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Abstract

Kleinberg introduced three natural clustering properties, or axioms, and showed they cannot be
simultaneously satisfied by any clustering algorithm. We present a new clustering property, Mono-
tonic Consistency, which avoids the well-known problematic behaviour of Kleinberg’s Consistency
axiom, and the impossibility result. Namely, we describe a clustering algorithm, Morse Clustering,
inspired by Morse Theory in Differential Topology, which satisfies Kleinberg’s original axioms with
Consistency replaced by Monotonic Consistency. Morse clustering uncovers the underlying flow
structure on a set or graph and returns a partition into trees representing basins of attraction of
critical vertices. We also generalise Kleinberg’s axiomatic approach to sparse graphs, showing an
impossibility result for Consistency, and a possibility result for Monotonic Consistency and Morse
clustering.
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Introduction

Given a set of objects and a pairwise similarity function, a clustering algorithm is a formal
procedure that groups together objects which are similar and separate the ones which are
not (Jain and Dubes, 1988), mimicking the human ability to categorize and group together
objects by similarity. Methods and approaches to clustering algorithms have been grow-
ing for decades (Jain and Dubes, 1988; Jain et al., 1999; Aggarwal and Reddy, 2013), with
clustering becoming a standard data analytic technique (Jain, 2010). This has been comple-
mented by an interest in underlying principles and general desirable properties (sometimes
called azioms) of clustering algorithms (Fisher and Ness, 1971), especially as clustering is
an infamously ill-defined problem in the abstract (Jain, 2010; von Luxburg et al., 2012).

A more recent interest in the axiomatic approach was sparked by Kleinberg’s impossi-
bility theorem (Kleinberg, 2003). In the spirit of Arrow’s impossibility theorem in social
science (Arrow, 1950), Kleinberg gives three natural properties a clustering algorithm should
have, namely Scale Invariance, Richness, and Consistency, then proves that they cannot be
simultaneously satisfied.

Several authors have since criticised Kleinberg’s approach, particularly the Consistency
axiom (Ben-David and Ackerman, 2009; Ackerman et al., 2010; Correa-Morris, 2013), and
proposed alternative frameworks that circumvent the impossibility result. For instance,
by restricting clustering functions to k-partitions, for a fixed k, the axioms can coexist
(Zadeh and Ben-David, 2012); if we allow arbitrary parameters, Kleinberg’s axioms are
compatible when applied to a parametric family of a clustering algorithm, as discussed
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in (Correa-Morris, 2013); and, by replacing partitions by dendrograms as the output of
a clustering function, the authors in (Carlsson and Memoli, 2010) show a possibility and
uniqueness result satisfied by single-linkage hierarchical clustering. In all these cases, Klein-
berg’s impossibility is avoided by either restricting or extending the definition of clustering
function. Other authors shift the axiomatic focus to clustering quality measures (Ben-David
and Ackerman, 2009; Laarhoven and Marchiori, 2014; Yu and Xu, 2014), or cost functions
(Karayiannis, 1999; Puzicha et al., 2000).

In this article, we remain close to Kleinberg’s original setting and directly address the
problematic behaviour of the Consistency axiom instead, which we replace by a weaker
condition that we call Monotonic Consistency, where the rate of expansion, respectively
contraction, of inter-, respectively intra-, cluster distances is not arbitrary, but globally
controlled by an expansive function 7 (Section 1.2). In essence, i controls the inter-cluster
expansion, while its inverse n~! controls the intra-cluster contraction. As n is a function on
distances, not pairs of points, the control is global, with points at similar distances experi-
encing the same expansion or contraction. Without this global condition, we recover Outer
or Inner Consistency, each incompatible with Scale Invariance and Richness (Ackerman
et al., 2010).

Monotonic Consistency avoids the problematic behaviour of Consistency (see Section
1.5), and, moreover, we show a possibility result: Monotonic Consistency, Scale Invariance
and Richness are mutually compatible clustering axioms (Corollary 16). As far as we know,
this is the only alternative in the literature to the Consistency axiom that is compatible
with Richness and Scale Invariance without modifying the definition of clustering function.

Our possibility result depends on a new clustering method called Morse Clustering,
inspired by Morse Theory in Differential Topology. Although naturally a vertex-weighted
clustering algorithm (in the sense of (Ackerman and Ben-David, 2016)), an unweighted
version (which we call agnostic Morse Clustering) satisfies Kleinberg’s original axioms, with
Consistency replaced by Monotonic Consistency.

After briefly introducing Morse theory (Section 2.1), we describe the general Morse
flow algorithm (Section 2.2) and explain how it induces a partition on a graph that we call
Morse partition (Section 2.3). The Morse flow (and hence the partition) depends on a way of
comparing vertices and edges locally (formally, a choice of vertex and edge preorders). Then,
at every vertex, the maximal edge (if it exists) is chosen for the flow if it is also admissible,
that is, if it represents an ‘uphill’ direction. The remaining edges are removed, and what
remains is a partition of the graph into trees, each representing a ‘basin of attraction’ of a
critical vertex (a sink of the flow).

In contrast to other affinity or hill climbing algorithms, Morse clustering first extracts
the maximal edge at a vertex v (if it exists and is unique), and then uses it in the flow only if
it is also ascending; otherwise the flow stops at v. This design choice works well in practice
(Appendix B), produces a rich family of clustering algorithms (Section 2.4 and Appendix
A) and, crucially, allows us to distinguish local maxima (Section 2.2) without introducing
additional scaling or threshold parameters.

We present three instances of Morse Clustering, corresponding to three choices of vertex
and edge preorders, then show that each of them satisfy a pair of Kleinberg’s original axioms,
and that all of them satisfy Monotonic Consistency (Section 2.4). In particular, one of them
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satisfy Monotonic Consistency, Scale Invariance and Richness, which are therefore mutually
compatible clustering axioms (Corollary 16).

Our last contribution is a generalisation of Kleinberg’s axiomatic approach to graph
clustering (Section 3). A distance function d on a set X can be represented by a complete
graph G with vertex set X and edges weighted by d(u,v) > 0. In fact, many clustering
algorithms (including Morse Clustering) work on this graph representation. A classical
example is Single Linkage, which, in fact, only depends on a minimum spanning tree of
G (Gower and Ross, 1969). A natural generalisation of Kleinberg’s setting is, therefore,
the case when G is an arbitrary, rather than complete, graph. That is, we fix a graph
G and consider distances supported on the edge set (this is the natural setting of graph
clustering Schaeffer (2007)). In Section 3, we justify this approach, consider Kleinberg’s
axioms in this graph clustering setting, show that the impossibility result still holds, even
when Richness is relaxed naturally to Connected-Richness (partitions where every cluster
is a connected subgraph), and give a possibility result for Monotonic Consistency and the
same instance of Morse Clustering. As the sparse case (G arbitrary) contains the complete
case (G complete), Kleinberg’s impossibility theorem (Kleinberg, 2003) is now a particular
case of our graph clustering impossibility result (Theorem 20).

In this paper we consider Morse Clustering on edge-weighted graphs with an fixed in-
dexing on the vertices, but the extent of the algorithm is broader. We can apply Morse
Clustering to any vertex-annotated graph, where the annotation may come from the graph
structure itself (e.g. vertex centrality) or from additional metadata provided by the user.
We may call these unsupervised respectively supervised Morse Clustering, as opposed to the
agnostic Morse Clustering presented in this article for theoretical and axiomatic purposes
only. Morse Clustering, as a practical clustering algorithm of its own right, is studied in
(Strazzeri and Sanchez-Garcia) (see also (Strazzeri, 2019), (Schofield et al., 2019) and Ap-
pendix B in this article) in the supervised and unsupervised form described above. Note
that the use of vertex annotations to improve clustering has been explored elsewhere in the
literature such as in (Newman and Clauset, 2016).

1. Monotonic Consistency

In this section, we introduce a weakening of the Consistency axiom that we call Monotonic
Consistency. We start with a review of Kleinberg’s original axioms and the problematic
behaviour of Consistency.

1.1 A critique of Kleinberg’s axioms

Given a set X of n objects that we want to compare, a dissimilarity on X is a pairwise
function
d: X xX >R

such that d(i,j) = d(j,i) > 0, and d(i,j) = 0 if and only if ¢ = j, for all 4,j € X. We
will adhere to the convention in the literature and refer to d from now on as a distance,
although it may not satisfy the triangle inequality. Following (Kleinberg, 2003), we define
a clustering algorithm on X as a map

F : {d distance on X} — {P partition of X}. (1)
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A partition of X is a disjoint union X = X; U...U Xg, and we call each X; a cluster of
the partition. If P = {X1,...,X,} is a partition of X and z,y € X, we use the notation
x ~p y if  and y belong to the same cluster of P, and = %p y if not.

Kleinberg (Kleinberg, 2003) introduced three natural properties for a clustering algo-
rithm, then proved that they cannot be simultaneously satisfied by any clustering algorithm
F'. These properties are:

e Scale Invariance: Given a distance d on X and o > 0, we have F(d) = F(« - d);

e Richness: Given a partition P of X, there exists a distance d on X such that F(d) =
P;

e Consistency: Given two distances d and d’ on X with P = F(d), if d' is a P-
transformation of d, that is,

d(v,w) < d(v,w) if v ~pw, and @)
>d

d'(v,w) > d(v,w) if v Lp w,
then F(d) = F(d').

Kleinberg also showed that each pair of these properties can be simultaneously satisfied,
in fact by three different versions of Single Linkage.

