Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections

Orly Razgour1, Brenna Forester2, John Taggart3, Michaël Bekkaert3, Javier Juste4, Carlos Ibanez4, Sébastien Puechmaille5, Roberto Novella-Fernandez1, Antton Alberdi6, Stéphanie Manel1

1University of Southampton, 2Colorado State University, 3University of Stirling, 4Estación Biológica de Doñana (CSIC), 5University of Montpellier 1, 6University of Copenhagen, 7Centre d’Ecologie Fonctionnelle et Évolutive

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modelling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate adaptive genetic variation (evolutionary rescue potential). Considering climate adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species future ranges. We show that although evolutionary rescue is possible, it depends on population adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.

Global climate change | genetic adaptations | ecological niche models | conservation genomics | evolutionary rescue

Introduction

Climate change is predicted to result in widespread population and species extinctions(1), and climate-related local extinctions have already been observed in hundreds of species(2). However, an equivalent number of species did not experience local extinctions at their warm range edge(2), indicating that either phenotypic plasticity or genetic adaptations may enable some populations to persist under warmer conditions. This highlights the importance of incorporating intraspecific adaptations into climate change vulnerability assessments(3)(4). Yet, methodological limitations to adequately incorporate genomic data into projections of species responses to current and changing climatic conditions(5) and into conservation management strategies(6) are still missing.

Vulnerability to climate change is most commonly assessed based on forecasted distributional changes using ecological niche modelling approaches (also known as species distribution models), which project future changes in the distribution of suitable climatic conditions that characterise species current ranges(7). A major limitation of these approaches, which can lead to erroneous predictions and misplaced conservation efforts, is the disregard of intraspecific climatic adaptations, and the consequent differences in population responses to climate change(8). Evidence of contrasting patterns of physiological variation in thermal tolerance among and within species highlight the importance of incorporating intraspecific variation in climatic adaptations into ecological niche models (ENMs)(9). However such model improvements are limited by the paucity of observational and experimental studies of local climatic adaptations(10).

To date, studies attempting to incorporate genetic variation into ENMs primarily use neutral markers to identify phylogenetic structure and generate separate models for each genetically-distinct population. These have resulted in more pessimistic forecasts than traditional ENMs, predicting increased threats from climate change due to range losses in vulnerable populations(11), but have not affected projections of range size changes at the species-level(12). These attempts are limited in scope because neutral markers provide information on the species’ evolutionary history and barriers to gene flow, but not on the ability of individuals to adapt and survive under changing conditions. Moreover, range shifts under future climate change are predicted to result in genetic homogenisation across species ranges and loss of historic/current population subdivisions(13).

More recent studies integrated genomic adaptations with ENM projections to identify vulnerable populations that will need to adapt to survive under future climate change(14)(15). However, genetic data relating to intraspecific variation in climatic adaptations has yet to be directly incorporated into ENMs.

To address this gap, our study develops a novel approach to forecast range changes under future climate change for individuals adapted to different climatic conditions and to determine the evolutionary rescue potential of populations (the ability of populations to persist through adaptation to the novel conditions(16)). This requires first identifying local climatic adaptations in wild populations.

Significance

Forecasts of species vulnerability and extinction risk under future climate change commonly ignore local adaptations despite their importance for determining the potential of populations to respond to future changes. We present a novel approach to assessing the impacts of global climate change on biodiversity that takes into account adaptive genetic variation and evolutionary potential. We show that considering local climatic adaptations reduces range loss projections but increases the potential for competition between species. Our findings suggest that failure to account for within-species variability can result in overestimation of future biodiversity losses. Therefore it is important to identify the climate-adaptive potential of populations and to increase landscape connectivity between populations to enable the spread of adaptive genetic variation.

Reserved for Publication Footnotes
Plots the multilocus adaptive genotypes of individuals in a constrained ordination space, we classified 34% of *M. escalerai* individuals as adapted to hot-dry conditions, 50% as adapted to cold-wet conditions and the rest as intermediate genotypes. Based on the proportion of these individuals in each population (sampled from cave roosts), we classified six *M. escalerai* populations, mainly from Portugal and southern Spain, as primarily adapted to hot-dry conditions, eight, mainly from northern Spain and Pyrenees, as cold-wet adapted and four as mixed (SI Appendix, Fig. S1). In *M. crypticus*, 45.6% of individuals were classified as adapted to hot-dry conditions and 36.8% as adapted to cold-wet. Most of the cold-wet adapted individuals were found in the Pyrenees, Alps and Massif Central, France (SI Appendix Fig. S2). Population data are not available for *M. crypticus* because it primarily roosts in trees and switches roosts regularly, and therefore colony roost locations are unknown.

