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ABSTRACT

Virtually all network analyses involve structural measures between pairs of vertices, or of the vertices themselves, and the large
amount of symmetry present in real-world complex networks is inherited by such measures. This has practical consequences
which have not yet been explored in full generality, nor systematically exploited by network practitioners. Here we study the
effect of network symmetry on arbitrary network measures, and show how this can be exploited in practice in a number of
ways, from redundancy compression, to computational reduction. We also uncover the spectral signatures of symmetry for
an arbitrary network measure such as the graph Laplacian. Computing network symmetries is very efficient in practice, and
we test real-world examples up to several million nodes. Since network models are ubiquitous in the Applied Sciences, and
typically contain a large degree of structural redundancy, our results are not only significant, but widely applicable.

Network models of real-world complex systems have been
extremely successful at revealing structural and dynamical
properties of these systems1. The success of this approach
is due to its simplicity, versatility, and surprising universal-
ity, with common properties and principles shared by many
disparate systems2–4.

One property of interest is the presence of structural re-
dundancies, which manifest themselves as symmetries in a
network model. Symmetries relate to system robustness5, 6,
as they identify structurally equivalent nodes, and can arise
from replicative growth processes such as duplication7, evolu-
tion from basic principles8, or functional optimisation9, and
can be arbitrarily generated in model graphs10. It has been
shown that real-world networks possess a large number of
symmetries8, 11–14, and that this has important consequences
for network structural11, spectral13 and dynamical15–19 prop-
erties, for instance cluster synchronisation14, 20–25.

Crucially, network symmetries are inherited by any measure
or metric on the network, that is, any structural measurement
between pairs of vertices (such as distances), vertex-valued
measurements (such as centrality) or even matrices derived
from the network (such as the graph Laplacian). However,
the effects of symmetry on arbitrary network measures is not
yet fully understood nor exploited in network analysis, even
though the network symmetry of the large but sparse graphs
typically found in applications can be effectively computed
and manipulated.

In this article, we show how a network representation of
an arbitrary pairwise measure inherits the same symmetries
of the original network, and uncovers the structural and spec-
tral signatures of symmetry on this network representation.
Namely, for an arbitrary network measure, we identify sub-
graphs where the symmetry is generated (symmetric motifs)
and their structure, use the network quotient to quantify the
redundancy due to symmetry, develop general compression
algorithms that eliminate this redundancy, and study the re-
duction in computational time obtained by exploiting the pres-
ence of symmetries. The eigenvalues and eigenvectors of a

network measure also reflect the presence of symmetry: we
show how symmetry explains most of the discrete spectrum
of an arbitrary network measure, predict the most signifi-
cant eigenvalues due to symmetry, and use this to develop
a fast symmetry-based eigendecomposition algorithm. We
achieve remarkable empirical results in our real-world test
networks: compression factors up to 26% of the original size,
over 90% of the discrete spectrum explained by symmetry,
and full eigendecomposition computations in up to 13% of
the original time, demonstrating the practical use of symme-
try in network analysis. We also discuss the implications of
network symmetry in vertex measures. We illustrate our ap-
proach in several network measures, providing novel results
of independent interest for the shortest path distance, com-
municability, the graph Laplacian, closeness centrality and
eigenvector centrality. To facilitate dissemination, we provide
full implementations of all the algorithms described in this
article26. Our results supersede11, 13 and help to understand
other network symmetry results thereafter12, 27–31. We focus
on structural and spectral properties, and symmetries com-
monly found in real-world networks: For a more general study
of arbitrary symmetry in (networks of) dynamical systems,
see15–18. To keep our account as self-contained as possible,
we include material well known in the algebraic graph theory
literature e.g.32–35, without any originality claim.

Results

Symmetry in complex networks
The notion of network symmetry is captured by the mathe-
matical concept of graph automorphism32. This is a permu-
tation of the vertices (nodes) preserving adjacency, and can
be expressed in matrix form using the adjacency matrix of
the network. If a network (mathematically, a finite simple
graph) G has n vertices, labelled 1 to n, its adjacency matrix
A = (ai j) is an n×n matrix with (i, j)-entry ai j = 1 if there is
an edge between nodes i and j, and zero otherwise. A graph
automorphism σ is then a permutation, or relabelling, of the



vertices v 7→ σ(v) such that (σ(i),σ( j)) is an edge only if
(i, j) is an edge, or, equivalently, ai j = aσ(i)σ( j) for all i, j. In
matrix terms, this can be written as

AP = PA , (1)

where P is the permutation matrix corresponding to σ , that
is, the matrix with (i, j)-entry 1 if σ(i) = j, and 0 otherwise.
The automorphisms of a graph form a mathematical structure
called a group, the automorphism group of G . In principle,
any (finite) group G is the automorphism group of some graph
G 32, but, in practice, real-world networks exhibit very specific
types of symmetries generated at some small subgraphs called
symmetric motifs11. Namely, we can partition the vertex set
into the asymmetric core of fixed points V0 (an automorphism
σ moves a vertex i ∈V if σ(i) 6= i, and fixes it otherwise), and
the vertex sets Mi of the symmetric motifs,

V =V0∪M1∪ . . .∪Mm, (2)

as shown in Fig. 1a for a toy example. Equation (2) is called
the geometric decomposition of the network11.

Real-world networks typically exhibit a core of fixed points
(asymmetric core), and a large number of relatively small
symmetric motifs, where all the network symmetry is gener-
ated, and hence the size of the automorphism group is often
extremely large, in stark contrast to random graphs, typically
asymmetric38. However, each symmetry is the product (com-
position) of automorphisms permuting a very small number of
vertices within a symmetric motif. For example, the toy graph
in Fig. 1a has 27×3!×4! = 18,432 symmetries (size of the
automorphism group) but they generated by (all combinations
of) just 10 permutations, each permuting a few vertices within
a symmetric motif (one permutation per motif except two for
M4, M5 and M7).

Each symmetric motif can be further subdivided into orbits
of structurally indistinguishable nodes (shown by colour in
Fig. 1a), which play the same structural role in the network
and, therefore, contribute to network redundancy and thus
to the robustness of the underlying system. Our notion of
structurally indistinguishable nodes (nodes in the same orbit
of the automorphism group) extends the notion of structurally
equivalent nodes found in the social sciences39, that is, nodes
with the same set of neighbours. It is not equivalent: nodes
in the same orbit may not have the same neighbours (e.g. M1,
M6 or M7 in Fig. 1a).

Network symmetries of (possibly very large) real-world
networks can be effectively computed, stored and manipu-
lated (see Methods). For instance, we computed generators
of the automorphism group, and the subsequent geometric
decomposition, for real-world networks up to several million
nodes and edges in a few seconds (see t1 and t2 in Table 1).

Most symmetric motifs in real-world networks (typically
over 90%, see the bsm column in Table 1) are of a very specific
type, called basic11: they are made of one or more orbits
of the same size, and every permutation of the vertices in
each orbit is realisable, that is, can be extended to a network
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Fig. 1. (Top) Toy example of a symmetric network. Decomposition into a symmetric
core (white nodes) and 7 symmetric motifs coloured by orbits of structurally equivalent
nodes. All motifs are basic except M7 (a tree). A vertex measure (here subgraph
centrality shown on M1) is constant on orbits. Inset: A pairwise measure (here
communicability shown near M1) inherits all the network symmetries. (Middle)
Geometric decomposition of its automorphism group. (Bottom) Quotient network
skeleton (no loops, edge directions or weights shown).

In principle, any (finite) group G is the automorphism group
of some graph G (21), but, in practice, real-world networks
exhibit very specific types of symmetries of the form

Aut(G) = H1 ◊ . . . ◊ Hm [2]

with each factor Hi a symmetric group, or a wreath product
of symmetric groups (10). Equation 2 is called the geometric
decomposition of Aut(G), and each Hi a geometric factor. We
have an associated partition of the vertex set

V = V0 fi M1 fi . . . fi Mm [3]

where V0 are the (global) fixed vertices, and Mi is the set of
vertices moved by the automorphisms in Hi (an automorphism
‡ moves a vertex i œ V if ‡(i) ”= i, and fixes it otherwise). We
call the graph Mi induced by Mi a symmetric motif, and G0,
the graph induced by V0, the asymmetric core of global fixed
vertices of G (Fig. 1).

Real-world networks typically exhibit a core of fixed points,
and a large number of symmetric motifs, where all the network
symmetry is generated, and hence the size of the automorphism
group is often extremely large, in stark contrast to random
graphs, typically asymmetric (10). However, each symmetry is
the product (composition) of automorphisms permuting a very
small number of vertices within a symmetric motif (Fig. 1).

Each symmetric motif can be further subdivided into orbits
of structurally equivalent nodes (Fig. 1),

Mi = V
(1)
i fi . . . fi V

(mi)
i . [4]

As vertices in the same orbit are structurally indistinguishable,
orbits contribute to network redundancy and relate to the
robustness of the underlying system.

Empirically (10), most symmetric motifs of real-world net-
works are made of orbits of the same size with the geometric
factor realising every possible permutation of the vertices in
each orbit, while fixing vertices outside the motif (Fig. 1).
Such motifs are called basic symmetric motifs (BSMs), and
have a very constrained structure (e.g. each orbit has to be
either an empty or a complete graph). Non-basic symmetric
motifs (typically branched trees) are called complex; they are
rare (Table 2), and can be studied on a case-by-case basis.

The definition of network automorphism, Eq. (1), carries
to an arbitrary n ◊ n real matrix A = (aij). Such matrix can
be seen as the adjacency matrix of a network with n vertices
labelled 1 to n, and an edge (link) from node i to node j
with weight aij if aij ”= 0, and no such edge if aij = 0. This
means that an automorphism does not only preserve edges,
but also their weights and directions. This may not be a
realistic assumption for real-world weighted networks, where
the weights often come from observational or experimental
data, but it applies to the matrix representing a network
structural measure, as we explain next.

Structural measures. A (pairwise) structural network measure
is a function F (i, j) on pairs of vertices which depends on
the network structure alone, and not, for example, on node
or edge labels, or other meta-data. Most network measures
are structural, including graph metrics (e.g. shortest path,
resistance), and matrices algebraically derived from the adja-
cency matrix, such as the communicability, or the Laplacian
matrix. (We identify matrices M with pairwise measures via
F (i, j) = [M ]ij .) Crucially, structural measures are indepen-
dent of the ordering or labelling of the vertices and hence
satisfy, for any automorphism ‡ œ Aut(G),

F (‡(i), ‡(j)) = F (i, j) for all i, j œ V. [5]

(One can take this as the mathematical definition of struc-
tural measure.) In contrast, functions depending, explicitly
or implicitly, on some vertex ordering or labelling, are not
structural, for example the shortest path length through a
given node, or a measure involving a ‘source’ or ‘target’, or
any other node or edge meta-data. Our results can still can be
adapted to the presence of node or edge labels by restricting to
automorphisms preserving the additional structure (SI). For
simplicity, here we discuss the unlabelled case only.

We can encode a structural measure F as a network with
adjacency matrix [F (A)]ij = F (i, j), and write Eq. (5) in
matrix form as

F (A)P = P F (A), [6]

where P is the permutation matrix corresponding to ‡. That
is, a network representation of F , F (G), inherits all the sym-
metries of G (Fig. 1), and hence has the same geometric
decomposition Eq. (2), partition into fixed points and sym-
metric motifs Eq. (3), and orbits Eq. (4). Although induced
by the same vertex set Mi, the BSMs in F (G) are now com-
plete weighted graphs in general, yet with a very constrained
structure (Fig. 2), which we will exploit in what follows.

Typically F (i, j) ”= 0 for most i, j œ V (e.g. a graph metric)
and we call such F a full measure, whose network represen-
tation F (G) is an all-to-all weighted graph. However, our
framework also applies to sparse measures, that is, with a
similar sparsity to the original graph: F (i, j) = 0 if aij = 0,
for most i, j œ V (e.g. the graph Laplacian).
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(a)

Figure 1. Toy example of a symmetric network. (a)
Decomposition into asymmetric core (white nodes) and 7 symmetric
motifs M1 to M7. Each motif can be decomposed into one or more
orbits (shown by colour) of structurally indistinguishable nodes.
Motifs M1 to M6 are basic: one or more orbits of the same size, and
every permutation of the vertices in an orbit can be extended to a
network automorphism. Motif M7, a tree, is not basic: in the orbit of
yellow vertices, labelled 1 to 4 (top to bottom), the permutation
sending 1 to 3 must move 2 to 4 (as 1 and 2 share a common
neighbour). A vertex measure (here subgraph centrality36 shown on
M1) is constant on orbits. Inset: A pairwise measure (here
communicability37 shown near M1) inherits all the network
symmetries. (b) Quotient network (no loops, edge directions, or
weights shown) consisting on one vertex per fixed point (white
node) and per orbit (coloured node).

automorphism (see Fig. 1). Basic symmetric motifs (BSMs)
have a very constrained structure13, which we will generalise
to arbitrary network measures and exploit throughout this
article. Non-basic symmetric motifs (typically branched trees,
as M7 in Fig. 1) are called complex; they are rare and can
either be studied on a case-by-case basis, or removed from the
symmetry computation altogether (by ignoring the symmetries
generated by them).