Our first contribution is a weakening of the Consistency property which is both very
natural, and can coexist with Richness and Scale-Invariance. To motivate our definition,
we first discuss the problematic behaviour of Kleinberg’s Consistency in the presence of
Richness and Scale Invariance (see also (Correa-Morris, 2013; Ackerman et al., 2010; Zadeh
and Ben-David, 2012)). Given F' a consistent and scale-invariant clustering algorithm, and
two different partitions F'(dy) # F(dz), it can be shown (Kleinberg, 2003, Theorem 3.1)
that each partition is not the refinement of the other (a partition P is a refinement of Q
if each cluster of P is contained in a cluster of Q). In particular, given a distance d and
associated partition P = F(d), we can never obtain a partition identical to P but with
one, or more, of its clusters further subdivided (Fig. 1). On the other hand, consider any
distance d’ satisfying

d(v,w) <d(v,w) ifv,w ey,
d(v,w) <d(v,w) if v,w € Cy,

d'(v,w) = d(v,w) otherwise,

where C'is a cluster of P and C' = C1UC} is an arbitrary partition of C'. Note that any such
d' is a P-transformation of d. This means that we can arbitrarily emphasize the subcluster
structure, to the point that it could be more natural to consider C7; and Cy as separate
clusters (Fig. 1), while Consistency implies F'(d) = F(d’) regardless.
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Figure 1: Problematic behaviour of the Consistency axiom. We can arbitrarily emphasize
any subcluster structure without affecting the output of the clustering algorithm. This
behaviour is explicitly avoided by Monotonic Consistency (Section 1.5).

We propose a more restrictive definition of Consistency which avoids this type of be-
haviour. The idea is to globally fix the rate at which we can increase (decrease) the
intra-cluster (inter-cluster) distances. We do this restricting to P-transformations obtained
through a particular class of functions, which we describe next.

1.2 Expansive and contractive maps

Definition 1 Let X andY be subsets of R. We call a continuous map n: X — Y expansive
if
In(z) =n)| = |z —y| forallz,y e X. 3)

By reversing the inequality, we define a contractive map.

Expansive maps can be defined more generally for maps between metric spaces (Gottschalk
and Hedlund, 1955) as maps that do not decrease distances between pairs of points, and we
have added the continuity hypothesis for convenience (see Remark 3). We will use expansive
maps to expand and contract distances with respect to a partition, namely, d'(u,v) =
n(d(u,v)) if u and v belong to different clusters, and d'(u,v) = n~*(d(u,v)) if they belong
to the same cluster. In particular, we take X =Y = [0,00) in the definition above, and
assume 7(0) = 0. The following lemma summarises some useful properties.

Lemma 2 Let n: [0,00) — [0,00) be a continuous expansive map with n(0) = 0. Then:
(i) n is strictly increasing, a bijection, and satisfies n(x) > x for all x;
(ii) n~1 is strictly increasing, a contractive map, and satisfies n~'(x) < x for all x.

Proof (i) By contradiction, if 7 is not strictly increasing, we can find z > y with n(x) <
n(y), so that n(0) = 0 < n(z) < n(y) and, by the Intermediate Value Theorem, we can find
z € [0, y] such that n(z) = n(x), a contradiction. The growth condition is immediate from
the expansion property (3) for y = 0,

n(@)| = n(z) = |z = =,
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for all € [0,00). Since 7 is strictly increasing, it is injective. It is also surjective: The
growth condition above gives n(z) — oo as * — oo and, together with n(0) = 0 and
continuity, we have that n takes all values in [0, 00).

(ii) Since 7 is bijective, it has an inverse n~'. The inverse of a (strictly) increasing

function is also (strictly) increasing. To show this, and the two remaining properties, one
can simply use the corresponding properties of 1 in (i) on ' = n(x) and v’ = n(y). [ |

Example 1 The following are examples of continuous expansive functions n: [0,00) —
[0, 00) with n(0) = 0.

1. (Linear) n(x) = ax for « > 1 (Fig. 2(a)).

2. (Piecewise linear) n = n(d;) + a;(x — d;) for x € [d;, dit1], where 0 =dy < dy < ...<
dpn, n(0) =0, and a; > 1, for all i (Fig. 2(b)) .

3. (Differentiable) A differentiable function n: [0,00) — [0, 00) with n(0) = 0 is expansive
if and only if ' (x) > 1 for all  (Fig. 2(c)).

4. (Graphical criterion) A continuous function n: [0,00) — [0,00) is expansive if and
only if the function n(x) — x is increasing (this follows from Remark 3).

(a) Linear (b) Piecewise linear

(c) Differentiable (d) Counterexample

Figure 2: Examples of expansive functions and one counterexample (solid blue lines). At
each point, the function growths at least as fast as the line y = = (dashed red line).

Remark 3 If n is increasing, FEq. (3) is equivalent to

n(@) —nly) zx—y foralz=y. (4)
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In fact, this equation alone implies n increasing and thus Eq. (3). We could drop the
continuity hypothesis in Definition 1, and define an expansive function simply by Eq. (4).
In practice, however, a monotonic transformation (Definition /) can always be realised by
a continuous, piecewise linear function n (Lemma 6).

1.3 Monotonic transformations

In Kleinberg’s original Consistency axiom, arbitrary transformations that increase inter-
cluster distances and decrease intra-cluster distances are allowed. To avoid an impossibility
result, we restrict to transformations obtained via an expansive function 7, as follows. Recall
that we write x ~p y if x and y are in the same cluster with respect to a partition P, and

x #p y if not.

Definition 4 Let d be a distance on a set X, and P a partition of X. A P-monotonic
transformation of d is any distance d’ on X such that
d(a,y) =n~"(d'(z,y)) ifz2py,

for some expansive map n: [0,00) — [0,00), and all x,y € X. (Note that such n necessarily
satisfies n(0) = 0.)

Definition 5 A clustering algorithm F' is Monotonic Consistent if F\(d') = F(d) whenever
d' is a F(d)-monotonic transformation of d.

Note that, given d and P, d’ is uniquely determined by 7. Since n(x) > x and n~!(x) <z
for all z (Lemma 2), the distance function d’ increases inter-cluster distances and decreases
intra-cluster distances (hence Consistency implies Monotonic Consistency). However, our
allowed transformations do so globally (d' depends on distances between points, not the
actual points) and monotonically (the rates at which we expand or contract distances are the
inverse of one another). Finally, note that P-monotonic transformations can be composed
and this corresponds to the composition 7y o 71 of expansive maps.

Example 2 The following are examples of P-monotonic transformations.

1. (Linear) Let n(x) = ax, a > 1. The corresponding P-monotonic transformation
multiplies inter-cluster distances by «, and intra-cluster distances by 1/«. This is
sitmilar to Inner and Outer Consistency, introduced in (Ackerman et al., 2010), except
that the expansion and contraction rates are mot arbitrary, but the reciprocal of one
another.

2. (Linear step function) This is the function

T 0<z<d,
nw)=qa(x—d)+d di <z <dy, (6)
(r —dy) + ady do <,
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for some 0 < di < do and a > 1. The associated P-monotonic transformation
preserves (inter- or intra-cluster) distances below dy, scales distances between dy and
do as in Figure 2b, and (necessarily) translates distances above da, adding n(ds) = ads
to inter-cluster distances, and subtracting n(dz) to intra-cluster distances. Note that
da can be equal to 400 and so the third line in Equation (6) becomes obsolete.

3. (Piecewise linear) This is generalises both (1) and (2): For the piecewise linear n as
in Figure 2c, we have a rate of expansion/contraction «;, and a translation by n(d;),
for distances in the interval [d;,d;+1] where n is linear. It can be shown that each
piecewise linear function is a composition of linear step functions.

Below, we show that every P-monotonic transformation is induced by a piecewise linear 7,
or, equivalently, by a finite composition of linear step functions.

1.4 Characterisation of monotonic transformations

Although d’ is uniquely determined by 7, this 7 is not unique, that is, different choices
of 7 may result in the same P-monotonic transformation d’. Indeed, any expansive 7
interpolating the points (d'(x,y),d(z,y)) with  ~p y and (d(z,y),d (z,y)) with = #%p y
necessarily gives the same P-monotonic transformation d’, by Eq. (5). In particular, we
can always assume 7 to be piecewise linear in Definition 4, and, in fact, we can determine
whether such function exists directly from d’, as the next result shows.

Figure 3: Expansive map (left) and linear interpolation (right) through the points in the
subset S (as in Lemma 6). Both maps determine the same P-monotonic transformation
d' of a distance d. In the linear interpolation (right), the slope of each successive segment
must be at least 1.

Lemma 6 Let d and d' be distances on a finite set X and P a partition of X. Then d' is
a P-monotonic transformation of d if and only if a linear interpolation of the points

S = {(d(x,y),d'(x,y)) | T ~p y} U {(d/(xvy)7d(xay)) ’ T ’7673 3/} - R2

is a well-defined expansive map n: [0,00) — [0, 00).
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Proof Clearly, if there exists a linear interpolation 7 of the points in S such that it is a
well-defined expansive map, then d’ is a P-monotonic transformation of d, by definition.
Now assume d’ is a P-monotonic transformation of d. Then we can write

S ={(d(z,y),n(d(z,y))) |z ~p y} U {(d'(z,y),n(d'(z,9))) | = #» y},

where 7: [0, 00) — [0, 00) is an expansive map. To define a linear interpolation of S we will
assume that S is ordered lexicographically

S ={(z0,v0), (1, 91),..., (xN,YN)},

where y; = n(x;) for 0 < i < N and x; < x;41. We can assume the latter since 7 is
injective: if x; = x;41 then y; = y;41. Consider now the linear interpolation of S consisting
of segments between consecutive pairs of points (x;,y;) and (241, vi+1). As every point in
S is of the form (z,n(x)), we have that the slope of each segment is

N(Tit1) — Tit1

> 1,
n(xi) —xi

as 7 is expansive, Eq. (4). From this we have that the linear interpolation above, effectively
a discretization of 7, is in fact a well-defined expansive map. |

1.5 Avoidance of problematic behaviour

Recall that Kleinberg’s Consistency axiom allows us to arbitrarily emphasize any subcluster
structure within a cluster without changing the output of the clustering algorithm (Fig. 1).
We now show how this problematic behaviour is explicitly avoided by Monotonic Consis-
tency. Suppose that we have a set X and a partition P = F(d) with respect to a clustering
algorithm F' and a distance d on X. Choose a cluster C' and a partition C = C7 U Cs that
we wish to emphasize on a new distance d’ which (necessarily) decreases the intra-cluster
distances, but in a way that distances within each C; and Cs decrease much faster than
distances between C] and Cy, in order to achieve the behaviour depicted in Fig. 1.

