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THE CHARACTER TABLE OF A SHARPLY 5-TRANSITIVE SUBGROUP OF Alt(12)

NICK GILL AND SAM HUGHES

ABSTRACT. In this paper we calculate the character table of a sharply 5-transitive subgroup of Alt(12), and of a
sharply 4-transitive subgroup of Alt(11). Our presentation of these calculations is new because we make no reference
to the sporadic simple Mathieu groups, and instead deduce the desired character tables using only the existence of
the stated multiply transitive permutation representations.

1. INTRODUCTION

In this paper we prove the following theorem.

Theorem 1.

(1) If G is a sharply 5-transitive subgroup of Alt(12), then the character table is given by Table[8.
(2) If G is a sharply 4-transitive subgroup of Alt(11), then the character table is given by Table[7.

This theorem is not new — item (1) is a consequence of the fact that Mjs is the unique sharply 5-transitive
subgroup of Alt(12), and the fact that the character table of My is known; item (2) is a consequence of the two
analogous statements for M.

Our proof of the theorem is new, however, because it makes no reference whatsoever to the groups My; and Mo
but, instead, deduces the character table using nothing more than the stated assumptions about sharp multiple
transitivity.

Our interest in proving this theorem stems from our study of Frobenius’ famous 1904 paper in which (amongst
many other things) he calculates the character table of Mis and May [Fro04]. We were curious to understand
Frobenius’ methods because, in the late nineteenth century, there appeared to be some lingering doubt as to the
“existence” of the Mathieu groups (that is to say, people questioned whether the permutations that Mathieu wrote
down in his original paper [Mat73] generated alternating groups, rather than any genuinely “new” groups). As late
as 1897, Miller published a paper claiming that May did not exist [Mil97], although he retracted this claim soon
after [MiI0Q].

In fact, studying Frobenius’ 1904 paper, it seems that Frobenius was in no doubt as to the existence of the
Mathieu groups and, indeed, he uses specific properties of these groups when he calculates their character tables
(see the MathOverflow discussion on this subject for more detail [Lad]). Nonetheless, we were left wondering
whether, in principle, Frobenius could have calculated the character table of M;js using nothing more than the
property of sharp 5-transitivity — the main result of this paper confirms that the answer to this question is “yes”!
In particular, note that the proof of Theorem [I] below uses little more than the basics of character theory, all of
which would have been available to Frobenius in 1904 — the results that we make use of are summarized at the start

of §3l

1.1. Further work. There are two natural avenues for extending the current work. First, it would be nice if the
two occurrences of “Alt(12)” in the theorem could be replaced by “Sym(12)”. It seems quite plausible that such a
theorem could be proved using the methods in the current paper, however it would likely make the conjugacy class
calculations considerably more complicated and so we have not investigated this in detail.

Second, one wonders about proving the analogous theorem for My, something like: “If G is a 5-transitive
subgroup of Alt(24) of order 244823040, then the character table of G is as follows...” It would be nice to prove
such a theorem using only elementary character theory, although one might expect that the details would be rather
onerous.
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Type | 19 | 24| 33 | 42 | 4% | 42,
Size | 1 | 9 | 8 | 18| 18 | 18
TABLE 1. Conjugacy class sizes in Gg

1.2. Structure, notation and thanks. In what follows we will consider groups Gg, G19,G11 and Gi13. For
1=29,...,12, the group G; denotes any sharply (i — 7)-transitive subgroup of Alt(¢) on ¢ points.

In §20 we deduce the conjugacy class structure of Gg, G1g9, G11 and Gio; in §3l we deduce the character table of
Gg, Glo, Gll and G12.

All of our notation is entirely standard. We remind the reader that a character of G is called real if it takes real
values for all elements of G; similarly, a conjugacy class C' of G is called real if any element of C' is conjugate to its
inverse. The connection between these two concepts is given in Theorem [B] and will be exploited in §3l

In the course of this research, we asked a question on the website MathOverflow. We are particularly grateful
to Frieder Ladisch, whose answer to our question clarified some of the history behind this area of research [Lad].