The definition of network automorphism Eq. (1) carries
to an arbitrary n×n real matrix A = (ai j). Any such matrix
can be seen as the adjacency matrix of a network with n ver-
tices labelled 1 to n, and an edge (link) from node i to node j
with weight ai j if ai j 6= 0, and no such edge if ai j = 0. This
means that an automorphism does not only preserve edges,
but also their weights and directions. This may not be a realis-
tic assumption for real-world weighted networks, where the
weights often come from observational or experimental data,
but it applies to the matrix representing a network structural
measure, as we illustrate in Fig. 2 and explain next.
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Name nG mG gen t1 t2 sm bsm mv ñQ m̃Q exts int f cfull sp
HumanDisease 1,419 2,738 713 0.00 0.16 272 96.0 71.0 48.3 50.4 83.3 10−3 27.2 11.3
Yeast 1,647 2,736 380 0.00 0.01 149 99.3 33.3 76.3 83.5 98.8 10−3 58.4 44.4
OpenFlights 3,397 19,230 732 0.00 0.11 321 93.5 32.4 77.3 94.4 99.3 10−3 63.5 46.2
USPowerGrid 4,941 6,594 414 0.00 0.09 302 97.4 16.7 90.2 91.3 97.6 10−4 83.9 73.3
HumanPPI 9,270 36,918 972 0.00 0.12 437 100 15.3 89.5 97.0 99.9 10−4 80.1 71.6
Astro-Ph 17,903 196,972 3,232 0.01 0.21 1,682 99.4 27.5 81.9 80.4 95.5 10−4 67.4 54.9
InternetAS 34,761 107,720 15,587 0.03 0.29 3,189 99.9 54.3 55.0 78.2 99.9 10−5 30.3 16.7
WordNet 145,145 656,230 52,152 0.18 0.62 28,456 92.0 60.0 60.1 58.0 89.9 10−5 49.3 21.6
Amazon 334,863 925,872 32,098 0.20 0.39 23,302 99.8 16.8 90.3 89.0 99.0 10−6 81.6 73.6
Actors 374,511 15,014,839 182,803 0.95 1.38 36,703 99.9 58.6 51.2 66.4 90.4 10−5 26.2 13.4
InternetAS-skitter 1,694,616 11,094,209 319,738 1.71 4.17 84,675 99.1 19.7 85.4 92.8 99.9 10−6 73.5 62.3
CaliforniaRoads 1,957,027 2,760,388 36,430 0.47 0.16 35,210 98.8 4.0 97.9 98.4 99.7 10−7 96.3 93.9
LiveJournal 5,189,808 48,687,945 410,575 8.02 3.59 245,211 99.9 12.7 92.1 96.5 99.7 10−7 84.8 78.0

Table 1. Symmetry in some real-world networks. For each test network, we show the number of vertices (nG ), edges (mG ), number
of generators (gen) of the automorphism group (sizes, 10153 to 10197,552, not shown), computing times of generators (t1) and geometric
decomposition (t2), in seconds, number of symmetric motifs (sm) and proportion of basic symmetric motifs (bsm), proportion of vertices
moved by an automorphism (mv), proportion of vertices (ñQ = nQ/nG ) and edges (m̃Q = mQ/mG ) in the quotient, proportion of external
edges in the sparse case (exts, in percentage), and of internal edges in the full case (int f , closest power of 10), full compression ratio
(cfull = ñ2

Q), and spectral computational reduction (sp = ñ3
Q), all for the largest connected component. The proportion of vertices in the basic

quotient (ñQbasic , not shown) is within 1% of ñG except for HumanDisease (ñQbasic = 52.2%), OpenFlights (79.7%), USPowerGrid (91.6%)
and WordNet (79.2%), and similar results hold for m̃Qbasic . Datasets available at40, except HumanDisease41, Yeast42, and HumanPPI43.
Computations on a desktop computer (3.2 GHz Intel Core i5 processor, 16 GB 1.6 GHz DDR3 memory). All networks are symmetric,
although the amount of symmetry (as measured by mv or ñQ) ranges from several networks with 50% quotient reduction, to CalifornialRoads
with only 4% of vertices participating in any symmetry. However, the effect of compression and computational reduction multiplies as
e.g. cfull = ñ2

Q and sp = ñ3
Q , achieving significant results for most of our test networks.

Structural network measures
A (pairwise) structural network measure is a function F(i, j)
on pairs of vertices which satisfies

F(σ(i),σ( j)) = F(i, j) for all i, j ∈V (3)

for all automorphisms σ ∈ Aut(G ). Since automorphisms
identify structurally indistinguishable vertices (i and σ(i)) and,
similarly, edges ((i, j) and (σ(i),σ( j))), structural network
measures are (edge) functions that depend on the network
structure alone, and not, for example, on node or edge labels,
or other meta-data. Most network measures are structural,
including graph metrics (e.g. shortest path), and matrices al-
gebraically derived from the adjacency matrix (e.g. Laplacian
matrix). (We identify matrices M with pairwise measures via
F(i, j) = [M]i j.) In particular, structural measures are indepen-
dent of the ordering or labelling of the vertices. In contrast,
functions depending, explicitly or implicitly, on some ver-
tex ordering or labelling, are not structural, for example the
shortest path length through a given node. Our results can be
adapted to the presence of node or edge labels, or weights, by
restricting to automorphisms preserving the additional struc-
ture. For simplicity, here we discuss the unlabelled case only.

We can encode a structural measure F as a network with
adjacency matrix [F(A)]i j = F(i, j) (see Fig. 2b and c for two
examples), and write (3) in matrix form as

F(A)P = PF(A), (4)

where P is the permutation matrix corresponding to σ . Com-
paring this to Eq. (1), we see that the network representation

of F , F(G ), with adjacency matrix F(A), inherits all the sym-
metries of G . In particular, the network F(G ) has the same
decomposition into symmetric motifs Eq. (2), and orbits, as
G . The BSMs in F(G ) must occur on the same vertices Mi,
although they are now all-to-all weighted subgraphs in gen-
eral (Fig. 2b). Nevertheless, they have a very constrained
structure: the intra and inter orbit connectivity depends on
two parameters only. Namely, each orbit in a BSM is uniquely
determined by β = F(vi,vi) (the connectivity of a vertex with
itself) and α = F(vi,v j), i 6= j (the connectivity of a vertex
with every other vertex in the orbit), for all vi,v j in the orbit.
Similarly, the connectivity between two orbits ∆1 and ∆2 in
the same BSM also depends on two parameters: after a suit-
able reordering ∆1 = {v1, . . . ,vn} and ∆2 = {w1, . . . ,wn}, we
have δ = F(vi,wi) and γ = F(vi,w j) for all 1≤ i, j ≤ n. (For
a proof, see Theorem 1 in Methods.) This can be observed
in Fig. 2c and is represented schematically in Fig. 3a and b.
In particular, each BSM takes a very constrained form in the
quotient, as shown schematically in Fig. 3c and d.

The results in this article apply to arbitrary structural mea-
sures, although the two most common cases in practice are
the following. We call F full if F(i, j) 6= 0 for all i 6= j ∈ V
(e.g. a graph metric), and sparse if F(i, j) = 0 if ai j = 0, for all
i 6= j ∈V (e.g. the graph Laplacian). The graph representation
of F(G ) is an all-to-all weighted graph if F is full, and has a
sparsity similar to G if F is sparse (cf. Fig. 2c).

From now on, we will assume that G is undirected and F is
symmetric, F(i, j) = F( j, i), which may not be the case even
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Figure 2. Structural network measures. (a) Neighbourhood
of motif M1 (Fig. 1) and its adjacency matrix. Network and matrix
representation of two structural (full, respectively sparse) network
measures, (b) the exponential matrix (a measure of vertex
communicability37), and (c) the graph Laplacian. In each case, the
vertices are numbered 1 to 5 and coloured by orbit, and a non-zero
(i, j)-entry in the matrix corresponds to the edge weight between
vertices i and j. Note that the network automorphism swapping
vertices 1 and 2, and 3 and 4, preserves the network and matrix
structure in all three cases. In general, any symmetry of a network is
also a symmetry of the network representation of any structural
network measure.

if G is undirected (e.g. the transition probability of a random
walker F(i, j) = ai j

deg(i) ), and discuss directed networks and
asymmetric measures in the Methods section.

Quotient network
The formal procedure to quantify and eliminate structural
redundancies in a network is via its quotient network. This is
the graph with one vertex per orbit or fixed point (see Fig. 1b)
and edges representing average connectivity. Formally, if A is
the n×n adjacency matrix of a graph G , the quotient network
with respect to a partition of the vertex set V =V1∪ . . .∪Vm is
the graph Q with m×m adjacency matrix the quotient matrix
Q(A) = (bkl) defined by

bkl =
1
|Vk| ∑

i∈Vk
j∈Vl

ai j, (5)

the average connectivity from a vertex in Vk to all vertices
in Vl . There is an explicit matrix equation for the quotient.
Consider the n×m characteristic matrix S of the partition,
that is, [S]ik = 1 if i ∈Vk, and zero otherwise, and the diagonal
matrix Λ = diag(n1, . . . ,nm), where nk = |Vk|. Then

Q(A) = Λ
−1ST AS. (6)

The quotient network is a directed and weighted network
in general. An alternative is to use the symmetric quotient,
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Fig. 2. (a) Every orbit in a BSM is an (–, —)-uniform graph K–,—
n , the graph with n

vertices and adjacency matrix aij = – = F (i, j) if i ”= j and aii = — = F (i, i).
(b) The connectivity between two orbits �1 and �2 in the same BSM (after a
suitable relabelling �1 = {v1, . . . , vn}, �2 = {w1, . . . , wn}) is given by
“ = F (vi, wj) for i ”= j, and ” = F (vi, wi), the (”, “)-uniform join of the two
orbits. (c) In the quotient, the BSM orbit becomes a single vertex with a self-loop
weighted by (n ≠ 1)– + —, and the two orbits are joined by an edge weighted by
(n ≠ 1)“ + ”. Note that, by annotating each orbit in the quotient by n and – (or —),
and each intra-motif edge by “ (or ”), we can recover each BSM exactly.

Table 1. Redundant spectra of BSMs with one or two orbits

BSM eigenvalues mult eigenvectors

K–,—
n ≠– + — n ≠ 1 ei

K–1,—2
n

“,”Ωæ K–2,—2
n

≠b ≠ Ÿ1c n ≠ 1 (Ÿ1ei | ei)
≠b ≠ Ÿ2c n ≠ 1 (Ÿ2ei | ei)

Here ei is the vector with non-zero entries 1 at position 1 and ≠1 at
position i (2 Æ i Æ n), Ÿ1 and Ÿ2 are the two solutions of the quadratic
equation cŸ2 + (≠a + b)Ÿ ≠ c = 0 where a = –1 ≠ —1, b = –2 ≠ —2 and
c = “ ≠ ”, and (v|w) represents concatenation of vectors.

From now we will assume that G is undirected and F is
symmetric, F (i, j) = F (j, i), which may not be the case even
if G is undirected (e.g. the transition probability of a random
walker F (i, j) = aij

deg(i) ), and discuss directed networks and
asymmetric measures in the SI.

Network quotient. The formal procedure to eliminate redun-
dancies is via the quotient network. This is a reduction proce-
dure consisting in partitioning the vertex set V = V1 fi . . .fiVm,
and then constructing a new graph (the quotient graph) with
m vertices such that there is an edge from vertex k to vertex
l weighted by the average connectivity from Vk to Vl. More
precisely, if A = (aij) is the adjacency matrix of the graph,
the quotient network (22) with respect to the partition above
is the graph with m ◊ m adjacency matrix B = (bkl) given by

bkl = 1
|Vk|

ÿ

iœVk
jœVl

aij , [7]

the average connectivity from a vertex in Vk to vertices in Vl.
In the context of symmetries, we take the quotient with

respect to the partition of vertices into orbits, that is, each
orbit, and each point in the asymmetric core, becomes a vertex
in the quotient (Fig. 1). The quotients of real-world networks
are often significantly smaller (in vertex and edge size) than
the parent networks (Table 2, (10, 15)).

We can use the quotient for data compression, by elim-
inating the symmetry-induced redundancies inherited by a
network measure F . As the quotient contains average values
between orbits, it is not clear how to recover the original val-
ues. Mathematically, we are asking whether we can recover a
matrix A = (aij) from its quotient B = (bkl).