Let u,v € C; distinct and w € Cy, and call x = d(u,v), ' = d'(u,v), y = d(u, w) and
y' = d'(u,w). We impose 2’ < x and 3y <y, and, in addition, we want to make x — 2’ large
while keeping y — ¢ small (Fig. 4). This is not possible if d’ if a P-monotonic transformation
of d, as follows. Let n be an expansive map realising d’. Then x = n(z') and y = n(y/).
Assume first © < y. Then Eq. (4) gives

n)—y >n@) -2 = y—y >z -2 (7)

This implies that if we want to reduce the distances inside of a subcluster (z — 2’ large),
we need to reduce the distances between the clusters (y — ¢') by at least the same amount.
The remaining case, z > y, follows from 1! being a decreasing function (Lemma 2),

/

z>y = ' =n"'(x) >0y =V, (8)

so that we cannot decrease the intra-cluster distance x without also decreasing the inter-
cluster distance y.
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"

Figure 4: Avoidance of the problematic behaviour by Monotonic Consistency. A P-
monotonic transformation of d reduces the distance from u to v by x — 2/, and the distance
from u to w by y — ¢/ (here shown with subscripts ‘b’ and ‘a’ indicating ‘before’ and ‘after’
the transformation). Then either 2’ > ¢/ (Eq. (8)), or y —y' > o — 2’ (Eq. (7)). In either
case, we cannot separate u and v from w within the same cluster.

We finish Section 1 by exploring Monotonic Consistency for Single Linkage, and for
metrics.

1.6 Single Linkage does not satisfy Monotonic Consistency

We will show that Monotonic-Consistency, a weakening of Consistency, can be satisfied
together with Richness and Scale-Invariance by a particular instance of Morse clustering
(Corollary 16). This is in contrast with Single Linkage, which, with different stopping
conditions, satisfies each pair of Kleinberg’s axioms (Kleinberg, 2003). The instance of
Single-Linkage satisfying Richness and Scale Invariance, namely Scale-a Single Linkage
with 0 < a < 1, does not satisfy Monotonic Consistency, as we show next. Recall that
Scale-a Single Linkage applied to (X,d) returns the connected components of the graph
with vertex X and edges (4, j) such that d(i,j) < a maxg;ex d(s,t).

Lemma 7 Let o € (0,1). Then Scale-aw Single-Linkage does not satisfy Monotonic Con-
sistency.

Proof Let X be any set with at least three points, P any partition of X with at least two
clusters, and x,y € X such that x «4p y. Define d on X as follows

«
5, if u ~p v,

d(u,v) = 1, fu=zv=y,
«, otherwise.

Let dmax = maxgiex d(s,t) = 1. If we represent (X, d) by a complete graph with vertex
set X and edges (i,7), ¢ # j, weighted by d(i,7) > 0, Scale-a Single-Linkage returns
the connected component of the graph obtained after removing all edges (i,7) with value

10
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d(i,7) > admax = «, in this case. Consequently, Scale-a Single-Linkage applied to d returns
the original partition P.
Let d’ be the P-monotonic transformation of d given by
2+

n(z) = ———.

(Note that 1(0) = 0 and 7/(x) = 221 > 1 for all z, so 7 is indeed expansive.) Then

«

7 (3) = S it
d'(u,v) = ¢n(l) = 2, ifu=uzv=y,
n(a) =1+ a, otherwise.

We now have d},,, = n(1) = 2 and thus scale—a Single-Linkage removes the edges (i, )

with d(i,7) > adl . = 2. Since a < 1, the only removed edge is d(z,y) and, since X has
at least three points, the algorithm returns the trivial partition {X}, clearly not P. |

1.7 Monotonic Consistency for metrics

A metric is a distance (in the sense of this article) which also satisfies the triangle inequality,
d(u,w) < d(u,v) + d(v,w) for all u,v,w. Metrics arise naturally when X is embedded in a
metric space such as R, and, in fact, for many clustering algorithms (for example k-means
clustering), the distance function is always a metric. It is therefore natural to ask whether
Monotonic Consistency is a useful property in this context, namely, whether a non-trivial
(that is, n not the identity) P-monotonic transformation of a metric can be a metric. (If not,
Monotonic Consistency would become an empty axiom for metrics.) Of course, not every
P-monotonic transformation of a metric will be a metric, but we show below that, given a
metric d and an arbitrary partition P, we can always find P-monotonic transformations of
d which are metrics.

Given a distance d on a set X, we call a triple of points i, j,k € X aligned if they are
distinct and d(i, k) = d(i, ) + d(j, k).

Theorem 8 Let X be a set, P a partition of X, and d a distance on X such that no triple of
nodes is aligned. Then there exists a constant c(d,P) > 1 such that, for all s € [1,¢(d, P)),
the P-monotonic transformation of d given by n(x) = sz is a metric. Moreover, there is
a universal constant c¢(d) independent of the partition, that is, 1 < ¢(d) < c(d,P) for all
partitions P of X.

Proof Let d’ be the P-monotonic transformation of d given by n(x) = sz for some s > 1.
We will find conditions on s to guarantee that d' satisfies the triangle inequality. Let
i,J,k € X distinct (if not, the triangle inequality is automatically satisfied). We want to
show that
d(i, k) < d(i,j) + d(j, k) = d'(i,k) <d'(i,§) +d'(j, k).

Recall that

) sd(iyj) if i ~p g,

d(i,5) = § d(i,j
.3) M otherwise.
S

11
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If 7, j and k are in the same cluster then clearly
d(i, k) _ d(i.j) | d,k)

S S S

If they are all in pairwise different clusters, then
sd(i,k) < sd(i,j)+ sd(j, k).
If ¢ and k are in the same cluster but j is not, then (recall s > 1)
d(i, k)
5

< d(i,k) < sd(i, ) + sd(j, k).

Since ¢ and k are interchangeable in the triangle inequality above, the only remaining case
is when ¢ and j are in the same cluster, but k£ is not. In this case, we want to show that
d(i, j .

(S]) +sd(j, k). (9)
If d(i, k) < d(j,k) then sd(i, k) < sd(j, k) and Eq. (9) is automatically satisfied. If d(i, k) >
d(j,k), Eq. (9) is satisfied if and only if

sd(i, k) <

d(i, 7)
i k) —d(j. k)

s2(d(i k) —d(j, k) < d(i,j) <= s< \/d(

Define

| (i, )
d,P) = : : d
AP)I= \/ G k) —dG. k)
d(i,k)>d(j,k)

. d(i, j)
) = G5 R) > () \/d(i, k) —d(j. k)
Clearly, ¢(d) < c¢(d,P) for all partitions P. To finish the proof, note that the triangle
inequality for d guarantees ¢(d) > 1, and ¢(d) = 1 if and only if there is an aligned triple of
points. |
Defining the minimum of an empty set as infinity, we might have c¢(d,P) = oo (or
¢(d) = o0), meaning that the P-monotonic transformation of d given by n(z) = sz is a

metric for any s > 1, and Theorem 8 still holds. Of course, this would only occur if for all
i, j, k with i ~p 7 and i #4p k, we have d(i, k) = d(j, k).

2. Morse Clustering

In this section we consider the clustering algorithm Morse in the form of three variants:
SiR-Morse, k-Morse and J-Morse (the last two are described in full detail in Appendix
A). Each of them satisfy one pair of the original Kleinberg axioms, and all of them satisfy
Monotonic Consistency. In particular, one of them (SiR-Morse) satisfies Scale Invariance
and Richness, showing that our three axioms can be simultaneously satisfied (Corollary 16).
Morse clustering is inspired by Topology and Differential Geometry, namely Morse theory
(Milnor, 1963) and its discretisation due to Forman (Forman, 1998). We start with a brief
introduction to both continuous and discrete Morse theory and explain how they motivate
our clustering algorithm.

12
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height

D

Figure 5: Morse function (vertical height) on a torus, critical points (red), and associated
flow (blue). The flow represents a unique maximal descent (or ascend, if we reverse time)
path that a particle, such as a drop of water, would follow on the surface. It is defined
everywhere except at four critical points, which can be thought of as a flow source (A),
sink (D) or a combination of both (B, C'). The number and type of critical points, for any
Morse function, is a topological invariant of the torus.

2.1 Morse theory

Topology is the mathematical study of ‘shape’ (Prasolov, 1995). It considers properties of a
space (such as a 2D surface, or 3D object) which are invariant under continuous deformations
such as stretching, bending or collapsing. A topological invariant is a property, for example
whether the space is disconnected, which is invariant under such deformations. A standard
approach in Topology is to study a space via functions defined on the space. Morse theory
(Milnor, 1963) considers potential-like functions called Morse functions and their associated
flow on the space, defined by the unique direction of maximal descent at every point, except
at a few critical points (see Fig. 5).

