into one or more
orbits (shown by colour) of structurally indistinguishable nodes.
Motifs M, to Mg are basic: one or more orbits of the same size, and
every permutation of the vertices in an orbit can be extended to a
network automorphism. Motif M7, a tree, is not basic: in the orbit of
yellow vertices, labelled 1 to 4 (top to bottom), the permutation
sending 1 to 3 must move 2 to 4 (as 1 and 2 share a common
neighbour). A vertex measure (here subgraph centrality>® shown on
M) is constant on orbits. Inset: A pairwise measure (here
communicability37 shown near M) inherits all the network
symmetries. (b) Quotient network (no loops, edge directions, or
weights shown) consisting on one vertex per fixed point (white
node) and per orbit (coloured node).

automorphism (see Fig. 1). Basic symmetric motifs (BSMs)
have a very constrained structure'?, which we will generalise
to arbitrary network measures and exploit throughout this
article. Non-basic symmetric motifs (typically branched trees,
as M7 in Fig. 1) are called complex; they are rare and can
either be studied on a case-by-case basis, or removed from the
symmetry computation altogether (by ignoring the symmetries
generated by them).

The definition of network automorphism Eq. (1) carries
to an arbitrary n x n real matrix A = (a;;). Any such matrix
can be seen as the adjacency matrix of a network with n ver-
tices labelled 1 to n, and an edge (link) from node i to node j
with weight a;; if a;; # 0, and no such edge if a;; = 0. This
means that an automorphism does not only preserve edges,
but also their weights and directions. This may not be a realis-
tic assumption for real-world weighted networks, where the
weights often come from observational or experimental data,
but it applies to the matrix representing a network structural
measure, as we illustrate in Fig. 2 and explain next.
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Name ng may gen 1 t sm bsm mv ng mg exty inty cri  Sp

HumanDisease 1,419 2,738 713 0.00 0.16 272 960 71.0 483 504 833 1073 272 113
Yeast 1,647 2,736 380 0.00 0.01 149 993 333 763 835 98.8 1073 584 444
OpenFlights 3,397 19,230 732 0.00 0.11 321 935 324 773 944 993 1073 635 462
USPowerGrid 4,941 6,594 414 0.00 0.09 302 97.4 167 902 91.3 97.6 107* 839 733
HumanPPI 9,270 36,918 972 0.00 0.12 437 100 153 89.5 97.0 99.9 107* 80.1 71.6
Astro-Ph 17,903 196,972 3,232 0.01 021 1,682 99.4 275 819 804 955 107* 674 549
InternetAS 34,761 107,720 15,587 0.03 0.29 3,189 99.9 543 550 782 99.9 107> 303 16.7
WordNet 145,145 656,230 52,152 0.18 0.62 28456 920 60.0 60.1 580 89.9 107 493 21.6
Amazon 334,863 925,872 32,098 020 0.39 23,302 99.8 16.8 90.3 89.0 99.0 10°% 81.6 73.6
Actors 374,511 15,014,839 182,803 0.95 138 36,703 999 58.6 512 664 904 107> 262 134
InternetAS-skitter 1,694,616 11,094,209 319,738 1.71 4.17 84,675 99.1 19.7 854 92.8 999 107° 735 623
CaliforniaRoads 1,957,027 2,760,388 36,430 0.47 0.16 35210 988 4.0 97.9 984 99.7 1077 963 93.9
LiveJournal 5,189,808 48,687,945 410,575 8.02 3.59 245211 99.9 12.7 92.1 965 99.7 10~/ 84.8 78.0

Table 1. Symmetry in some real-world networks. For each test network, we show the number of vertices (n¢), edges (1mg), number
of generators (gen) of the automorphism group (sizes, 10!53 to 10197:332 not shown), computing times of generators (f;) and geometric
decomposition (#;), in seconds, number of symmetric motifs (sm) and proportion of basic symmetric motifs (bsm), proportion of vertices
moved by an automorphism (mv), proportion of vertices (19 = ng/ng) and edges (m9 = mg/my) in the quotient, proportion of external
edges in the sparse case (exts, in percentage), and of internal edges in the full case (ints, closest power of 10), full compression ratio

(cfun = ﬁé), and spectral computational reduction (sp = ﬁi’@), all for the largest connected component. The proportion of vertices in the basic
quotient (g, , not shown) is within 1% of ng except for HumanDisease (71 g,,,, = 52.2%), OpenFlights (79.7%), USPowerGrid (91.6%)
and WordNet (79.2%), and similar results hold for m Do Datasets available at40, except HumanDisease“, Yeast42, and HumanPPI*3,
Computations on a desktop computer (3.2 GHz Intel Core i5 processor, 16 GB 1.6 GHz DDR3 memory). All networks are symmetric,
although the amount of symmetry (as measured by mv or 1.9) ranges from several networks with 50% quotient reduction, to CalifornialRoads

with only 4% of vertices participating in any symmetry. However, the effect of compression and computational reduction multiplies as
e.g. Cu|l = ﬁfoj and sp = ﬁf@, achieving significant results for most of our test networks.

Structural network measures
A (pairwise) structural network measure is a function F (i, j)
on pairs of vertices which satisfies

F(o(i),0(j) = F(i.j) forallijeV ()

for all automorphisms o € Aut(¥). Since automorphisms
identify structurally indistinguishable vertices (i and (i) and,
similarly, edges ((i, j) and (o (i),0(j))), structural network
measures are (edge) functions that depend on the network
structure alone, and not, for example, on node or edge labels,
or other meta-data. Most network measures are structural,
including graph metrics (e.g. shortest path), and matrices al-
gebraically derived from the adjacency matrix (e.g. Laplacian
matrix). (We identify matrices M with pairwise measures via
F (i, j) = [M];;.) In particular, structural measures are indepen-
dent of the ordering or labelling of the vertices. In contrast,
functions depending, explicitly or implicitly, on some ver-
tex ordering or labelling, are not structural, for example the
shortest path length through a given node. Our results can be
adapted to the presence of node or edge labels, or weights, by
restricting to automorphisms preserving the additional struc-
ture. For simplicity, here we discuss the unlabelled case only.

We can encode a structural measure F as a network with
adjacency matrix [F (A)];j = F (i, j) (see Fig. 2b and c for two
examples), and write (3) in matrix form as

F(A)P=PF(A), “)

where P is the permutation matrix corresponding to . Com-
paring this to Eq. (1), we see that the network representation

of F, F(¥), with adjacency matrix F(A), inherits all the sym-
metries of ¢. In particular, the network F (%) has the same
decomposition into symmetric motifs Eq. (2), and orbits, as
¢. The BSMs in F (%) must occur on the same vertices M;,
although they are now all-to-all weighted subgraphs in gen-
eral (Fig. 2b). Nevertheless, they have a very constrained
structure: the intra and inter orbit connectivity depends on
two parameters only. Namely, each orbit in a BSM is uniquely
determined by 8 = F(v;,v;) (the connectivity of a vertex with
itself) and oo = F(v;,v;),i # j (the connectivity of a vertex
with every other vertex in the orbit), for all v;,v; in the orbit.
Similarly, the connectivity between two orbits A; and A, in
the same BSM also depends on two parameters: after a suit-
able reordering A| = {vi,...,v,} and Ay = {wy,...,w,}, we
have 6 = F(v;,w;) and ¥y = F(v;,w;) forall 1 <, j < n. (For
a proof, see Theorem 1 in Methods.) This can be observed
in Fig. 2c and is represented schematically in Fig. 3a and b.
In particular, each BSM takes a very constrained form in the
quotient, as shown schematically in Fig. 3c and d.

The results in this article apply to arbitrary structural mea-
sures, although the two most common cases in practice are
the following. We call F full if F(i,j) #0foralli# j€V
(e.g. a graph metric), and sparse if F (i, j) = 0if a;; = 0, for all
i # j €V (e.g. the graph Laplacian). The graph representation
of F(¥) is an all-to-all weighted graph if F is full, and has a
sparsity similar to ¢ if F is sparse (cf. Fig. 2c).

From now on, we will assume that ¢ is undirected and F is
symmetric, F (i, j) = F(j,i), which may not be the case even
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Figure 2. Structural network measures. (a) Neighbourhood
of motif M| (Fig. 1) and its adjacency matrix. Network and matrix
representation of two structural (full, respectively sparse) network
measures, (b) the exponential matrix (a measure of vertex
communicability”), and (c) the graph Laplacian. In each case, the
vertices are numbered 1 to 5 and coloured by orbit, and a non-zero
(i, j)-entry in the matrix corresponds to the edge weight between
vertices i and j. Note that the network automorphism swapping
vertices 1 and 2, and 3 and 4, preserves the network and matrix
structure in all three cases. In general, any symmetry of a network is
also a symmetry of the network representation of any structural
network measure.

if ¢ is undirected (e.g. the transition probability of a random
walker F(i,j) = d:g”(l.) ), and discuss directed networks and
asymmetric measures in the Methods section.

Quotient network

The formal procedure to quantify and eliminate structural
redundancies in a network is via its quotient network. This is
the graph with one vertex per orbit or fixed point (see Fig. 1b)
and edges representing average connectivity. Formally, if A is
the n x n adjacency matrix of a graph ¢, the quotient network
with respect to a partition of the vertex set V. =V, U...UV,, is
the graph 2 with m x m adjacency matrix the quotient matrix
O(A) = (by;) defined by

1
bkl = T aij, (5)
|Vk‘ ,'ezvk
Vi

the average connectivity from a vertex in V; to all vertices

in V;. There is an explicit matrix equation for the quotient.