2. CONJUGACY CLASSES

In this section we calculate the conjugacy class structure of Gy, G1p, G11 and G12. Note that, for ¢ =9,...,12,
G, is any sharply (i — 7)-transitive subgroup of Alt(i) on ¢ points.

We label conjugacy classes via the cycle structure of their elements. Where there is more than one conjugacy
class with the same cycle structure, they are distinguished with subscript Roman letters — see, for instance, Table [Tl
which lists the conjugacy classes of Gy, three of which contain elements of type 42.

2.1. The conjugacy classes of Gg. Since |Gg| = 72, and is sharply 2-transitive on 9 points, it is straightforward
to see that Gg has a normal regular subgroup N with N = C3 x C3. Now the stabilizer of a point, call it H, must
act (by conjugation) regularly on the non-zero elements of N — then H is a group of order 8 that is isomorphic to
a subgroup of GL2(3), and one can check directly that H = Qg; thus G = (C5 x C3) X Qs.

The conjugacy classes of Gg can now be written down in Table [l Note that all classes are real.

2.2. The conjugacy classes of G1g. The group G = G1¢ has order 720, and elements that fix at least one point
must have cycle structure in the list given in Table [, with the possibility of fusion for the elements of cycle type
42,

When one considers the cycle type of fixed-point-free elements of G, one must exclude all elements that have
powers that fix elements and that are not of a type listed in Table[Il One obtains immediately that the only possible
new cycle types are 52 and 8'21'.

There must be an element g € G of type 52, since 5 divides |G|. What is more, since Can0)(g) = (g), we
conclude that Cg(g) = (g) and so the conjugacy class containing g has size 144. Let P = (g), a Sylow 5-subgroup
of Gyp. Since Cg(P) = P, and Ng(P)/Cq(P) < Aut(P) =2 Cs. We conclude that Ng(P) has order dividing 20.
Sylow’s theorems tell us that |G : Ng(P)| = 1 (mod 5) and we conclude that |[Ng(P)| = 20. Since all conjugates
of P intersect trivially, we conclude that G contains 144 elements of order 5, hence there is precisely one conjugacy
class of elements of type 52.

We now consider elements of types listed in Table [l For elements of type 32, we observe first that an element
of this type fixes a unique point and, since the stabilizer of a point contains a unique Sylow 3-subgroup of G, we
conclude that each element of type 32 lies in a unique Sylow 3-subgroup of G. Now we use the fact that the stabilizer
of a point is maximal in G to conclude that there are precisely 10 Sylow 3-subgroups and, therefore, 80 elements of
type 3% in G.

All remaining elements, of which there are 450, must be of type 42 or 2'8'. Now let P be a Sylow 2-subgroup
of G and observe that P has two orbits, of size 2 and 8. Let {9,10} be the smaller orbit; then the stabilizer of
9 is equal to the stabilizer of 10 and is equal to Qg, a Sylow 2-subgroup of Gg. The points in the other orbit
each have stabilizers in P of size 2, and there are four distinct stabilizers; this leaves four elements which must
be fixed-point-free, and hence are of type 2'8'. What is more these elements cannot be central in P, otherwise P
would be abelian. We conclude that there are at most two conjugacy classes in G of elements of type 2'8', and
they have size 90 (since they do not commute with any elements of odd order).