Forman (1998) introduced a discrete version of Morse Theory which applies to dis-
cretisations of continuous spaces, such as a polygonal mesh of a continuous surface. Such
discretisation decomposes the space into vertices, edges, triangles, etc. called simplices. A
discrete Morse function assigns a real number to each simplex under certain combinatorial
restrictions, and we have associated notions of critical simplex, and discrete Morse flow
(Fig. 6).

Discrete Morse theory can be applied to clustering by representing a set X with distance
d as an undirected weighted graph G with vertex set X, and an edge between ¢ and j if
d(i,7) > 0, and no such edge otherwise. (This is an all-to-all, or complete, graph.) A graph
is a discretisation of a curve and hence discrete Morse theory applies. To obtain a partition
of X using Morse theory, first we extend the edge weights given by the distances d(i,7) > 0
to a Morse function on the graph by assigning weights to the vertices as well. This Morse
function determines a unique flow on the vertices which, in turn, gives a natural partition of

13
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4 4 0 0

Figure 6: Morse flows on the same discrete space (here a small graph) associated to a dis-
crete Morse function (left) and to arbitrary edge and vertex weight (right). Our algorithm
(Algorithm 1) generalises the standard construction (Forman, 1998) of the Morse flow asso-
ciated to a discrete Morse function (left) to the Morse flow of an arbitrary edge and vertex
weighted on a graph (right). In both cases, we show the associated discrete Morse flow
as blue directed edges and critical simplices (vertices and edges) in red. A particle on a
vertex has a unique direction of descent following the blue arrow, except at the two critical
vertices shown in red, both sinks of the flow. After removing the critical edge, we have two
connected components, each a tree rooted at a critical vertex (Algorithm 2).

the vertex set. The clusters are the connected components of the graph after removing the
critical edges (edges not participating in the flow), and each cluster becomes a tree rooted
at a critical vertex (a sink of the flow), see Fig. 6. We describe this in detail next.

2.2 Morse flow

Let X be a finite set and d a distance (dissimilarity) on X. The Morse clustering of (X, d)
is obtained from the Morse flow on the graph representation of (X,d), by removing the
edges not participating in the flow. In turn, the Morse flow is determined by the direction
of maximal descent at every vertex together with the initial and final vertex weights (to
guarantee a descending path). In its more general form, rather than weights, we only need
a way of comparing vertices and edges locally. Formally, this consists on a choice of vertex
and edge preorders.

A preorder on a set is a binary relation < that is reflexive (a < a for all a) and transitive
(a 2 band b < ¢ implies a < ¢ for all a,b,c). We write a < b if @ < b and b £ a (that is,
b =< a does not hold). A preorder is total if a < b or b < a for all a,b. Our main examples
are the total preorders induced by an edge or vertex weight function on a graph (Example
3). By a graph G = (V, E)) we mean a non-empty vertex set V and an edge set E C V xV so
that (u,v) € E represents a directed edge from u to v. A graph is undirected if (v,w) € E
whenever (w,v) € E, for all v,w € V, loopless if (v,v) € E for all v € V, and finite if V
(and therefore F) is a finite set.

Example 3 Let G = (V, E) be a graph.

(1) (Edge weights) For any function w: E — R, the relation e < f if w(e) < w(f) is a
total preorder on E.

(2) (Vertex weights) For any function w: V — R, the relation u < v if w(u) < w(v) is a
total preorder on V.

14
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A distance d on a set X is an edge weight function for the complete graph with vertex set
X, and hence induces a total edge preorder on the graph representation of X. Similarly, a
labelling X = {x1,z2,...,2,} induces a vertex weight w(z;) = i and hence a total preorder
on the vertices V = X of such graph representation.

Remark 9 A preorder is an order if it is also anti-symmetric (a < b and b < a implies
a=1">). Our ezamples above are not necessarily orders, as we may have w(a) = w(b) with
a # b. If <X is a total order, a < b is equivalent to a < b and a # b. Note that any total
preorder on a set is induced by a weight function w: X — N.

Morse clustering applies to an arbitrary finite graph G with a choice of edge and vertex
preorders =g and <y. First, it finds the (ascending) Morse flow associated to (G, =g, <v)
(Algorithm 1), then the vertex partition associated to the Morse flow, that is, the connected
components of the graph after removing the critical edges (Algorithm 2); see also Fig. 6.
First, we need to introduce some notation and terminology.

Given a node v, we define the set of edges at v as

E, ={(v,w) € E}.

A mazimal edge at v is a maximum for F, with respect to the edge preorder, that is, an
edge e € E, such that f < e for all f € F,. Note that a maximal edge at v may not exist
(e.g. if the preorder is not total), or it may not be unique (e.g. if w(e) = w(f) for some edge
weights). An edge (v,w) is ascending, or admissible, if v <y w. If an edge is the unique
maximal edge at v, and it is ascending, we call it a non-critical or flow edge at v.

We define the Morse flow of a graph G with a choice of preorders <p and <y as the
map ¢: V — V given by

B(v) w if (v, w) is the unique maximal edge at v, and it is ascending v <y w,

v) = .
v otherwise.

Remark 10 There is a similar notion of descending edges and Morse flow. For simplicity,

we define Morse flow as ascending, and achieve descending flows simply by reversing the
vertex preorder <y .

Input: graph G = (V| E), edge preorder <p, vertex preorder <y
Output: Morse flow ¢: V — V

foreach v € V do
if mazimal edge e, = (v,w) of E, exists and it is unique and v <y w then

‘ P(v) =w
else

‘ P(v)=wv
end

Algorithm 1: Morse flow algorithm.
Graphically, we can represent a Morse flow as directed edges (v, w) whenever ¢(v) = w
(blue directed edges in Fig. 6). Edges not participating in the flow (red edges in Fig. 6) are
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called critical edges, and fixed points of the flow, ®(v) = v, are called critical vertices (red
vertices in Fig. 6), and correspond to ‘sinks’ of the flow.

The Morse flow of a graph can be computed using Algorithm 1. This algorithm can
be easily implemented so that each edge is visited only once, and thus has linear time
complexity O(m) where m is the number of edges.

An important observation is that we first use the edge preorder to extract the maximal
edge at a vertex (if it exists and is unique), and then use it in the flow only if it is also
ascending. In particular, if the maximal edge does not exist, or it is not unique, or, crucially,
it is not ascending, we define @¢(v) = v, that is, the flow stops at v (Fig. 7). This design
choice works well in practice (Appendix B), produces a rich family of clustering algorithms
(Section 2.4 and Appendix A) and, crucially, allows us to distinguish local maxima (Fig. 8)
without introducing additional scaling/threshold parameters.

Note that the reverse procedure (evaluating the vertex preorder first) gives a ‘hill climb-
ing’ or ‘affinity’ algorithm: among all ascending edges, we choose the maximal (‘closest’)
one. The difference, although subtle, is important: The ‘rock climbing’ algorithm, in con-
trast with the Morse flow, fails to detect local maxima if they are close (Fig. 8).

Note that the Morse flow algorithm work for both directed and undirected networks.
For undirected networks (the case we are concern with in this paper), each undirected edge
{(v,w), (w,v)} is evaluated twice, once at v and once at w. Since at most one of (v, w) or
(w,v) is admissible (ascending), at most one of them belongs to the flow. The fact that the
flow is (strictly) ascending, also means that there cannot be any cycles in the flow.

Figure 7: Three ways in which critical vertices arise. Left: We suppose the preorder a <y b
and a <y ¢ with b and ¢ not related, and hence there is no maximal edge (partial preorder).
Middle: The maximal edge is not unique (the order is total but there is a tie). Right: the
maximal edge (labelled 3) is not admissible. In all cases, the vertex labelled 2, shown in
red, is critical. The solid edges might still be part of the flow (directed towards the critical
vertex) depending on the weights in the dashed edges.

Recall that an edge is critical if it does not participate in the flow, and a vertex is critical
if it is a fixed point, ®(v) = v, that is, a ‘sink’ of the flow. Formally, we define

Vait ={v €V | ®(v) =v} and Equi = {(v,w) € E | P(v) # w}.

We will see that, after removing the critical edges, what remains is a partition of the
graph into a disjoint union of directed trees rooted at critical vertices (edge directions given
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Figure 8: Morse clustering can separate nearby local maxima. Left: Toy graph with node
weights shown by colour from low (dark blue) to high (red, critical vertex). Right: Output
of the Morse flow and clustering algorithm (two clusters, shown by colour). The closest
(highest weight) edge at each red vertex is a ‘downhill’ edge to a blue vertex. Hence both
vertices, and the edge between them, are critical.

by the flow). The cluster associated to a critical vertex v is
T, = {w eV | & (w) = v for some N > 0}. (10)

Here ¢V is the composition of ¢ with itself N times (and @° is the identity map), so that
®N(w) is the vertex at which we arrive from w after following the flow N steps (across
N edges). In the dynamical system terminology, we can describe each T, as the ‘basin of
attraction’ of v.

Let us write 7, for the subgraph with vertex set T, and edge set all non-critical edges
between vertices in T,. Recall that the depth of a rooted tree is the maximal distance to
its root.

