Subwavelength Engineering in Silicon Photonic Devices

Wen Zhou, Zhenzhou Cheng, Member, IEEE, Xia Chen, Member, IEEE, Ke Xu, Member, IEEE, Xiankai Sun, Member, IEEE, and Hon Ki Tsang, Fellow, IEEE

(Invited paper)

Abstract—In the past decade there has been tremendous progress in using subwavelength-scale nanostructures with elaborately designed periodic and disordered photonic materials for applications in integrated photonics. In this paper, we review the advances in subwavelength engineering used in silicon photonic devices, with an emphasis on our own contributions on the use of subwavelength gratings and hyperuniform disordered photonic structures to attain state-of-the-art performances for near- and mid-infrared applications in fiber–chip coupling, slot waveguides for refractive-index sensing, mode conversion, wavelength filtering, integrated resonators, and ultracompact high-extinction and broadband integrated polarizers.

Index Terms—Silicon photonics, metamaterials, photonic crystals, subwavelength gratings, hyperuniform disordered photonic structures.

I. INTRODUCTION

The reasons why silicon (Si) photonics industry has grown rapidly over the past decade are the same reasons as to why Si has been so successful in the microelectronics industry: the abundance of Si in the earth’s crust, the excellent native oxide of Si and the cumulative investments of trillions of dollars in Si foundries for low-cost development foundries in Europe, Asia, and North America that enable the high cost of the cleanroom fabrication equipment to be shared among different products. Thus Si photonics is becoming one of the mainstream integration platforms for optical transceivers employed in large-scale data centers [3]. With increased demand by end users, advanced modulation formats [4, 5] that utilize the dimensions of wavelength [6], space [7], polarization [8], and spatial modes [9] have been employed with low-cost and high-speed Si modulators [10]. The Si photonics platform has also attracted the development of emerging applications in integrated quantum photonics [11] for the generation and processing of entangled photons in path [12], frequency [13], time [14], and polarization [15] entangled states. Si photonics has also attracted attention for the development of integrated optical sensors for gas sensing [16] and optical frequency comb generation [17], and as a platform for optomechanics [18, 19].

Si photonic components are normally designed based on the formulae and software simulation tools developed for optical waveguides with only a limited choice of design parameters [20]. Because the refractive indices (RIs) are conventionally restricted to that of the available material systems. However, by leveraging on high-resolution lithography, it is possible to engineer the RI and dispersion of Si devices by employing subwavelength-scale structures [21-25]. By comparing their Mie resonance wavelength (λ_{Mie}) and Bragg resonance wavelength (λ_{Bragg} = 2n_{eff}λ), the artificial photonic structures thus created can be classified as either photonic metamaterials (λ_{Bragg} < λ_{Mie}) or photonic bandgap (PBG) materials (λ_{Bragg} > λ_{Mie}) [26, 27], where n_{eff} and λ are the effective RI and structural period, respectively. Photonic metamaterials are well known and have been used to engineer the effective permittivity and permeability based on the effective medium theory (EMT) in the off-resonant regime [28, 29] and the Mie theory with electric and magnetic dipoles [26]. PBG materials are well known for controlling the flow of light with tailored density of states [30] and special band
structures [31], typically created by periodic photonic crystals (PhC), but PBG can also be formed by certain types of disordered structures. In this paper, we review recent advances on the integrated photonic platforms which exploit the metamaterial subwavelength gratings (SWGs) [21] and hyperuniform disordered photonic structures (HUDPS) for PBG [32].

Metamaterial SWGs are periodic structures with a pitch smaller than the working wavelength and thus they can avoid Bragg diffraction effects [33]. Specifically, schematics of a SWG-patterned channel waveguide [34] are shown in Fig. 1(a). When the working wavelength \(\lambda_1 \) is larger than \(\lambda_{\text{max}} \), diffraction-free light propagation can be obtained as shown in Fig. 1(b), where \(\lambda_{\text{max}} \) is the maximum of a PBG spectral region \([\lambda_{\text{min}}, \lambda_{\text{max}}] \). \(\lambda_{\text{Bragg}} \) is at the middle point of \([\lambda_{\text{min}}, \lambda_{\text{max}}] \). When the working wavelength \(\lambda_2 \) is within \([\lambda_{\text{min}}, \lambda_{\text{max}}] \), light will be Bragg reflected, and the same grating acts as a PBG material as shown in Fig. 1(c). Working in the subwavelength regime, SWG can be treated as a RI-tailorable [34], dispersion-tailorable [35], anisotropic [36, 37], and birefringent metamaterial [38]. The equivalent RIs can be obtained from the calculated intervals of the equivalent RI are respectively \([1.1, 2.6] \) and \([1.9, 3.3] \) when the minimal feature size is 70 nm and the period is 400 nm in the fabricated silicon-on-insulator (SOI) SWGs. Since the first proposal of a channel waveguide patterned with a longitudinal SWG [Fig. 1(a)] by P. Cheben et al. at National Research Council of Canada in 2006 [34], SWG-engineered PICs and devices have attracted widespread interest and applications owing to their unique properties for use in light propagation [33], crossing [39], bending [40], coupling [41], and transformation [42]. Recently, the optical dispersion of devices were also engineered using SWG resulting in demonstrations of ultra-broadband couplers [36], polarization-independent couplers [43], polarization beam splitters [44], sharp waveguide bends [40], and ring resonators [45]. For near- and mid-infrared (IR) applications, we developed subwavelength-engineered waveguide gratings (GCs) since 2009 [38, 46-51] and fully suspended waveguide platforms since 2012 [52-57], which will be reviewed in Sections II and III, respectively.