Intraspecific variation in local climatic adaptations was incorporated into ENMs by generating separate models for hot-dry and cold-wet adapted individuals and comparing predictions to models generated using all the known geographic location records of each species. ENM projections are sensitive to variability resulting from the modelling approach, General Circulation Model (GCM) and greenhouse gas emission scenario used. To address these sources of variability, which can affect future range loss predictions (23), we employ an ensemble modelling approach (24), averaging projection results across model algorithms, three GCMs, and two greenhouse gas emission scenarios representing the worst-case and a more moderate emissions scenario. All ENMs had strong support and good discrimination ability (mean values TSS: 0.766 ± 0.03; AUC: 0.929 ± 0.02; AUC cross-validation: 0.866 ± 0.03; Table 1; SI Appendix Table S2), and performed significantly better than random (Null models AUC range: *M. escalerai*: 0.603-0.685; *M. crypticus*: 0.623-0.713).

Considering local climatic adaptations in ENMs reduced future range loss projections. Based on the full dataset and worst case scenario (RCP 8.5 W/m²), *M. escalerai* is projected to lose 47% (range based on different GCMs 38-53%) of its Iberian range by the end of this century, but only 19% (range 13-25%) while based on the combined ranges of hot-dry and cold-wet adapted individuals, resulting in up to 60% reduction in projected Iberian range losses (16% based on the moderate scenario RCP 4.5 W/m²). Similarly, *M. crypticus* is projected to lose 87% (range 75-94%) of its Iberian range based on the full dataset, but only 58% (range 44-68%) based on the combined adaptive ranges (33% reduction in projected losses with RCP 8.5, versus 40% reduction with RCP 4.5 W/m²).

\[\text{Range loss predictions} \]

Intraspecific variation in local climatic adaptations was incorporated into ENMs by generating separate models for hot-dry and cold-wet adapted individuals and comparing predictions to models generated using all the known geographic location records of each species. ENM projections are sensitive to variability resulting from the modelling approach, General Circulation Model (GCM) and greenhouse gas emission scenario used. To address these sources of variability, which can affect future range loss predictions (23), we employ an ensemble modelling approach (24), averaging projection results across model algorithms, three GCMs, and two greenhouse gas emission scenarios representing the worst-case and a more moderate emissions scenario. All ENMs had strong support and good discrimination ability (mean values TSS: 0.766 ± 0.03; AUC: 0.929 ± 0.02; AUC cross-validation: 0.866 ± 0.03; Table 1; SI Appendix Table S2), and performed significantly better than random (Null models AUC range: *M. escalerai*: 0.603-0.685; *M. crypticus*: 0.623-0.713).

Considering local climatic adaptations in ENMs reduced future range loss projections. Based on the full dataset and worst case scenario (RCP 8.5 W/m²), *M. escalerai* is projected to lose 47% (range based on different GCMs 38-53%) of its Iberian range by the end of this century, but only 19% (range 13-25%) while based on the combined ranges of hot-dry and cold-wet adapted individuals, resulting in up to 60% reduction in projected Iberian range losses (16% based on the moderate scenario RCP 4.5 W/m²). Similarly, *M. crypticus* is projected to lose 87% (range 75-94%) of its Iberian range based on the full dataset, but only 58% (range 44-68%) based on the combined adaptive ranges (33% reduction in projected losses with RCP 8.5, versus 40% reduction with RCP 4.5 W/m²).
Table 1. Results of the ecological niche models, including percent of Iberia predicted to be climatically suitable under present and future (2070, RCP 8.5) conditions and percent range changes within Iberia (SI Appendix Table S2 for range change projections across the study area and for RCP 4.5 scenario).