Theorem 11 Let G = (V, E) be a finite graph with edge and vertex preorders =g and <y,
and associated Morse flow @:V — V. Then:

(i) The Morse flow stabilises, that is, there is N > 0 such that N = N+,
(11) {Ty | v € Vepir} is a partition of V';
(i1i) Ty is a directed (edge directions given by the flow) rooted tree with root v;

(iv) Within T,, the vertex v is the only critical vertezr, and it is mazimal with respect to
the vertex preorder;

(v) max{depth(T;) | v € Verig} = min {N >0 | Y = $N*1};
(vi) The graph (V,E\ E¢rit) equals the disjoint union of the graphs T, for v € V.

Proof (i) Let v € V. By the definition of the Morse flow, either ®(v) = v (a critical
vertex), or ¢(v) = w and v <y w (which implies v # w by reflexivity). Therefore, the
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sequence v = v, vy, Ve, ... where v; = ®*(v), must contain a critical vertex before the first
repetition: otherwise, we would have v; <y vi41 <y ... <y vx = v; and thus v; <y v; by
transitivity, a contradiction. Since the graph is finite, say |V| = n, there will be repetition
in any subset of n + 1 vertices. Consequently, there is a critical vertex vy = ®*(v) in the
sequence above and, in fact, & < n. All in all, the flow stabilises after at most n = |V|
steps. (The case N = 0 can occur if all vertices are critical.)

(ii) Let v € V. By the argument in (i), the sequence v; = &(v) (i > 0) stabilises, that
is, there is & > 0 such that {v; | 0 < i < k} are distinct, non-critical, and v; = vy, critical
for all j > k. In particular, v € T, , by Eq. (10). This shows that every vertex belong to a
set T, for v € Vi, and that these sets must be disjoint.

(iii) Since all edges in 7, are non-critical, we have v <y w across each edge and thus a
cycle would imply v <y w for some vertex u, a contradiction. All edges are directed and
point towards the root v, by the discussion above.

(iv) For each critical vertex w, we have ®(w) = w hence w € Ty,. Since, by (ii), they
form a partition of the vertex set, v is the only critical vertex in 7. Every (directed) edge
(u,w) in Ty is not critical, hence admissible, so that u <y w. As v is the root of the tree
Ty, it must then be maximal with respect to <y .

(v) It suffices to show that, for any v € Vuit, and any N > 0 such that &V = oN+1,
we have depth(7,) < N. Let k = depth(7,). Then there is w € T, such that w; = & (w),
i > 0, stabilises after exactly k steps. In particular, wo, ..., wr_1 are all distinct and hence
k<N.

(vi) Let G1 = (V, E'\ Euit) and Ga the disjoint union of the graphs 7, for v € Vg;. Since
{T, | v € Vit } is a partition of V', both G; and G have the same vertex set. We show they
also have the same edge set and hence they are equal. The edges in G are non-critical thus
a subset of E'\ Egi;. Conversely, given a non-critical edge (v, w) in G, we have w = &(v)
and the sequence v, ®(v) = w, ®*(v), ... shows that v and w belong to the same tree critical
tree, and thus this tree contains the edge (v, w). [ |

2.3 Morse clustering algorithm

The Morse partition of a graph G with a choice of vertex and edge preorders =<y and
=g is the partition of the vertex set given by the connected components of the graph
OMorse = (V, E \ Eqit). By Theorem 11, there is a cluster for each critical vertex, and, in
fact, Gumorse 18 @ disjoint union of directed rooted trees with roots at the critical vertices.

A complete algorithm that returns the Morse clustering of (G, <y, <g) is given below
(Algorithm 2). Its time complexity is clearly linear on the number of vertices and edges.
Alternatively, the Morse flow and clustering can be computed simultaneously one edge at a
time, by keeping a list of critical edges and of the maximal edge at each vertex. Therefore,
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the time complexity of (any instance of) Morse clustering is O(m) where m is the number
of edges of the graph.

Input: graph G = (V| E), edge preorder <p, vertex preorder =<y
Output: partition P of V

n <+ |V|

initialise Gyorse t0 an empty graph on n vertices

& < MorseFlow(G, =g, =v)

foreach v € V do
if #(v) # v then
‘ add edge (v, P(v)) to Guorse
end
end

P < connected components of Gyorse

Algorithm 2: Morse clustering algorithm.
We finish with a useful result to determine when two Morse partitions are equal.

Lemma 12 Let & and &' be Morse flows on X with associated Morse partitions P and P’.
If x ~p &' (2) for all z € X, then P’ is a refinement of P.

Proof Write P = {X1,..., X} and P/ = {X{,..., X/, }. Write x;, respectively a:;, for the
critical vertex in Xj;, respectively X ]’-, for all ¢,7. Choose N > 1 such that both @ and &’
stabilise, that is, #¥ = #V*! and (&)Y = (&')N*+1. We need to show that, for each j there
is 7 such that XJ’- C X;.

Let z € X ]’ and consider the flow paths

&(z),..., 9" (x) = 2;} and

p() = {a,
0.8 @)oo (@) (0) =

p'(x)

By definition of Morse partition, all points in p(x) are in the same cluster of P, namely X;,
and all points in p'(x) in the same cluster of 7', namely X}. By hypothesis, (#')"(z) ~p
(@) (x) for all n > 0, so p(x) C X;. In particular 2 ~p ;.

Given any other y € X7,

D(y), . @N(y) =z} € X and

{y,
N
{v. 2 (y), ... (@) (y) = 25} C X]
for a possibly different cluster Xj. Again, by hypothesis, we have p'(y) C X and, in
particular, mg ~p . Then :L'; € X; N X, # 0 and hence ¢ = k, as distinct clusters are
disjoint. Since y was arbitrary, we conclude that X J/ C X;. |
Note that two partitions are equal if and only if each is the refinement of the other, or

if they have the same size (number of clusters) and one is the refinement of the other.
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2.4 A possibility theorem for Monotonic Consistency

Different choices of edge and vertex preorders result in different instances of Morse Clus-
tering. We now show an instance of Morse Clustering that satisfies Scale-Invariance and
Richness (Theorem 14) as well as Monotonic Consistency (Theorem 15), proving that these
three axioms are mutually compatible.

Remark 13 One can in fact define two further instances of Morse Clustering, that we call
k-Morse and 6 -Morse, which satisfy the other two pairs of Kleinberg’s axioms, namely Con-
sistency and Scale-Invariance (k-Morse) and Consistency and Richness (0-Morse). Fur-
thermore, they both satisfy Monotonic Consistency. Full details are given in Appendiz A.

Let (X, d) be a set with a distance function, and consider the complete graph with vertex
set X. Let us fix, once and for all, a labelling X = {z1,z9,...,2,}, which we will use to
create the vertex preorders (see the remarks at the end of this section on labelling). We
also assume that X has at least three points.

Our instance of Morse Clustering is called SiR-Morse (Scale-invariant and Rich), and
corresponds to the choices of vertex and edge preorders given below.

SiR-Morse
Ovijvl}jifigj

o (v,w) =g (v,t) if d(v,w) > d(v,t)

Note that the vertex preorder is a total order, and the edge preorder is also locally total
(at each vertex). The corresponding Morse flow chooses, at each vertex v, the edge with
smallest distance, if it is unique and admissible. On the other hand, if more than one edge
at v achieves the smallest distance, or if such edge is not admissible, then v is critical, that
is, the Morse flow fixes v, @(v) = v.

Theorem 14 SiR-Morse is Scale-Invariant and Rich.
Proof (Scale-invariance) Scale-Invariance does not affect the vertex or edge preorders,

since <y is independent of d and, for <g, d(v,w) < d(v,t) if and only if a d(v, w) < ad(v,t)
for all @ > 0. Hence the output of SiR-Morse for (X, d) and for (X, ad) are the same.

(Richness) Consider V' = V; U ... U V} an arbitrary partition of V. Let v; be the
maximal vertex in V; (=< is a total order) and define a distance d as follows

d( ) 1, if v,w €V, for some i, and either v = v; or w = v;,
v, W) =
’ 2, otherwise,

for all v # w. If v € V;, the edge to v; is always admissible and the largest with respect to
=g, so &(v) = v; for the Morse flow, and we recover the partition V3 U... U V. [ |

Theorem 15 SiR-Morse satisfies Monotonic Consistency.
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Proof Let d be a distance on X, P the output partition of SiR-Morse on (X,d), and d’
a P-monotonic transformation of d. We want to show that SiR-Morse produces the same
partition on (X,d"). We will prove that, in fact, the associated Morse flows @ and @' are
identical.

Let 1 be a monotonic transformation realising d’, that is,

d(u,v) = n(d (u,v)) if u ~p v, and
d(u,v) =0~ Yd' (u,v)) if u Xp v.

Let v € X and consider first the case w = ®(v) # v. Then, by the definition of SiR-Morse
preorders,

d(v,w) < d(v, s) for all s # v, w.

To prove that @'(v) = w, we need to show that d'(v,w) < d'(v, s) for all s # v, w. We have
two subcases.

1. If s ~p v, we have d'(v,w) = n~(d(v,w)) and d'(v,s) = n~1(d(v, s)), so
d(v,w) < d(v, s) implies d' (v, w) < d'(v, 5),
as ! is increasing (Lemma 2).
2. If s £p v, we have d' (v, w) = n~1(d(v,w)) and d'(v, s) = n(d(v, s)), so
d(v,w) < d(v, s) implies d’' (v, w) < d(v,w) < d(v,s) < d (v, s),
as 1 (z) < x < n(z) for all 2 (Lemma 2).

In conclusion, we have d'(v,w) < d'(v, s) for all s # v, w so &'(v) = w.

The remaining case is @(v) = v. Suppose, by contradiction, that w = &'(v) # v. This
implies v <y w and d'(v,w) < d'(v,s) for all s # v, w. Note that, since v is critical and
therefore maximal within its cluster, we have v ¢p w. On the other hand, #(v) = v means
that either the unique maximal edge is not admissible, or it is admissible but the maximum
is not unique.