Consider the n X m characteristic matrix S of the partition,
that is, [S];x = 1 if i € Vj, and zero otherwise, and the diagonal
matrix A = diag(ny,...,n,), where ny = |V¢|. Then

Q(A)=A"'sTAS. (6)

The quotient network is a directed and weighted network
in general. An alternative is to use the symmetric quotient,

(n—1)a+p
)
©
5 (n—1)y+9o
(b) (d)

Figure 3. Structure of a basic symmetry motif (BSM)
for an arbitrary network measure F. (a) Every orbitin a
BSM is an (o, B)-uniform graph Ky B , the graph with n vertices
and adjacency matrix A = (g;;) with a;; = a« = F(i, j) if i # j and
ajj = B = F(i,i) for some constants & and 3. Here we show an
example of one orbit with four nodes and edges labelled by their
weights. (b) The connectivity between two orbits A; and A, in the
same BSM (after a suitable relabelling A} = {v1,...,v,},

Ay = {wi,...,wp}) is given by y = F(v;,w;) for i # j, and

6 = F(vj,w;), the (8,7)-uniform join of the two orbits. Here we
show an example of two orbits (shown by colour) with three vertices
each and edges labelled by their weights. (c) In the quotient, the
BSM orbit becomes a single vertex with a self-loop weighted by
(n—1)o+ B, and (d) the two orbits are joined by an edge weighted
by (n—1)y+ 8. Here we show the quotients (c) and (d) of the
previous BSMs (a) and (b) respectively. Note that, by annotating
each orbit in the quotient by n and o (or ), and each intra-motif
edge by ¥ (or §), we can recover each BSM from such annotated
quotient.

with adjacency matrix Qgym(A) = A~'/2STASA™!/2, which
is weighted but undirected. Note that Q(A) and Qsym(A) are
spectrally equivalent matrices: they have the same eigenvalues,
with eigenvectors related by the transformation v — A!/2w.

In the context of symmetries, we will always refer to the
quotient with respect to the partition of the vertex set into
orbits. This quotient removes all the original symmetries from
the network: if (v;) = v;, then v; and v; are in the same orbit
and hence represented by the same vertex in the quotient net-
work, which is then fixed by 6. We can, therefore, infer and
quantify properties arising from redundancy alone by com-
paring a network to its quotient. The quotients of real-world
networks are often significantly smaller (in vertex and edge
size) than the original networks!!-1? (see 715 and m o in Ta-
ble 1), and this reduction quantifies the structural redundancy
present in an empirical network. Not every real-world net-
work is equally symmetric, and, in our test networks, we give
examples of network quotient reductions ranging from about
50% to just 2%. Computing the network quotient involves
multiplication by very sparse matrices (A is diagonal and S has
one non-zero element per row) and hence is computationally
efficient (a few seconds in all our test networks).

Redundancy in network measures

The amount structural redundancy on a network (measured
by 9 = ng /ng) is amplified in the computation of a typical
(full) network measure (see Eq. (7) below). It is therefore
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Figure 4. Redundancy in some real-world networks.
Amount of symmetry present on a typical (full) network measure for
our test networks (Table 1). The predicted values, ¢y = (ng7/n g)z
coincide (up to 0.01%) with the compression ratio (shown as
‘actual’) obtained by our lossless compression algorithm for the
shortest path distance, and communicability (exponential matrix),
for our smallest seven networks (memory limit in our computer).
After decompression, we recover the original matrix exactly for the
shortest path distance, and up to a small numerical error

(1.16 x 10~* mean relative error) for communicability.

natural to ask how to quantify, and eliminate, the symmetry-
induced redundancy. If a network has ng vertices and ng
orbits, there are né pairs of vertices but only nfg pairs of
orbits, achieving a reduction, or compression ratio, of

2
Ne

Crull = ( g) @)
ng

for a full network measure, typically much smaller than the
ratio g = ng /ng. On the other hand, for a sparse network
measure, we only need to consider edge values, hence the
reduction is the ratio between the number of edges in the
graph and in its quotient

®)

Csparse — Mg .
For an arbitrary network measure, its compression ratio, which
measures the redundancy present (zero values excluded), will
range between cryy and csparse. The compression ratios ceyy
and cgparse = Mg are shown on Table 1 for our test networks.
We found a remarkable amount of redundancy (up to 70%)
due to symmetry alone (Fig. 4).

Symmetry compression

A natural question, with practical consequences for network
analysis, is whether we can easily ‘eliminate’ the symmetry-
induced redundancies. This means storing only one value
of a network function for each orbit of structurally indistin-
guishable nodes or edges, all sharing the same such value.

Although this has been explored in particular cases, such as
shortest path distances?’, here we present a general treatment.
A simple method is to use the quotient matrix

B=STAS, 9)

which is easier to store than A~!STAS. This matrix achieves a
compression ratio between cryj; and csparse (by using a sparse
representation of B), as explained before. From this matrix, we
can recover all but the internal connectivity inside a symmetric
motif, which is replaced by the average connectivity. Namely,
let us define

- 7bkl7

npnj

ajj = (10)
where n;, respectively 7, is the size of the orbit containing v;,
respectively v; (note that these orbit sizes can be obtained as
the row sums of the characteristic matrix §). Then one can
show (Methods, Theorem 2) that

aij if v; and v; are external,

aij = niinij):vk@] ay  if v; and v; are internal, an

VIEA)

where we call a pair of vertices external if they belong to
two different symmetric motifs, and internal otherwise, and
v; € A; and vy € A; are orbits. Hence, if we are not inter-
ested in the exact internal connectivity (inside a symmetric
motif), or it can be recovered easily by other means (e.g. one
motif at a time), we can use this simple method to elimi-
nate all the symmetry-induced redundancies on an arbitrary
network measure encoded as a matrix A. We have included
simple average symmetry compression and decompression al-
gorithms (Algs. 1, 2), where A,y is the matrix with entries a;;.
The original ny X ng matrix A is stored using the ng X ng
quotient matrix B plus a very sparse (n non-zero elements)
characteristic matrix S.

Input: adjacency matrix A, characteristic matrix S
Output: quotient matrix B

B« STAS

Algorithm 1: Average symmetry compression.

Input: quotient matrix B, characteristic matrix S
Output: adjacency matrix Aayg

A+ diag(sum(S))

R+ SA™!

Aayvg < RBRT

Algorithm 2: Average symmetry decompression.

The vast majority of edges in the network representation
of a network measure are external (at least 99.999% for a full
measure in our test networks, see inty in Table 1), and hence
the information loss by using A,y instead of A is minimal.
We can nevertheless enforce lossless compression, by storing
the intra-motif connectivity separately. Indeed, we can exploit
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the fact that most symmetric motifs in empirical networks
are basic, and hence each orbit, or pair of orbits, is uniquely
determined by two parameters (Fig. 3). If we disregard the
symmetries generated at non-basic symmetric motifs, the cor-
responding quotient, called basic quotient, written Pyqsic,
leaves non-basic motifs unchanged and retains most of the
symmetry in a typical real-world network. By annotating
this quotient, we can recover the original network representa-
tion of the network measure exactly. We have implemented
lossless compression and decompression algorithms (Meth-
ods, Algs. 6 and 7), and evaluated them in our test networks
(Fig. 4).
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Figure 5. Quotient computational reduction.
Computational time reduction of several structural measures in some
of our test networks (Table 1) obtained by performing the
calculation in the quotient network versus the original network. The
computations are: spectral decomposition of the adjacency matrix A
(spectral), exponential matrix exp(A) (commun), pseudoinverse of
the Laplacian matrix (laplacian), shortest path distance (distance),
closeness centrality (closeness), betweenness centrality (btwness)
and eigenvector centrality (eigc), using MATLAB R2018a built-in
functions. For spectral, we also show (left column) the reduction
including the (sequential) symmetric motif calculation. In each case,
median computational reduction over at least 10 iterations shown.

Computational reduction
Network symmetries can also reduce the computational time
of evaluating an arbitrary network measure F. By Eq. (3),
we only need to evaluate F' on orbits, resulting in a compu-
tational reduction ratio of between m o and ﬁz@ (Table 1) for
sparse, respectively full, network measures. Of course, this
assumes that the computation on each pair of vertices F (i, j)
is independent of one another, which is often not the case.
Moreover, the calculation of F (i, j) is still performed on the
whole network ¢.

A more substantial computational reduction can be obtained
by evaluating F on the (often much smaller) quotient network

instead. We call F quotient recoverable if it can be applied
to the quotient network 2, and F (%) can be recovered from
F(2), for all networks 4. Note that this may involve, be-
yond evaluating F(2), an independent (hence parallelizable)
computation on each symmetric motif (typically a very small
graph). By evaluating F in the quotient network, we can ob-
tain very substantial computational time savings, depending
on the amount of symmetry present and the computational
complexity of F. Depending on the network measure, it may
not be possible to recover F (%) exactly from F(2), but only
partially. We call a network measure F' partially quotient
recoverable if it can be applied to a quotient network 2 of
a network ¢, and all the external edges of F(¥) can be re-
covered from F(2), for all networks ¢. Since the quotient
averages the network connectivity, we can often recover the
average values of F' within symmetric motifs. We call F av-
erage quotient recoverable if, in addition to external edges,
the average intra-motif edges can be recovered from F(2). A
typical situation is when F(2) equals the quotient of F, that
is, in symbols,

F(2)=0(F(9)). (12)

In the Applications section, we will show that communi-
cability is average quotient recoverable, and shortest path
distance is partially, but not average, quotient recoverable.
Not every measure can be (partially) recovered from the quo-
tient, for example the number of distinct paths between two
vertices, as the internal connectivity within each symmetric
motif is lost, and replaced by its average connectivity, in the
quotient. Note that the word ‘partially’ can be misleading:
typically almost all edges are external (see ext, and infy in
Table 1). The resulting computational time reduction obtained
by evaluating F in the quotient can be very substantial, as
illustrated by several popular network measures in our test
networks (Fig. 5).