We can show exact recovery between vertices in di�erent
symmetric motifs,

aij = 1
nl

bkl = 1
nk

blk, [8]

where node i, respectively j, belongs to an orbit of size nk, re-
spectively nl, in di�erent symmetric motifs (see SI). If we call
edges between vertices in di�erent symmetric motifs external
and otherwise (intra-motif edges) internal, Eq. (8) covers all
external edges, which in turn account for the vast majority of
edges, or vertex pairs, in a typical network (Table 2). Since
Eq. (8) involves orbit sizes, we use the term annotated quo-
tient to refer to the quotient together with some additional
vertex (or edge) annotations, in this case the orbit sizes nk.
Exact recovery within the a BSM can also be done, through
annotation (Fig. 2).

There is no general recovery procedure for complex motifs.
However, as most symmetric motifs in real-world networks (and
therefore in F (G)) are basic, we can guarantee full recovery,
and retain most of the symmetry compression, by working
with the basic quotient, which leaves the non-basic motifs
unchanged (by considering their vertices as fixed points). This
achieves lossless compression with the compression ratio cfull
in Table 2 for full measures (or m̃Q for sparse measures), as
illustrated in Fig. 3.

The quotient also reduces the actual computation of a
network measure between csparse = m̃Q and cfull (Table 2), the
fraction of vertex pairs we need to evaluate F on. However, the
calculation on each pair F (i, j) is still performed on the whole
network G. Alternatively, if we can perform the calculation
of F in the quotient instead, we call F quotient recoverable.
Quotient recovery does not hold for all network measures
(SI), but it does for some important cases (see Applications).
Since the quotient is often significantly smaller (Table 2), the
computational gain of evaluating F on a smaller graph can
be considerable (Fig. 4), for example ñ2

Q for a measure of
quadratic complexity on the number of vertices).

Spectral decomposition. Symmetries have also a profound ef-
fect on network spectrum (11), which, in turn, relates to
a multitude of structural and dynamical properties of the
network (1). Our main result is a spectral decomposition
generalising the one in (11) to (undirected) weighted networks
with symmetries such as F (G). It decouples the contributions
to the spectrum from the quotient, and from the symmet-
ric motifs. It states that we can find an eigenbasis of the
form {Sv1, . . . , Svm,w1, . . . ,wn≠m}, where {v1, . . . ,vm} is
any eigenbasis of the quotient network, Svi is the vector vi
lifted to the parent network by repeating entries on each orbit,
and each vector wi adds up to zero on each orbit (SI). The
eigenvectors w1, . . . ,wn≠m, and their corresponding eigenval-
ues, are called redundant, as they arise from the symmetries.

Furthermore, the redundant spectrum is made of the contri-
butions of each symmetric motif: the redundant spectrum of
M (considered as a graph on its own) ‘survives’ in any network
G containing M as a symmetric motif. Namely, if (⁄,w) is a
redundant eigenpair of M then (⁄, Âw) is a redundant eigenpair
of G, where Âw equals the vector w on (the vertices of) M, and
zero elsewhere. We call such a vector localised on M.

Most symmetric motifs in real-world networks are basic,
thus so they are in F (G) for any structural measure. Since they
have a very constrained structure (Fig. 2), we can determine
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(n−1)α +β

(c)

(n−1)γ +δ

(d)

Figure 3. Structure of a basic symmetry motif (BSM)
for an arbitrary network measure F . (a) Every orbit in a
BSM is an (α,β )-uniform graph Kα,β

n , the graph with n vertices
and adjacency matrix A = (ai j) with ai j = α = F(i, j) if i 6= j and
aii = β = F(i, i) for some constants α and β . Here we show an
example of one orbit with four nodes and edges labelled by their
weights. (b) The connectivity between two orbits ∆1 and ∆2 in the
same BSM (after a suitable relabelling ∆1 = {v1, . . . ,vn},
∆2 = {w1, . . . ,wn}) is given by γ = F(vi,w j) for i 6= j, and
δ = F(vi,wi), the (δ ,γ)-uniform join of the two orbits. Here we
show an example of two orbits (shown by colour) with three vertices
each and edges labelled by their weights. (c) In the quotient, the
BSM orbit becomes a single vertex with a self-loop weighted by
(n−1)α +β , and (d) the two orbits are joined by an edge weighted
by (n−1)γ +δ . Here we show the quotients (c) and (d) of the
previous BSMs (a) and (b) respectively. Note that, by annotating
each orbit in the quotient by n and α (or β ), and each intra-motif
edge by γ (or δ ), we can recover each BSM from such annotated
quotient.

with adjacency matrix Qsym(A) = Λ−1/2ST ASΛ−1/2, which
is weighted but undirected. Note that Q(A) and Qsym(A) are
spectrally equivalent matrices: they have the same eigenvalues,
with eigenvectors related by the transformation v 7→ Λ1/2w.

In the context of symmetries, we will always refer to the
quotient with respect to the partition of the vertex set into
orbits. This quotient removes all the original symmetries from
the network: if σ(vi) = v j, then vi and v j are in the same orbit
and hence represented by the same vertex in the quotient net-
work, which is then fixed by σ . We can, therefore, infer and
quantify properties arising from redundancy alone by com-
paring a network to its quotient. The quotients of real-world
networks are often significantly smaller (in vertex and edge
size) than the original networks11, 12 (see ñQ and m̃Q in Ta-
ble 1), and this reduction quantifies the structural redundancy
present in an empirical network. Not every real-world net-
work is equally symmetric, and, in our test networks, we give
examples of network quotient reductions ranging from about
50% to just 2%. Computing the network quotient involves
multiplication by very sparse matrices (Λ is diagonal and S has
one non-zero element per row) and hence is computationally
efficient (a few seconds in all our test networks).

Redundancy in network measures
The amount structural redundancy on a network (measured
by ñQ = nG /nQ) is amplified in the computation of a typical
(full) network measure (see Eq. (7) below). It is therefore
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Figure 4. Redundancy in some real-world networks.
Amount of symmetry present on a typical (full) network measure for
our test networks (Table 1). The predicted values, cfull = (nG /nQ)2

coincide (up to 0.01%) with the compression ratio (shown as
‘actual’) obtained by our lossless compression algorithm for the
shortest path distance, and communicability (exponential matrix),
for our smallest seven networks (memory limit in our computer).
After decompression, we recover the original matrix exactly for the
shortest path distance, and up to a small numerical error
(1.16×10−4 mean relative error) for communicability.

natural to ask how to quantify, and eliminate, the symmetry-
induced redundancy. If a network has nG vertices and nQ

orbits, there are n2
G pairs of vertices but only n2

Q pairs of
orbits, achieving a reduction, or compression ratio, of

cfull =

(
nG

nQ

)2

(7)

for a full network measure, typically much smaller than the
ratio ñQ = nG /nQ. On the other hand, for a sparse network
measure, we only need to consider edge values, hence the
reduction is the ratio between the number of edges in the
graph and in its quotient

csparse =
mG

mQ
. (8)

For an arbitrary network measure, its compression ratio, which
measures the redundancy present (zero values excluded), will
range between cfull and csparse. The compression ratios cfull
and csparse = m̃Q are shown on Table 1 for our test networks.
We found a remarkable amount of redundancy (up to 70%)
due to symmetry alone (Fig. 4).

Symmetry compression
A natural question, with practical consequences for network
analysis, is whether we can easily ‘eliminate’ the symmetry-
induced redundancies. This means storing only one value
of a network function for each orbit of structurally indistin-
guishable nodes or edges, all sharing the same such value.

Although this has been explored in particular cases, such as
shortest path distances27, here we present a general treatment.
A simple method is to use the quotient matrix

B = ST AS, (9)

which is easier to store than Λ−1ST AS. This matrix achieves a
compression ratio between cfull and csparse (by using a sparse
representation of B), as explained before. From this matrix, we
can recover all but the internal connectivity inside a symmetric
motif, which is replaced by the average connectivity. Namely,
let us define

ai j =
1
ni

1
n j

bkl , (10)

where ni, respectively n j, is the size of the orbit containing vi,
respectively v j (note that these orbit sizes can be obtained as
the row sums of the characteristic matrix S). Then one can
show (Methods, Theorem 2) that

ai j =

ai j if vi and v j are external,
1
ni

1
n j

∑vk∈∆1
vl∈∆2

akl if vi and v j are internal, (11)

where we call a pair of vertices external if they belong to
two different symmetric motifs, and internal otherwise, and
vi ∈ ∆1 and v1 ∈ ∆l are orbits. Hence, if we are not inter-
ested in the exact internal connectivity (inside a symmetric
motif), or it can be recovered easily by other means (e.g. one
motif at a time), we can use this simple method to elimi-
nate all the symmetry-induced redundancies on an arbitrary
network measure encoded as a matrix A. We have included
simple average symmetry compression and decompression al-
gorithms (Algs. 1, 2), where Aavg is the matrix with entries ai j.
The original nG × nG matrix A is stored using the nQ× nQ

quotient matrix B plus a very sparse (n non-zero elements)
characteristic matrix S.

Input: adjacency matrix A, characteristic matrix S
Output: quotient matrix B

B← ST AS

Algorithm 1: Average symmetry compression.

Input: quotient matrix B, characteristic matrix S
Output: adjacency matrix Aavg

Λ← diag(sum(S))
R← SΛ−1

Aavg← RBRT

Algorithm 2: Average symmetry decompression.

The vast majority of edges in the network representation
of a network measure are external (at least 99.999% for a full
measure in our test networks, see int f in Table 1), and hence
the information loss by using Aavg instead of A is minimal.
We can nevertheless enforce lossless compression, by storing
the intra-motif connectivity separately. Indeed, we can exploit
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the fact that most symmetric motifs in empirical networks
are basic, and hence each orbit, or pair of orbits, is uniquely
determined by two parameters (Fig. 3). If we disregard the
symmetries generated at non-basic symmetric motifs, the cor-
responding quotient, called basic quotient, written Qbasic,
leaves non-basic motifs unchanged and retains most of the
symmetry in a typical real-world network. By annotating
this quotient, we can recover the original network representa-
tion of the network measure exactly. We have implemented
lossless compression and decompression algorithms (Meth-
ods, Algs. 6 and 7), and evaluated them in our test networks
(Fig. 4).
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Figure 5. Quotient computational reduction.
Computational time reduction of several structural measures in some
of our test networks (Table 1) obtained by performing the
calculation in the quotient network versus the original network. The
computations are: spectral decomposition of the adjacency matrix A
(spectral), exponential matrix exp(A) (commun), pseudoinverse of
the Laplacian matrix (laplacian), shortest path distance (distance),
closeness centrality (closeness), betweenness centrality (btwness)
and eigenvector centrality (eigc), using MATLAB R2018a built-in
functions. For spectral, we also show (left column) the reduction
including the (sequential) symmetric motif calculation. In each case,
median computational reduction over at least 10 iterations shown.

Computational reduction
Network symmetries can also reduce the computational time
of evaluating an arbitrary network measure F . By Eq. (3),
we only need to evaluate F on orbits, resulting in a compu-
tational reduction ratio of between m̃Q and ñ2

Q (Table 1) for
sparse, respectively full, network measures. Of course, this
assumes that the computation on each pair of vertices F(i, j)
is independent of one another, which is often not the case.
Moreover, the calculation of F(i, j) is still performed on the
whole network G .

A more substantial computational reduction can be obtained
by evaluating F on the (often much smaller) quotient network

instead. We call F quotient recoverable if it can be applied
to the quotient network Q, and F(G ) can be recovered from
F(Q), for all networks G . Note that this may involve, be-
yond evaluating F(Q), an independent (hence parallelizable)
computation on each symmetric motif (typically a very small
graph). By evaluating F in the quotient network, we can ob-
tain very substantial computational time savings, depending
on the amount of symmetry present and the computational
complexity of F . Depending on the network measure, it may
not be possible to recover F(G ) exactly from F(Q), but only
partially. We call a network measure F partially quotient
recoverable if it can be applied to a quotient network Q of
a network G , and all the external edges of F(G ) can be re-
covered from F(Q), for all networks G . Since the quotient
averages the network connectivity, we can often recover the
average values of F within symmetric motifs. We call F av-
erage quotient recoverable if, in addition to external edges,
the average intra-motif edges can be recovered from F(Q). A
typical situation is when F(Q) equals the quotient of F , that
is, in symbols,

F(Q) = Q(F(G )). (12)

In the Applications section, we will show that communi-
cability is average quotient recoverable, and shortest path
distance is partially, but not average, quotient recoverable.
Not every measure can be (partially) recovered from the quo-
tient, for example the number of distinct paths between two
vertices, as the internal connectivity within each symmetric
motif is lost, and replaced by its average connectivity, in the
quotient. Note that the word ‘partially’ can be misleading:
typically almost all edges are external (see exts and int f in
Table 1). The resulting computational time reduction obtained
by evaluating F in the quotient can be very substantial, as
illustrated by several popular network measures in our test
networks (Fig. 5).