In contrast to the periodic counterpart, disordered photonic structures scatter light with speckle patterns and complex interference [58], giving rise to the Anderson localization [59], random lasing [60], and absorption enhancement [61]. Recently, photonic integrated devices patterned by the random digital-like nanostructures which were inversely designed to obtain exotic performances with compact footprints [62-66]. As a subarea of disordered photonics, HUDPS with the short-range order and statistical isotropy emerged as a new class of PBG material [32], whose concept was originally defined in the hyperuniform disordered solid (HUDS) from the perspective of point patterns’ number variance by S. Torquato et al. at Princeton University in 2003 [67]. The unique properties of HUDPS can lead to sizeable, complete, and isotropic PBGs without the prerequisite of periodic translational order. Photon transportation in a HUDPS may exhibit scattering, diffusion, tunneling, localization, and Bragg reflection [68]. Specifically, schematics of a HUDPS waveguide [69] are shown in Fig. 1(d). Due to birefringence in a thin SOI, i.e., effective RI of the fundamental TE mode being usually larger than that of the TM mode at the working wavelength \(\lambda_{\text{d}} \), a HUDPS waveguide can be designed simultaneously as a subwavelength metamaterial and a PBG material for the TM and TE modes, respectively, as shown in Figs. 1(e) and 1(f). Our group proposed HUDPS PICs as a new waveguide platform for polarization filtering, which will be reviewed in Section IV, with overall improved performances [69] compared with those integrated polarizers based on periodic PhCs [70] and SWGs [71].

II. SUBWAVELENGTH-STRUCTURED SURFACE GRATING COUPLERS

Surface GCs are a fundamental waveguide device for bridging huge mode mismatch between those in a PIC and a single-mode fiber (SMF) [72]. GCs can be designed at any position of a chip and may even be erasable [73] using post-fabrication trimming technology [74, 75]. With a large alignment tolerance, they provide a robust solution in optical interconnection [76, 77]. There has been much work on GCs to produce fiber-waveguide interfaces which have broad bandwidth [47, 49], polarization insensitivity [38, 51], polarization splitting [78], perfect vertical coupling [77, 79, 80],
wavelength demultiplexing [81-83], and space division multiplexing [84]. The basic working principle of a GC is shown in Fig. 2(a). The diffracted and incident light conserve the quasimomentum: \(\beta = K_r \sin \theta + q K_y \), \(\beta = k_0 n_{\text{clad}} \) and \(K_y = k_0 n_{\text{clad}} \) are respectively the wave vectors of the diffracted light in the GC and incident light in the cladding, and \(K \approx 2\pi/\lambda \) is the grating wave vector, where \(k_0, n_{\text{eff}}, n_{\text{clad}}, \theta, \beta, q, \) and \(\lambda \) are the wave vector in vacuum, effective index of the Bloch–Floquet mode propagating in a GC, RI of the cladding, off-vertical diffraction angle, diffraction order, and grating period, respectively. Thus, the phase-matching condition of a GC can be derived as [85]:

\[
k_0 n_{\text{eff}} = k_0 n_{\text{clad}} \sin \theta + q 2\pi/\lambda, \tag{1}
\]

Normally, \(q = 1 \) except \(q = 2 \) in [86] and \(q = 0 \) in [87]. The coupling efficiency CE can be estimated from (1 - \(R \))D\(\Gamma \), where \(R, D, \) and \(\Gamma \) are the back-reflection loss, directionality, and overlap integral of the output diffracted field with a fiber mode, respectively [21]. The figure of merits used to evaluate the performance of a GC are usually the CE and 1-dB bandwidth, but the size (chip footprint), tolerance to fabrication imperfections and requirement for additional processing steps are also important.

In 2010, an apodized one-dimensional (1D) GC demonstrated by X. Chen et al. attained a peak coupling efficiency of 76% by utilizing the high directionality and a varying duty cycle grating for apodization of the grating strength to produce a Gaussian-like diffracted mode [88]. C. Li et al. demonstrated a double-etched apodized GC with a CE of 71% [89]. In 2017, without a backside reflector, CE was pushed to a record value of 81% by using a linear apodization method [90]. CEs could reach 87% [91] and 85% [92] with a backside metal mirror to further enhance the directionality. However, the challenge is that obtaining a high CE relies on either small feature size (44 nm in [88], 60 nm in [90]) or multilayer fabrication with a relaxed feature size [89]. The 1-dB bandwidth of the conventional 1D GCs is normally 30–40 nm in the 1550 nm wavelength band [85]. 1D GCs are also polarization selective due to the birefringence of the fundamental TE and TM modes in a thin Si slab [93].

To overcome the above limitations, the grating lines in conventional 1D GCs can be replaced by periodic SWGs, which satisfy the subwavelength condition: \(\Lambda < \lambda/(2n_{\text{eff}}) \) [33]. Based on the 2nd-order EMT, equivalent RI \(n_1 \) of a SWG can be synthesized between \(n_{\text{clad}} \) and \(n_{\text{Si}} \). Therefore, \(n_1 \) provides a new degree of freedom in the design. This concept was independently conceived by the groups at the University of Málaga and ourselves at The Chinese University of Hong Kong. In May 2009, the first design of a subwavelength grating coupler (SWG) was proposed by R. Halir et al. with an optimized field overlap of 94% for the TM mode [94]. We had independently submitted a design for a nanohole SWGC to an MPW at the Interuniversity MicroElectronics Center (IMEC) and published the first experimental demonstration of a SWGC in September 2009 [46]. The 193 nm deep-ultraviolet lithography at IMEC was sufficient to fabricate the nanohole GCs with a CE of 34% for the TE mode. Compared with the conventional 1D GCs, metamaterial SWG functionalized SWGCs have the following five advantages:

1. SWG enables engineering of the RI contrast (\(\Delta n = n_{\text{Si}} - m_l \)): at the beginning of an apodized SWGC, it enables reduced back reflection [95], improved CE, and relaxed feature size \(\geq 100 \) nm, simultaneously [48, 94].
2. Reduced \(n_{\text{eff}} \) of SWG region enables a much wider optical coupling bandwidth [47, 49].
3. Reduced dispersion in SWG broadens the 1-dB bandwidth of a SWGC [96].
4. SWG enables birefringence engineering to compensate the waveguide birefringence and enables the engineering of a polarization-independent/insensitive SWGC [38, 51].
5. Fully etched SWGCs also provide holes for the aqueous hydrofluoric acid (HF) to etch the buried oxide (BOX) and release the silicon device layer from substrate for mid-IR wavelength operation to avoid light absorption by the BOX [50].

A. Apodized focusing SWGCs

The empirical linear-apodization method has been employed in designing 1D GC [90] and two-dimensional (2D) SWGC [94], in which the fiber and GC diffracted mode overlap integral \(\Gamma \) can be improved up to 94%. We designed \(\Gamma \) up to 98% by a rigorous apodization method [48]. Figures 2(b)–2(d) show schematics of a testing system consisting of a pair of apodized
SWGCs, an apodized SWGC, and an apodized focusing SWGC with dimension labels, respectively. \(\Lambda \) and \(f_y, \) \((\Lambda_y \text{ and } f_y)\) are the period and fill factor in the \(x \) \((y)\) direction, respectively. The nondiffractive SWG grids aligned with the \(x \) direction as shown in Fig. 2(c) are curved based on the phase-matching formula [97] with a focal length of 11.6 \(\mu \text{m} \) in the \(y \) direction as shown in Fig. 2(d). Figure 2(e) shows a SEM image of an air-cladding rigorously apodized focusing SWGC for the TM-mode operation. Power attenuation in the GC follows \(P(y) = P_0 \exp [-2\alpha(y)y], \) where \(P_0 \) is the total power and \(\alpha(y) \) is the coupling strength at the position \(y. \) To match a normalized Gaussian-field profile \(G(y), \alpha(y) \) is given by [98]:

\[
\alpha(y) = \frac{G(y)}{2[1 - \int_0^y G^2(t)dt]},
\]

(2)

The red dash-dotted curve in Fig. 2(f) shows the theoretically calculated \(\alpha(y) \). With the fixed \(\Lambda_y \) of 400 nm, \(f_y \) of 0.6, and \(\theta \) of 10\(^\circ\), \(n_L \) was engineered to match \(\alpha(y) \), whose assigned value in each diffractive unit is indicated by the red dots, while \(\Lambda_y \) was adjusted to meet the phase-matching condition. After apodization, 2D finite-difference time-domain (FDTD) simulation predicts a CE of \(-1.7 \) dB and a 3-dB bandwidth of \(\sim 50 \text{ nm}. \) The back-reflection loss is less than 14 dB. \(f_y \) was extracted from \(n_L \) based on the 2\(^{nd}\)-order EMT for device fabrication. The experimentally demonstrated 3-dB bandwidth is \(\sim 50 \text{ nm} \) and CE is larger than \(-3 \) dB, which is improved by \(-1.4 \text{ dB} \) compared with that of a uniform SWGC.

B. Broadband SWGCs

The dispersive diffraction angle in a GC working at \(q = 1 \) and finite numerical aperture of a SMF determine the 1-dB bandwidth \((\Delta \lambda_{1dB})\), which is approximated by taking \(d\lambda/d\theta \) from Eq. (1) [99]:

\[
\Delta \lambda_{1db} = \eta_{db} \left| \frac{d\theta}{d\theta} \right| = \eta_{db} \left| \frac{-n_{clad} \cos \theta}{[n_{eff}(\lambda_0) - n_{clad} \sin \theta] / n_{eff}(\lambda_0) - n_{clad}(\lambda_0)/d\lambda_0]} \right| \]

(3)

where \(\eta_{db} \) is defined by the SMF, \(\lambda_0 \) is the center wavelength. In Eq. (3), \(dn_{eff}(\lambda)/d\lambda \) is normally a negative value. Therefore, \(\Delta \lambda_{1db} \) can be enlarged by either decreasing \(n_{eff}(\lambda_0) \) or dispersion of \(-dn_{eff}(\lambda)/d\lambda_0 \), the sum of which leads to a smaller group index \(n_g = n_{eff} - \lambda (dn_{clad}/d\lambda_0) \), for the given \(n_{clad} \) and \(\theta \). Equation (3) can be rewritten as [100]:

\[
\Delta \lambda_{1db} = \eta_{db} \left| \frac{-n_{clad} \cos \theta}{n_g \sin \theta} \right| \]

(4)

According to Eq. (4), \(\Delta \lambda_{1db} \) can be optimized versus \(\theta \) for a given \(n_g \). The intrinsic 1-dB bandwidth of GCs was theoretically analyzed in Ref. [99, 101, 102]. We provided the first experimental demonstration of a broadband SWGC in 2011 [47]. According to Eq. (3), reduction in \(n_{eff}(\lambda_0) \) results in an enlarged \(\Delta \lambda_{1db}. \) Figure 3(a) shows theoretically calculated \(\Delta \lambda_{1db} \) versus \(n_{eff}(\lambda_0) \) of SWGCs at \(\lambda_0 \) of 1.55 \(\mu \text{m}. \) This principle can be implemented by using a subwavelength pillar structure [47], such as shown in Fig. 3(b). The corresponding \(n_{eff} \) is 1.7 for the fundamental TE mode, which is much smaller than that