Spectral signatures of symmetry
The spectrum of the network’s adjacency matrix relates to
a multitude of structural and dynamical properties'. The
presence of symmetries is reflected in the spectrum of the net-
work!3, and indeed in the spectrum of any network measure.
Symmetries give rise to high-multiplicity eigenvalues (shown
as ‘peaks’ in the spectral density) and, in fact, we can explain
and predict most of the discrete part of the spectrum of an
arbitrary network measure on a typical real-world network.
Let A be the n x n adjacency matrix of a (possibly weighted)
network (such as the network representation of a network
measure). First, note that symmetry naturally produces high-
multiplicity eigenvalues, since

APv = PAv = APv. (13)
where (A, V) is an eigenpair of A and P the permutation matrix
of a network automorphism (Eq. (1)). This gives another
eigenpair (A,v) whenever v and Pv are linearly independent
(obviously not always the case).
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Let B = Q(A) be the m x m quotient of A (Eq. (6)) with
respect to the partition of the vertex set into orbits. This
partition satisfies a regularity condition called equitability>,
which can be written in matrix form as AS = SB, where S is
the characteristic matrix of the partition. In particular, if (4,v)
is a quotient eigenpair, then (A,SV) is a parent eigenpair,

A(Sv) = SBv = A(SV). (14)

In fact, one can show (Methods, Theorem 3) that A has an
eigenbasis of the form

{8V, ooy SV, Wi, Woem §, (15)

where {vi,...,v,,} is any eigenbasis of B, and S”w; = 0 for
all j. We can think of a vector v € R™, respectively w € R”, as
a vector on (the vertices of) the quotient, respectively the par-
ent, network. Then, each vector Sv; equals the vector v; lifted
to the parent network by repeating the value on each orbit.
Similarly, S” w; = 0 means that the sum of the entries of w; on
each orbitis 0. Allin all, we can always find an eigenbasis of A
consisting of non-redundant eigenvectors {Svy,...,Svy, } aris-
ing from a quotient eigenbasis by repeating values on each or-
bit, and redundant eigenvectors {wy,...,W,_p, } arising from
the network symmetries, which add up to zero on each orbit
(hence ‘dissappering’ in the quotient). Similarly, we call their
respective eigenvalues redundant and non-redundant.

Analogous to the way that symmetry is generated at sym-
metric motifs, the redundant eigenvectors and eigenvalues
arise directly from certain eigenvectors and eigenvalues of
the symmetric motifs, considered as networks on their own
(Fig. 6). In fact, each symmetric motif .# contributes the
same (called redundant) eigenpairs to any network containing
A as a symmetric motif: One can show (Methods, Theorem
4) that if ./ is a symmetric motif of a network ¢ and (4, w)
is a redundant eigenpair of .# (that is, the values of w add
up to zero on each orbit of .#), then (1, W) is an eigenpair
of ¢, where W is equal to w on (the vertices of) .#, and zero
elsewhere. We call such a vector w localised on the motif
13, as it is zero outside the motif. Moreover, if .# has n
vertices and k orbits, then it has an eigenbasis consisting of
n — k redundant eigenpairs, which are inherited by any net-
work containing .# as a symmetric motif (Fig. 6, Theorem 4
in Methods).

Furthermore, since most symmetric motifs in real-world
networks are basic, thus have a very constrained structure
(Fig. 3), we can in fact determine the redundant spectrum of
BSMs with up to a few orbits, that is, we can predict where the
most significant ‘peaks’ in the spectral density of an arbitrary
network function will occur. The formulae for the redundant
spectra for BSMs of one or two orbits (which covers most
BSMs, up to 99% of them in our test networks) is given on
Table 2. For example, for the graph Laplacian, symmetry
explains between 89% and 97% of the discrete spectrum in
our test networks, with most of the high-multiplicity eigen-
values (‘peaks’ in the eigenvalue histograms) occurring at the
predicted values (resulting from our analysis of the spectrum

Eigenval. | Eigenvectors
1 (I,-1]1,-110)
-1 (I,-1]-1,110)
V3 [ (L1]V3.V3]2)
3| (1] =33 12)
0 (1,1]0,0]—1)
Eigenval. | Eigenvectors
e (1,-1]1,-110)
1/e (1,-1]-1,110)
0.26 (1,1]-1.38,—1.38 | 1.20)
1.28 (1,1]0.25,0.25 | —1.09)
6.57 (1,1]1.89,1.892.71)
Eigenval. | Eigenvectors
o+1 (I,-1]1,-17]0)
-o+2 | (1,-1|-1,1]0)
0 (LIT1,171)
¢+2 | (L1|—@—-1,—¢—1|m)
—¢+3 | (L1]@=2,0-2|m)

Figure 6. Redundant spectrum. Eigenvalues and
eigenvectors near the symmetric motif M| (Fig. 1 (inset)) for three
network measures: (a) adjacency A, (b) communicability &4, and (c)
Laplacian L, represented as weighted networks with weights shown
as edge labels (as in Fig. 2). Eigenvector coordinates are separated
by orbit, for convenience. In all three cases, there are two redundant,
and three non-redundant, eigenpairs (separated here by a horizontal
line), whose eigenvectors add up to zero, respectively are constant,
on each orbit. Redundant eigenvectors are localised (zero outside
the motif) and ‘survive’ in any network where this graph is a
symmetric motif. The redundant eigenvalues and eigenvectors agree
with those predicted by the formulae in Table 2. Here, ¢ = %,
the golden ratio, =2+ % andmp =2+ ﬁ.

of the most common symmetric motifs, namely BSMs up to
2 orbits, see below and Table 2), namely positive integers
(Fig. 7).

We now give more details of the computation of the re-
dundant spectrum of BSMs up to two orbits (Table 2), with
full details in the Methods section. A BSM with one or-
bit is an (o, §)-uniform graph K% with adjacency matrix
Aff’ﬁ = (a;;) given by a;; = o and a;; = B for all i # j. Then
KP has eigenvalues (n— 1)+ 8 (non-redundant), with mul-
tiplicity 1, and —a + 8 (redundant), with multiplicity n — 1.
The corresponding eigenvectors are 1, the constant vector 1
(non-redundant), and e;, the vectors with non-zero entries 1
at position 1, and —1 at position i, 2 < i < n (redundant). For
unweighted graphs without loops (B =0, o € {0,1}), we

recover the redundant eigenvalues 0 and —1 predicted in'3.

A BSM with two orbits must be a uniform join of the

)
form KXP1 % k%P> (Fig. 3). Let k1 and Kk» be the two
solutions of the quadratic equation ck? + (b —a)k —c = 0,
where a = a; — i, b = op — B and ¢ = y— 5. Then, the
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Figure 7. Spectral signatures of network symmetry.
Laplacian spectrum of six test networks (blue) and of their quotient
(red), given as relative probability of eigenvalue count, with
multiplicity, in bins of size 0.1. Only the most significant part of the
spectrum is shown. Most of the ‘peaks’ observed in the spectral
density occur at positive integers, as predicted. (Insets) Percentage
of the high-multiplicity spectrum explained by the symmetry, as the
ratio of },,, -1 my, for the quotient eigenvalues, and for the
Laplacian eigenvalues, where m; is the multiplicity of an eigenvalue
A rounded to 8 decimal places.

redundant eigenvalues of this BSM are (Methods, Theorem 5)

— b —b)24+4c2
M= b i = —tB 2(“ PHAC o (16)
_ _ N AV) 2
M= —b— iy — (a+b) Z(a b)>+4c , (17

each with multiplicity n — 1, with eigenvectors (kje;|e;) and
(k»e;|e;) respectively, 2 < i < n. For unweighted graphs with-
out loops, we recover the redundant eigenvalues predicted
in'3, that is,

—2,—¢, 1,0, ¢—1and 1, (18)

where ¢ = ”T‘/g, the golden ratio.

Eigendecomposition algorithm
Decoupling the contribution to the network spectrum from the
symmetric motifs and from the quotient network, as explained
above, naturally leads to an eigendecomposition algorithm
that exploits the presence of symmetries: The spectrum and
eigenbasis of an undirected network (equivalently, a diagonal-
isation of its adjacency matrix A = UDUT) can be obtained
from those of the quotient, and of the symmetric motifs, reduc-
ing the computational time (cubic on the number of vertices)
to up to a third in our test networks (Fig. 5, left column of the
spectral case), in line with our predictions (sp = nf@ in Table
1). The algorithm is shown and explained below. A MATLAB
implementation is available at a public repository?°.

Our eigendecomposition algorithm (Alg. 3) applies to
any undirected matrix with symmetries (identifying a ma-
trix with the network it represents). It first computes the

BSM eigenvalues mult eigenvectors
K,?’ﬁ —a+pB n-—1 €
—b—xic n—1 (ke;|e;)
a,fpp %5; o,B 1 1821 ¢€i
Ky Ky —b—15¢c n—1 (K‘zei‘ei)

Table 2. Redundant spectra of basic symmetric motifs
(BSMs) with one or two orbits. A BSM with one orbit is a
uniform graph K, B with n vertices and adjacency matrix

Af,"ﬁ = (a;j) where a;; = a if i # j and a;; = B8, for all i, j and some
constants o and 3. A BSM with two orbits consists of the

(y, 8)-uniform join of two uniform graphs K" P and K P2 that is,
the graph with 2n vertices and block adjacency matrix (after a

suitable labelling of the vertices) of the form (4 §) where

A=AY 'ﬁ‘, B= A,‘,)‘Z’ﬁ2 and C = A,Z’S, each defined as above. We
write e; for the vector with non-zero entries 1 at position 1, and —1
at position i (2 < i <n), k1 and k, for the two solutions of the
quadratic equation ck? + (—a+b)k — ¢ = 0 where a = o — f,
b=o0p— B and c =y— 6, and use (v|w) to represent the
concatenation of two vectors.

eigendecomposition of the quotient matrix, then, for each
motif, the redundant eigenpairs. Namely, it first computes
the spectral decomposition eig of the symmetric quotient
Bgym = A"1/2STASA—1/2 where A is the diagonal matrix of
the orbit sizes (which can be obtained as the column sums of
S). This matrix is symmetric and has the same eigenvalues as
the left quotient. Moreover, if Byym = UyD,U, " then the left
quotient eigenvectors are the columns of AU,. These become,
in turn, eigenvectors of A by repeating their values on each or-
bit, and can be obtained mathematically by left multiplying by
the characteristic matrix S. Then, for each motif, we compute
the redundant eigenpairs using a null space matrix (explained
below), storing eigenvalues and localised (zero outside the
motif) eigenvectors.