First we show that d(v, w) is also a minimal distance at v (possibly not unique). Suppose,
by contradiction, d(v, s) < d(v,w) for some s # v, w. There are two subcases.

1. If s ~p v, then we have d'(v, s) = n~1(d(v,s)) and d'(v,w) = n(d(v,w)), so
d(v, s) < d(v,w) implies d'(v, s) < d(v, s) < d(v,w) < d'(v,w),
as n H(z) < x < n(z) (Lemma 2).
2. If s #p v, then we have d'(v, s) = n(d(v, s)) and d' (v, w) = n(d(v,w)), so
d(v, s) < d(v,w) implies d'(v,s) < d'(v,w),

as 7 is increasing (Lemma 2).
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Scale-Invariance | Richness | Consistency | Monotonic-Consistency
SiR-Morse v v X { v
k-Morse v X v l v
d-Morse X v v ! v

Table 1: Clustering axioms and three instances of Morse clustering.

In either case, we have d'(v, s) < d'(v,w), a contradiction to the minimality of d’(v, w).

Since d(v, w) is a minimal distance and v <y w, but ¢(v) = v # w, the minimal distance
(maximal edge) cannot be unique. Let d(v, s) = d(v,w) for some s # v,w. We have, again,
two subcases.

1. If s ~p v, then we have d'(v,s) = n~!(d(v, s)) and d'(v, w) = n(d(v,w)), so
d(v,s) = d(v, w) implies d'(v, s) < d(v, s) = d(v,w) < d'(v,w),
as 1 (z) < 2 < n(z) (Lemma 2).
2. If s obp v, then we have d'(v,s) = n(d(v,s)) and d'(v,w) = n(d(v,w)), so
d(v, s) = d(v,w) implies d' (v, s) = d' (v, w),
as 7 is injective (Lemma 2).

This implies that d'(v,s) < d'(v,w), so d'(v,w) cannot be the unique minimal distance for
d at v, a contradiction. [ |

Corollary 16 Scale Invariance, Richness and Monotonic Consistency are mutually com-
patible clustering axioms.

We have summarised the clustering axioms satisfied by our three instances of Morse
Clustering in Table 1.

We finish this section with a few remarks on vertex labelling and tie-breaking. Note that
our choices of vertex preorders depend on an arbitrary but fixed choice of vertex labelling
X ={z1,...,2,}. Such a choice is implicit in (Kleinberg, 2003), where it is used as a tie-
breaking procedure for Single Linkage clustering. For Morse Clustering, on the other hand,
this vertex labelling represents a choice of a vertex potential function and is fundamental to
the algorithm, as only ‘uphill’ or ascending edges are admissible. Nevertheless, the results in
this section apply to an arbitrary, but fixed, labelling or ordering of the elements in X, and
this suffices in our axiomatic setting. We call this agnostic Morse Clustering. In a practical
setting, however, Morse Clustering is a clustering algorithm for edge- and vertex-weighted
networks, with vertex weights obtained from either the network structure alone (e.g. vertex
degrees), or provided otherwise by the practitioner. We call these unsupervised, respectively
supervised, Morse Clustering. Examples of both are given in Appendix B.
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3. Axiomatic Approach to Graph Clustering

In this section, we consider the axiomatic approach in the context of graph clustering,
that is, of distances supported on a given graph G. Mathematically, we allow the distance
function to take the value 0 (Definition 17). Conceptually, there are two different approaches
depending on whether 0 is considered a numerical value (minimum distance) or indicating
that the distance is ‘not defined’. Each approach results in a different definition of clustering
algorithm, namely Egs. (11) and (12).

In Section 3.1, we argue that the first approach is essentially equivalent to that of
(Laarhoven and Marchiori, 2014), where a possibility theorem for Kleinberg’s axioms is
shown. The second approach, on the other hand, is closer to the usual interpretation of
graph clustering, or partitioning, in network and computer science (Newman, 2018; Scha-
effer, 2007). In this case, we prove an impossibility result for Consistency (3.2), and a
possibility result for Monotonic Consistency, even when Richness is replaced by the more
natural Connected-Richness axiom (Section 3.3).

3.1 Two approaches

If we allow a distance function to take the value 0 between pairs of distinct points, we obtain
the following.

Definition 17 A pseudo-distance on a set X is a function d : X x X — R such that
d(v,w) = d(w,v) > 0 and d(v,v) = 0 for all v,w € X (that is, we allow d(u,v) = 0 for
uF#uv).

Note that we can represent a pseudo-distance on X as a graph with vertex set X in the
usual way: an edge between i and j if d(4,j) > 0, and no such edge if d(i,7) = 0.
A direct generalisation of Kleinberg’s definition of clustering algorithm, Eq. (1), is

F : {d pseudo-distance on X} — {P partition of X}. (11)

Kleinberg’s original axioms make sense in this setting, however a possibility result now
holds: the function that returns the connected components of the graph representation of
d (as above), is clearly scale-invariant, rich and consistent (cf. (Laarhoven and Marchiori,
2014)).

The issue is that 0 is a special numerical value: it is the absolute minimum for any
pairwise distance, and does not scale (¢-0 = 0 for all ¢). In particular, although Scale-
Invariance does not change the underlying graph, the Consistency axiom can create and
eliminate edges. Hence this approach focuses on the set X rather than on a fixed graph G.

Remark 18 If we also allow an absolute mazimum distance, oo, then 1/d is a similarity
function in the sense of (Laarhoven and Marchiori, 2014) and Consistency for d is equivalent
to Consistent Improvement (Laarhoven and Marchiori, 2014) for 1/d.

Instead, we suggest a more natural approach when the focus is on the graph G = (V| E):
we allow arbitrary positive distances on edges while keeping d(u, v) = 0 whenever (u,v) ¢ E.
In clustering problems, we are normally interested in minimising the edge cut (Schaeffer,
2007), and hence the absence of an edge is significant. In fact, the underlying hypothesis in
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network analysis, where clustering is a very well established technique, is that the structure
of the network (mathematically a graph, typically very sparse) carries information. For this
reason, we fix a graph G and restrict to distances supported on (the edges of) G, and define
distances, and clustering algorithms, accordingly.

Definition 19 A pseudo-distance on a graph G = (V, E) is a pseudo-distance d on the
vertex set V' that is supported on the edge set, that is, d(v,w) # 0 if and only if (v,w) € E.
(Equivalently, a positive weight function on undirected edges.)

Note that, for this definition to make sense, G must be loopless and undirected (we will
assume this from now on). Given a graph G = (V, E), we define a graph clustering algorithm
as any function

F : {d pseudo-distance on G} — {P partition of V'}. (12)

Clearly, a distance on a set X is the same as a pseudo-distance on the complete graph with
vertex set V' = X. Hence this so-called sparse setting generalises Kleinberg’s setting from
a complete to an arbitrary (but fixed) graph on X.

3.2 An impossibility theorem for graph clustering

Kleinberg’s axioms can be stated in the graph clustering setting above (Eq. (12)), as follows.

e Scale-invariance: For any pseudo-distance d on G and a > 0, we have F(d) =
F(a-d);

e Richness: Given a partition P, there exists a pseudo-distance d on G such that
F(d) =P;

e Consistency: Given pseduo-distances d and d’ on G with P = F(d), if d' is a P-
transformation of d, that is,

{d/(v, w) i Z(v,w) if v ~p w, and (13)

d/(U, 'LU) (U, w) if v op w,
then F(d') = F(d).

(If G is a complete graph these axioms coincide with Kleinberg’s for the set X = V.)

In the sparse setting it seems natural to restrict to connected partitions, that is, partitions
where each cluster is a connected subgraph of G, as otherwise we would be grouping together
objects which are unknown to be similar or not, in apparent contradiction with the very
principle of clustering. Therefore, we define a weaker Richness axiom:

e Connected-Richness: Given a connected partition P, there exists a pseudo-distance
d on G such that F(d) =P.
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Similarly, we will only consider connected graphs from now on (it seems sensible to assume
F(G) = F(G1) U F(G32) whenever G is the disjoint union of G; and G2).
Connected-Richness is clearly equivalent to Richness in the complete case. In the sparse
case, however, many graph clustering algorithms, such as Single Linkage, or Morse Cluster-
ing (Algorithms 1 and 2), always produce a connected partition (which seems very sensible
in any case). Since clustering algorithms cannot create new edges, such algorithms can-
not satisfy Richness in its general form. Since Richness implies Connected-Richness, our
impossibility result also holds for Scale-Invariance, Consistency and Richness.

Theorem 20 (An Impossibility Theorem for Graph Clustering) Let G be a con-
nected graph with at least three vertices, and F a graph clustering algorithm on G. Then F
cannot satisfy Scale-Invariance, Consistency and Connected-Richness.

Before proving this theorem, we introduce some notation. Given a pseudo-distance d on
G = (V,E) and a partition P of V, let g(P,d) = (z,y) and h(P,d) = (p,q) where

x = max {d(u,v) | (u,v) € E,u ~p v},
p =min{d(u,v) | (u,v) € E,u ~p v},
y = min {d(u,v) | (u,v) € E,u #p v},
g = max {d(u,v) | (u,v) € E,u ¢p v},

the maximal (minimal) intra (inter) cluster distances, and, if P is the trivial partition, we
set y =q =0.

We observe that, if d and d' are pseudo-distances on G' and P is a partition of V, the
condition h(P,d) = g(P,d’) guarantees that d’ is a P-transformation of d.