\(n_{eff} = 3.1 \) in a 340-nm Si slab. Experimentally demonstrated CE and 1-dB bandwidth are \(-5.6 \) dB and 73 \(\text{ nm}, \) respectively. With the same principle, fishbone-like suspended focusing SWGCs were demonstrated in the near- and mid-IR regions [49], using the structures shown in Figs. 3(c) and 3(d), respectively. In each diffractive unit, there are two sets of SWGs to synthesize a low \(n_{eff}, \) \(\alpha(\varphi) \) was engineered for an apodized focusing SWGC working in near-IR. The demonstrated 3-dB bandwidth and CE are respectively \(\sim 90 \text{ nm} \) and \(-3.5 \text{ dB} \) for the TM mode at 1.534 \(\mu \text{m}. \) At the wavelength of 2.75 \(\mu \text{m}, \) a CE of \(-5.5 \text{ dB} \) was measured, and a 3-dB bandwidth of \(\sim 500 \text{ nm} \) was theoretically predicted.

The contribution of \(-dn_{eff}(\lambda)/d\lambda_0 \) in increasing the 1-dB bandwidth was experimentally investigated by wet transfer of a monolayer graphene on top of a suspended focusing SWGC [103]. According to finite-element method (FEM) calculation [104], there is 40% reduction in \(-dn_{eff}(\lambda)/d\lambda_0 \) at a Fermi level of \(\sim 0.3 \text{ eV}. \) An increase of 12 nm in the 1-dB bandwidth was observed after transferring graphene. The dependence of the optical bandwidth on \(n_{eff} \) enabled an enhanced bandwidth by simply making use of optical fibers with a larger numerical aperture [105]. In Ref. [96], \(dn_{eff}(\lambda)/d\lambda_0 \) versus the SWG period \(\Lambda_y \) and enhancement of the bandwidth with reduced \(\Lambda_y \) were theoretically and experimentally investigated. In Ref. [100], Eq. (4) was adopted for bandwidth estimation. \(\theta \) of 25\(^\circ\) and \(n_g \) of \(\sim 3.2 \) \((n_{eff} \sim 2.3) \) were used, and the 1-dB bandwidth of 90 \(\text{ nm} \) was achieved. Note that there is an apparent trade-off between the measured CE and \(\Delta \lambda_{1db} \). Moreover, Q. Zhong et al. demonstrated a record 1-dB bandwidth of over 100 nm in a fishbone-like TE-mode SWGC with \(\theta \) of 20\(^\circ\) [106].

C. Polarization-independent/insensitive SWGCs

2D polarization-diversity grating couplers were proposed for coupling and splitting the fundamental TE and TM modes with a low polarization-dependent loss [107, 108]. In terms of

Fig. 3. Design and fabrication of broadband SWGCs. (a) Calculated 1-dB bandwidth versus \(n_{eff}(\lambda_0) \) \((\lambda_0 = 1.55 \mu \text{m})\). (b–d) SEM images of broadband SWGCs based on the subwavelength pillar structure (b), apodized fishbone-like structure for near-IR (c), and uniform fishbone-like structure for mid-IR (d). Figures are reproduced from: (a) Ref. [99]; (b) Ref. [47] with the permission of OSA; (c, d) Ref. [49] with the permission of OSA.
the unidirectional coupling, polarization-independent GC was designed based on a micrometric-thick SOI wafer due to low birefringence [86]. However, n_{eff} of the fundamental TE mode is much larger than that of the TM mode in a conventional 1D GC on thin SOI wafers. Metamaterial SWGs were utilized to reduce the polarization-dependence by our group in 2011 [38]. Basically, the effective RIs of the fundamental TE and TM modes in a GC should be designed with $n_{\text{eff,TE}} = n_{\text{eff,TM}}$. $n_{\text{eff,X}}$ ($X = \text{TE or TM}$) is calculated from $n_{\text{L,X}}f_x + n_{\text{H,X}}(1 - f_x)$ based on the coupled-mode theory, where $n_{\text{L,X}}$ and $n_{\text{H,X}}$ are the effective RIs of the fundamental TE or TM mode propagating in the SWG and Si slab waveguides, respectively [38]. In a SWG, $n_{\text{H,TM}} > n_{\text{H,TE}}$ can be achieved as shown in Fig. 4(a), while $n_{\text{H,TM}}$ is smaller than $n_{\text{H,TE}}$ in a thin Si slab. Therefore, $n_{\text{eff,TM}} = n_{\text{eff,TE}}$ can be realized by adjusting f_x as shown in Fig. 4(b). Next, Λ_y should be adjusted to achieve a diffraction angle θ according to Eq. (1). The designed polarization-independent SWGC has a predicted CE of 40%. In Ref. [51], $\Delta n_{\text{eff}} = n_{\text{eff,TM}} - n_{\text{eff,TE}}$ can be reduced by varying f_x in a focusing SWGC, which were experimentally demonstrated with a minimal separation of ~ 32 nm between the peak coupling wavelengths of the TE and TM modes. Figure 4(c) shows a polarization-insensitive region with a CE of ~ 6.5 dB around the wavelength of 1525 nm, and there is a 12-nm spectral bandwidth with < 1 dB polarization dependent loss.