Only redundant eigenvectors of a symmetric motif (that is,
those which add up to zero on each orbit) become eigenvectors
of A by extending them as zero outside the symmetric motif.
Therefore, we need to construct redundant eigenvectors from
the ouput of e i g on each motif (the spectral decomposition of
the corresponding submatrix). If Uy = (v | ... | vk) are A-
eigenvectors of a symmetric motif with characteristic matrix
of the orbit partition S, we need to find linear combinations
such that

ay
SsTm ((X1V1—|-...—|—Othk) =0 — Ssz)L (19)
O
Therefore, if the matrix Z # 0 represents the null space of
ST.Uy, thatis, ST U3 Z = 0 and ZTZ = 0, then the columns
of Uy Z are precisely the redundant eigenvectors. This is
implemented in Alg. 3 within the innermost for loop.

Vertex measures
We have so far considered network measures of the form
F(i,j), where i and j are vertices. However, many important
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Input: adjacency matrix A, characteristic matrix S, list of motifs
Output: spectral decomposition A = UDU r

initialise U, D to zero matrices

A < diag(sum(S))

Boym < A71/2STASAT1/2

[Uy,Dy] 4 eig(Bsym) so that Beym = U,D U,

Uy < AU,

U« (SU, | 0)
D, | 0

D+ <0 0)

foreach motif do
Agm < A(motif, motif)
compute orbits from motif and S
Ssm < S(motif, orbits)
[Usm7DSm] <~ eig(Asm)
for A € unique(diag(Dyy)) do
U, < A-eigenvectors from Ugpy,
Z <+ null(ST,U;)
d <+ ncol(Z)
if d > O then
store Uy Z in U
store A in D with multiplicity d
end
end

end

Algorithm 3: Eigendecomposition algorithm.

network measurements are vertex based, that is, of the form
G(i) for each vertex i. We say that a vertex measure G is
structural if it only depends on the network structure and,
therefore, satisfies

(20)

for each automorphism ¢ € Aut(%), that is, it is constant on
orbits (Fig. 1).

Although for vertex measures we do not have a network rep-
resentation, we can still exploit the network symmetries. First,
G needs only to be computed/stored once per orbit, result-
ing on a reduction/compression ratio of 779 = n.g/ng (Table
1). Secondly, when quotient recovery holds (that is, we can
recover G from its values on the quotient and symmetry infor-
mation alone), it amounts to a further computational reduction
(Fig. 5), depending on the computational complexity of G.
Finally, many vertex measures arise nevertheless from a pair-
wise function, such as G(i) = F(i,i) (subgraph centrality from
communicability), or G(i) = 1 ¥ ;i F (i, j) (closeness centrality
from shortest path distance), allowing the symmetry-induced
results on F to carry over to G.

Applications

We illustrate our methods on several popular pairwise and
vertex-based network measures. Although novel and of inde-
pendent interest, these are example applications: Our methods
are general and the reader should be able to adapt our results
to the network measure of their interest.

Adjacency matrix. The methods in this paper can be applied
to the network itself, that is, to its adjacency matrix. We

recover the structural and spectral results in'"!3, and the
quotient compression ratio reported in'2, here csparse = Mo in
Table 1. The network (adjacency) eigendecomposition can be
significantly sped up by exploiting symmetries (Fig. 5).
Communicability. Communicability is a very general choice
of structural measure, consisting on any analytical func-
tion f(x) = Y a,x" applied to the adjacency matrix, f(A) =
Yo oarA", and it is a natural measure of network connectivity,
since the matrix power A* counts walks of length k37, The
most common choice of coefficients is a,, = %, which gives
the exponential matrix e = Y'>°_, /;‘T’!,' Communicability is a
structural network measure and its network representation,
the graph (%) with adjacency matrix f(A), inherits all the
symmetries of ¢ and thus it has the same symmetric motifs
and orbits. The BSMs are uniform joins of orbits, and each
orbit is a uniform graph (Figs. 3 and 2b) characterised by the
communicability of a vertex to itself (a natural measure of
centrality?®), and the communicability between distinct ver-
tices. As a full network measure, the compression ratio cfy
applies (Table 1), indicating the fraction of storage needed by
using the quotient to eliminate redundancies (Fig. 4). More-
over, average quotient recovery holds for communicability
since f(Q(A)) = O(f(A)) (Methods, Theorem 6). Alterna-
tively, we can use the spectral decomposition algorithm on
the adjacency matrix (A = UDUT implies f(A) = U f(D)UT)
reducing the computation, typically cubic on the number of
vertices, by sp = ﬁf@ (Table 1, Fig. 5). For the spectral results,
note that f(A) = U f(D)U" has eigenvalues f(A), and same
eigenvectors, as A. Thus

f(fz)’f(i(p)vf(f1)’f(0)7f((p7 1)5 and f(l)

account for most of the discrete part of the spectrum f(A), for
the adjacency matrix A of a typical (undirected, unweighted)
real-world network (Eq. (18)).

Shortest path distance. This is the simplest metric on a (con-
nected) network, namely the length of a shortest path between
vertices. A path of length n is a sequence (vi,va,...,Vu11) of
distinct vertices, except possibly v{ = v,11, such that v; is con-
nected to viy forall 1 <i <n— 1. The shortest path distance
d? (u,v) is the length of the shortest (minimal length) path
from u tov. If p = (v,vy,...,v,) is a path and ¢ € Aut(¥),
we define 6(p) = (6 (v1),06(v2),...,0(vy)), also a path since
o is a bijection. A path p is a shortest path if it is of min-
imal length between its endpoints. One can show that (i)
automorphisms preserve shortest paths and their lengths; (ii)
shortest paths between vertices in different symmetric motifs
do not contain intra-orbit edges; and (iii) shortest path dis-
tance is a partially quotient recoverable structural measure
(Methods, Theorem 7). In particular, automorphisms o pre-
serve the shortest path metric, d(i, j) =d (6 (i),0(j)), and we
can compute shortest distances from the quotient,

2

d?(a,B) =d?(i,j), acV,BeV;, (22)

whenever V; and V; are orbits in different symmetric motifs.
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This accounts for all but the (small) intra-motif distances and
reduces the computation as shown in Fig. 5.

Distances between points within the same motif cannot in
general be directly recovered from the quotient, not even for
BSMs. (Consider for instance the double star, motif M, in
Fig. 1: The distance from the top red to the bottom blue vertex
is three, while in the quotient is one.) In general, therefore,
the shortest path distance is partially, but not average, quotient
recoverable. Intra-motif distances, if needed, could still be
recovered one motif at a time.

Note that these results can be exploited for other graph-
theoretic notions defined in terms of distance, for example
eccentricity (and thus radius or diameter), which only depends
on maximal distances and thus it can be computed directly in
the quotient.

In terms of symmetry compression, the compression ratio
cran applies, accounting for the amount of structural redun-
dancy due solely to symmetries. The spectral results, although
perhaps less relevant, still apply for d(%), the graph encod-
ing pairwise shortest path distances. The adjacency matrix
d(A) = (d? (i, )) is nonzero outside the diagonal, hence d(¥)
is a all-to-all weighted network without self-loops and integer
weights, and so is each symmetric motif. Using the formula in
Table 2, we can easily compute values of the most significant
part of the discrete spectrum (redundant eigenvalues) of d(A),
namely —3, —2, —1,0, —2++/2, —34+/2, =3V5 =555
and *5%\/@

Laplacian matrix. The Laplacian matrix of a network
L =D—A, where D is the diagonal matrix of vertex degrees,
is a (sparse) network measure and therefore inherits all the
symmetries of the network. The matrix L can be seen as
the adjacency matrix of a network £ with identical sym-
metric motifs, except that all edges are weighted by —1 and
all vertices have self-loops weighted by their degrees in ¢
(Fig. 2¢). In particular, the motif structure (namely, the self-
loop weights) depends on the how the motif is embedded in
the network 4.

Quotient compression and computational reduction are less
useful in this case, however the spectral results are more in-
teresting. The spectral decomposition applies, and we can
compute redundant Laplacian eigenvalues directly from Ta-
ble 2, for instance positive integers for BSMs with one orbit
(Methods, Corollary 2). This explains and predicts most of
the ‘peaks’ (high multiplicity eigenvalues) in the Laplacian
spectral density, confirmed on our test networks (Fig. 7). Us-
ing the formula in Table 2, one can similarly compute the
redundant spectrum for 2-orbit BSMs, and for other versions
of the Laplacian (e.g. normalised, vertex weighted). Finally,
observe that the spectral decomposition applies, thus Algo-
rithm 3 provides an efficient way of computing the Laplacian
eigendecomposition with an expected sp = ﬁfQ (see Table 1)
computational time reduction. '

Commute distance and matrix inversion. The commute
distance is the expected time for a random walker to travel

between two vertices and back**. In contrast to the shortest
path distance, it is a global metric which takes into account
all possible paths between two vertices. The commute dis-
tance is equal up to a constant (the volume of the network)
to the resistance metric #*, which can be expressed in terms
of L' = (liTj), the pseudoinverse (or Moore-Penrose inverse)
of the Laplacian, as r(i,j) = l; + l;j — 213}. The commute
(or resistance) distance is a (full) structural measure, and all
our structural and spectral results apply. Crucially, we can
use eigendecomposition algorithm to obtain L = UDUT (and
hence LT = UDTUT, and r) from the quotient and symmetric
motifs, resulting in significant computational gains (Fig. 5).
More generally, if M is the matrix representation of a network
measure, its pseudoinverse M; is also a network measure, and
the comments above apply. Note that M; is generally a full
measure even if M is sparse (the inverse of a sparse matrix is
not generally sparse).

Vertex symmetry compression. As a vertex measure G is
constant on orbits, we only need to store one value per orbit.
Let S be the characteristic matrix of the partition of the vertex
set into orbits, and A the diagonal matrix of orbit sizes (col-
umn sums of ). If G is represented by a vector v = (G(i))
of length ny, we can store one value per orbit by taking
w = A~'8Tv, a vector of length ny, and recover v = S"w
(Methods, Theorem 9).