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N1</th>
<th>AUC (ROC)2</th>
<th>TSS2</th>
<th>AUC-test 3</th>
<th>% suitable present</th>
<th>% suitable future</th>
<th>% range change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myotis escalerai all</td>
<td>313</td>
<td>0.941</td>
<td>0.781</td>
<td>0.850</td>
<td>38.40</td>
<td>20.38</td>
<td>-46.94</td>
</tr>
<tr>
<td>M. escalerai hot-dry</td>
<td>19</td>
<td>0.914</td>
<td>0.727</td>
<td>0.876</td>
<td>46.82</td>
<td>49.50</td>
<td>+5.72</td>
</tr>
<tr>
<td>M. escalerai cold-wet</td>
<td>41</td>
<td>0.946</td>
<td>0.806</td>
<td>0.841</td>
<td>29.27</td>
<td>12.08</td>
<td>-58.73</td>
</tr>
<tr>
<td>Myotis crypticus all</td>
<td>168</td>
<td>0.926</td>
<td>0.729</td>
<td>0.896</td>
<td>20.51</td>
<td>2.61</td>
<td>-87.28</td>
</tr>
<tr>
<td>M. crypticus hot-dry</td>
<td>25</td>
<td>0.908</td>
<td>0.752</td>
<td>0.836</td>
<td>14.34</td>
<td>7.54</td>
<td>-47.42</td>
</tr>
<tr>
<td>M. crypticus cold-wet</td>
<td>18</td>
<td>0.940</td>
<td>0.798</td>
<td>0.896</td>
<td>4.89</td>
<td><0.01</td>
<td>-99.96</td>
</tr>
</tbody>
</table>

1 N=sample size.
2 AUC ROC (Area Under the Receiver Operating Characteristic Curve) and TSS (True Skills Statistics) scores for ensemble models.
3 AUC-test=AUC cross-validation scores for Maxent models.

The effect of integrating intraspecific climatic adaptations into ecological niche model projections. Ecological niche modelling outputs for Myotis escalerai (a-d) and M. crypticus (e-h), including the full dataset (a,c,e,g) and overlap between separate models for individuals adapted to hot-dry (red) and cold-wet (blue) conditions (b,d,f,h), under present (a-b, e-f) and future (2070, RCP 8.5) climatic conditions (c-d, g-h). Relative probability of occurrence ranges from low in blue to high in orange.

Overall hot-dry genotypes are predicted to expand their range at the expense of cold-wet genotypes. However, survival at the trailing (equatorward) edge of species ranges depends on the maximum thermal tolerance of the species. Species living in warm environments may be unable to physiologically adapt to increased heat because their niches are close to their upper thermal limits, which were shown to be phylogenetically conserved and therefore less likely to evolve(27). On the other hand, at least for ectotherms, the equatorward range limit does not reflect maximum warm temperature tolerance, and therefore species may be able to physiologically tolerate higher thermal stress at their warm range limits under future climate change(28). Genomic data supports the genetic basis of greater thermal tolerance in individuals living in warmer microclimates under higher heat stress(29). In contrast, individuals adapted to cold-wet conditions will experience the most severe range losses. Cold-wet M. escalerai genotypes are projected to lose more than half of their Iberian range and retract to mountain ranges (Fig. 2d), while cold-wet M. crypticus genotypes are projected to entirely disappear from Iberia and Italy with the exception of the Alps (Fig. 2h; Table 1). Bay et al.(4) show that populations exhibiting a strong mismatch between current local genetic adaptations and future climatic conditions have a higher likelihood of declining.

Considering adaptive variation increased the predicted potential for interspecific competition, through increased range overlap. Range overlap between species in Iberia was predicted to decrease under future conditions (84% reduction, from 10.5 to 1.7% of Iberia), but estimations of future range overlap were more than four times higher when the ranges of hot-dry and cold-wet individuals were combined (7.1%; SI Appendix Fig. S3). Changing species interactions have already been implicated in population declines and extinctions relating to climate change(30). Moreover, spatially explicit simulations of multi-species responses to climate change show that when interspecific competition is included in future models, pre-adapted species displace maladapted species(31), which is likely to be the outcome of increased future range overlap among the warm-adapted M. escalerai and the more cold-adapted M. crypticus.
Fig. 3. Modelling evolutionary rescue potential under future climate change in a) *M. escalerai* and b) *M. crypticus*, depicted as the predicted density of movement (yellow high to blue low) from populations or individuals adapted to hot-dry conditions (white circles) to those adapted to cold-wet conditions (grey circles) based on the effect of slope and tree cover (a) or slope and forest cover (b) on movement. The relationship between landscape resistance and genetic differentiation in *M. escalerai* (c) and *M. crypticus* (d).

Our results are supported by previous studies that used common garden experiments to show that incorporating information on local adaptations decreases future range loss projections for pines(32). Similarly, Bush et al. (33) show that incorporating physiological measurements in hybrid ENMs that account for intensity of selection, response to selection and dispersal probability, reduces future range loss projections for *Drosophila*. Genomic studies of local adaptations offer an alternative approach to understanding adaptive responses to climate change when reciprocal transplant or common garden experiments are unfeasible due to biological, practical or ethical reasons, as is the case with many vertebrates and species of conservation concern(3).