D. Focusing dual-wavelength-band (DWB) SWGC

In 2018, we proposed a new type of surface GC, which couples TE-polarized light in two different wavelength bands centered at (λ_1, λ_2), with a tailorable wavelength separation ($\Delta \lambda = \lambda_2 - \lambda_1$) from a SMF into a PIC with an identical θ [109].

The focusing DWB SWGC was designed on a SOI suspended-membrane waveguide (SMW) platform [52], which is illustrated in Fig. 5(a). Figure 5(b) shows the methodology used to design the DWB SWGCs: SWGs in the two single-wavelength-band GC1 and GC2 are combined to form a GC3 ($\text{SWG GC1} \cup \text{SWG GC2} = \text{SWG GC3}$), then the figure of merit defined by $\text{CE}(\lambda_1) - \text{CE}(\lambda_2)$ of GC3 is optimized to obtain a GC4 with a modified direct-search algorithm [66]. As shown in Figs. 5(c) and 5(d), two prototype focusing DWB SWGCs were experimentally measured where CE(1486.0 nm, 1594.5 nm) = (18.3%, 20.1%) and CE(1481.5 nm, 1661.5 nm) = (14.5%, 17.5%) with the 3-dB bandwidth of (55.0, 30.5) nm and (44.0, >39.5) nm, respectively. Due to the use of an unoptimized inverse taper, there is an extra loss of ~ 1.6 dB in CE. Numerically predicted $\Delta \lambda$ of GC4 covers a range of 50–350 nm when CE > 30%. Therefore, the need for exceptionally broadband GCs, which are normally limited by the trade-off between the CE and 1-dB bandwidth, can be bypassed. The DWB SWGCs facilitate direct coupling of widely separated wavelength bands in systems such as wavelength-division-multiplexing communications [82, 85] and the pump and Stokes wavelengths in integrated Raman amplifiers or integrated Raman spectrometers [110, 111].

E. Mid-IR SWGC

In 2012, a fully etched SWGC was demonstrated on a Si-on-sapphire wafer for the TM-mode operation with a CE of 11.6% at the wavelength of 2.75 μm [112]. CEs of 24.7% and 28.2% at 2.75 μm were measured based the air-hole and fishbone-like suspended SWGCs, respectively [49, 50]. J. Kang and co-workers demonstrated 2D uniform focusing SWGCs on a suspended-membrane germanium (Ge) waveguide platform.

![Fig. 4. Design and demonstration of polarization-independent/insensitive SWGCs.](image)

![Fig. 5. Design and demonstration of focusing DWB SWGCs.](image)
in 2017 [113]. The coupling strength is 0.13 μm^{-1} with a measured CE of −11 dB and a 1-dB bandwidth of −58 nm at the wavelength of 2.37 μm. The above studies are all based on the uniform GCs. The first implementation of a linearly apodized GC working at λ of 5.2 μm was demonstrated with one of the highest CEs of −4 dB by S. Radosavljevic et al. in 2017 [114].

III. SUBWAVELENGTH-STRUCTURED FULLY SUSPENDED WAVEGUIDE PLATFORMS

Operation in the mid-IR region brings important new potential applications to Si photonics [115]. A challenge in moving to longer wavelengths comes from the absorption of the buried oxide in conventional SOI based silicon waveguides. The spectral ranges of transparency of Si and SiO2 cover 1.2–8.0 and 0.5–2.3 μm, respectively, while it is 2–15 μm in Ge [116]. By locally etching away the BOX, air-cladding Si and Ge waveguides are promising candidates [117]. In 2012, our group first demonstrated a Si suspended-membrane waveguide (SMW) platform for mid-IR wavelengths based on the bilayer fabrication steps, in which the rib waveguide core was shallowly etched and two arrays of periodic air holes were deeply etched to facilitate removing of the BOX [52]. Low dispersion (within ±100 ps/nm/km) was theoretically predicted within a large bandwidth of 1500 nm. Nonlinear coefficient of a SMW was numerically estimated to be 5 W^{-1}m^{-1}. The propagation loss was measured as 3.0 ± 0.7 dB/cm at the wavelength of 2.75 μm. Also, the SMW ring resonator was experimentally characterized exhibiting a loaded Q factor of 8,100. The SMW platform is promising for nonlinear optics [118]. With a monolayer graphene on top, long-range light–analyte interfacing could be an excellent candidate [129]. In the mid-IR spectral region, Si slot waveguides sitting on BOX were demonstrated with one of the highest CEs of −4 dB by S. Radosavljevic et al. in 2017 [114].

A. Fully suspended slot waveguides (FSSWs)

Aimed at enhancing the optical mode overlap with the analyte in integrated optical gas and microfluidic sensors, we introduced the subwavelength-structured FSSW in 2017 [53]. In 2018, we extended this approach to a full platform, including directional couplers, microring resonators, and mode converters operating in the mid-IR spectral region [54]. The subwavelength-structured FSSW platform offers the following advantages: (1) A broad spectral range of transparency (2–8 μm) is readily available, limited only by the absorption of Si. (2) Direct light–analyte interfacing is accessible with a significant portion of power (as large as 42.3%) in the analyte. (3) Anchored by the SWGs, the FSSW platform has good mechanical stability without structural deformation. (4) The single-layer fabrication process is simple and robust. (5) FSSWs are scalable and can be implemented at other wavelengths or on other material systems.