In fact, it is clear that any Sylow 2-subgroup of Gig is characterized by its orbit of size 2. This implies, first,
that, since the same is true of elements of type 2'8!, each element of type 2'8! is in a unique Sylow 2-subgroup; it
implies, second, that there are precisely 45 Sylow 2-subgroups of G1g, and so there are 180 elements of type 281,
split into two conjugacy classes of size 90.
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Type | 110 24 | 3% | 42 | 42 | 52 | 2!84" | 2!8L"
Size | 1 [45|80| 90 | 180 | 144 | 90 90
TABLE 2. Conjugacy class sizes in Gig

Now there are at most three conjugacy classes in G of elements of type 42 containing a total of 270 elements;
since these elements are real in Gy, they are real in Gy and so the classes have even order. One of these classes
must be squares of elements of order 8, and so at least one conjugacy class has size 90; the others have size 90 or
180. There are, therefore, two possibilities for elements of type 42: three conjugacy classes of size 90, or two of size
90 and 180. Note that, since there are 180 elements of type 2'8!, there are only 90 elements that are squares of
these. Thus if there are three conjugacy classes of size 90, then two of these must have a centralizer isomorphic to
Cy x Cy. Tt is easy to check, though, that this is not possible, given that all involutions are of type 2%.

The conjugacy classes of G1¢ are summarized in Table[2l Note that we have asterisked the two conjugacy classes
that are not real — it is clear that they are the only conjugacy classes that have a chance of being non-real; to see
that thﬁy are not real, simply observe that there are no elements of type 42 in Alt(8) that send an 8-cycle to its
inverse

2.3. The conjugacy classes of G1;. The group G = G1; has order 7920, and elements that fix at least one point
must have cycle structure given in Table 2] with the possibility, once again, of fusion for the elements of cycle type
4% or 2181,

Taking into account the same considerations as before, we obtain that any fixed-point-free elements of G must
have cycle type 11! or 2'316'.

An element, g, of type 11 is self-centralizing in Alt(11) and hence, also in G1;. We conclude that a conjugacy
class of this type has size 720. On the other hand a Sylow 11-subgroup of Alt(11) has a normalizer of size 55, hence
N¢g({g)) has size 11 or 55. If the former, then one immediately concludes that there are 10 conjugacy classes of this
type; this means that there are a total of 720 elements in G that are not of type 11'. Since a point-stabilizer of G1;
has size 720 and does not contain any elements of type 11!, we conclude that a point-stabilizer of G is normal, a
contradiction. Thus |Ng(g)| = 55 and we conclude, furthermore, that there are two conjugacy classes in G of type
11t

We know that there is a unique conjugacy class of elements of type 52 in Go, hence the same is true in Gy;.
What is more these elements are self-centralizing, hence this class has size 1584.

Now consider an element, g, of type 33. It is clear that C(g) contains an involution if and only if there is an
element of type 21361, If this is not the case, then the conjugacy class of type 3% has size 7920/9 = 880, and it is
the only non-trivial conjugacy class that does not have size divisible by 3. But now 7920 — 880 — 1 = 7039 is not
divisible by 3, and we have a contradiction. Hence we conclude that |Cg(g)| is even, and contains an element of
type 2!3'6'. Since the Sylow 2-subgroup of Cay¢(11)(g) is of size 2, we conclude that |C(g)| = 18 and the conjugacy
class of type 33 has size 440.

Let h be an element of type 2%. Then g is central in a Sylow 2-subgroup of G, and is also centralized by an
element of type 3%; it is easy to check that it is not centralized by a Sylow 3-subgroup of G, hence the conjugacy
class of involutions has size 7920/48 = 165.

Elements of type 2'8' are self-centralizing, so these conjugacy classes have size 990; any fusion of the two
conjugacy classes would have to take place in a Sylow 2-subgroup and, since this Sylow 2-subgroup is the same as
for G19, we know that there are two such conjugacy classes.

The remaining elements are of type 42 and of type 236! and they make up the remaining 2310 elements. The
size of the respective conjugacy classes is 7920/8 and 7920/6 and since these two numbers sum to 2310 we know
that there is a unique conjugacy class of each type.

The conjugacy classes of G1; are now written down in Table[3l Note that we have asterisked the four conjugacy
classes that are not real. It is clear that all the other classes are real, and it clear that the classes of type 11! are
non-real, since they are non-real in Alt(11); similarly, the classes of type 2!8! are non-real since they are non-real
in G1o and any putative “reversing element” in G1; would have to lie in Gg.