Spectral signatures of symmetry
The spectrum of the network’s adjacency matrix relates to
a multitude of structural and dynamical properties1. The
presence of symmetries is reflected in the spectrum of the net-
work13, and indeed in the spectrum of any network measure.
Symmetries give rise to high-multiplicity eigenvalues (shown
as ‘peaks’ in the spectral density) and, in fact, we can explain
and predict most of the discrete part of the spectrum of an
arbitrary network measure on a typical real-world network.

Let A be the n×n adjacency matrix of a (possibly weighted)
network (such as the network representation of a network
measure). First, note that symmetry naturally produces high-
multiplicity eigenvalues, since

APv = PAv = λPv. (13)

where (λ ,v) is an eigenpair of A and P the permutation matrix
of a network automorphism (Eq. (1)). This gives another
eigenpair (λ ,v) whenever v and Pv are linearly independent
(obviously not always the case).
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Let B = Q(A) be the m×m quotient of A (Eq. (6)) with
respect to the partition of the vertex set into orbits. This
partition satisfies a regularity condition called equitability35,
which can be written in matrix form as AS = SB, where S is
the characteristic matrix of the partition. In particular, if (λ ,v)
is a quotient eigenpair, then (λ ,Sv) is a parent eigenpair,

A(Sv) = SBv = λ (Sv). (14)

In fact, one can show (Methods, Theorem 3) that A has an
eigenbasis of the form

{Sv1, . . . ,Svm,w1, . . . ,wn−m}, (15)

where {v1, . . . ,vm} is any eigenbasis of B, and ST w j = 0 for
all j. We can think of a vector v∈Rm, respectively w∈Rn, as
a vector on (the vertices of) the quotient, respectively the par-
ent, network. Then, each vector Svi equals the vector vi lifted
to the parent network by repeating the value on each orbit.
Similarly, ST w j = 0 means that the sum of the entries of w j on
each orbit is 0. All in all, we can always find an eigenbasis of A
consisting of non-redundant eigenvectors {Sv1, . . . ,Svm} aris-
ing from a quotient eigenbasis by repeating values on each or-
bit, and redundant eigenvectors {w1, . . . ,wn−m} arising from
the network symmetries, which add up to zero on each orbit
(hence ‘dissappering’ in the quotient). Similarly, we call their
respective eigenvalues redundant and non-redundant.

Analogous to the way that symmetry is generated at sym-
metric motifs, the redundant eigenvectors and eigenvalues
arise directly from certain eigenvectors and eigenvalues of
the symmetric motifs, considered as networks on their own
(Fig. 6). In fact, each symmetric motif M contributes the
same (called redundant) eigenpairs to any network containing
M as a symmetric motif: One can show (Methods, Theorem
4) that if M is a symmetric motif of a network G and (λ ,w)
is a redundant eigenpair of M (that is, the values of w add
up to zero on each orbit of M ), then (λ , w̃) is an eigenpair
of G , where w̃ is equal to w on (the vertices of) M , and zero
elsewhere. We call such a vector w̃ localised on the motif
M 13, as it is zero outside the motif. Moreover, if M has n
vertices and k orbits, then it has an eigenbasis consisting of
n− k redundant eigenpairs, which are inherited by any net-
work containing M as a symmetric motif (Fig. 6, Theorem 4
in Methods).

Furthermore, since most symmetric motifs in real-world
networks are basic, thus have a very constrained structure
(Fig. 3), we can in fact determine the redundant spectrum of
BSMs with up to a few orbits, that is, we can predict where the
most significant ‘peaks’ in the spectral density of an arbitrary
network function will occur. The formulae for the redundant
spectra for BSMs of one or two orbits (which covers most
BSMs, up to 99% of them in our test networks) is given on
Table 2. For example, for the graph Laplacian, symmetry
explains between 89% and 97% of the discrete spectrum in
our test networks, with most of the high-multiplicity eigen-
values (‘peaks’ in the eigenvalue histograms) occurring at the
predicted values (resulting from our analysis of the spectrum
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Figure 6. Redundant spectrum. Eigenvalues and
eigenvectors near the symmetric motif M1 (Fig. 1 (inset)) for three
network measures: (a) adjacency A, (b) communicability eA, and (c)
Laplacian L, represented as weighted networks with weights shown
as edge labels (as in Fig. 2). Eigenvector coordinates are separated
by orbit, for convenience. In all three cases, there are two redundant,
and three non-redundant, eigenpairs (separated here by a horizontal
line), whose eigenvectors add up to zero, respectively are constant,
on each orbit. Redundant eigenvectors are localised (zero outside
the motif) and ‘survive’ in any network where this graph is a
symmetric motif. The redundant eigenvalues and eigenvectors agree
with those predicted by the formulae in Table 2. Here, ϕ = 1+

√
5

2 ,
the golden ratio, η1 = 2+ 2

ϕ
and η2 = 2+ 2

1−ϕ
.

of the most common symmetric motifs, namely BSMs up to
2 orbits, see below and Table 2), namely positive integers
(Fig. 7).

We now give more details of the computation of the re-
dundant spectrum of BSMs up to two orbits (Table 2), with
full details in the Methods section. A BSM with one or-
bit is an (α,β )-uniform graph Kα,β

n with adjacency matrix
Aα,β

n = (ai j) given by ai j = α and aii = β for all i 6= j. Then
Kα,β

n has eigenvalues (n−1)α+β (non-redundant), with mul-
tiplicity 1, and −α +β (redundant), with multiplicity n−1.
The corresponding eigenvectors are 1, the constant vector 1
(non-redundant), and ei, the vectors with non-zero entries 1
at position 1, and −1 at position i, 2≤ i≤ n (redundant). For
unweighted graphs without loops (β = 0, α ∈ {0,1}), we
recover the redundant eigenvalues 0 and −1 predicted in13.

A BSM with two orbits must be a uniform join of the

form Kα1,β1
n

γ,δ←→ Kα2,β2
n (Fig. 3). Let κ1 and κ2 be the two

solutions of the quadratic equation cκ2 +(b− a)κ − c = 0,
where a = α1− β1, b = α2− β2 and c = γ − δ . Then, the
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Figure 7. Spectral signatures of network symmetry.
Laplacian spectrum of six test networks (blue) and of their quotient
(red), given as relative probability of eigenvalue count, with
multiplicity, in bins of size 0.1. Only the most significant part of the
spectrum is shown. Most of the ‘peaks’ observed in the spectral
density occur at positive integers, as predicted. (Insets) Percentage
of the high-multiplicity spectrum explained by the symmetry, as the
ratio of ∑mλ>1 mλ for the quotient eigenvalues, and for the
Laplacian eigenvalues, where mλ is the multiplicity of an eigenvalue
λ rounded to 8 decimal places.

redundant eigenvalues of this BSM are (Methods, Theorem 5)

λ1 =−b− cκ1 =
−(a+b)+

√
(a−b)2 +4c2

2
, and (16)

λ2 =−b− cκ2 =
−(a+b)−

√
(a−b)2 +4c2

2
, (17)

each with multiplicity n−1, with eigenvectors (κ1ei|ei) and
(κ2ei|ei) respectively, 2≤ i≤ n. For unweighted graphs with-
out loops, we recover the redundant eigenvalues predicted
in13, that is,

−2, −ϕ, −1, 0, ϕ−1 and 1, (18)

where ϕ = 1+
√

5
2 , the golden ratio.

Eigendecomposition algorithm
Decoupling the contribution to the network spectrum from the
symmetric motifs and from the quotient network, as explained
above, naturally leads to an eigendecomposition algorithm
that exploits the presence of symmetries: The spectrum and
eigenbasis of an undirected network (equivalently, a diagonal-
isation of its adjacency matrix A =UDUT ) can be obtained
from those of the quotient, and of the symmetric motifs, reduc-
ing the computational time (cubic on the number of vertices)
to up to a third in our test networks (Fig. 5, left column of the
spectral case), in line with our predictions (sp = n3

Q in Table
1). The algorithm is shown and explained below. A MATLAB
implementation is available at a public repository26.

Our eigendecomposition algorithm (Alg. 3) applies to
any undirected matrix with symmetries (identifying a ma-
trix with the network it represents). It first computes the

BSM eigenvalues mult eigenvectors
Kα,β

n −α +β n−1 ei

Kα1,β2
n

γ,δ←→ Kα2,β2
n

−b−κ1c n−1 (κ1ei |ei)
−b−κ2c n−1 (κ2ei |ei)

Table 2. Redundant spectra of basic symmetric motifs
(BSMs) with one or two orbits. A BSM with one orbit is a
uniform graph Kα,β

n with n vertices and adjacency matrix
Aα,β

n = (ai j) where ai j = α if i 6= j and aii = β , for all i, j and some
constants α and β . A BSM with two orbits consists of the
(γ,δ )-uniform join of two uniform graphs Kα1,β1

n and Kα2,β2
n , that is,

the graph with 2n vertices and block adjacency matrix (after a
suitable labelling of the vertices) of the form

(
A C
C B

)
where

A = Aα1,β1
n , B = Aα2,β2

n and C = Aγ,δ
n , each defined as above. We

write ei for the vector with non-zero entries 1 at position 1, and −1
at position i (2≤ i≤ n), κ1 and κ2 for the two solutions of the
quadratic equation cκ2 +(−a+b)κ− c = 0 where a = α1−β1,
b = α2−β2 and c = γ−δ , and use (v|w) to represent the
concatenation of two vectors.

eigendecomposition of the quotient matrix, then, for each
motif, the redundant eigenpairs. Namely, it first computes
the spectral decomposition eig of the symmetric quotient
Bsym = Λ−1/2ST ASΛ−1/2 where Λ is the diagonal matrix of
the orbit sizes (which can be obtained as the column sums of
S). This matrix is symmetric and has the same eigenvalues as
the left quotient. Moreover, if Bsym =UqDqU−1

q then the left
quotient eigenvectors are the columns of ΛUq. These become,
in turn, eigenvectors of A by repeating their values on each or-
bit, and can be obtained mathematically by left multiplying by
the characteristic matrix S. Then, for each motif, we compute
the redundant eigenpairs using a null space matrix (explained
below), storing eigenvalues and localised (zero outside the
motif) eigenvectors.

Only redundant eigenvectors of a symmetric motif (that is,
those which add up to zero on each orbit) become eigenvectors
of A by extending them as zero outside the symmetric motif.
Therefore, we need to construct redundant eigenvectors from
the ouput of eig on each motif (the spectral decomposition of
the corresponding submatrix). If Uλ =

(
v1 . . . vk

)
are λ -

eigenvectors of a symmetric motif with characteristic matrix
of the orbit partition Ssm, we need to find linear combinations
such that

ST
sm (α1v1 + . . .+αkvk) = 0 ⇐⇒ ST

smUλ

α1
...

αk.

 . (19)

Therefore, if the matrix Z 6= 0 represents the null space of
ST

smUλ , that is, ST
smUλ Z = 0 and ZT Z = 0, then the columns

of Uλ Z are precisely the redundant eigenvectors. This is
implemented in Alg. 3 within the innermost for loop.

Vertex measures
We have so far considered network measures of the form
F(i, j), where i and j are vertices. However, many important
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Input: adjacency matrix A, characteristic matrix S, list of motifs
Output: spectral decomposition A =UDUT

initialise U , D to zero matrices
Λ← diag(sum(S))
Bsym← Λ−1/2ST ASΛ−1/2

[Uq,Dq]← eig(Bsym) so that Bsym =UqDqU−1
q

Uq← ΛUq

U ←
(
SUq 0

)
D←

(
Dq 0
0 0

)
foreach motif do

Asm← A(motif,motif)
compute orbits from motif and S
Ssm← S(motif,orbits)
[Usm,Dsm]← eig(Asm)
for λ ∈ unique(diag(Dsm)) do

Uλ ← λ -eigenvectors from Usm

Z← null(ST
smUλ )

d← ncol(Z)
if d > 0 then

store Uλ Z in U
store λ in D with multiplicity d

end
end

end

Algorithm 3: Eigendecomposition algorithm.

network measurements are vertex based, that is, of the form
G(i) for each vertex i. We say that a vertex measure G is
structural if it only depends on the network structure and,
therefore, satisfies

G(i) = G(σ(i)) (20)

for each automorphism σ ∈ Aut(G ), that is, it is constant on
orbits (Fig. 1).

Although for vertex measures we do not have a network rep-
resentation, we can still exploit the network symmetries. First,
G needs only to be computed/stored once per orbit, result-
ing on a reduction/compression ratio of ñQ = nQ/nG (Table
1). Secondly, when quotient recovery holds (that is, we can
recover G from its values on the quotient and symmetry infor-
mation alone), it amounts to a further computational reduction
(Fig. 5), depending on the computational complexity of G.
Finally, many vertex measures arise nevertheless from a pair-
wise function, such as G(i) = F(i, i) (subgraph centrality from
communicability), or G(i) = 1

n ∑ j F(i, j) (closeness centrality
from shortest path distance), allowing the symmetry-induced
results on F to carry over to G.