Evolutionary rescue potential is limited by landscape connectivity

We use gene flow as a result of the movement of adapted individuals between populations to estimate the ability of a population to avoid extinction due to environmental stress through adaptation to the changed environment (evolutionary rescue). Increased thermal tolerance can evolve over a few decades in small organisms with short generation time(34). However, in long-lived organisms with small population sizes, the potential for evolutionary rescue depends primarily on standing genetic variation, and is facilitated in structured populations by local dispersal(16). Detecting local adaptations can help with identifying populations that will need evolutionary rescue, as well as potential donor populations that already show a signature of adaptations to warmer and drier conditions.

Given that the studied bat species are forest specialists, both range shifts and the movement of adaptive genetic variation among populations via individuals’ dispersal is likely to be limited by landscape connectivity. We use a landscape genetics approach(35) to first identify landscape barriers to gene flow and then extrapolate how these will affect the potential for evolutionary rescue from hot-dry to cold-wet adapted locations. Genetic
connectivity in both species was most strongly related to the combination of forest cover and slope (M. escalerai: R² = 0.532; M. crypticus: R² = 0.356; Fig. 3c-d; SI Appendix for landscape genetics results, Tables S4-5). Exemplifying these relationships to estimate gene flow potential from hot-dry to cold-wet adapted locations shows that landscape barriers to movement are likely to limit the ability of individuals adapted to hot-dry conditions to reach areas that will become climatically unsuitable for cold-wet adapted individuals to prevent their extirpation under future climate change, even though these areas will become suitable for hot-dry genotypes (e.g. Fig. 3b for M. crypticus). On the other hand, in M. escalerai, although hot-dry adapted individuals are not likely to be able to reach areas like the eastern Pyrenees (Fig. 3a), future ENMs show that much of this area will remain climatically suitable for cold-wet adapted individuals, suggesting that evolutionary rescue will not be necessary. However, it is important to note that gene flow in these forest bats is limited by forest cover, which is likely to change substantially under future climate change(36). Our data also reveal cold-wet locations that harbour individuals adapted to hot-dry conditions (and vice versa, SI Appendix Fig. S1-52). The identification of these locations, where gene flow may already be providing genetic variation for future adaptation, illustrates how environmental surrogates for adaptive potential may sometimes fall short in informing conservation planning.

Gene flow among populations can increase the speed of adaptation to warmer conditions, but it can also reduce non-climatic local adaptations, and therefore reduce population fitness and evolvability(37). Given these limitations, it is not surprising that evidence of evolutionary rescue in the wild is rare, though this may be at least partially due to logistical difficulties in obtaining both population dynamics and evolutionary change data(38). Nevertheless, given the rapid rates of climate change relative to rates of evolutionary response, long-lived organisms may struggle to evolve fast enough to keep up with changes(39) unless rates of gene flow from already adapted populations are high enough to allow adaptive variation to rapidly spread through climatically maladapted populations. This stresses the importance of approaches, like the one developed in this study, that can identify landscape barriers to gene flow between climatically adapted and maladapted populations, and therefore can advise on how species should be managed to increase population connectivity.

Conclusions

Using a combination of population genomics, spatial ecology and predictive modelling we show the importance of incorporating genomic data into climate change forecasts. Local adaptions can be a major determinant of the adaptive capacity of populations to changing climatic conditions(3), and therefore should not be ignored in climate change vulnerability assessments(11). Greater intraspecific than interspecific climatic niche dissimilarities highlights the need to account for intraspecific differences in climatic tolerance when forecasting impacts of future climate change. Our study provides an unprecedented example where climate-adaptive genetic variation is directly incorporated into ENMs, rather than only using local adaptations as a measure of sensitivity(14) or relying on neutral population structure as a proxy for intraspecific adaptive variation(12). We show that considering adaptive genetic variation can reduce range loss projections, indicating that current forecasts of extinction risk from climate change are likely an over-estimation of the proportion of species committed to extinction. An exception may be species with limited adaptive variation or genetic constraints that have limited capacity to show an adaptive response. Dispersal limitations and increased potential for interspecific competition when considering adaptive genetic variation, due to increased projected future range overlap, stresses the role of biotic interactions in limiting species range shift and the persistence of climatically maladapted (or less adapted) species. The fate of populations at the trailing (equatorward or low elevation) edge will depend on the species' physiological tolerance, while what will happen in areas that will become unsuitable for cold-wet adapted individuals but suitable for hot-dry genotypes will depend on gene flow from hot-dry adapted populations. As the example of our forest bats shows, the survival of maladapted populations may be possible through evolutionary rescue, but evolutionary rescue depends not only on individual adaptive capacity but also on landscape connectivity. As such, climate-adaptive conservation strategies should not be focused only on areas with threatened populations, but also on facilitating movement between populations.