2.4. The conjugacy classes of G12. The group G = G712 has order 95040, and elements that fix at least one point
must have cycle structure given in Table 3] with the possibility of fusion for the elements of order 8 and 11.

11t is well-known that the group Gio is, in fact, M1, the unique non-split extension of Alt(6). One can compare our enumeration
of the conjugacy classes of G19 with the enumeration of conjugacy classes of Mg that appears in the ATLAS [CCNT85|; note that our
class 423 is labeled 4C in the ATLAS; similarly the two classes of elements of order 8 are labeled 8C and D** in the ATLAS.
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Type | 11| 24 | 33 | 42 | 52 |2!3l6! | 2!8%" | 21857 | 1147 | 1147
Size | 1 | 165|440 | 990 | 1584 | 1320 | 990 | 990 | 720 | 720
TABLE 3. Conjugacy class sizes in G11

Taking into account the same considerations as before, we obtain that any fixed-point-free elements of G must
have cycle type 21101, 3191, 4181, 62, 2242, 3%, 26, In order to exclude elements of type 3'9', we need a lemma:

Lemma 2. Let P be a Sylow 3-subgroup of G. Then P = He(3).

Here He(3) is the Heisenberg group over the field of order 3, a group of order 27. Note that all non-trivial
elements of He(3) have order 3, hence there are no elements of order 9 in G.

Proof. Observe that |P| = 27. There are five groups of order 27, three abelian and two non-abelian.

Let us suppose first that P is abelian. Suppose that A is an orbit of P in its action on Q, and let X € A. Then,
since P is abelian, any elements that fires A must fiz every element in A. Since no element of G fixzes more than 4
points, this means that |A| = 1 or 3. The group P must not fix more than 4 points, thus there are at least two orbits
of P of size 3, call these A1 and As. Now the orbit-stabilizer theorem asserts that P has a subgroup Py, of order
9, that fizes every element of Ayi; similarly P has a subgroup Ps, of order 9, that fizes every element of As. But
now Py N Py is non-trivial (by order considerations) and an element in the intersection fixes at least the 6 points of
A1 UA>. This is a contradiction.

Suppose, then, that P is the non-abelian group of order 27 that is not He(3). This is the extraspecial group of
exponent 9; it has center, Z, of order 3; it has a normal elementary-abelian subgroup, Py, of order 9; and all the
elements in P\ Py are of order 9. Since all of the elements of order 9 are fizxed-point-free, and since a stabilizer of
a point in G has order divisible by 9, we conclude that Py stabilizes a point, indeed it must fix 3 points. But, since
the elements of order 3 in P have cycle type 33 this implies that all elements of P of order 3 fix the same 3 points.
This is impossible. O

The same argument as before gives two conjugacy classes of self-centralizing elements of type 11!. Similarly
there is a single conjugacy class of self-centralizing elements of type 2'3'6'. In addition there is an easy counting
argument that says that the number of elements that fix exactly four points is (142) X 7 = 3465. There are only two
conjugacy classes that do this — of type 2* and 42; what is more, using the fact that the stabilizer of 4 points is Qs,
we see that there are six times as many elements of type 42 as there are of type 2%. This leaves us with 495 of type
24 and 2970 of type 42.

Let g be an element of type 52. Then |Cg(g)| is even if and only if there is an element of type 2'10'. Suppose
that this is not the case — then C¢(g) is of order 5 and all other non-trivial conjugacy classes have order divisible by
5. But 95040 — 1 — 95040/5 is not divisible by 5, a contradiction. We conclude that |Cg(g)| = 10, and there exist
elements of type 2110'. What is more Ng((g)) must be a group of size 40 with C(g) a normal cyclic subgroup of
order 10. If h is a generator of Cg(g), then Ng({g)) acts by conjugation on C¢(g) = (h) and is transitive on the
elements of order 10 in (h); we conclude that there is a unique conjugacy class of elements of type 2110!, and this
conjugacy class has size 9504.