Degree Centrality. The degree of a node (in- or out-degree if
the network is directed) is a natural measure of vertex central-
ity. As expected, the degree is preserved by any automorphism
o, which can also be checked directly,

di=Y aij=) as@s() = Y do(i); = do):

jev jev jev

(23)

as automorphisms permute orbits (so j € V and 6 (j) € V are
the same elements but in a different order). In particular, the
degree is constants on orbits. We recover the degree centrality
from the quotient as the out-degree (Methods, Proposition 2).

Closeness centrality. The closeness centrality of a node i in
a graph ¢, ccg(i), is the average shortest path length to every
node in the graph. As symmetries preserve distance, they also
preserve closeness centrality, explicitly,

ce(i)

% Z d(i, j) = L Z d(o(i),o(J))

ng jev ng jev

1 Y d(o(i), j) = ce(a(i)),

ng jev

(24)

and centrality is constant on each orbit, as expected. Moreover,
closeness centrality can be recovered from the quotient (short-
est paths does not contain intra-orbit edges, except between
vertices in the same symmetric motif, see above), as

ec? (i) =

a2 (k1) + 2Ly (25)
ng

i# "9
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if i belongs to the orbit V} and d is the average intra-motif
distance, that is, the average distances of a vertex in V} to any
vertex in .#, the motif containing V;. By annotating each
orbit by di, we can recover betweenness centrality exactly.
Alternatively, as dy < n (note that di < m if .# has m orbits),
we can approximate cc” (i) by the first summand, or simply
by the quotient centrality cc(ct), in most practical situations.

Betweenness centrality. This is the sum of proportions of
shortest paths between pairs of vertices containing a given
vertex. It can be computed from shortest path distances and
number of shortest paths*®, both pairwise structural measures,
reducing the computation of a naive O(n?) time, O(n?) space
implementation by 7139 and 71'?_@. It would be interesting to
adapt a faster algorithm e.g.*® to exploit symmetries, but this
is beyond our scope.

Eigenvector centrality. Eigenvector centrality is obtained
from a Perron-Frobenius eigenvector (i.e. of the largest eigen-
value) of the adjacency matrix of a connected graph!. Since
this eigenvalue must be simple, it cannot be a redundant eigen-
value. Hence it is a quotient eigenvalue, and, as those are a
subset of the parent eigenvalues, it must still be the largest
(hence the Perron-Frobenius) eigenvalue of the quotient. Its
eigenvector can then be lifted to the parent network, by repeat-
ing entries on orbits. That is, if (1,v) is the Perron-Frobenius
eigenpair of the quotient, then (A, Sv) is the Perron-Frobenius
eigenpair of the parent network. In practice, we use the sym-
metric quotient By, = A~1/28T ASA=1/2 for numerical rea-
sons (Algorithm 4). Hence the computation (quadratic time
by power iteration) can be reduced by ﬁé (Fig. 5).

Input: adjacency matrix A, characteristic matrix S
Output: (right) Perron-Frobenius eigenpair (4,v) of A
A« diag(sum(S))

R+« SA™1/2

Bgym < RTAR

(A,w) <= eig(Bsym, 1) eigenpair of the largest eigenvalue
V< Rw

Algorithm 4: Eigenvector centrality from the quotient network.

Discussion

We have presented a general theory to describe and quantify
the effects of network symmetry on arbitrary network mea-
sures, and explained how this can be exploited in practice in a
number of ways.

Network symmetry of the large but sparse graphs typically
found in applications can be effectively computed and ma-
nipulated, making it an inexpensive pre-processing step. We
showed that the amount of symmetry is amplified in a pair-
wise network measure but can be easily discounted using the
quotient network. We can for instance eliminate the symmetry-
induced redundancies, or use them to simplify the calculation
by avoiding unnecessary computations. Symmetry has also
a profound effect on the spectrum, explaining the character-

istic ‘peaks’ observed in the spectral densities of empirical
networks, and occurring at values we are able to predict.

Our framework is very general and apply to any pairwise or
vertex-based network measure beyond the ones we discuss as
examples. We emphasised practical and algorithmic aspects
throughout, and provide pseudocode and full implementa-
tions?°. Since real-world network models and data are very
common, and typically contain a large degree of structural
redundancy, our results should be relevant to any network
practitioner.

Methods

Geometric decomposition and symmetric motifs
We write Aut(¥/) for the automorphism group of an (unweighted, undirected,
possibly very large) network ¢4 = (V,E) (see below for a discussion of
directed and weighted networks). Each automorphism (symmetry) o €
Aut(¥) is a permutation of the vertices and its support is the set of vertices
moved by o,

supp(o) = {i € V such that 6 (i) # i}. (26)
Two automorphisms ¢ and T are support-disjoint if the intersection of their
supports is empty, supp(c) Nsupp(7) = O. The orbit of a vertex i is the set
of vertices to which i can be moved to by an automorphism, that is,

{o(i) such that 6 € Aut(¥)}. 27)

One can show!! that there is a partition a set X of generators of Aut(%)
into its finest support-disjoint classes X = X; U...UX,, which is unique up
to permutation of the sets X;. The vertex sets M; = Ugcx,;supp(o) give the
geometric decomposition Eq. (2), and the subgraphs induced by them are,
by definition, the symmetric motifs of 4. (The next section explains how to
compute the geometric decomposition in practice.) Since support-disjoint
automorphisms must commute (the order in which they are composed is
irrelevant), the subgroups of Aut(%) generated by X; to X,,, call them H;
to Hy,, give a direct product decomposition Aut(¥) = H; X ... x H,. The
geometric decomposition is defined from the finest support-disjoint partition
of a special set of generators (called essential), as explained in'!. However,
the results in this article are valid for any support-disjoint decomposition of
any set of generators (essential or not) of Aut(%).

If all the orbits of a symmetric motif have the same size k and every permu-
tation of the vertices in each orbit can be extended to a network automorphism
supported on the motif, we call the symmetric motif basic (or BSM) of type k.
(In particular, the corresponding subgroup H; must be Sym(k), the symmetric
group of all permutations of k elements.) If a symmetric motif is not basic,
we call it complex or of type 0.

Network symmetry computation

First, we compute a list of generators of the automorphism group from an
edge list (we use saucy3*7, which is extremely fast for the large but sparse
networks typically found in applications). Then, we partition the set of
generators X into support-disjoint classes X = X; U...UX),, thatis, 6 and T
are support-disjoint whenever ¢ € X;, T € X; and i # j. To find the finest such
partition, we use a bipartite graph representation of vertices V and generators
X. Namely, let Z be the graph with vertex set V UX and edges between i
and ¢ whenever i € supp(o). Then Xj,...,X,, are the connected components
of # (as vertex sets intersected with X). Each X; corresponds to the vertex
set M; of a symmetric motif .#;, as M; = Ugex, supp(o). Finally, we use
GAP* to compute the orbits and type of each symmetric motif (Alg. 5). Full
implementations of all the procedures outlined above are available at a public
repository.

Structural network measures

We prove below the structural result for BSMs for arbitrary graphs and
network measures. The proof is a generalisation of the argument on [49, p.48]
to weighted directed graphs with symmetries.

Theorem 1. Let M be the vertex set of a BSM of a network 4, and F a
structural network measure. Then the graph induced by M in F(¥) is a BSM
of F(¥), and satisfies:
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Input: X a set of permutations of a symmetric motif
Output: Oy, ..., O orbits, and type m, of the symmetric motif

H « Group(X)
{01,...,Ok} — OrbitS(H)

m<+min(size(0y),...,size(0f))
if m==max(size(0}),...,size(0y)) then
for i < 1to k do
if not
IsNaturalSymmetricGroup(Action(H,O0;))
then
m<—0
break
end
end

else
‘ m<«+0
end

Algorithm 5: Orbits and type of a symmetric motif.

(i) foreach orbit A= {vi,...,v,}, there are constants o and [ such that
the orbit internal connectivity is given by o = F (v;,v;) for all i # j
and B = F(v;,v;) for all i;

(ii) for every pair of orbits Ay and Ay, there is a labelling Ay = {vy,...,v,},
Ay ={wi,...,w,} and constants 1, s, 81, 8 such that yy = F (vi,w;),
Y2 = F(wj,vi), 81 = F(vi,w;), and & = F(wi, v;), for all i # j;

(iii) every vertex v not in the BSM is joined uniformly to all the vertices
in each orbit {vy,...,v,} in the BSM, that is, F(v,v;) = F(v,v;) and
F(vi,v) =F(vj,v) foralli,j.

Moreover, property (iii) holds in general for any symmetric motif.

If ¢ is undirected and F is symmetric, ¥ = 7» and 8; = &, and each orbit
is a (e, B)-uniform graph K, # and each pair of orbits form a (7, §)-uniform
join, explaining Figure 3(a, b).