Applications
We illustrate our methods on several popular pairwise and
vertex-based network measures. Although novel and of inde-
pendent interest, these are example applications: Our methods
are general and the reader should be able to adapt our results
to the network measure of their interest.

Adjacency matrix. The methods in this paper can be applied
to the network itself, that is, to its adjacency matrix. We

recover the structural and spectral results in11, 13, and the
quotient compression ratio reported in12, here csparse = m̃Q in
Table 1. The network (adjacency) eigendecomposition can be
significantly sped up by exploiting symmetries (Fig. 5).
Communicability. Communicability is a very general choice
of structural measure, consisting on any analytical func-
tion f (x) = ∑anxn applied to the adjacency matrix, f (A) =
∑

∞
n=0 anAn, and it is a natural measure of network connectivity,

since the matrix power Ak counts walks of length k37. The
most common choice of coefficients is an =

1
n! , which gives

the exponential matrix eA = ∑
∞
n=0

An

n! . Communicability is a
structural network measure and its network representation,
the graph f (G ) with adjacency matrix f (A), inherits all the
symmetries of G and thus it has the same symmetric motifs
and orbits. The BSMs are uniform joins of orbits, and each
orbit is a uniform graph (Figs. 3 and 2b) characterised by the
communicability of a vertex to itself (a natural measure of
centrality36), and the communicability between distinct ver-
tices. As a full network measure, the compression ratio cfull
applies (Table 1), indicating the fraction of storage needed by
using the quotient to eliminate redundancies (Fig. 4). More-
over, average quotient recovery holds for communicability
since f (Q(A)) = Q( f (A)) (Methods, Theorem 6). Alterna-
tively, we can use the spectral decomposition algorithm on
the adjacency matrix (A =UDUT implies f (A) =U f (D)UT )
reducing the computation, typically cubic on the number of
vertices, by sp = ñ3

Q (Table 1, Fig. 5). For the spectral results,
note that f (A) =U f (D)UT has eigenvalues f (λ ), and same
eigenvectors, as A. Thus

f (−2), f (−ϕ), f (−1), f (0), f (ϕ−1), and f (1) (21)

account for most of the discrete part of the spectrum f (A), for
the adjacency matrix A of a typical (undirected, unweighted)
real-world network (Eq. (18)).
Shortest path distance. This is the simplest metric on a (con-
nected) network, namely the length of a shortest path between
vertices. A path of length n is a sequence (v1,v2, . . . ,vn+1) of
distinct vertices, except possibly v1 = vn+1, such that vi is con-
nected to vi+1 for all 1≤ i≤ n−1. The shortest path distance
dG (u,v) is the length of the shortest (minimal length) path
from u to v. If p = (v1,v2, . . . ,vn) is a path and σ ∈ Aut(G ),
we define σ(p) = (σ(v1),σ(v2), . . . ,σ(vn)), also a path since
σ is a bijection. A path p is a shortest path if it is of min-
imal length between its endpoints. One can show that (i)
automorphisms preserve shortest paths and their lengths; (ii)
shortest paths between vertices in different symmetric motifs
do not contain intra-orbit edges; and (iii) shortest path dis-
tance is a partially quotient recoverable structural measure
(Methods, Theorem 7). In particular, automorphisms σ pre-
serve the shortest path metric, d(i, j) = d (σ(i),σ( j)), and we
can compute shortest distances from the quotient,

dG (α,β ) = dQ(i, j), α ∈Vi,β ∈Vj, (22)

whenever Vi and Vj are orbits in different symmetric motifs.
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This accounts for all but the (small) intra-motif distances and
reduces the computation as shown in Fig. 5.

Distances between points within the same motif cannot in
general be directly recovered from the quotient, not even for
BSMs. (Consider for instance the double star, motif M1, in
Fig. 1: The distance from the top red to the bottom blue vertex
is three, while in the quotient is one.) In general, therefore,
the shortest path distance is partially, but not average, quotient
recoverable. Intra-motif distances, if needed, could still be
recovered one motif at a time.

Note that these results can be exploited for other graph-
theoretic notions defined in terms of distance, for example
eccentricity (and thus radius or diameter), which only depends
on maximal distances and thus it can be computed directly in
the quotient.

In terms of symmetry compression, the compression ratio
cfull applies, accounting for the amount of structural redun-
dancy due solely to symmetries. The spectral results, although
perhaps less relevant, still apply for d(G ), the graph encod-
ing pairwise shortest path distances. The adjacency matrix
d(A) = (dG (i, j)) is nonzero outside the diagonal, hence d(G )
is a all-to-all weighted network without self-loops and integer
weights, and so is each symmetric motif. Using the formula in
Table 2, we can easily compute values of the most significant
part of the discrete spectrum (redundant eigenvalues) of d(A),
namely −3, −2, −1, 0, −2±

√
2, −3±

√
2, −3±

√
5

2 , −5±
√

5
2

and −5±
√

13
2 .

Laplacian matrix. The Laplacian matrix of a network
L = D−A, where D is the diagonal matrix of vertex degrees,
is a (sparse) network measure and therefore inherits all the
symmetries of the network. The matrix L can be seen as
the adjacency matrix of a network L with identical sym-
metric motifs, except that all edges are weighted by −1 and
all vertices have self-loops weighted by their degrees in G
(Fig. 2c). In particular, the motif structure (namely, the self-
loop weights) depends on the how the motif is embedded in
the network G .

Quotient compression and computational reduction are less
useful in this case, however the spectral results are more in-
teresting. The spectral decomposition applies, and we can
compute redundant Laplacian eigenvalues directly from Ta-
ble 2, for instance positive integers for BSMs with one orbit
(Methods, Corollary 2). This explains and predicts most of
the ‘peaks’ (high multiplicity eigenvalues) in the Laplacian
spectral density, confirmed on our test networks (Fig. 7). Us-
ing the formula in Table 2, one can similarly compute the
redundant spectrum for 2-orbit BSMs, and for other versions
of the Laplacian (e.g. normalised, vertex weighted). Finally,
observe that the spectral decomposition applies, thus Algo-
rithm 3 provides an efficient way of computing the Laplacian
eigendecomposition with an expected sp = ñ3

Q (see Table 1)
computational time reduction.

Commute distance and matrix inversion. The commute
distance is the expected time for a random walker to travel

between two vertices and back44. In contrast to the shortest
path distance, it is a global metric which takes into account
all possible paths between two vertices. The commute dis-
tance is equal up to a constant (the volume of the network)
to the resistance metric r45, which can be expressed in terms
of L† = (l†

i j), the pseudoinverse (or Moore-Penrose inverse)

of the Laplacian, as r(i, j) = l†
ii + l†

j j − 2l†
i j. The commute

(or resistance) distance is a (full) structural measure, and all
our structural and spectral results apply. Crucially, we can
use eigendecomposition algorithm to obtain L =UDUT (and
hence L† =UD†UT , and r) from the quotient and symmetric
motifs, resulting in significant computational gains (Fig. 5).
More generally, if MF is the matrix representation of a network
measure, its pseudoinverse M†

F is also a network measure, and
the comments above apply. Note that M†

F is generally a full
measure even if MF is sparse (the inverse of a sparse matrix is
not generally sparse).

Vertex symmetry compression. As a vertex measure G is
constant on orbits, we only need to store one value per orbit.
Let S be the characteristic matrix of the partition of the vertex
set into orbits, and Λ the diagonal matrix of orbit sizes (col-
umn sums of S). If G is represented by a vector v = (G(i))
of length nG , we can store one value per orbit by taking
w = Λ−1ST v, a vector of length nQ, and recover v = ST w
(Methods, Theorem 9).

Degree Centrality. The degree of a node (in- or out-degree if
the network is directed) is a natural measure of vertex central-
ity. As expected, the degree is preserved by any automorphism
σ , which can also be checked directly,

di = ∑
j∈V

ai j = ∑
j∈V

aσ(i)σ( j) = ∑
j∈V

aσ(i) j = dσ(i), (23)

as automorphisms permute orbits (so j ∈V and σ( j) ∈V are
the same elements but in a different order). In particular, the
degree is constants on orbits. We recover the degree centrality
from the quotient as the out-degree (Methods, Proposition 2).

Closeness centrality. The closeness centrality of a node i in
a graph G , ccG (i), is the average shortest path length to every
node in the graph. As symmetries preserve distance, they also
preserve closeness centrality, explicitly,

cc(i) =
1

nG
∑
j∈V

d(i, j) =
1

nG
∑
j∈V

d(σ(i),σ( j))

=
1

nG
∑
j∈V

d(σ(i), j) = cc(σ(i)) , (24)

and centrality is constant on each orbit, as expected. Moreover,
closeness centrality can be recovered from the quotient (short-
est paths does not contain intra-orbit edges, except between
vertices in the same symmetric motif, see above), as

ccG (i) = ∑
l 6=k

nl

nG
dQ(k, l)+

ni

nG
dk (25)
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if i belongs to the orbit Vk and dk is the average intra-motif
distance, that is, the average distances of a vertex in Vk to any
vertex in M , the motif containing Vk. By annotating each
orbit by dk, we can recover betweenness centrality exactly.
Alternatively, as dk� n (note that dk ≤ m if M has m orbits),
we can approximate ccG (i) by the first summand, or simply
by the quotient centrality ccQ(α), in most practical situations.

Betweenness centrality. This is the sum of proportions of
shortest paths between pairs of vertices containing a given
vertex. It can be computed from shortest path distances and
number of shortest paths46, both pairwise structural measures,
reducing the computation of a naive O(n3) time, O(n2) space
implementation by ñ3

Q and ñ2
Q. It would be interesting to

adapt a faster algorithm e.g.46 to exploit symmetries, but this
is beyond our scope.

Eigenvector centrality. Eigenvector centrality is obtained
from a Perron-Frobenius eigenvector (i.e. of the largest eigen-
value) of the adjacency matrix of a connected graph1. Since
this eigenvalue must be simple, it cannot be a redundant eigen-
value. Hence it is a quotient eigenvalue, and, as those are a
subset of the parent eigenvalues, it must still be the largest
(hence the Perron-Frobenius) eigenvalue of the quotient. Its
eigenvector can then be lifted to the parent network, by repeat-
ing entries on orbits. That is, if (λ ,v) is the Perron-Frobenius
eigenpair of the quotient, then (λ ,Sv) is the Perron-Frobenius
eigenpair of the parent network. In practice, we use the sym-
metric quotient Bsym = Λ−1/2ST ASΛ−1/2 for numerical rea-
sons (Algorithm 4). Hence the computation (quadratic time
by power iteration) can be reduced by ñ2

Q (Fig. 5).

Input: adjacency matrix A, characteristic matrix S
Output: (right) Perron-Frobenius eigenpair (λ ,v) of A

Λ← diag(sum(S))
R← SΛ−1/2

Bsym← RT AR
(λ ,w)← eig(Bsym,1) eigenpair of the largest eigenvalue
v← Rw

Algorithm 4: Eigenvector centrality from the quotient network.

Discussion
We have presented a general theory to describe and quantify
the effects of network symmetry on arbitrary network mea-
sures, and explained how this can be exploited in practice in a
number of ways.

Network symmetry of the large but sparse graphs typically
found in applications can be effectively computed and ma-
nipulated, making it an inexpensive pre-processing step. We
showed that the amount of symmetry is amplified in a pair-
wise network measure but can be easily discounted using the
quotient network. We can for instance eliminate the symmetry-
induced redundancies, or use them to simplify the calculation
by avoiding unnecessary computations. Symmetry has also
a profound effect on the spectrum, explaining the character-

istic ‘peaks’ observed in the spectral densities of empirical
networks, and occurring at values we are able to predict.

Our framework is very general and apply to any pairwise or
vertex-based network measure beyond the ones we discuss as
examples. We emphasised practical and algorithmic aspects
throughout, and provide pseudocode and full implementa-
tions26. Since real-world network models and data are very
common, and typically contain a large degree of structural
redundancy, our results should be relevant to any network
practitioner.