Let us examine the Sylow 3-subgroup of G in more detail. The orbits of P must be of size 3 and 9, and a
count of elements in the stabilizers immediately yields that P contains 14 elements of type 3% and 12 that are
fixed-point-free, i.e. of type 3%. Since 14 #Z 0 (mod 3), we conclude that the non-trivial central elements of P are
of type 33, and the centralizer of an element of type 33 is divisible by 27. In addition, for g of type 32, |Care12)(9)]
is not divisible by 4, and so we conclude that |Cg,,(9)] = 54.

A straightforward counting argument tells us that there are 35310 fixed-point-free elements in G; we currently
have 47190 elements unaccounted for, of which the only type that is not fixed-point-free are those of type 2'8'. We
conclude that there are 11880 of these; on the other hand, consulting Table 2] there are 90 elements in conjugacy
class 2'8Y for the stabilizer of any two letters. Thus each conjugacy class of this type has size (122) x 90 = 11880,
and we conclude that there is a unique conjugacy class of this type.

We are left with the fixed-point-free elements of G — there are 35310 of these, and they are of types 26, 34,
224262, 418! and 210! (although we do not yet know if all of these occur). We already know that there are 9504
elements of type 2110 and this leave us 25806 elements for the rest.

Our earlier calculations imply that the centralizer of an element of type 3% is divisible by 9 but not 27; we
conclude that the centralizer is of size 9, 18 or 36. Suppose that g is of type 3%, and that Cg(g) is not of size 9
— then there is an element of type 2% that centralizes ¢ and we conclude that G contains an element h of type 62.
Now Cg(h) is of size at most 12. But now, since % = % + 3—16, we conclude that in any case there are at least
|G|/9 = 10560 elements of type 3% or 62.
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Type | 112 | 2* | 26 | 33 31 4% | 2242 | 5% | 236 | 62 218l | 4@l | 2t10! | 1147 | 11%7
Size | 1 | 495 | 396 | 1760 | 2640 | 2970 | 2970 | 9504 | 15840 | 7920 | 11880 | 11880 | 9504 | 8640 | 8640
TABLE 4. Conjugacy class sizes in G2

The remaining fixed-point-free elements of G all have order a power of 2. Let us, therefore, examine P, a Sylow
2-subgroup of G. Since P is of size 64, we know that P does not fix any points; thus the orbit structure of P is
either 8—4 or 8—2—2 (since a Sylow 2-subgroup of Gy has orbit structure 8—1).

Suppose that the orbit structure is 8 —2—2. If « is a point in an orbit of size 2, then P, is a normal index 2
subgroup of P, and so P, fixes all points in the orbit. If 8 is in the other orbit, then Pg does likewise, and so
P, N P3 has size at least 16 and fixes 4 points, a contradiction.

Thus the orbit structure is 8—4. Let A be the orbit of size 4, let T be the orbit of size 8, and let K be the kernel
of the action on A; then K = Qg, the Sylow 2-subgroup of Gy. Since N = Ngyn(s)(K) has size 192 =64 x 3, we
conclude that P is isomorphic to a Sylow 2-subgroup of N. What is more the natural map P — Sym(4), given by
considering the action of P on A, yields that P/K = Dy, the dihedral group of order 8.

Next observe that C' = Cgyms)(K) is isomorphic to Qg, and Z(C) = Z(K); indeed all non-central elements of
C and K act on I as elements of type 4—4 that all square to the same element. Then the non-central elements of
C must be of type 4—4— 2—2 in the action on ; in particular C' induces the normal Klein 4-subgroup of Sym(4)
in the action on A. But now one can easily check that the four cosets of K in N \ C all contain an 8-cycle; since
two of these cosets must induce a 4-cycle on A, we conclude that G contains elements of type 8 —4. These elements
are self-centralizing in Alt(12), and so likewise in G; what is more there are not enough elements left unaccounted
for to allow for more than one such conjugacy class. Thus there is a unique conjugacy class of type 8 —4 and it has
size |G|/8 = 11880.