In a FSSW, the metamaterial SWGs can be treated as an in-plane waveguide cladding based on EMT [28], and light propagates in a FSSW without the diffraction effects when the subwavelength condition is satisfied. For example, designed on a 340-nm SOI and at λ of 2250 nm, the Bragg grating period ΛB is 630 nm when (W_{WG}, W_{slot}, L_{Si}, Λ, ΔW) = (800, 70, 120, 450, 0) nm. These defined dimensions are shown in Figs. 6(a) and 6(d). Note that, even though light at a short wavelength may experience the Bragg reflection, one can decrease either Λ or n_{eff} according to λ_{Bragg} = 2n_{eff}Λ to blue-shift λ_{Bragg}, which is the center wavelength of the PBG. Figure 6 shows SEM images of the symmetrical and asymmetric FSSWs. To test mechanical stability, we cleaved FSSWs and examined their cross sections. The narrow slots are etched through, and two separated waveguide cores anchored by the lateral rigid SWGs are maintained on a same plane without vertical offset as shown in Figs. 6(b), 6(c), 6(e) and 6(f). According to the FEM calculation [104], the maximal deformation of the FSSWs is only 3.6 times larger than that of the corresponding suspended strip waveguide.

![Fig. 6. SEM images of the fabricated symmetric and asymmetric FSSWs. (a) Top-view SEM image of a symmetric FSSW with dimension labels. (b, c) Cross-sectional view (b) and zoom-in (c) of a cleaved waveguide end of a symmetric FSSW. (d) Top-view of an asymmetric FSSW with a dimension label. (e, f) Cross-sectional view (e) and zoom-in (f) of a cleaved waveguide end of an asymmetric FSSW. Figures are reproduced from: (a–c) Ref. [53] with the permission of OSA; (d–f) Ref. [54] with the permission of AIP Publishing.](image-url)
The propagation loss of the symmetric and asymmetric FSSWs with \((W_{WG}, W_{slot}, L_{Si}, \lambda, \Delta W)\) of \((879, 81, 110, 467, 0)\) and \((1048, 75, 103, 350, 97)\) nm were characterized using the linear regression method [54], which are 7.9 dB/cm and 2.8 dB/cm at 2.25 \(\mu m\), respectively. There are two sources contributing to the propagation loss: (i) scattering at rough sidewalls and (ii) modal mismatch at waveguide stitches. The asymmetric FSSW has a relatively low loss due to a small fraction of intensity field overlapping with the sidewalls (3.4\%) and a small modal mismatch (0.3\%) at waveguide stitches with a 30-nm offset. The measured and fitted bending loss increases from 0.28 to 0.42 dB/90° within a spectral range of 2.14–2.31 \(\mu m\). The bending loss is reduced to 0.15 dB/90° with \(R_{\text{bend}} = 23.4 \mu m\). The maximal Si absorption loss in the FSSWs is predicted to be \(-1.9\) dB/cm in the wavelength range of 2–8 \(\mu m\). In contrast, the absorption loss is greater than 3 dB/cm at \(\lambda > 5\) \(\mu m\), and increases to 210 dB/cm at \(\lambda = 8\) \(\mu m\) for the conventional slot-on-BOX platform. Due to strong enhancement of the evanescent field in the waveguide slot region, RI sensitivity could be larger than that of a free-space beam (RI sensitivity = 1 RIU/RIU, where RIU stands for refractive index unit) [132, 133]. The predicted RI sensitivity of a FSSW is 1.1 RIU/RIU, which has 9.7\% improvement compared with the maximal value of the slot-on-BOX waveguides, due to significant portions of optical power (42.3\%) and intensity (87.2\%) located in the ambient.

B. Fully suspended waveguide devices

To bridge the FSSW and suspended strip waveguide, a highly efficient, broadband, and compact strip-to-slot mode converter was demonstrated by our group. According to FEM simulation, the effective-index difference between the strip and without slot under the same applied pressure.

Fig. 7. SEM images and characterization of the fabricated FSSW devices. (a) Top-view SEM image of a strip-to-slot mode converter. (b) Measured and simulated conversion-efficiency spectra. (c) Top view of a sidewall Bragg grating. (d) Measured transmission spectra of three Bragg gratings with different width difference \(\Delta L\). Figures are reproduced from: (a, b) Ref. [54] with the permission of AIP Publishing.

Fig. 8. SEM images of the fabricated microresonators with metamaterial SWG claddings. (a, b) Top-view SEM images of a racetrack resonator based on an asymmetric FSSW (a) and close-up of its coupling region (b). (c, d) SEM images of a racetrack resonator based on a suspended strip waveguide (c) and close-up of its coupling region based on an asymmetric directional coupler (d). (e, f) SEM images of a ring resonator based on a suspended strip waveguide (c) and close-up of its coupling region based on an asymmetric directional coupler (f). Figures are reproduced from: (a, b) Ref. [54] with the permission of AIP Publishing; (c–f) Ref. [57].
Fig. 9. Measurements of the fabricated microresonators with metamaterial SWG claddings. (a–d) Transmission spectra of a racetrack resonator based on an asymmetric FSSW (a), two racetrack resonators based on the suspended strip waveguides with \(\Lambda = 0.36 \) \(\mu \)m (b) and 0.42 \(\mu \)m (c), a ring resonator based on a suspended strip waveguide with an asymmetric bent coupler structure (d). Figures are reproduced from: (a) Ref. [54] with the permission of AIP Publishing; (b–d) Ref. [57].

Zoom in at their coupling regions, respectively. The loaded \(W_f \) factors of an asymmetric FSSW racetrack are 8,558 and 12,600 at the wavelength of 2326.2 nm [55]. The loaded and intrinsic \(W_f \) factor of a symmetric FSSW racetrack is 1,650 at the wavelength of 2326.2 nm [55]. The loaded \(W_f \) factor of a symmetric FSSW racetrack is 1,650 at the wavelength of 2326.2 nm [55]. The loaded and intrinsic factor of a symmetric FSSW racetrack is 1,650 at the wavelength of 2326.2 nm [55]. The loaded and intrinsic factor of a symmetric FSSW racetrack is 1,650 at the wavelength of 2326.2 nm [55]. The loaded and intrinsic factor of a symmetric FSSW racetrack is 1,650 at the wavelength of 2326.2 nm [55].