Proof of Theorem. As F(¥) inherits all the symmetries of ¢, M has the
same orbit decomposition and the symmetric group S, acts in the same way,
hence M induces a BSM in F(¥) too. For the internal connectivity, note
that every permutation of the vertices v; is realisable. Thus, given arbitrary
1 <i,j,k,d <n,wecan find o € Aut(¥) such that 6(v;) = v; and, if j # i
and [ # k, additionally satisfies o(v;) = v;. This gives

F(vi,vj) = F(o(v),0(vi)) = F(vi, 1),
as F is a structural network measure. The other case, i = j and k = [, gives
F(vi,vi) = F(c(vi),0(vk)) = F (v, vk)-

For the orbit connectivity result (ii), we generalise the argument in [49, p.48]
to weighted directed graphs with symmetries, particularly F(¥). We assume
some basic knowledge and terminology about group actions>® and symmetric
groups S,. Given two orbits A = {vy,...,v,} and Ay = {wy,...,w,} and
1 <i<n, define
Ii= {Wj [SFLV) ‘F(V,‘,Wj) # 0} N

the vertices in A, joined to v; in F(%). If a finite group G acts on a set X,
the stabiliser of a point Gy = {g € G| gx = x} is a subgroup of G of index

[G:H]= % equals to the size of the orbit of x. Hence the stabilisers G, or
Gy, are subgroups of S, of index n, for all i, j. The group S, has a unique, up
to conjugation, subgroup of index 7 if n # 6. In this case, G,, is conjugate to
Gy, 50 Gy, = 0Gy, o l= Gy, for some ¢ € S,. Relabelling owy as wy we
have G,, = G, . Similarly, we can relabel the remaining vertices in A, so that
Gy, = G, for all i: write vo = 0,v1, v3 = O3V, ... and relabel wy = orw1,
w3 = O3w1, ..., noticing there cannot be repetitions as oyw; = oyw; for k # [
implies oy G]_l € Gy, = Gy, and thus v = 0}v| = 0;v1 = vy, a contradiction.
Fix 1 <i < n. The stabiliser G,, fixes v; but it may permute vertices in Ay. In
fact, the set I'; above must be a union of orbits of G,; on A;: if w € I'; and
o € Gy, then

0 # F(vi,w) =F(ov;,ow) = F(v;,0w)

so ow also belongs to I';, The orbits of G,, = G, in A, are {w;} and
A> \ {wi}, as Gy, fixes w; and freely permutes all other vertices in Ay. The
case n = 6 is similar, except that S¢ has two conjugacy classes of subgroups
of index 6, one as above, and the other a subgroup acting transitively on
the 6 vertices, which gives a unique orbit Ay. In all cases, the set Ay \ {w;}
is part of an G,,;-orbit, which gives the connectivity result, as follows. Fix
1 <i<n.Forl < j,k<n different from i, the vertices w; and wy are in the
same G,,-orbit so there is 0 € G,; with ow; = wy and, therefore,

F(vi,wj) =F(ovi,ow;) = F(vi,wg).
The argument is general, so we have shown a; = F(v;,w;) is constant for all
Jj # i. It is enough to show a; = a; for all i. Choose j # i, then
a; = F(V,‘,Wj) = F(G,’V],ijl) = F(V] ,Gi_lcjwl) =a

as long as ()'i" ojw1 # wi, which cannot happen as otherwise Gl.’l 0; €Gy, =
G,, implies Gi’lojvl =V Orv; = 0jv| = O;v1 = v}, a contradiction. Hence
we have shown F (v;, wj) is a constant, call it y;, for all i # j. In addition,

F(V,‘,Wi) = F(Givl,a,-wl) = F(vl,wl)

is also a constant, call it 8;, for all i. The cases y» = F(wj,v;) and &, =
F(wj,v;) are identical, reversing the roles of A; and A;.

Property (iii) holds for any symmetric motif, not necessarily basic, as
follows. By the definition of orbit, for each pair 7, j we can find an automor-
phism & in the geometric factor such that o(v;) = v;. Since v is not in the
support of that geometric factor, it is fixed by o, that is, o(v) = v. Therefore

F(V,V,‘) :F(O'(V),O'(V_/)) :F<V,Vj)7

and similarly F(v;,v) = F(v},v). O

Average compression

Theorem 2. Let A = (a;j) be the n x n adjacency matrix of a network with

vertex set'V. Let S be the n x m characteristic matrix of the partition of V into

orbits of the automorphism group, and A the diagonal matrix of column sums

of S. Define B= ST AS and Agvg = RBRT = (aij) where R = SA~L. Then,
(i) ifi,j €V belong to different symmetric motifs, a;; = a;;;

(ii) ifi,j €V belong to orbits i € Ay and j € Ay in the same symmetric

motif,
I y 8)
dij = —— 17— Ayy-
L ‘A] ‘ ‘AZ‘ et uv
VEAY

Before proving this statement, we make a few observations. The column
sums of S equal the sizes of the vertex partition sets, hence A is the same as
in the definition of quotient matrix (6), and can be obtained easily from S.
The matrix S is very sparse (each row has a unique non-zero entry) and can
be stored very efficiently. Case (i) covers the vast majority of vertex pairs
(external edges) for a network measure (see ext; and inty in Table 1). In (ii),
the case A| = A, is allowed. The matrix B = ST AS is symmetric with integer
entries if A is too, hence generally easier to store than Q(A) = A~1STAS.

Proof of Theorem. Let V. = A U...UA, be the partition into orbits, and
write ny = |Ag|. Clearly, the row sums of S equals ny,...,n,. Writing [M|;;
for the (i, j)-entry of a matrix M, matrix multiplication gives

— 1 L oifien
Rla = YISlalA ™" Ju 2 [S)a— = { ™ :
[R]ix J [STa[A™ Ji =[Sl o 0 otherwise.

Similarly, assuming i € Ay and j € A;, we have

_ 11 11
aij = [RBRT]ij = Z[R]iot[B}aﬁ [R]jﬁ = ;k;l[B]kl = a;[ Z Ayy-
ap UEA,
VEA;

This expression reduces to g;; if the orbits belong to different symmetric
motifs, since in this case all the summands in Y ca, vea, @uv are equal to
one another. Indeed, given ij,iy € A, and ji, j» € A;, we can find, by the
definition of orbit and symmetric motif, automorphisms ¢ and 7 such that
o (i) = i» while fixing jj, and 7(j;) = j» while fixing i;. This gives

iy ji = Aro(i)to(j) = Gelin)t(iy) = Yinz- o
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A similar proof shows that we can recover exact inter-motif connectivity
(external edges), and average intra-motif connectivity (average internal edges)
from the quotient network, as follows.

Corollary 1. Let A = (a;j) be the n x n adjacency matrix of a network
and Q(A) = (by) its quotient with respect to the partition into orbits of the
automorphism group V.= Ay U...UA,,. Suppose thati € Ay, j € A;. Then,

(i) if the orbits Ay and A; belong to different symmetric motifs, by = a;j;

(ii) if the orbits Ay and A; belong to the same symmetric motif,

Ay - 29)
hu = \Ak\ L (

uEA)
VEA,

Lossless compression

We can achieve lossless compression by exploiting the structure of BSMs,
which account for most of the symmetry in real-world networks. If the
motif is basic, we can preserve the exact parent network connectivity in an
annotated quotient, as follows. Each orbit in a BSM is a uniform graph K,‘,I’ﬁ
which appears in the quotient as a single vertex with a self-loop weighted by
(n—1)a+ B (Fig. 3 (c)). Hence if we annotate this vertex in the quotient
by not only n but also o, or 3, we can recover the internal connectivity.
Similarly, the connectivity between two orbits in the same symmetric motif is
given by two parameters 7, 6 and appears in the quotient as an edge weighted
(n—1)y+ & (Fig. 3 (d)) and thus can also be recovered from a quotient with
edges annotated by 7, or §.

Since there is no general formula for an arbitrary non-basic symmetric
motif, we can work with the basic quotient Dy, instead, that is, the quotient
with respect to the partition of the vertex set into orbits in BSMs only (vertices
in non-basic symmetric motifs become fixed points hence part of the asym-
metric core). The annotated (as above) basic quotient achieves most of the
symmetry reduction in a typical empirical network (t’jm g, m js‘c g,
(see Table 1, caption). To maintain the same vertex labelling as in the parent
network, we record, for each pairs of orbits in the same symmetric motif, the
corresponding permutation of the second orbit (else we recover the adjacency
matrix only up to permutations of the orbits).

Algorithms for lossless compression and recovery based on the basic
quotient are shown below (Algorithms 6 and 7), and MATLAB implementa-
tions for BSMs up to two orbits are available at a public repository?®. The
results reported in Fig. 4 are with respect to these implementations, and the
actual compression ratios reported include the size of the annotation data for
lossless compression with vertex identity (a very small fraction of the size of
the quotient in practice, adding at most 0.02% to the basic full compression
ratio in all our test cases).

Spectral signatures of symmetry
The partition into orbits satisfy the following regularity condition
partition of the vertex set V =V U... UV, is equitable if

Y aij= Y an;

i i,

34,35 A

for all iy,ip € Vi, forall 1 <k,l <m, (30)

that is, if the connectivity from a node in V; to all nodes in V; is independent
of the chosen node in V;. For completeness, we show the followmg

Proposition 1. LetV =V, U... V), be a partition of the vertex set of a graph
with adjacency matrix A = (a;;), and let S be the characteristic matrix of the
partition. Write Q(A) for the quotient with respect to the partition.

(i) The partition is equitable if and only if AS = SQ(A);

(ii) The partition into orbits of the automorphism group is equitable.
Proof. (1) Fix1 <i<nand1 <k <m,and suppose i € V;. Then
ASlu =Y aij,
JE€Vi
and, using the equitable condition,

|V\ Z |,\Za,j—2a,].

ey JEVk JEVK
JE€Vk

[SOI(A)]ix = [Q1(A)]u =

Input: adjacency matrix A, characteristic matrix for the basic
quotient S, list of BSMs motifs
Output: quotient matrix B, annotation structure a

B« STAS

extract orbits from §
foreach orb in orbits do

rep <—min(orb)

B« A(rep,rep)

store B in annotation structure a
end

kmax < max(size(motifs)) maximal number of orbits in a motif
for k < 2 to kyu, do
extract k-BSM (list of BSMs with k orbits) from motifs
foreach bsm in k-BSM do
foreach pairs of distinct orbits Vi,V, in bsm do
compute § and permutation of V, perm such that
A(k,perm(k)) =6 forall k € V}
store orbit numbers (with respect to S), 8 and perm in
annotation structure a
end
end

end

Algorithm 6: Lossless symmetry compression.