Methods
Geometric decomposition and symmetric motifs
We write Aut(G ) for the automorphism group of an (unweighted, undirected,
possibly very large) network G = (V,E) (see below for a discussion of
directed and weighted networks). Each automorphism (symmetry) σ ∈
Aut(G ) is a permutation of the vertices and its support is the set of vertices
moved by σ ,

supp(σ) = {i ∈V such that σ(i) 6= i}. (26)
Two automorphisms σ and τ are support-disjoint if the intersection of their
supports is empty, supp(σ)∩ supp(τ) = /0. The orbit of a vertex i is the set
of vertices to which i can be moved to by an automorphism, that is,

{σ(i) such that σ ∈ Aut(G )}. (27)

One can show11 that there is a partition a set X of generators of Aut(G )
into its finest support-disjoint classes X = X1 ∪ . . .∪Xm which is unique up
to permutation of the sets Xi. The vertex sets Mi = ∪σ∈Xi supp(σ) give the
geometric decomposition Eq. (2), and the subgraphs induced by them are,
by definition, the symmetric motifs of G . (The next section explains how to
compute the geometric decomposition in practice.) Since support-disjoint
automorphisms must commute (the order in which they are composed is
irrelevant), the subgroups of Aut(G ) generated by X1 to Xm, call them H1
to Hm, give a direct product decomposition Aut(G ) = H1× . . .×Hm. The
geometric decomposition is defined from the finest support-disjoint partition
of a special set of generators (called essential), as explained in11. However,
the results in this article are valid for any support-disjoint decomposition of
any set of generators (essential or not) of Aut(G ).

If all the orbits of a symmetric motif have the same size k and every permu-
tation of the vertices in each orbit can be extended to a network automorphism
supported on the motif, we call the symmetric motif basic (or BSM) of type k.
(In particular, the corresponding subgroup Hi must be Sym(k), the symmetric
group of all permutations of k elements.) If a symmetric motif is not basic,
we call it complex or of type 0.

Network symmetry computation
First, we compute a list of generators of the automorphism group from an
edge list (we use saucy347, which is extremely fast for the large but sparse
networks typically found in applications). Then, we partition the set of
generators X into support-disjoint classes X = X1 ∪ . . .∪Xm, that is, σ and τ

are support-disjoint whenever σ ∈ Xi, τ ∈ X j and i 6= j. To find the finest such
partition, we use a bipartite graph representation of vertices V and generators
X . Namely, let B be the graph with vertex set V ∪X and edges between i
and σ whenever i ∈ supp(σ). Then X1, . . . ,Xm are the connected components
of B (as vertex sets intersected with X). Each Xi corresponds to the vertex
set Mi of a symmetric motif Mi, as Mi =

⋃
σ∈Xi

supp(σ). Finally, we use
GAP48 to compute the orbits and type of each symmetric motif (Alg. 5). Full
implementations of all the procedures outlined above are available at a public
repository26.

Structural network measures
We prove below the structural result for BSMs for arbitrary graphs and
network measures. The proof is a generalisation of the argument on [49, p.48]
to weighted directed graphs with symmetries.

Theorem 1. Let M be the vertex set of a BSM of a network G , and F a
structural network measure. Then the graph induced by M in F(G ) is a BSM
of F(G ), and satisfies:

11/17



Input: X a set of permutations of a symmetric motif
Output: O1, . . . ,Ok orbits, and type m, of the symmetric motif

H← Group(X)
{O1, . . . ,Ok}← Orbits(H)

m← min(size(O1), . . . ,size(Ok))
if m == max(size(O1), . . . ,size(Ok)) then

for i← 1 to k do
if not
IsNaturalSymmetricGroup(Action(H,Oi))
then

m← 0
break

end
end

else
m← 0

end

Algorithm 5: Orbits and type of a symmetric motif.

(i) for each orbit ∆ = {v1, . . . ,vn}, there are constants α and β such that
the orbit internal connectivity is given by α = F(vi,v j) for all i 6= j
and β = F(vi,vi) for all i;

(ii) for every pair of orbits ∆1 and ∆2, there is a labelling ∆1 = {v1, . . . ,vn},
∆2 = {w1, . . . ,wn} and constants γ1, γ2, δ1, δ2 such that γ1 = F(vi,w j),
γ2 = F(w j,vi), δ1 = F(vi,wi), and δ2 = F(wi,vi), for all i 6= j;

(iii) every vertex v not in the BSM is joined uniformly to all the vertices
in each orbit {v1, . . . ,vn} in the BSM, that is, F(v,vi) = F(v,v j) and
F(vi,v) = F(v j,v) for all i, j.

Moreover, property (iii) holds in general for any symmetric motif.

If G is undirected and F is symmetric, γ1 = γ2 and δ1 = δ2 and each orbit
is a (α,β )-uniform graph Kα,β

n and each pair of orbits form a (γ,δ )-uniform
join, explaining Figure 3(a, b).

Proof of Theorem. As F(G ) inherits all the symmetries of G , M has the
same orbit decomposition and the symmetric group Sn acts in the same way,
hence M induces a BSM in F(G ) too. For the internal connectivity, note
that every permutation of the vertices vi is realisable. Thus, given arbitrary
1 ≤ i, j,k, l ≤ n, we can find σ ∈ Aut(G ) such that σ(vk) = vi and, if j 6= i
and l 6= k, additionally satisfies σ(vl) = v j . This gives

F(vi,v j) = F(σ(vk),σ(vl)) = F(vk,vl),

as F is a structural network measure. The other case, i = j and k = l, gives

F(vi,vi) = F(σ(vk),σ(vk)) = F(vk,vk).

For the orbit connectivity result (ii), we generalise the argument in [49, p.48]
to weighted directed graphs with symmetries, particularly F(G ). We assume
some basic knowledge and terminology about group actions50 and symmetric
groups Sn. Given two orbits ∆1 = {v1, . . . ,vn} and ∆2 = {w1, . . . ,wn} and
1≤ i≤ n, define

Γi =
{

w j ∈ ∆2 |F(vi,w j) 6= 0
}
,

the vertices in ∆2 joined to vi in F(G ). If a finite group G acts on a set X ,
the stabiliser of a point Gx = {g ∈ G |gx = x} is a subgroup of G of index
[G : H] = |G|

|H| equals to the size of the orbit of x. Hence the stabilisers Gvi or
Gw j are subgroups of Sn of index n, for all i, j. The group Sn has a unique, up
to conjugation, subgroup of index n if n 6= 6. In this case, Gv1 is conjugate to
Gw1 so Gv1 = σGw1 σ−1 =Gσw1 for some σ ∈ Sn. Relabelling σw1 as w1 we
have Gv1 =Gw1 . Similarly, we can relabel the remaining vertices in ∆2 so that
Gvi = Gwi for all i: write v2 = σ2v1, v3 = σ3v1, . . . and relabel w2 = σ2w1,
w3 = σ3w1, . . ., noticing there cannot be repetitions as σkw1 = σlw1 for k 6= l
implies σkσ

−1
l ∈Gw1 = Gv1 and thus vk = σkv1 = σlv1 = vl , a contradiction.

Fix 1≤ i≤ n. The stabiliser Gvi fixes vi but it may permute vertices in ∆2. In
fact, the set Γi above must be a union of orbits of Gvi on ∆ j: if w ∈ Γi and
σ ∈ Gvi then

0 6= F(vi,w) = F(σvi,σw) = F(vi,σw)

so σw also belongs to Γi. The orbits of Gvi = Gwi in ∆2 are {wi} and
∆2 \{wi}, as Gwi fixes wi and freely permutes all other vertices in ∆2. The
case n = 6 is similar, except that S6 has two conjugacy classes of subgroups
of index 6, one as above, and the other a subgroup acting transitively on
the 6 vertices, which gives a unique orbit ∆2. In all cases, the set ∆2 \{wi}
is part of an Gvi -orbit, which gives the connectivity result, as follows. Fix
1≤ i≤ n. For 1≤ j,k ≤ n different from i, the vertices w j and wk are in the
same Gvi -orbit so there is σ ∈ Gvi with σw j = wk and, therefore,

F(vi,w j) = F(σvi,σw j) = F(vi,wk).

The argument is general, so we have shown ai = F(vi,w j) is constant for all
j 6= i. It is enough to show ai = a1 for all i. Choose j 6= i, then

ai = F(vi,w j) = F(σiv1,σ jw1) = F(v1,σ
−1
i σ jw1) = a1

as long as σ
−1
i σ jw1 6=w1, which cannot happen as otherwise σ

−1
i σ j ∈Gw1 =

Gv1 implies σ
−1
i σ jv1 = v1 or v j = σ jv1 = σiv1 = vi, a contradiction. Hence

we have shown F(vi,w j) is a constant, call it γ1, for all i 6= j. In addition,

F(vi,wi) = F(σiv1,σiw1) = F(v1,w1)

is also a constant, call it δ1, for all i. The cases γ2 = F(w j,vi) and δ2 =
F(wi,vi) are identical, reversing the roles of ∆1 and ∆2.

Property (iii) holds for any symmetric motif, not necessarily basic, as
follows. By the definition of orbit, for each pair i, j we can find an automor-
phism σ in the geometric factor such that σ(v j) = vi. Since v is not in the
support of that geometric factor, it is fixed by σ , that is, σ(v) = v. Therefore

F(v,vi) = F(σ(v),σ(v j)) = F(v,v j),

and similarly F(vi,v) = F(v j,v).

Average compression
Theorem 2. Let A = (ai j) be the n×n adjacency matrix of a network with
vertex set V . Let S be the n×m characteristic matrix of the partition of V into
orbits of the automorphism group, and Λ the diagonal matrix of column sums
of S. Define B = ST AS and Aavg = RBRT = (āi j) where R = SΛ−1. Then,

(i) if i, j ∈V belong to different symmetric motifs, āi j = ai j;

(ii) if i, j ∈ V belong to orbits i ∈ ∆1 and j ∈ ∆2 in the same symmetric
motif,

āi j =
1
|∆1|

1
|∆2| ∑

u∈∆1
v∈∆2

auv. (28)

Before proving this statement, we make a few observations. The column
sums of S equal the sizes of the vertex partition sets, hence Λ is the same as
in the definition of quotient matrix (6), and can be obtained easily from S.
The matrix S is very sparse (each row has a unique non-zero entry) and can
be stored very efficiently. Case (i) covers the vast majority of vertex pairs
(external edges) for a network measure (see exts and int f in Table 1). In (ii),
the case ∆1 = ∆2 is allowed. The matrix B = ST AS is symmetric with integer
entries if A is too, hence generally easier to store than Q(A) = Λ−1ST AS.

Proof of Theorem. Let V = ∆1 ∪ . . .∪∆m be the partition into orbits, and
write nk = |∆k|. Clearly, the row sums of S equals n1, . . . ,nm. Writing [M]i j
for the (i, j)-entry of a matrix M, matrix multiplication gives

[R]ik = ∑
l
[S]il [Λ−1]lk

l=k
= [S]ik

1
nk

=

{
1
nk

if i ∈ ∆k ,

0 otherwise.

Similarly, assuming i ∈ ∆k and j ∈ ∆l , we have

āi j = [RBRT ]i j = ∑
α,β

[R]iα [B]αβ [R] jβ =
1
nk

1
nl
[B]kl =

1
nk

1
nl

∑
u∈∆k
v∈∆l

auv.

This expression reduces to ai j if the orbits belong to different symmetric
motifs, since in this case all the summands in ∑u∈∆k ,v∈∆l auv are equal to
one another. Indeed, given i1, i2 ∈ ∆k and j1, j2 ∈ ∆l , we can find, by the
definition of orbit and symmetric motif, automorphisms σ and τ such that
σ(i1) = i2 while fixing j1, and τ( j1) = j2 while fixing i1. This gives

ai1 j1 = aτσ(i1)τσ( j1) = aτ(i2)τ( j1) = ai2 j2 .
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A similar proof shows that we can recover exact inter-motif connectivity
(external edges), and average intra-motif connectivity (average internal edges)
from the quotient network, as follows.

Corollary 1. Let A = (ai j) be the n× n adjacency matrix of a network
and Q(A) = (bkl) its quotient with respect to the partition into orbits of the
automorphism group V = ∆1 ∪ . . .∪∆m. Suppose that i ∈ ∆k , j ∈ ∆l . Then,

(i) if the orbits ∆k and ∆l belong to different symmetric motifs, bkl = ai j;

(ii) if the orbits ∆k and ∆l belong to the same symmetric motif,

bkl =
1
|∆k| ∑

u∈∆k
v∈∆l

auv. (29)

Lossless compression
We can achieve lossless compression by exploiting the structure of BSMs,
which account for most of the symmetry in real-world networks. If the
motif is basic, we can preserve the exact parent network connectivity in an
annotated quotient, as follows. Each orbit in a BSM is a uniform graph Kα,β

n
which appears in the quotient as a single vertex with a self-loop weighted by
(n− 1)α +β (Fig. 3 (c)). Hence if we annotate this vertex in the quotient
by not only n but also α , or β , we can recover the internal connectivity.
Similarly, the connectivity between two orbits in the same symmetric motif is
given by two parameters γ , δ and appears in the quotient as an edge weighted
(n−1)γ +δ (Fig. 3 (d)) and thus can also be recovered from a quotient with
edges annotated by γ , or δ .