Materials and Methods

Generating the genomic datasets

Datasets were sampled (non-lethal wing biopsies) between 2010 and 2015 (majority of samples after 2013) from locations across the species’ ranges in the Iberian Peninsula, southern France and northern Italy (SI Appendix Tables S6-S7). The final M. escalerai dataset included 220 bats from 67 locations, 18 of which represent colonies (7-10 individuals sampled from cave roosts). The M. crypticus dataset included 58 bats from 48 locations (SI Appendix Fig. S5).

Double digest restriction-site-associated DNA sequencing, ddRAD-seq(30), was used to generate a genomic dataset containing tens of thousands of anonymous genetic loci from across the species genomes. The final dataset for M. escalerai included 18,356 SNPs, 216 individual bats, and genotyping rates of 98.06, 98.06. The final dataset for M. crypticus included 673,495 SNPs, 216 individual bats, and genotyping rate of 0.894 (Datasets S2-53; SI Appendix for library preparation and bioinformatics).

Identifying climate-adaptive genetic variation and individuals

Identifying climate-adaptive genetic variation and individuals was carried out using a genotype-environment association (GEA) analysis to identify a signature of climate-driven genetic variation based on associations between allele frequencies and local conditions. We focused on two ecologically relevant climatic variables, maximum temperatures of the warmest month and precipitation of the warmest quarter (Bio5 and Bio18, downloaded from WorldClim, www.worldclim.org). GEA analysis was performed with the short term local climate approach(41) and a redundancy analysis (RDA(42)) (SI Appendix for running procedures). We used a conservative approach(21), whereby only SNPs that were identified as under climate-driven selection for either climatic variable by both GEA methods were classified as climate-adaptive SNPs. RDA was used to plot the spread of individuals in the ordination space based on their climate-adaptive SNPs relative to the maximum temperature and summer rainfall axes (SI Appendix).

Modeling range losses under future climate change

Ecological niche models (ENMs) were run using the ensemble modelling approach in the R package biomaR2 v.3.3-7(43). Models were replicated 1000 times (five for models with low sample sizes, N<50) using five-fold cross-validation approach. Model performance was evaluated based on total accuracy of 10 times (five for models with low sample sizes, N<50) using the area under the receiver operator curve (AUC scores, True Skill Statistics 0 and comparison to null models (SI Appendix for ENM running procedures).

The study extent was set as around 500 km north of the known range limit of M. crypticus (the species with the larger range size), to include areas within the theoretical dispersal ability of the species by the end of the century(44). Cell size was set at 30 arc seconds (~1km). Models included bioclimatic variables (downloaded from WorldClim), a static topographic variable that is independent of temperature changes (slope, generated from the SRTM altitude map [https://www2.jpl.nasa.gov/srtm/]), and distance to karsts (Karst Regions of the World, http://gisdata.rc.usgs.edu) because M. escalerai primarily roosts in caves and mines. We removed autocorrelated variables (R>0.75) and variables that did not contribute to model gain (SI Appendix Table S2 for final model variables). Models were projected to the future (2070) using three General Circulation Models (HadGEM2-ES, IPSL-CM5A-LR and MPI-ESM-LR) and two Representative Concentration Pathways (RCP) scenarios(45), the ‘worst case’ scenario, RCP +8.5 W/m², and the more moderate RCP +4.5 W/m² scenario. For each species or group we ran separate models for each GCM, producing an ensemble of 30-50 models for each RCP scenario that were merged together into a single layer.

ENMs included 313 and 168 genetically confirmed records of M. escalerai and M. crypticus, respectively (the full datasets), obtained from this study and previous studies of the species(19) (20/26). We also ran separate models for each species individually within each species identified as adapted to hot-dry (M. escalerai N=19, M. sp. N=25) and cold-wet conditions (N=41, 18, respectively) based on our genomic dataset, in order to determine whether their climatic niche is different and whether they will be affected differently by future climate change. We calculated extent of overlap in geographic and ecological space (range and niche overlap; SI Appendix).

Landscape genetics and evolutionary rescue analyses

Footline Author