The concept of hyperuniformity describes point pattern distributions, whose number variance \(\sigma^2 = \langle N^2(R) \rangle - \langle N(R) \rangle^2 [N(R): the number of points inside a sampling window with a radius \(R \) and an arbitrary location in the point pattern] grows more slowly than the window volume \((V) \) in 3D or window area \((A) \) in 2D with increasing \(R \) [67]. Hyperuniform point pattern follows \(\sigma^2 \sim R^2 \), unlike completely random point distributions, e. g., Poisson point pattern, in which the number variance follows \(\sigma^2 \sim R^2 \). HUDPS is a new class of PBG material. Its research started from 2009 with discovery of the optical properties of HUDPS by M. Florescu et al. [32]. Compared with the conventional periodic lattice PhCs, HUDPS has the following six characteristics. First, a HUDPS created by the hyperuniform disordered point and network patterns supports isotropic and complete PBGs, which were demonstrated in the microwave region by W. Man et al. [137]. Freeform wave guiding and bending with an arbitrary polarization state can be realized. Second, HUDPS supports sizeable PBGs. The normalized bandwidth of a PBG is defined as the gap-to-midgap ratio \(\Delta \omega / \omega_0 \), where \(\Delta \omega \) and \(\omega_0 \) are respectively the frequency range and center frequency of a PBG. For example, \(\Delta \omega / \omega_0 \) is 0.37 and 0.34 for the TM and TE modes, respectively, in the HUDPS with a stealthiness parameter \(\chi = 0.5 \) [32]. Third, the isotropic hyperuniformity can be implemented into a 3D structure. High-quality 3D network HUDPS exhibiting pronounced PBGs were fabricated by N. Muller et al. with direct laser writing [138]. Fourth, spatially localized modes with high \(Q \) factors are supported at the band edge of a HUDPS, based on which H. Noh et al. demonstrated an amorphous network laser based on a GaAs membrane embedded with InAs quantum dots [60]. R. Degl’Innocenti et al. demonstrated a terahertz quantum cascade laser based on a pillar-array HUDPS with unconventional emission patterns [139]. Fifth, based on the diffusion and multiple scattering, the wavelength-dependent speckle patterns in a HUDPS were leveraged to develop a compact integrated spectrometer with a spectral resolution of 0.75 nm [140]. Sixth, with a long diffusion length, the integrated absorption efficiency was enhanced by 5% in an amorphously patterned thin-film solar cell compared with that of the periodically patterned counterparts [61]. These theoretical and experimental studies show great potential of applying HUDPS in 2D and 3D photonic integration. M. Milošević et al. demonstrated 2D line-defect waveguides and point-defect all-pass filters in HUDPS based on a 220-nm SOI with a measured propagation loss of 13 dB/cm and a thermal shift rate of \(-0.15\) pm/K, respectively [141].

Based on the collective coordinate approach [142], we generated HUDPS point patterns with point numbers of 56, 125, and 250 as shown in Figs. 10(a1), 10(a2), and 10(a3), respectively. These point patterns can be classified into the stealthy-type HUDS as validated from their structure factors as shown in Figs. 10(b1), 10(b2), and 10(b3). In each structure factor, there is a central disk with a radius of \(|k| < k_c \), in which \(S(k_c, k) \) is mathematically constrained to be zero, except \(S(0, 0) \).
\(N \), where \(N \) is the total number of points. Outside the central disk, \(S(\mathbf{k}_x, \mathbf{k}_y) \) has wild values without any constrain. The stealthiness parameter \(\chi \) defined by \(M(\mathbf{k})/2N \), where \(M(\mathbf{k}) \) is the number of constrained \(\mathbf{k} \) components inside the central disk, is 0.4, 0.5, and 0.48 for the three patterns with 56, 125, and 250 points, respectively. By applying the Delaunay triangulation method, HUDS point patterns were converted into HUDS wall-network patterns as shown in Figs. 10(c1), 10(c2), and 10(c3) [32]. The isotropic TM (TE)-mode PBG can be designed with a HUDPS when a HUDS point (network) pattern is decorated with dielectric rods (walls). The isotropic and complete PBG can be formed in a composite HUDPS with combined HUDS point and wall-network patterns [32, 137]. Size and location of a PBG can be tailorable by varying the average period, radius of rods, width of wall networks, and RIs of the core and cladding materials for a HUDPS.

SEM images of fabricated Si HUDPS based on the point and network patterns are respectively shown in Figs. 11(a) and 11(c). Next, isotropic PBGs for the TM and TE modes are numerically investigated with angular transmission spectra of the disk-shaped Si HUDPS as shown in the insets of Figs. 11(b) and 11(d), respectively. In 3D FDTD simulation, Si HUDPS is placed on BOX with air superstrate and is rotated by one round with a step of 20°. Widths of the input and output waveguides are 1 and 2 \(\mu \text{m} \), respectively. As shown in Fig. 11(b), a nearly isotropic TM-mode PBG covers 1419 to 1562 nm in wavelength, where the transmission is less than 1%, in a HUDPS based on a Si rod array with an average period (\(P_{\text{ave}} \)) of 333.0 nm, radius of 130 nm, and Si thickness of 1.5 \(\mu \text{m} \). As shown in Fig. 11(d), a nearly isotropic TE-mode PBG covers 1423 to 1588 nm in wavelength, where the transmission is less than 0.3%, in a HUDPS based on a Si wall network with a \(P_{\text{ave}} \) of 378.4 nm, wall width of 185 nm, and Si thickness of 0.34 \(\mu \text{m} \).