Since there is no general formula for an arbitrary non-basic symmetric
motif, we can work with the basic quotient Qbasic instead, that is, the quotient
with respect to the partition of the vertex set into orbits in BSMs only (vertices
in non-basic symmetric motifs become fixed points hence part of the asym-
metric core). The annotated (as above) basic quotient achieves most of the
symmetry reduction in a typical empirical network (ñbasic

Q ≈ ñQ , m̃basic
Q ≈ m̃Q ,

(see Table 1, caption). To maintain the same vertex labelling as in the parent
network, we record, for each pairs of orbits in the same symmetric motif, the
corresponding permutation of the second orbit (else we recover the adjacency
matrix only up to permutations of the orbits).

Algorithms for lossless compression and recovery based on the basic
quotient are shown below (Algorithms 6 and 7), and MATLAB implementa-
tions for BSMs up to two orbits are available at a public repository26. The
results reported in Fig. 4 are with respect to these implementations, and the
actual compression ratios reported include the size of the annotation data for
lossless compression with vertex identity (a very small fraction of the size of
the quotient in practice, adding at most 0.02% to the basic full compression
ratio in all our test cases).

Spectral signatures of symmetry
The partition into orbits satisfy the following regularity condition34, 35. A
partition of the vertex set V =V1 ∪ . . .∪Vm is equitable if

∑
j∈Vl

ai1 j = ∑
j∈Vl

ai2 j for all i1, i2 ∈Vk, for all 1≤ k, l ≤ m, (30)

that is, if the connectivity from a node in Vi to all nodes in Vj is independent
of the chosen node in Vi. For completeness, we show the following.

Proposition 1. Let V =V1∪ . . .Vm be a partition of the vertex set of a graph
with adjacency matrix A = (ai j), and let S be the characteristic matrix of the
partition. Write Q(A) for the quotient with respect to the partition.

(i) The partition is equitable if and only if AS = SQ(A);

(ii) The partition into orbits of the automorphism group is equitable.

Proof. (i) Fix 1≤ i≤ n and 1≤ k ≤ m, and suppose i ∈Vl . Then

[AS]ik = ∑
j∈Vk

ai j,

and, using the equitable condition,

[SQl(A)]ik = [Ql(A)]lk =
1
|Vl | ∑

i1∈Vl
j∈Vk

ai1 j =
1
|Vl |
|Vl | ∑

j∈Vk

ai j = ∑
j∈Vk

ai j.

Input: adjacency matrix A, characteristic matrix for the basic
quotient S, list of BSMs motifs

Output: quotient matrix B, annotation structure a

B← ST AS

extract orbits from S
foreach orb in orbits do

rep← min(orb)
β ← A(rep, rep)
store β in annotation structure a

end

kmax← max(size(motifs)) maximal number of orbits in a motif
for k← 2 to kmax do

extract k-BSM (list of BSMs with k orbits) from motifs
foreach bsm in k-BSM do

foreach pairs of distinct orbits V1,V2 in bsm do
compute δ and permutation of V2 perm such that

A(k,perm(k)) = δ for all k ∈V1
store orbit numbers (with respect to S), δ and perm in

annotation structure a
end

end
end

Algorithm 6: Lossless symmetry compression.

For the converse, note that [AS]il does not depend on i but on the orbit of i.
Namely, given i1, i2 ∈Vk ,

∑
j∈Vl

ai1 j = [AS]i1l = [Ql(A)]kl = [AS]i2l = ∑
j∈Vl

ai2 j.

(ii) Given i1 and i2 in the same orbit ∆k, choose an automorphism σ such
that σ(i1) = i2. Then, since automorphisms respect the adjacency matrix,
ai j = aσ(i)σ( j) for all i, j, we have

∑
j∈∆l

ai1 j = ∑
j∈∆l

aσ(i1)σ( j) = ∑
j∈∆l

ai2σ( j) = ∑
j∈∆l

ai2 j,

where the last equality follows from the fact that an element in a group
permutes orbits, in this case, { j : j ∈ ∆l} = {σ( j) : j ∈ ∆l}. Hence the
partition into orbits is equitable.

It follows immediately that the quotient eigenvalues are a subset of the
eigenvalues of the parent network,

Q(A)v = λv =⇒ A(Sv) = SQ(A)v = λSv. (31)

(Note that Sv 6= 0 if v 6= 0.) That is, the spectrum of the quotient is a subset
of the spectrum of the graph, with eigenvectors lifted from the quotient by
repeating entries on orbits. Moreover, we can complete an eigenbasis with
eigenvectors orthogonal to the partition (adding up to zero on each orbit).

Theorem 3. Suppose that A is an n× n real symmetric matrix and B the
m×m quotient matrix with respect to an equitable partition V1 ∪ . . .∪Vm of
the set {1,2, . . . ,n}. Let S be the characteristic matrix of the partition. Then
A has an eigenbasis of the form

{Sv1, . . . ,Svm,w1, . . . ,wn−m} ,

where {v1, . . . ,vm} is any eigenbasis of B, and ST wi = 0 for all i.

Proof. Recall that Sv 6= 0 if v 6= 0 (S lifts the vector v from the quotient by
repeating entries on each orbit) so the linear map

Rm→ Rn,v 7→ Sv

has trivial kernel and hence it is an isomorphism onto its image. In particu-
lar, B = {Sv1, . . . ,Svm} is also a linearly independent set, and they are all
eigenvectors of A, since AS = SB as the partition is equitable. To finish the
proof we need to complete B to a basis {Sv1, . . . ,Svm,w1, . . . ,wn−m} such
that each w j is an A-eigenvector orthogonal to all Svi. As B is a basis of
Im(S), this would imply wi ∈ Im(S)⊥ = Ker(ST ), giving ST wi = 0 for all i,
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Input: quotient matrix B, characteristic matrix S, annotation
structure a

Output: adjacency matrix A

Λ← diag(sum(S))
R← SΛ−1

A← RBRT

extract orbits from S
foreach orb in orbits do

n← size(orb)
extract β from a
compute α from B, β and n (using
[B]orb,orb = n((n−1)α +β ))

construct adjacency matrix of the orbit Aα,β
n

A(orb,orb)← Aα,β
n

end

extract pairs of orbits in the same BSM from a
foreach (V1,V2) in pairs do

n← size(V1)
extract δ , perm from a
compute γ from B, δ and n (using [B]V1 ,V2 = n((n−1)γ +δ ))

construct matrix Aγ,δ
n

A(V1,perm)← Aγ,δ
n

A(perm,V1)← Aγ,δ
n

end

Algorithm 7: Lossless symmetry decompression.

as desired. Since A is diagonalisable, Rn decomposes as an orthogonal direct
sum of eigenspaces, Rn =

⊕
λ Eλ . In each Eλ , we can find vectors w j such

that they complete Vλ = {Svi ∈B |vi λ -eigenvector} to a basis of Eλ and
that are orthogonal to all vectors in Vλ (consider the orthogonal complement
of the subspace generated by Vλ in Eλ ). Repeating this procedure on each
Eλ , we find vectors {w1, . . . ,wn−m} as needed.

The statement and proof above holds for arbitrary matrices A by replacing
‘eigenbasis’ by ‘maximal linearly independent set’ and removing the condition
ST wi = 0. It would be interesting to know whether the condition ST wi = 0
holds for motif eigenvectors in the directed case as well (the proof above is
no longer valid).

Further to the spectral decomposition theorem above, we can give an
even more precise description of the redundant spectrum: it is made of the
contributions from the spectrum of each individual symmetric motif.

Theorem 4. Let M be a symmetric motif of a (possibly weighted) undirected
graph G . If (λ ,w) is a redundant eigenpair of M then (λ , w̃) is a eigenpair
of G , where w̃ is equal to w on (the vertices of) M , and zero elsewhere.

Proof. Since (λ ,v) is an M -eigenpair,

∑
j∈V (M )

[AM ]i jw j = λwi ∀ i ∈V (M ),

where AM is the adjacency matrix of M . We can decompose M into orbits,

V (M ) =V1 ∪ . . .∪Vm,

and, by the spectral decomposition theorem above applied to M , w is orthog-
onal to each orbit, that is,

∑
j∈Vi

w j = 0 ∀1≤ i≤ m.

We need to show that (λ , w̃) is a G -eigenpair. Let us write A for the adjacency
matrix of G (recall M is a subgraph so A restricts to AM on M ). We need
to show Aw̃ = λ w̃. Given i ∈V (G ), we have two cases. First, if i ∈V (M ),

∑
j∈V (G )

[A]i jw̃ j = ∑
j∈V (M )

[A]i jw̃ j + ∑
j∈V (G )\V (M )

[A]i jw̃ j

= ∑
j∈V (M )

[A]i jw j = λwi = λ w̃i,

since w̃ equals w on M , and is zero outside M . The second case, when
i ∈V (G )\V (M ), gives

∑
j∈V (G )

[A]i jw̃ j = ∑
j∈V (M )

[A]i jw j,

as before, and then we use the decomposition of M into orbits,

∑
j∈V (M )

[A]i jw j =
m

∑
k=1

∑
j∈Vk

[A]i jw j =
m

∑
k=1

αk ∑
j∈Vk

w j .

Here we have used that the vertex i, outside the motif, connects uniformly to
each orbit, that is, Ai j1 = Ai j2 for all j1, j2 ∈Vk , and we call this quantity αk .
Finally, recall that w is orthogonal to each orbit, to conclude

∑
j∈V (M )

[A]i jw j =
m

∑
k=1

αk ∑
j∈Vk

w j = 0 = λ w̃i .

Therefore, the redundant spectrum of G is the union of the redundant
eigenvalues of the symmetric motifs, together with their redundant eigenvec-
tors localised on them. Since most symmetric motifs in real-world networks
are basic, most symmetric motifs in the network representation of a network
measure will be basic too. Given their constrained structure, one can in fact
determine the redundant spectrum of BSMs with up to few orbits, for arbitrary
undirected networks with symmetry.

Redundant spectrum of a 1-orbit BSM. A BSM with one orbit is an (α,β )-
uniform graph Kα,β

n with adjacency matrix Aα,β
n = (ai j) given by ai j = α

and aii = β for all i 6= j. Then Kα,β
n has eigenvalues (n− 1)α + β (non-

redundant), with multiplicity 1, and −α +β (redundant), with multiplicity
n− 1. The corresponding eigenvectors are 1, the constant vector 1 (non-
redundant), and ei, the vectors with non-zero entries 1 at position 1, and −1
at position i, 2≤ i≤ n (redundant). This can be shown directly by computing
Aα,β

n 1 and Aα,β
n ei, and noting that 1, e2, . . . , en are linearly independent

(although not orthogonal) and thus form an eigenbasis. Indeed, Aα,β
n 1 is the

vector of column sums of the matrix Aα,β
n , which are constant (n−1)α +β ,

and Aα,β
n ei is the constant 0 vector, except possibly at positions 1, which

equals β −α , and i, which equals α−β .

Redundant spectrum of a 2-orbit BSM. A BSM with two orbits is a uni-
form join of the form

Kα1 ,β1
n

γ,δ←→ Kα2 ,β2
n . (32)

Define a = α1−β1, b = α2−β2, c = γ−δ , and note that c 6= 0: otherwise
γ = δ and we can freely permute one orbit while fixing the other, that is, this
would not be a BSM with two orbits but rather two BSMs with one orbit each.
As above, let ei be the vector with non-zero entries 1 at position 1, and −1 at
position i, for any 2≤ i≤ n.

Lemma 1. The following set of vectors is linearly independent

{(κ1 ei |ei),(κ2 ei |ei) | 2≤ i≤ n}

for all κ1 6= κ2 ∈ R.

Proof. Define the (n−1)×n matrix

Bn =
(
1 | −Idn−1

)
where 1 is a constant 1 column vector, and Idn−1 the identity matrix of size
n− 1. The set of vectors in the statement can be arranged in block matrix
form as (

κ1 Bn Bn
κ2 Bn Bn

)
.

This matrix has a minor of order 2(n−1),

det
(
−κ1 Idn−1 −Idn−1
−κ2 Idn−1 −Idn−1

)
.

Using that det
(

A B
C D

)
= AD−BC whenever A, B, C, D are square blocks of

the same size and C commutes with D51, this minor equals

det
(
−κ1 Idn−1−κ2 Idn−1

)
= (−1)n−1(κ1 +κ2)

n−1 6= 0 ⇐⇒ κ1 6= κ2.
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Next we derive conditions for a vector vi = (κei|ei) to be an eigenvector
of the uniform join (32), that is, Avi = λvi, for some λ ∈ R, where A is the
(symmetric) adjacency matrix of the uniform join,

A =

(
Aα1 ,β1

n Aγ,δ
n

Aγ,δ
n Aα2 ,β2

n

)
. (33)

The jth entry of the vector Av is

κβ1−κα1 +δ − γ =−(κa+ c) j = 1

κα1−κβ1 + γ−δ = κa+ c j = i

κδ −κγ +β2−α2 =−(κc+b) j = n+1

κγ−κδ +α2−β2 = κc+b j = n+ i

0 otherwise.