For the converse, note that [AS];; does not depend on i but on the orbit of i.
Namely, given ij,iy € Vj,

Z ai, j = [AS]iy = [Q1(A)] = [AS]iy = Z Ay j-

JjeVi ievi

(ii) Given i; and i5 in the same orbit A, choose an automorphism o such
that o(iy) = i>. Then, since automorphisms respect the adjacency matrix,
aij = ag(j)o(j) for all i, j, we have

Y aiij = Y doi)o() = X o) = X s

JEN; JEA; JEA; JEA;

where the last equality follows from the fact that an element in a group
permutes orbits, in this case, {j : j € A;} = {o(j) : j € A/}. Hence the
partition into orbits is equitable. d

It follows immediately that the quotient eigenvalues are a subset of the
eigenvalues of the parent network,

OQA)v=2Av = A(Sv) =SQ(A)v = ASv. 31)

(Note that Sv # 0 if v # 0.) That is, the spectrum of the quotient is a subset
of the spectrum of the graph, with eigenvectors lifted from the quotient by
repeating entries on orbits. Moreover, we can complete an eigenbasis with
eigenvectors orthogonal to the partition (adding up to zero on each orbit).

Theorem 3. Suppose that A is an n X n real symmetric matrix and B the
m X m quotient matrix with respect to an equitable partition Vi U...UV,, of
the set {1,2,...,n}. Let S be the characteristic matrix of the partition. Then
A has an eigenbasis of the form

{SVise s SV Wiy Wi}

where {vy,...,vy} is any eigenbasis of B, and ST w; = 0 for all i.

Proof. Recall that Sv # 0 if v # 0 (S lifts the vector v from the quotient by
repeating entries on each orbit) so the linear map

R™" - R", v Sy

has trivial kernel and hence it is an isomorphism onto its image. In particu-
lar, % = {Sv1 e ,Svm} is also a linearly independent set, and they are all
eigenvectors of A, since AS = SB as the partition is equitable. To finish the
proof we need to complete 2 to a basis {Svy,...,SVm, Wi,...,Wn_m} such
that each w; is an A-eigenvector orthogonal to all Sv;. As Z is a basis of
Im(S), this would imply w; € Im(S)* = Ker(ST), giving ST w; = 0 for all i,
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Input: quotient matrix B, characteristic matrix S, annotation
structure a

Output: adjacency matrix A

A < diag(sum(S))

R+ SA™!

A + RBR”

extract orbits from §

foreach orb in orbits do

n < size(orb)

extract f3 from a

compute @ from B,  and n (using

[Blor,oro = ((n— 1)+ p))
construct adjacency matrix of the orbit A,‘f‘ﬁ
A(orb,orb) « AP
end
extract pairs of orbits in the same BSM from a
foreach (V;,V5) in pairs do
n<+ size(Vp)
extract 8, perm from a
compute ¥ from B, & and n (using By, v, =n((n—1)y+9))
construct matrix A},"'ﬁ
A(Vy,perm) « Al®
A(perm,V;) « ArS

end

Algorithm 7: Lossless symmetry decompression.

as desired. Since A is diagonalisable, R" decomposes as an orthogonal direct
sum of eigenspaces, R" = @, Ej . In each Ej, we can find vectors w; such
that they complete V, = {Sv; € #|v; A-eigenvector} to a basis of E; and
that are orthogonal to all vectors in Vj, (consider the orthogonal complement
of the subspace generated by V) in Ej ). Repeating this procedure on each
E;, we find vectors {wy,...,w,_n } as needed. O

The statement and proof above holds for arbitrary matrices A by replacing
‘eigenbasis’ by ‘maximal linearly independent set’” and removing the condition
STw; = 0. It would be interesting to know whether the condition S”w; =0
holds for motif eigenvectors in the directed case as well (the proof above is
no longer valid).

Further to the spectral decomposition theorem above, we can give an
even more precise description of the redundant spectrum: it is made of the
contributions from the spectrum of each individual symmetric motif.

Theorem 4. Let ./ be a symmetric motif of a (possibly weighted) undirected
graph 9. If (A, w) is a redundant eigenpair of A then (A, w) is a eigenpair
of 4, where w is equal to w on (the vertices of) A, and zero elsewhere.
Proof. Since (A,v) is an .4 -eigenpair,
Z [A///],-jwj = 7Lw,- Vie V(/ﬂ)
Jev(A)
where A_ is the adjacency matrix of .#. We can decompose .# into orbits,

V(%)ZV]UH.UVM,

and, by the spectral decomposition theorem above applied to .4, w is orthog-
onal to each orbit, that is,

Y wi=0 Vi<i<m.

JeVi
We need to show that (A, w) is a 4-eigenpair. Let us write A for the adjacency
matrix of ¢ (recall .# is a subgraph so A restricts to A ; on .#). We need
to show Aw = Aw. Given i € V(¥), we have two cases. First, if i € V(.#),

Y [Apwi= ) [Alyw;+ [A]ijw;
V@) Jevia) JEVENV ()
= Y [Alijwj=Awi =,
JEV(A)

since w equals w on .Z, and is zero outside .#. The second case, when
ieV(G)\V(A), gives

Y Alyw;,

jevia)

Y, [Alijw;=
jev(¥)
as before, and then we use the decomposition of .# into orbits,

m m

Y [Aijwi=Y Y Aljwi=Y o Y, w;.

Jev() k=1jeV, k=1 jev;

Here we have used that the vertex #, outside the motif, connects uniformly to
each orbit, that is, A;;, = A;j, for all ji, jo € Vi, and we call this quantity o.
Finally, recall that w is orthogonal to each orbit, to conclude

Y Awi=

jev() k=

m
OCkZW_,':O:AW,‘. O
1 JEV

Therefore, the redundant spectrum of ¢ is the union of the redundant
eigenvalues of the symmetric motifs, together with their redundant eigenvec-
tors localised on them. Since most symmetric motifs in real-world networks
are basic, most symmetric motifs in the network representation of a network
measure will be basic too. Given their constrained structure, one can in fact
determine the redundant spectrum of BSMs with up to few orbits, for arbitrary
undirected networks with symmetry.

Redundant spectrum of a 1-orbit BSM. A BSM with one orbit is an (a, §)-
uniform graph K B
and a;; = B for all i # j. Then Ky P has eigenvalues (n— 1)oc+ 3 (non-
redundant), with multiplicity 1, and —a + 8 (redundant), with multiplicity
n—1. The corresponding eigenvectors are 1, the constant vector 1 (non-
redundant), and e;, the vectors with non-zero entries 1 at position 1, and —1
at position 7, 2 < i < n (redundant). This can be shown directly by computing

Ag’ﬁl and A,‘f'ﬁe,-, and noting that 1, e, ..
(although not orthogonal) and thus form an eigenbasis. Indeed, Aﬁ"ﬁ 1 is the

with adjacency matrix A - (aij) given by a;; = o

., €, are linearly independent

vector of column sums of the matrix AZ? | which are constant (n—1)a+B,

and Aff‘ﬁ e; is the constant 0 vector, except possibly at positions 1, which
equals 8 — o, and i, which equals @ — f3.

Redundant spectrum of a 2-orbit BSM. A BSM with two orbits is a uni-
form join of the form

Kb 2, gor by 32)

Define a = a; — B1, b = 0p — B, ¢ = y— 8, and note that ¢ # 0: otherwise
Y= & and we can freely permute one orbit while fixing the other, that is, this
would not be a BSM with two orbits but rather two BSMs with one orbit each.
As above, let e; be the vector with non-zero entries 1 at position 1, and —1 at
position i, for any 2 <i < n.

Lemma 1. The following set of vectors is linearly independent
{(x1eilei), (kaeilei) |2 <i<n}
forall k) # K, € R.
Proof. Define the (n— 1) x n matrix
B,=(1]-1d,)

where 1 is a constant 1 column vector, and Id,_ the identity matrix of size
n— 1. The set of vectors in the statement can be arranged in block matrix

form as

K1 B, | By

K2 By | By '
This matrix has a minor of order 2(n — 1),

—Ki Idnfl ‘ 7Idnfl )
det .
< —K2 Idn—] ‘ 7Idn—1

Using that det (4 8) = AD — BC whenever A, B, C, D are square blocks of
the same size and C commutes with D', this minor equals

det(*Kl Id,— — KzIdn,I) = (—1)"71(1(1 +K'2)n71 #0 <= K #K. O
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Next we derive conditions for a vector v; = (ke;|e;) to be an eigenvector
of the uniform join (32), that is, Av; = Av;, for some A € R, where A is the
(symmetric) adjacency matrix of the uniform join,

a.pi 7.8
A—( A;Z' f; . ) 33)
The jth entry of the vector Av is

KPi — Koy +06 —y=—(xa+c) j=1
Koy — kB +y—8=kKka+c j=i
KO —KY+ P2 —0p = —(kc+b) j=n+1
KY—kd+a— P =kc+b j=n+i

0 otherwise.

Comparing these with the entries of the vector Av;, we obtain
Av; = Av; <= (ka+c=—Ak and kc+b=—-1), (34)
The two equations on the right-hand side are satisfied if and only if A =
—Kkc— b and k is a solution of the quadratic equation
ck* 4+ (b—a)k—c=0, (35)
which has two distinct real solutions
(a—b)£+/(a—b)*+4c2
2¢ ’

since ¢ # 0, as explained above. Together with the lemma, we have shown
the following.

(36)

Theorem 5. The redundant spectrum of a symmetric motif with two orbits
) . . .
KX B 10 K,?Q‘ﬁz is given by the eigenvalues

— —b)2 2
(a+b)++/(a—b)*+4c and

M:fbfck'l: 5 s
— b) — —b)2 1 4c2
M= b iy — (a+b) 2((1 )2 +4c ’

each with multiplicity n — 1, and eigenvectors (ke;i|e;) and (kze;le;) respec-
tively, where K| and K, are the two solutions of the quadratic equation
ek’ +(b—a)xk—c=0,a=0—B,b=0p—Prandc=y—85 #0.

For unweighted graphs without loops, we recover the redundant eigenval-
ues for BSMs with two orbits predicted in'?, as follows. We have B; = 8, =0,
0y,02,7,6 € {0,1} and thus a,b € {0,1} and ¢ € {—1,1}. If a =, the
quadratic equation becomes k> — 1 = 0 with solutions k¥ = %1 and thus
A=-b—cxe{-2,-1,0,1}. If a # b we can assume a = 1, b = 0 and
the quadratic ck — Kk — ¢ = 0 has solutions ¢ and 1 — ¢ if c =1, —¢ and
¢ —1if c = —1, where ¢ = HT‘E is the golden ratio. In either case, the
redundant eigenvalues A = —b —ck = —ck are —¢@ and ¢ — 1. Altogether,
the redundant eigenvalues for 2-orbit BSMs are {—2,—¢,—1,0,¢ — 1,1},
which equals the redundant eigenvalues RSpec, in the notation of 3.