There are, in addition, elements of type 2242, and these have a centralizer of size at most 32; again, a count of
remaining elements leads us to conclude that there is a unique conjugacy class of elements of this type and it has
size |G|/32 = 2970.

At this stage, then, we have %|G| elements unaccounted for; these are of type 3%, 62 and/or 2%, and we know
that at least 2%|G| of them are of type 3* or 62. Thus there are at most |G|/240 elements of type 26. If there are
no elements of type 26 centralized by an element of order 3, then we conclude that there is a unique conjugacy class
of elements of type 26, and it must have size |G|/320. But this also means that there are no elements of type 62,
and that the elements of type 3* all have centralizers of size 9. This does not yield the correct number of elements.

We conclude that there are elements of type 2 centralized by elements of order 3. By counting remaining
elements, we conclude that there is a unique conjugacy class of elements of type 62, and it has size |G|/12; similarly,
there is a unique conjugacy class of elements of type 3%, and it has size |G|/36.

There are, therefore, |G|/240 elements of type 2%; let g be one such. Notice, first, that a Sylow 3-subgroup of G
does not have a subgroup of order 9 for which all elements are of type 3*; we conclude that |Cg(g)| is not divisible
by 9. Next, notice by our arguments above, that we can take g ¢ Z(K(C); it is now an easy matter to check that
|Cp(g)| < 16, where P is a Sylow 2-subgroup of G. Thus |Cg(g)| has size at most 240 and we conclude that there
is exactly one conjugacy class of elements of type 26.

We summarise what we have worked out in Table[dl Note that we have asterisked the two conjugacy classes that
are not real; it is clear that these are the only possible conjugacy classes that have a chance of being non-real, and
it is equally clear that they are non-real, since they are non-real in Alt(12).

3. CHARACTER TABLES

In this section we work out the character tables of Gy, G109, G11 and G12. To do this we will need nothing more
than the basics of ordinary character theory, along with enough information about the ordinary characters of the
symmetric group to calculate irreducible characters for Gys.

As a reminder we note down five results that will be particularly useful in what follows.

Theorem 3. [JLO1l, p. 342] If G acts 2-transitively on a finite set Q, then the character given by x(g) = |fix(g)] —1
is irreducible.

Theorem 4. [JLOI, p. 196] Let G be a finite group and let g € G. Let x be a faithful irreducible character of
G, then x*(g) decomposes as the direct sum of a symmetric part 3(x*(g9) + x(g?)) and an antisymmetric part

3(%(9) — x(g?)).



6 NICK GILL AND SAM HUGHES

Theorem 5. [JLOI, p. 236] Let G be a finite group, x € G, H < G, and suppose that H N x% breaks up into |
conjugacy classes of H. If x is a character of H, then:

(1) (X1 &) (x) = |Ca(x)] (%JFJF%)
where 1, . .

.,x; € H are representative elements of the | classes of H.

Theorem 6. [JLO1, p. 264] The number of real characters of G is the same as the number of real conjugacy classes

of G.

Next we recall the definition of the inner product on characters: if y and ¢ are characters of GG, then we define

k
_ N X90)9(9:)
<X7¢> - — |OG(91)| :

The next theorem is a reminder of Schur’s Orthogonality Relations; in particular it tells us how to use this inner
product to recognise irreducible characters.