Proof Note that, in any connected graph, we can always remove a vertex so that the
remaining graph is connected. For example, if T" is a spanning tree of G, v any vertex, and
s the vertex realising the maximal (shortest path) distance from v in T, then the graph
induced by V' \ {s} must still be connected. Since |V| > 3, we can repeat the argument on
V \ {s} and find ¢ # s such that P = {{s}, X \ {s}} and P’ = {{s},{t}, X \ {s,t}} are
connected partitions.

Since F' satisfies Connected-Richness, there exist pseudo-distances d and d’ on G such
that F'(d) = P and F(d') = P’. Let h(P,d) = (p,q) and h(P',d") = (p/,¢'). Since F satisfies
Consistency, we can assume p < g and p’ < ¢’. Also, note that p, ¢ and ¢’ cannot be zero.

Let d* be the pseudo-distance on G defined by d*(s,v) = ¢ if v # s, d*(t,v) = p if
v # s,t, and d*(u,v) = (pp')/q if u,v # s,t. Then g(P,d*) = (p,q), since the only inter-
cluster distance value is ¢, and the only intra-cluster distance values are p and p(p’/q") < p.
Therefore, g(P,d*) = h(P,d), hence d* is a P-transformation of d, by the observation before
the proof, and, consequently, F'(d*) = F(d), by Consistency.

On the other hand, g(P’, ad*) = ag(P’,d*) for any « positive constant. If we choose
a = ¢'/p then we have g(P',ad*) = a((pp')/d,p) = (¥',¢') = h(P',d') so, by the same
argument as above, ad* is a P’-transformation of d’ and thus F(ad*) = F(d') = P’, by
Consistency. Since F' satisfies Scale-Invariance, this implies F(ad*) = F(d*) = F(d) = P
and, therefore, P = P’, clearly a contradiction. |
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3.3 Monotonic Consistency for graph clustering

Next we consider Monotonic Consistency and Morse Clustering in the sparse setting. We
can extend Monotonic-Consistency to connected graphs by considering monotonic transfor-
mations (Definition 4) of pseudo-distances on a given graph.

e Monotonic-Consistency: Given pseudo-distances d and d’ on G with P = F(d), if
d' is a P-monotonic transformation of d, then F(d') = F(d).

The input of the Morse Clustering algorithm (Algorithm 2) is an arbitrary graph, and
the output flow always induces a connected partition (Theorem 11). Therefore, we can
consider Morse Clustering, and hence any of its instances, as graph clustering algorithms.

The three instances of Morse Clustering discussed in Section 2.4 satisfy the analogous
axioms as in the complete case except that we need to allow the vertex labelling (arbitrary
but prefixed in the complete case) to be part of the algorithm to satisfy Connected-Richness.
This is a necessary condition: once a vertex labelling (or preorder) is fixed, only ‘uphill’
edges are admissible, preventing certain configurations to occur (for example, u and v cannot
be in the same cluster if all paths from u to v contain a vertex lower than both). This is
not an intrinsic limitation of Morse Clustering but reflects the fact that it is fundamentally
a vertex-weighted clustering algorithm, that is, both distance and vertex preorder are part
of the input data.

We can either allow the (so far arbitrary and prefixed) vertex labelling to be part of the
algorithm, or to restrict to partitions compatible with such a committed choice. Formally,
given a vertex preorder <y on V', we say that a partition P = {Vi,..., Vi } of V is compatible
with <y if there is a rooted spanning tree T; of (the subgraph induced by) V; rooted at a
vertex v; such that every directed edge in 7; (edges directed towards the root) is admissible
with respect to <y . Note that v; is necessarily the maximal vertex in 7T; with respect to
the preorder, and that P is necessarily a connected partition.

Remark 21 One can show that P is compatible with <y if and only if for every u ~p v
there exists a path from w to v such that no vertex in the path is strictly less than both u
and v.

Clearly, for every partition there is a choice of compatible preorder <y . This is also true
for the SiR and d-Morse vertex preorders: given a partition, there is a choice of labelling
V = {v1,...,v,} such that the preorder is compatible with the partition.

Formally, we define Morse-Richness for a Morse clustering algorithm F' on a graph
G = (V, E) with a choice of vertex preorder <y as follows.

e Morse-Richness: Given a partition P of V compatible with <y, there exists a
pseudo-distance d on G and a vertex preorder such that F'(d) = P.

Morse-Richness is equivalent to Connected-Richness if we accept the vertex labelling as
an input of the algorithm.

Now we can show that the three instances of Morse Clustering satisfy the analogous ax-
ioms as in Section 2 (see Table 1), including a possibility theorem for Monotonic-Consistency
and SiR-Morse.
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Theorem 22 Let G = (V, E) be a graph, and consider SiR-Morse, k-Morse and d-Morse
as graph clustering algorithms on G, for some fized labelling V = {v1,...,v,}. Then:

(i) SiR-Morse satisfies Scale-Invariance, Morse-Richness and Monotonic Consistency.
(ii) k-Morse satisfies Scale-Invariance and Consistency.

(iii) d-Morse satisfies Morse-Richness and Consistency.

Proof |i| The proofs of Scale Invariance and Monotonic Consistency are identical (they do
not use the fact that G is a complete graph) as those in Theorem 14. For Morse-Richness,
consider V. = V7 U... UV, an arbitrary connected partition of V. For each V;, choose a
spanning tree T; and a root v; such that each edge in T; is admissible.

Define a pseudo-distance d on G as follows. If (s,t) is an edge on Tj, then d(s,t) is the
maximum of the distance from s to v; in T; and the distance from ¢ to v; in T; (by distance
in a tree we simply mean the ‘hop’ distance). If (s,t) is an edge not in any spanning tree,
then d(s,t) = |V|.

With this choice, v; is critical and, if v € V;, then the maximal edge at v is the one
connecting it to a vertex in 7T; closer to v;, and it is admissible. All in all, the associated
tree T, = T; and the Morse flow recovers the original partition.

The proof of Scale Invariance is identical to that in Theorem 23. For Consistency, let
d be a pseudo-distance on G, P the partition given by k-Morse, and d’ a P-transformation
of d, that is,

d(v,w) > d’(v,w), if v ~p w,
d(v,w) < d'(v,w), otherwise.

Let & respectively @' be the Morse flow corresponding to d respectively d’. As in the proof
of Theorem 23, for all i > n — k we have that ®(v;) = v; = & (v;), critical.

Suppose now P(v;) = v; for some i < n —k. Let J = {v; | (v;,v;) € E,v; <y v;}, the
admissible edges from v;. By the definition of the edge preorder, if there are admissible
edges (J # ()) then the maximal admissible edge exists and it is unique. Since v; is critical,
we must have J = (). Since there are no admissible edges at v;, we also have &' (v;) = v;.
All in all, @ and @' have the same number of critical points and therefore P and P’ have
the same number of clusters (possibly more than k). The rest of the proof goes as in the
proof of Theorem 24.

The proof of Consistency is identical to that in Theorem 25. For Morse-Richness,
consider V.= Vi U... UV, an arbitrary connected partition of V', and choose a spanning
tree T; and a root v; such that each edge in T; is admissible.

Define a pseudo-distance d on G as follows. If (s,t) is an edge in some T;, then d(s,t) =
0/2, and if (s,t) is not an edge in any 7; then d(s,t) = . By the definition of edge preorder,
v; is critical and the maximal edge at v € V; \ {v;} is the only edge in T; connecting v to
a vertex closer to v; in T;. All in all, the tree associated to v; by the Morse flow is T; and
hence we recover the original partition. |
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Appendix A. Two further instances of Morse Clustering

In this appendix, we define and study the two further instances of Morse clustering men-
tioned in the Main Text (Section 2.4), namely k-Morse and d-Morse. They illustrate the
versatility of Morse clustering and show that, for suitable choices of vertex and edge pre-
orders, Morse clustering can satisfy each pair of Kleinberg’s axioms, in analogy to the three
instances of Single-Linkage clustering with the same property in (Kleinberg, 2003). We keep
the notation and terminology from Section 2.4.

Let k£ > 1 be an integer. Next, we present a Morse algorithm that guarantees a partition
with & clusters (Theorem 23), and thus it cannot be rich. However it satisfies Consistency
and Scale Invariance (Theorem 24).

k-Morse
° 'UijvvjifiZjOI‘i—i-k<j
o (v,w) =g (v,t) if

w Xy vyt or
d(v,w) > d(v,t) and v Sy ¢, or
d(v,w) = d(v,t) and w Sy t.

For this choice of vertex preorder, there are exactly k critical vertices, vy, vp—1, ...,
Un—k+1, and hence k clusters (see Theorem 23 below). The edge preorder is defined such
that admissible edges are always greater than non-admissible ones, and admissible ones
are compared using distances, with the vertex preorder used as tie-breaking procedure. In
particular, if there are admissible edges at v, the maximal admissible edge at v exists and
it is unique.

Theorem 23 k-Morse always produces a partition with k clusters.

Proof If v; € X with ¢ > n — k then there are no vertices greater than v; with respect to
=y hence no admissible edges at v and thus @(v;) = v; critical. On the other hand, v; with
i < mn — k cannot be critical, as there are admissible edges (v;,v;) € E,, for all j > i+ k,
so the maximum exists and it is unique. All in all, there are exactly k critical vertices
Un, Un—1, - - - , Un—k+1 and therefore exactly k clusters. |

Theorem 24 k-Morse is Consistent and Scale-Invariant.
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Proof (Scale-invariance) A distance transformation d’ = « - d for @ > 0 does not affect
the k-Morse vertex or edge preorder, hence we obtain the same partition.