The PBG for the TE mode produced by the Si network HUDPS was used in a compact polarizer, which exploited the PBG to block the TE mode but allow the TM mode to pass in a waveguide polarizer [69]. The average period of the HUDPS is at the wavelength scale for the TE mode, which is blocked by the Bragg reflection and out-of-plane scattering, but HUDPS is a subwavelength structure for transmission of the TM mode. The etch angle is a critical parameter in the fabrication of the network HUDPS polarizer. 3D FDTD simulation showed that the bandwidths of HUDPS polarizers with vertical and 4° off-vertical sidewalls are respectively 91 nm and 110 nm when the ER is larger than 30 dB. When the off-vertical angle of sidewalls is larger than 13°, the maximal ER cannot reach 30 dB. According to SEM characterization, the network HUDPS polarizer shown in the inset of Fig. 12 had an etch angle of 4°. Length and width of the HUDPS are 4.0 and 0.8 \(\mu \text{m} \), respectively. Figure 12 shows the measured bandwidth of 98 nm (1452–1550 nm) when the ER is larger than 30 dB, which is one of the largest bandwidths to our knowledge for SOI waveguide polarizers. The average insertion loss of the TM mode is 1.72 dB. Interestingly, the adverse scattering observed in light propagation and resonance [141] was used to reduce the average back reflection to 81.8% in a network HUDPS polarizer. The HUDPS polarizer is fabrication tolerant on etched widths, with well-maintained performances with an
We reviewed recent work on subwavelength-structured photonic integrated devices for near- and mid-IR applications. SWGs are an important tool for device engineers in enabling the engineering of a continuous range of RI, with a control of the birefringence and dispersion of the metamaterial. We have covered the use of SWG in the engineering of GCs with efficient coupling, broad bandwidth, polarization insensitivity, and dual-wavelength-band coupling. We also reviewed the fully suspended waveguide platforms for low-loss and broadband operation in the mid-IR region, and HUDPS polarizers with overall improved performances. By combining the merits of conventional Si photonics with the metamaterial SWGs and PBG-material HUDPS, it will be possible to engineer passive functional components with improved and unprecedented performances.

REFERENCES

Xia Chen (M'10) received the B.Eng. and Ph.D. degrees in Electronic Engineering from The Chinese University of Hong Kong, Shatin, Hong Kong, in 2006 and 2010, respectively. After graduation, he worked on the U.K. Silicon Photonics Project in the University of Surrey and the University of Southampton. In 2013, he joined Huawei Technologies Co., Ltd., as a Senior Engineer to work on photonic packaging. In 2015, he rejoined the Silicon Photonics group at the University of Southampton, Southampton, U.K., where he is currently a Senior Research Fellow at the Optoelectronics Research Centre. He has authored and coauthored more than 90 papers in technical journals and international conferences and 4 patents. He received the TSMC Outstanding Student Research Award in 2010, and the Newton International Fellowship by the Royal Society in 2011.

Ke Xu (M'15) was born in Wuhan, China. He received B. Eng. degree from Huazhong University of Science and Technology, Wuhan, China in 2010. He obtained his Ph.D. degree from Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, in 2014. He was a research visiting student in Department of Photonics, National Chiao Tung University, Taiwan in August, 2012 and a visiting research assistant at Yale University from September 2013 to January 2014. He was a recipient of Hong Kong Young Scientist Award, 2014 and IEEE Photonics Society Graduate Student Fellowship, 2013. He is currently an Associate Professor in Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China. His research interest includes silicon photonics, optical interconnects, and mid-infrared photonics.

Xiankai Sun (S'07–M'18) received the Ph.D. degree in Applied Physics from California Institute of Technology, USA, in 2010. From 2010 to 2014, he was a Postdoctoral Associate and then an Associate Research Scientist in Department of Electrical Engineering at Yale University, USA. In 2014, he joined Department of Electronic Engineering at The Chinese University of Hong Kong, Hong Kong, where he is currently an Assistant Professor. He has published more than 80 papers in journals and conference proceedings. He also received the 2015 Early Career Award by the Research Grants Council of Hong Kong. He is currently an Associate Editor of Optics Express and an Editorial Board Member of Scientific Reports. His present research efforts are in the areas of nanophotonics, optoelectronics, optomechanics, and nanoelectromechanics.

Hon Ki Tsang (M'91–SM'04–F'19) received the Bachelor of Arts (Hons.) degree in Engineering and the Ph.D. degree from the University of Cambridge. In 1990 and 1993, he was a Research Visitor at Bellcore (Redbank, NJ, USA). He was also a Postdoctoral Fellow at the School of Physics, University of Bath during 1990–1993. He joined The Chinese University of Hong Kong in 1993 as a Lecturer. He served as Chairman of the Department of Electronic Engineering from 2010 to 2016. He was Editor-in-Chief of the IEEE Photonics Society Newsletter 2012-2014. He is currently the Editor-in-Chief of IEEE Journal of Quantum Electronics. He has published more than 160 papers in journals and over 200 papers in conferences. He is an OSA Fellow and an IEEE Fellow. His research interests include photonic integrated circuits, silicon photonics, nonlinear waveguides, hybrid integration of two-dimensional materials, optical communications, and integrated quantum photonics.