Theorem 7. [JLO1L p. 161] Let x1,..., Xk be the irreducible characters of G and let g1,...,gr be representative

elements of the conjugacy classes of G, then for every r,s € {1,...,k} we have:
(2) (Xrs Xs) = Ors;

k
(3) ZXi(gT)E(QS) = 0rs|Ca(gr)|-

i=1
3.1. The Character Table of Gyg. We know that Gg has 6 conjugacy classes and hence 6 irreducible characters.
We also know that Gg has a normal subgroup N = C5 x C3, with G/N = Qs. We can lift 3 linear characters and
a 2 dimensional character from @Jg. The final character x5 is given by the 2-transitive action of Mg on 9 points
(Theorem [B]). The character table is given in Table

Go |19 20 33 42 43 42
vo|1l 1 1 1 1 1
yi|1l 1 1 -1 1 -1
v2|1 1 1 1 -1 -1
3|1 1 1 -1 -1 1
val2 =2 2 0 0 0
s 8 0 -1 0 0 0

TABLE 5. The character table of Gg

3.2. The Character table of G1g. Note that GG1¢ has 8 conjugacy classes, hence 8 irreducible characters. Let x¢
denote the trivial character of G19 and let x2 denote the irreducible character obtained from the 3-transitive action
of GIO-

Gio |10 20 33 42 43 5 218) 218l
X0 1 1 1 1 1 1 1 1
X2 9 1 0 1 1 -1 -1 -1
We will now try inducing characters from the point stabilizer Gg. Let x be a character of Gy, then using the
centralizer orders and Theorem [5l we have:

10x(g) if g € 119;

2x(9) if g € 2%, 4%;
(X T G10)(9) = { x(gB) + x(9c) if g € 4%;

x(9) if g € 3%

0 otherwise.

Here g4 and gp are elements from the Gg-classes 4% and 42 respectively.) Let xa, xg and ¢ denote the lifts of
g g A B y XA, X X
the characters x1, x2 and x4 for Gy respectively (see Table ().
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xya |10 2 1 -2 0 0 0 0
xs |10 2 1 2 -2 0 0 0
xe |20 -4 2 0 0 0 0 0

Taking inner products of the characters we find that x4 is irreducible, (xp,x5) = 2 and (xc, xc) = 2. To keep
with our naming convention, relabel x4 to x4. Our next strategy will be to construct the anti-symmetric parts
of both x3 and x?2, we will skip over the symmetric decomposition of these characters because they do not yield
information that is useful to our endeavours. Let xp and xg denote the antisymmetric components of x5 and x?
respectively.

XD 36 -4 0 0 0 1 0 0
XE 45 -3 0 1 -1 0 0 0

Taking inner products of xp with known irreducible and compound characters we find that {(xp,xp) = 3 and
{xc,xp) = 2. Let x7 = xp — xc; then {x7,x7) = 1 and, since x7(1) > 0, we conclude that 7 is an irreducible
character. Repeating the process with xg we find that (xg, xg) =4, (X7, xg) =1, {xB,xE) = 1 and (xc, xE) = 2.
Let x5 = XE — X7 — XC = XE — XD, then (x3,x3) = 1 and, since x3(1) > 0, we conclude that y3 is an irreducible
character

ys |9 1 o0 1 -1 -1 1 1
x- |16 0 -2 0 0 1 0 0

Finally, observe that (xp,x3) = 1. Then x1 = xp — X3 is irreducible. Using Theorem [@ and the fact that Gy
has two non-real classes, we conclude that the remaining two characters occur as a complex conjugate pair. These
can, then, be calculated using the Schur orthogonality relations.

G |10 24 3% 42 42 52 218 218L
Xo 1 1 1 1 1 1 1 1
X1 1 1 1 1 -1 1 -1 -1
Xa 9 1 0 1 1 -1 -1 -1
Y3 9 1 0 1 -1 -1 1 1
ya |10 2 1 -2 0 0 0 0
vs |10 =2 1 0 0 0 w
6 |10 =2 1 0 0 0 @ w
xr |16 0 -2 0 0 1 0 0

TABLE 6. The character table of G1g, where w = /—2.

3.2.1. The Structure of G1o. Using the character table, the following result can be easily derived about the structure
of GlO-

Theorem 8. The group Gig is a non split extension of Ca by a normal subgroup K = ker(x1).