Comparing these with the entries of the vector λvi, we obtain

Avi = λvi ⇐⇒ (κa+ c =−λκ and κc+b =−λ ) , (34)

The two equations on the right-hand side are satisfied if and only if λ =
−κc−b and κ is a solution of the quadratic equation

cκ
2 +(b−a)κ− c = 0, (35)

which has two distinct real solutions

(a−b)±
√

(a−b)2 +4c2

2c
, (36)

since c 6= 0, as explained above. Together with the lemma, we have shown
the following.

Theorem 5. The redundant spectrum of a symmetric motif with two orbits

Kα1 ,β1
n

γ,δ←→ Kα2 ,β2
n is given by the eigenvalues

λ1 =−b− cκ1 =
−(a+b)+

√
(a−b)2 +4c2

2
, and,

λ2 =−b− cκ2 =
−(a+b)−

√
(a−b)2 +4c2

2
,

each with multiplicity n−1, and eigenvectors (κ1ei|ei) and (κ2ei|ei) respec-
tively, where κ1 and κ2 are the two solutions of the quadratic equation
cκ2 +(b−a)κ− c = 0, a = α1−β1, b = α2−β2 and c = γ−δ 6= 0.

For unweighted graphs without loops, we recover the redundant eigenval-
ues for BSMs with two orbits predicted in13, as follows. We have β1 = β2 = 0,
α1,α2,γ,δ ∈ {0,1} and thus a,b ∈ {0,1} and c ∈ {−1,1}. If a = b, the
quadratic equation becomes κ2 − 1 = 0 with solutions κ = ±1 and thus
λ = −b− cκ ∈ {−2,−1,0,1}. If a 6= b we can assume a = 1, b = 0 and
the quadratic cκ −κ − c = 0 has solutions ϕ and 1−ϕ if c = 1, −ϕ and
ϕ − 1 if c = −1, where ϕ = 1+

√
5

2 is the golden ratio. In either case, the
redundant eigenvalues λ =−b− cκ =−cκ are −ϕ and ϕ−1. Altogether,
the redundant eigenvalues for 2-orbit BSMs are {−2,−ϕ,−1,0,ϕ − 1,1},
which equals the redundant eigenvalues RSpec2 in the notation of13.

We omit the calculation of the redundant spectrum of BSMs with three
(or more) orbits, as it becomes much more elaborate, and its relevance in
real-world networks is less justified (for example, less than 1% of BSMs in
each of our test networks, Table 1, has 3 or more orbits).

Applications
Theorem 6 (Communicability). Let Q(A) be the quotient of the adja-
cency matrix A of a network with respect to the partition into orbits of
the automorphism group. Let f (x) = ∑anxn be an analytic function. Then
f (Q(A)) = Q( f (A)).

Proof. Call B = Q(A) and recall that AS = SB by Proposition 1(i), where
S is the characteristic matrix of the partition. Therefore, AnS = SBn for all
n≥ 0 and

Q( f (A)) = Λ
−1ST

(
∞

∑
n=0

anAn

)
S =

∞

∑
n=0

an
(
Λ
−1ST AnS

)
(37)

=
∞

∑
n=0

an
(
Λ
−1ST SBn)= ∞

∑
n=0

anBn = f (B), (38)

since Λ−1ST S is the identity matrix.

Theorem 7 (Shortest path distance). Let A = (ai j) be as above. Then

(i) if (v1,v2, . . . ,vn) is a shortest path from v1 to vn and σ ∈ Aut(G ), then
(σ(v1),σ(v2), . . . ,σ(vn)) is a shortest path from σ(v1) to σ(vn);

(ii) if (v1,v2, . . . ,vn) is a shortest path from v1 to vn, and v1 and vn belong
to different symmetric motifs, then vi and vi+1 belong to different orbits,
for all 1≤ i≤ n−1;

(iii) if u and v belong to orbits U, respectively V , in different symmetric
motifs, then the distance from u to v in G equals the distance from U
to V in the unweighted (or skeleton) quotient Q.

Proof. (i) Since automorphisms are bijections and preserve adjacency,
(σ(v1),σ(v2), . . . ,σ(vn)) is a path from σ(u) to σ(v) of the same length. If
there were a shorter path (σ(u) =w1,w2, . . . ,σ(v) =wm), m< n, the same ar-
gument applied to σ−1 gives a shorter path (u = σ−1(w1),σ

−1(w2), . . . ,v =
σ−1(wm)) from u to v, a contradiction.

(ii) Any subpath of a minimal length path is also of minimal length
between its endpoints. Arguing by contradiction, there exists a subpath
p = (w1,w2, . . . ,wn) (or p = (wn,wn−1, . . . ,w1)), such that w1 and w2 be-
long to the same orbit, and wn belongs to a different symmetric motif.
Hence, we can find σ ∈ Aut(G ) with σ(w2) = w1 and fixing wn. This
implies σ(p) = (σ(w1),σ(w2) = w1,σ(w3), . . . ,σ(wn) = wn), a shortest
path by (i), of length n− 1. The subpath (w1,σ(w3), . . . ,wn) has length
n−2, contradicting p being a minimal length path from w1 to wn. (The case
p = (wn,wn−1, . . . ,w1) is analogous.)

(iii) Let p = (u = v1,v2, . . . ,vn+1 = v) be a shortest path from u to v,
so that dG (u,v) = n. Let Vk be the orbit containing vk, for all k. By (ii),
Vk 6=Vk+1 for all 1≤ k ≤ n thus q = (U =V1,V2, . . . ,Vn+1 =V ) is a path in
Q and dQ(U,V )≤ n. By contradiction, assume there is a shorter path in Q
from U to V , that is, (U =W1,W2, . . . ,Wm+1 =V ) with m < n. The we can
construct a path in G from u to v of length m (a contradiction), as follows.
For each 1 ≤ i ≤ m, Wi is connected to Wi+1 in Q, hence there is a vertex
in Wi connected to at least one vertex in Wi+1. Since vertices in an orbit
are structurally indistinguishable, any vertex in Wi is then connected to at
least one vertex in Wi+1 (formally, if w ∈Wi is connected to w′ ∈Wi+1 then
σ(w) ∈Wi is connected to σ(w′) ∈Wi+1). This allows us to construct a path
in G from u to v of length m < n, a contradiction.

Let us call the external degree of a vertex as the number of adjacent vertices
outside the motif it belongs to. The proof of the following is straightforward
from the definitions.

Theorem 8 (Symmetric motif Laplacian). A symmetric motif M in G in-
duces a symmetric motif in L with adjacency matrix

LM +
(
d1Im1 ⊕ . . .⊕dkImk

)
, (39)

where LM is the ordinary Laplacian matrix of M considered as a graph on
its own, and d1, . . . ,dk are the external degrees of the k orbits of M of sizes
m1, . . . ,mk . (Here In is the identity matrix of size n and we use ⊕ to construct
a block diagonal matrix.)

Recall that each orbit in a BSM (in an undirected, unweighted graph) is
either a complete or an empty graph.

Corollary 2 (Redundant Laplacian eigenvalues). Let G be an undirected,
unweighted network. If M is a 1-orbit BSM with m vertices of external
degree d, then the redundant Laplacian eigenvalue induced by M is d if M
is an empty graph, and d +m if M is a complete graph, in both cases with
multiplicity m−1.

Proof. By Theorem 8, the Laplacian of the motif in L is LM +dIm. The
redundant eigenvalues of this matrix are the redundant eigenvalues of LM (0
if M is empty and m if M is a complete graph, in both cases with multiplicity
m−1) plus d. All in all, the redundant eigenvalues for 1-orbit BSMs occur a
the positive integers Z+.

Theorem 9 (Vertex compression). If v is a vector of length nG that is constant
on orbits, then SΛ−1ST v = v.
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Proof. First, note that ST S = Λ (this holds for any partition of the vertex set).

[ST S]αβ = ∑
i
[ST ]αi[S]iβ = ∑

i
[S]iα [S]iβ =

{
0 if α 6= β ,
|Vα | if α = β .

As v is constant on orbits, it is already of the form v = Sw for some w.
Therefore SΛ−1ST v = SΛ−1ST Sw = Sw = v.

Proposition 2 (Degree centrality). Let B = (bαβ ) be the adjacency matrix of
the quotient, and V =V1 ∪ . . .∪Vm the partition of the vertex set into orbits.
If i ∈Vα , then dG

i = dQ,out
α .

Proof.

dG
i = ∑

j∈V
ai j = ∑

j∈V1

ai j + . . .+ ∑
j∈Vm

ai j =
1
n1

∑
j∈V1
i∈Vi

ai j + . . .+
1

nm
∑

j∈Vm
i∈Vi

ai j

= bi1 + . . .+bim = dQ,out
α .

Weighted and directed networks
The adjacency matrix of a network can encode arbitrary weights and direc-
tions, making a general n× n real matrix A the adjacency matrix of some
(weighted, directed) network. The definition of automorphism group, geo-
metric decomposition, symmetric motif, and orbit, and their properties, as
they are defined only in terms of A, carry verbatim to arbitrarily weighted
and directed networks. In this setting, a symmetry (automorphism), respects
not only adjacency, but weights and directions. In particular, the automor-
phism group is smaller than (a subgroup of) the automorphism group of the
underlying undirected, unweighted network. By introducing edge weights
or directions, some symmetries will disappear, removing (and occasionally
subdividing) symmetric motifs and orbits, as the next results shows.

Theorem 10. Let Aw = (wi j) be the adjacency matrix of an arbitrarily
weighted and directed network Gw, and A = (ai j) the adjacency matrix of the
underlying undirected and unweighted network G , that is, ai j = sgn(|wi j|+
|w ji|). Consider the symmetric motifs of G , respectively Gw, with vertex sets
M1, . . . , Mm, respectively M′1, . . . , M′m′ . Then for every 1≤ i≤ m′ there is a
unique 1≤ j ≤ m such that M′i ⊆M j . Similarly, each vertex orbit in Gw is a
subset of a vertex orbit in G .

Proof. First we show that the automorphism group of Gw is a subgroup of
the automorphism group of G . If σ : V →V is a permutation of the vertices,
then

wσ(i)σ( j) = wi j =⇒ aσ(i)σ( j) = ai j

by considering two cases: wi j 6= 0 implies wσ(i)σ( j) 6= 0 which gives ai j =
aσ(i)σ( j) = 1; wi j = 0 implies wσ(i)σ( j) = 0 which gives ai j = aσ(i)σ( j) = 0
(note wi j 6= 0 ⇐⇒ ai j = 1). Hence Aut(Gw)⊂ Aut(G ), which immediately
gives the result on orbits.

Let us choose essential11 sets of generators S, respectively S′, of Aut(G ),
respectively Aut(Gw), with support-disjoint partitions

X = X1 ∪ . . .∪Xm, respectively X ′ = X ′1 ∪ . . .∪X ′m′ .

It is enough to prove the statement for these sets: given i, there is unique
j such that X ′i ⊆ X j . Let x′ ∈ X ′i ⊆ Aut(Gw) ⊆ Aut(G ) thus we can write
x′ = h1 · . . . ·hm with hk ∈Hk = 〈Xk〉. Since X ′ is an essential set of generators,
there is an index j such that hk = 1 (the identity, or trivial permutation) for
all k 6= j, so that x′ = h j . Given any other y′ ∈ X ′i , the same argument gives
y′ = hl for some 1≤ l ≤ m. We claim j = l, as follows. The partition of X ,
respectively X ′, above are the equivalence classes of the equivalence relation
generated by σ ∼ τ if σ and τ are not support-disjoint permutations. Since
x′,y′ are in the same equivalence class, so are h j and hl and thus j = l.

The same result applies to networks with other additional structure, not
necessarily expressed in terms of the adjacency matrix, such as arbitrary
vertex or edge labels, by restricting to automorphisms preserving the ad-
ditional structure. We obtain fewer symmetries, and a refinement of the
geometric decomposition, symmetric motifs, and orbits as above. The results
in this paper, although applicable in theory, become less useful in practice as
further restrictions are imposed, reducing the number of available network
symmetries.

Asymmetric measures
In the case of an asymmetric network measure (F(i, j) 6= F( j, i)), its network
representation F(G ) is directed even if G is not. However, F(G ) still inherits
all the symmetries of G , that is, every automorphism of G respects weights
and edge directions in F(G ). Therefore, F(G ) has the same symmetric
motifs (as vertex sets) and orbits as G , and the structural results in this paper
apply verbatim.

Data and code availability
The datasets analysed during the current study are available at the loca-
tions stated in the caption to Table 1. The datasets generated during the
current study can be found at https://doi.org/10.6084/m9.figshare.
11619792 and the code used to process the datasets at https://bitbucket.
org/rubenjsanchezgarcia/networksymmetry/.
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