‘We omit the calculation of the redundant spectrum of BSMs with three
(or more) orbits, as it becomes much more elaborate, and its relevance in
real-world networks is less justified (for example, less than 1% of BSMs in
each of our test networks, Table 1, has 3 or more orbits).

Applications

Theorem 6 (Communicability). Ler Q(A) be the quotient of the adja-
cency matrix A of a network with respect to the partition into orbits of
the automorphism group. Let f(x) =Y anx" be an analytic function. Then

F(Q(4)) = 0(f(4)).

Proof. Call B= Q(A) and recall that AS = SB by Proposition 1(i), where
S is the characteristic matrix of the partition. Therefore, A"S = SB" for all
n>0and

0(f(a)=A""s" (i anA"> S=Y a,(A'STA"S)  @7)

n=0 n=0
=Y ay(A7'STSBY) = Y a,B" = f(B), (38)
n=0 n=0
since A~'S7 S is the identity matrix. O

Theorem 7 (Shortest path distance). Let A = (a;;) be as above. Then

(i) if (vi,va,...,vn) is a shortest path from v| to v, and 6 € Aut(¥), then
(o(v1),0(v2),...,0(vy)) is a shortest path from & (vy) to o(vy,);

(ii) if (vi,v2,...,vy) is a shortest path from vy to vy, and vy and v, belong
to different symmetric motifs, then v; and viy belong to different orbits,
foralll <i<n—1;

(iii) if u and v belong to orbits U, respectively V, in different symmetric
motifs, then the distance from u to v in ¢ equals the distance from U
to V in the unweighted (or skeleton) quotient 2.

Proof. (i) Since automorphisms are bijections and preserve adjacency,
(o(v1),0(v2),...,0(vy)) is a path from o (u) to o(v) of the same length. If
there were a shorter path (0(u) =wi,wy,...,0(v) =wy,), m < n, the same ar-
gument applied to 6! gives a shorter path (u =6~ (w;), 671 (w2),...,v=
! (wy)) from u to v, a contradiction.

(i) Any subpath of a minimal length path is also of minimal length
between its endpoints. Arguing by contradiction, there exists a subpath
p = (wi,wa,...,wy) (or p= (Wn,Wy_1,...,w1)), such that w; and w;, be-
long to the same orbit, and w, belongs to a different symmetric motif.
Hence, we can find 0 € Aut(¥) with 6(w;) = w; and fixing w,. This
implies 6(p) = (o(w1),0(w2) = wi,6(w3),...,0(ws) = wy), a shortest
path by (i), of length n — 1. The subpath (wy,0(w3),...,w,) has length
n— 2, contradicting p being a minimal length path from w; to wj,. (The case
p = (Wn,Wp_1,...,wq) is analogous.)

(iii) Let p = (u = v1,va,...,vpp1 = v) be a shortest path from u to v,
so that d¥ (u,v) = n. Let V; be the orbit containing v, for all k. By (ii),
Vi # Vg forall 1 <k <nthus g= (U =V,,Va,...,V,41 =V)isapath in
2 and d?(U,V) < n. By contradiction, assume there is a shorter path in 2
from U to V, that is, (U = W;,Wa,..., Wyt = V) with m < n. The we can
construct a path in ¢ from u to v of length m (a contradiction), as follows.
For each 1 <i < m, W; is connected to W;;| in 2, hence there is a vertex
in W; connected to at least one vertex in Wiy;. Since vertices in an orbit
are structurally indistinguishable, any vertex in W; is then connected to at
least one vertex in Wi, 1 (formally, if w € W; is connected to w’ € W, | then
o(w) € W; is connected to 6(w') € Wii1). This allows us to construct a path
in ¢ from u to v of length m < n, a contradiction. O

Let us call the external degree of a vertex as the number of adjacent vertices
outside the motif it belongs to. The proof of the following is straightforward
from the definitions.

Theorem 8 (Symmetric motif Laplacian). A symmetric motif # in 4 in-
duces a symmetric motif in £ with adjacency matrix

L+ (diln, ®...®diy,), (39)

where Ly is the ordinary Laplacian matrix of # considered as a graph on
its own, and dy, ... ,dy are the external degrees of the k orbits of M of sizes
my,...,my. (Here I, is the identity matrix of size n and we use & to construct
a block diagonal matrix.)

Recall that each orbit in a BSM (in an undirected, unweighted graph) is
either a complete or an empty graph.

Corollary 2 (Redundant Laplacian eigenvalues). Let & be an undirected,
unweighted network. If A is a 1-orbit BSM with m vertices of external
degree d, then the redundant Laplacian eigenvalue induced by A is d if #
is an empty graph, and d +m if A is a complete graph, in both cases with
multiplicity m — 1.

Proof. By Theorem 8, the Laplacian of the motif in £ is L , + dI,,. The
redundant eigenvalues of this matrix are the redundant eigenvalues of L , (0
if ./ is empty and m if .# is a complete graph, in both cases with multiplicity
m— 1) plus d. All in all, the redundant eigenvalues for 1-orbit BSMs occur a
the positive integers Z ™. O

Theorem 9 (Vertex compression). Ifv is a vector of length ne that is constant
on orbits, then SA~1STv =v.
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Proof. First, note that STS = A (this holds for any partition of the vertex set).

5 Shap = LI5" Sl = (5l = {Ova s

As v is constant on orbits, it is already of the form v = Sw for some w.
Therefore SA~1STv = SA™1ST Sw = Sw = v. O

Proposition 2 (Degree centrality). Let B = (bqp) be the adjacency matrix of
the quotient, and V =V, U...UV,, the partition of the vertex set into orbits.
Ifi € Ve, then d? = d2"".

Proof.
P 1 1
&/ =Y aj=Y aj+..+ Y aj=—Y aj+..+— Y a;
jev i JEVm M jey Tm jev,,
i€V; i€V;
2out
:bil-‘r...-‘rb,'m:da'ou. O

Weighted and directed networks

The adjacency matrix of a network can encode arbitrary weights and direc-
tions, making a general n x n real matrix A the adjacency matrix of some
(weighted, directed) network. The definition of automorphism group, geo-
metric decomposition, symmetric motif, and orbit, and their properties, as
they are defined only in terms of A, carry verbatim to arbitrarily weighted
and directed networks. In this setting, a symmetry (automorphism), respects
not only adjacency, but weights and directions. In particular, the automor-
phism group is smaller than (a subgroup of) the automorphism group of the
underlying undirected, unweighted network. By introducing edge weights
or directions, some symmetries will disappear, removing (and occasionally
subdividing) symmetric motifs and orbits, as the next results shows.

Theorem 10. Let Ay, = (wj;) be the adjacency matrix of an arbitrarily
weighted and directed network 4y, and A = (a;;) the adjacency matrix of the
underlying undirected and unweighted network ¢, that is, a;j = sgn(|w;;| +
|wjil). Consider the symmetric motifs of 4, respectively 4, with vertex sets
My, ..., My, respectively M, ..., Mr’n,. Then for every 1 <i <m' there is a
unique 1 < j < m such that Ml-’ C M. Similarly, each vertex orbit in Gy isa
subset of a vertex orbit in 4.

Proof. First we show that the automorphism group of %, is a subgroup of
the automorphism group of ¢. If 6: V — V is a permutation of the vertices,
then
Wo(i)o(j) = Wij = do(ije(j) = dij

by considering two cases: w;; 7 0 implies wg(;)5(j) 7 0 which gives a;; =
As(iyo(j) = 1; Wij = 0 implies Wo(i)o(j) = 0 which giVCS aij = Ag(i)o(j) = 0
(note wij #0 <= a;j = 1). Hence Aut(%,) C Aut(%), which immediately
gives the result on orbits.

Let us choose essential'! sets of generators S, respectively §', of Aut(%),
respectively Aut(%,y ), with support-disjoint partitions

X =X, U...UX,, respectively X' = X{U...UX/

m'*

It is enough to prove the statement for these sets: given i, there is unique
Jj such that X/ C X;. Let x' € X] C Aut(%,) C Aut(¥) thus we can write
X' =hy-...-hy with by € H, = (X;). Since X’ is an essential set of generators,
there is an index j such that 4; = 1 (the identity, or trivial permutation) for
all k # j, so that x’ = h;. Given any other y’ € X/, the same argument gives
y' = hy for some 1 <1 < m. We claim j =, as follows. The partition of X,
respectively X', above are the equivalence classes of the equivalence relation
generated by o ~ 7 if o and T are not support-disjoint permutations. Since
X',y are in the same equivalence class, so are &; and /; and thus j=1. O

The same result applies to networks with other additional structure, not
necessarily expressed in terms of the adjacency matrix, such as arbitrary
vertex or edge labels, by restricting to automorphisms preserving the ad-
ditional structure. We obtain fewer symmetries, and a refinement of the
geometric decomposition, symmetric motifs, and orbits as above. The results
in this paper, although applicable in theory, become less useful in practice as
further restrictions are imposed, reducing the number of available network
symmetries.

Asymmetric measures

In the case of an asymmetric network measure (F (i, j) # F(j,i)), its network
representation F (%) is directed even if ¢ is not. However, F (%) still inherits
all the symmetries of ¢, that is, every automorphism of ¢ respects weights
and edge directions in F(¥). Therefore, F(%) has the same symmetric
motifs (as vertex sets) and orbits as ¢, and the structural results in this paper
apply verbatim.

Data and code availability

The datasets analysed during the current study are available at the loca-
tions stated in the caption to Table 1. The datasets generated during the
current study can be found at https://doi.org/10.6084/m9.figshare.
11619792 and the code used to process the datasets at ht tps: //bitbucket.
org/rubenjsanchezgarcia/networksymmetry/.
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