(Consistency) Let d be a distance in X, P the partition given by k-Morse on (X, d),
and d’' a P-transformation of d, that is,

dv,w) > d(v,w), v ~p w, (14)
d(v,w) < d'(v,w), otherwise. (15)
Let @ respectively @ be the Morse flow corresponding to d respectively d’. The critical
points depend on the vertex preorder alone, hence, as in the proof of Theorem 23, we have
D(v;) = v; = P (v;) for all i > n — k and thus P and P’ have the same number of clusters.
Therefore, it suffices to show that x ~p &' (x) for all z € X, by Lemma 12.
Let z € X. If x is critical, &(z) = &'(x) as they have the same critical points, so clearly
x ~p @(x) = & (x). If z is not critical, let w = @(z) and ¢ = &'(z). The maximality and
the definition of <g implies

d(z,w) < d(z,t) and d'(z,t) < d'(z,w).

Since &(x) = w, they are in the same cluster, z ~p w, and thus d'(z,w) < d(x,w), by
Eq. (14) above. All in all,

d(x,t) < d(z,w) <d(z,w) < d(x,t). (16)

Now, if d'(x,t) < d(z,t), they are necessarily in the same cluster, z ~p ¢, by Egs. (14) and
(15) above. The remaining case d'(x,t) = d(z,t) implies equalities in Eq. (16), and, by the
definition of the edge preorders and the maximality of (z,w) with respect to d, we have
w =t. In both cases, z ~p t = &'(x). [ |

Let § > 0. The final instance of Morse clustering satisfies Consistency and Richness,
and is given by the following choices of preorders.

0-Morse
o v; Xy v ifi <
o (v,w) =g (v,t) if

w =t, or
d(v,t) < min{d(v,w),d} and v <y ¢, or
d(v,w) =d(v,t) <6 and v <y w <y t.

With this preorder, only admissible edges with distance less than the threshold param-
eter 0 are considered for the flow. Among those edges, we choose the one with minimal
distance, using the vertex preorder to resolve ties. Note that, if there are admissible edges
at distance less than §, the maximum admissible edge exists and it is unique.

Theorem 25 §—Morse satisfies Consistency and Richness.
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Proof (Richness) Consider an arbitrary partition X = X; U...U X} and define the
distance function

2

d ) 3 if v,w are in the same cluster, and
v,w) = )
0, otherwise,

for v # w. Let z; be the largest vertex in X; with respect to <y and v € X; arbitrary. By
the definition of d and the edge preorder, we have that (v, z;) is the maximum admissible
edge at v. Also, z; is critical: the maximum edge at z; is of the form (z;,w) for w € Xj,
hence not admissible or, if |X;| = 1, any edge in E,, is maximal, hence unique (since
|X| > 3). Therefore, 6—Morse reproduces the partition X7 U...U X} (in fact, each cluster
is a directed star with root z;).

(Consistency) Let d be a distance in X, P the partition given by j-Morse on (X, d),
and d’ a P-transformation of d, that is,

d(v,w) > d'(v,w), if v ~p w, (17)
d(v,w) < d'(v,w), otherwise. (18)

Let @ respectively @' be the Morse flow corresponding to d respectively d’. Let s € X
arbitrary, v = @(s) and w = &(s) with v,w # s. As in the proof of Theorem 24, we have

d (s,w) < d'(s,v) <d(s,v) <d(s,w).

Then either d'(s,w) < d(s,w), and so s ~p w by Eq. (17), or d'(s,w) = d(s,w), which
implies, by the definition of edge preorder, v = w, and thus s ~p w = &'(s) too. As s was
arbitrary, we conclude that P’ is a refinement of P, by Lemma 12. To prove that they are
equal, it suffices to show that they have the same critical points (i.e. the same number of
clusters), that is, ®(v) = v if and only if &' (v) = v.

Suppose that ¢(v;) = v; and ¢'(v;) = vj, @ # j. Since the vertex preorder is strictly
increasing along the flow, v; <y vj, that is, ¢« < j. By the definition of Morse clustering,
v; ~pr v; hence v; ~p vj, since P’ is a refinement. However, this contradicts v; being
maximal in its P cluster as i < j.

Now suppose @'(v;) = v; and P(v;) = vj, @ # j. The edge from v; to v; is in the
flow @, so d(v;,v;) < J, however it is not in the flow & so d'(v;,v;) > §. However, as
d'(vi,vj) < d(vs,vj) < 0, we have that v; has at least one admissible edge. By the definition
of <, v; cannot be critical for @, that is, a unique maximal edge that is admissible must
exist.

Finally, since v; ~p v; and d’ is a P-transformation, we have d'(v;,vj) < d(v;,v;), and
we arrive to a contradiction. |

Appendix B. Morse Clustering in Practice

The algorithm Morse presented here is intrinsically a clustering algorithm for graphs with
vertex annotations, such as vertex weights. Node annotation, sometimes called ‘metadata’
in the literature, is often readily available but ignored in network analysis, particularly in
clustering. However, node annotation can help improve community detection algorithms
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(Newman and Clauset, 2016). The node annotation exploited by Morse can be application-
dependent, in the form of external metadata provided by the user, but also graph-dependent
measures, such as vertex degree, local clustering coefficient, or other network structural
measures. We refer to the former as supervised, and the latter as unsupervised, Morse
clustering.

In this appendix, we show (unsupervised) Morse Clustering (SiR-Morse) in practice:
first using the LFR benchmark (Section B.1), then in a bioinformatics study (Section B.2).
We summarise the main results with full details available in (Strazzeri, 2019), respectively
(Schofield et al., 2019).

B.1 LFR benchmark

In (Lancichinetti and Fortunato, 2009) the authors present the Lancichinetti-Fortunato—
Radicchi (LFR) algorithm which generates benchmark networks with a priori known com-
munities with heterogeneous node degree distribution and community sizes, given by power
laws of predefined exponents. We chose this benchmark test because it reproduces typical
vertex degree and community (cluster) sizes in real-world networks (Newman, 2018). We
studied the performance of Morse against the LFR benchmark using NMI (Normalised Mu-
tual Information) as evaluation measure. We used the number of common neighbours as
edge weights, w(i,j) = |N(7) N N(j)|, and two centrality measures as node weights, that is
the annotation is f : V' — R2, where the entries are the maximal and the sum of the incident
edge weights, w1 (1) = max(; jyep w(,j) and wy(i) = >2(; jyep w(i,j) (We compare nodes us-
ing w; and resolve ties using wy). The results are shown in Figure 9 (left) and compared to
two state-of-the-art clustering algorithms, namely Blondel et al. (Blondel et al., 2008) and
Infomap (Rosvall and Bergstrom, 2008). We can see that Morse detects the ground-truth
communities for y; (mixing parameter) up to 0.5, showing a similar performance to Blondel
et al., although not as good as the best performing algorithm, Infomap.

0.81 08 o eN=1000.5 081 o e N=1000.5
0.61 \ 0.6~ | m—m N=1000, B - 0.6 |m—=mN=1000, B
e NS i N=5000, S 1 04l N=5000, S
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0.21|¢-® N = 5000, B 02+ Infomap — 0.2+ Blondel et al.
0 T T T . 0 L L | L | L | ] o- | 1 | L
02 04 06 08 1 02 04 06 038 02 04 06 0.8

Figure 9: LFR benchmark tests for the Morse algorithm. Following Lancichinetti and For-
tunato (2009), we show four curves, corresponding to two different network sizes (1000 and
5000 nodes) and two ranges of community sizes: S (Small, 10-50 nodes per community) and
B (Big, 20-1000 nodes per community). We plot a mixing parameter (z-axis, ‘noise’) versus
NMI (y-axis, clustering ‘correctness’). Each data point represents average performance over
100 realisations.
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B.2 Asthma study

We applied Morse in a real-world scenario and showed how it helps to identify phenotypes of
asthma based on blood gene expression profiles, using data from the U-BIOPRED! study.

Transcriptomics data from 606 participants in an asthma study were clustered into
overlapping groups of patients by Topological Data Analysis (TDA), following Bigler et al.
(2017), using the Ayasdi Platform?. This TDA procedure generated a network with groups
of patients represented by nodes and connections denoting overlap between groups. In
Figure 10, we show this network with two node measures (cluster size, and compactness),
and in Figure 11, the output of our Morse clustering algorithm using a combination of these
node measures. The subsequent validation study of the 9 largest clusters confirmed a very
good to excellent prediction of cluster classification in the validation set, based on a logistic
regression model identifying predictors of the clusters in the training set.

Figure 10: Network representation of transcriptomics data from an asthma study. Each
node represents a group of similar patients, with overlaps (the same patient may belong to
more than one group) denoted by edges. The network is coloured by group size (left) and
cluster compactness (right) —a measured based on the average distance between in-group
patients— from blue (low) to red (high). These two node measures were used by the Morse
clustering shown in Figure 11.

1. http://www.europeanlung.org/en/projects-and-research/projects/u-biopred /home
2. https://www.ayasdi.com/platform/
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@® 1° group, 60 patients @ 4" group, 47 patients ® 7% group, 36 patients
® 2" group, 59 patients ® 5" group, 46 patients © 8" group, 35 patients
@ 3" group, 56 patients ® 6" group, 42 patients ® 9" group, 25 patients

Figure 11: Morse clustering of the TDA-based network of Figure 10 with respect to patient
overlap (edge weight) and a combination of patient group size and compactness (Fig. 10).
We only show the 9 largest clusters (with respect to overall patient number). Of these, 7
clusters were reproducibly identified in an independent validation set using ROC analysis
of logistic regression classification models, see Schofield et al. (2019).
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