Proof. As the kernels of characters are normal subgroups we see that K < G1g and moreover this is the only non
trivial proper normal subgroup of G1g. Observe that G1o/K = Cs. Since there are no involutions in Gio \ K, we
conclude that we have a non-split extension. 0

3.3. The Character Table of G1;. By assumption (G171 acts 4-transitively on a set of size 11. By considering the
number of fixed points of each conjugacy class we obtain a 10 dimensional irreducible character x1 (Theorem []).

G11 o2t 33 42 52 21316t 218L 218L 11l 11}

X0 1 1 1 1 1 1 1 1 1 1

X1 10 2 1 2 0 -1 0 0o -1 -1
Now, let xs and xa be the symmetric and antisymmetric decomposition of x3.

XS 5 7 1 3 0 1 1 1 0 0

XA 45 -3 0 1 0 0 -1 -1 1
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A quick calculation gives (xs,xs) =3 and (x4, xa) = 1. Moreover, {(xs, xo) = 1 and (xs, x1) = 1. Define xs = xa
and x7 = xs — xo — x1 and note that (x7,x7) = 1. Hence we have found two new irreducible characters of G1;.
X7 4 4 -1 0 -1 1 0 0 0 0
X8 45 -3 0 1 0 0 -1 -1 1 1

3.3.1. Induction from G19. We will now try inducing characters from the 1-point stabilizer subgroup Gi1g9. Let x
be a character of Gyg; then, using the centralizer orders and Theorem [l we have:

11x(g) if g € 119;
3x(9) if g € 2%
2x(g if g € 33,
(x T Gu)lg) = ( . 5
x(94) +2x(gB) if g € 4%
x(9) if g € 5%, 218Y, 2!8};
0 otherwise.

(Here g4 and gp are elements from the Gio-classes 4?4 and 423 respectively.) Let x4 be the induced character of the
non trivial linear character of Gy and let xo be the the anti-symmetric decomposition of x3.

X4 1 3 2 -1 1 0 -1 -1 0 0

X9 5 -1 1 -1 0 -1 1 1 0 0
We find that (x4, x4) = 1 and {x9, x9) = 1, hence, they are both irreducible characters of G1;.

3.3.2. Schur Orthogonality. The remaining four characters come in complex conjugate pairs. We can deduce this
by using the fact that elements of cycle type 2'8! and 11! are not real and applying Theorem [Bl Given that each
pair will have the same dimension, we can attempt to calculate the dimension of these 4 remaining characters. Let
the dimension of the first pair be d; and the dimension of the second pair be ds.

We have d? + d3 +d3+ d3 = 712, hence d? 4+ d3 = 356. By an exhaustive search we find that 356 can be expressed
as the sum of two squares in exactly one way, that is 356 = 102 + 162. It immediately follows that d; = 10 and
ds = 16.

Let x2(1) = x3(1) =10 and x5(1) = x6(1) = 16. We will now use the column relations to calculate the character

values for the remaining conjugacy classes. We use the fact that x(g9) = x(¢~!), and let the characters take the
following values:

X2 11 1 22 23 @y x5 e Tg w7 T7
X3 11 1 22 23 @y x5 Tg ®e Ty T7
X5 16 vy1 Y2 ys wa Ys Ye  Ys Y1 Yt
X6 16 y1 Y2 ys wa Ys Y6 Yo Y7 Y7

Substituting the column containing x; for ¢ = 1,...5 and the first column of the character table into ([B]) we can
obtain values for x; and y;. We shall demonstrate this with x;:

1420 +2x 1021 +33+2 x 16y; + 176 — 135 — 55 = 0
(4) = 521 + 8y = —10.

Substituting the column containing z; into ([B)) twice gives:

1+442234+9+2y7+16+9+1=48

(5) = zt+yi =4
Solving @) and (Bl), we obtain two solutions 1 = —2, y; = 0 and z; = %, Y1 = %. The second set of these
cannot be expressed as sum of 2nd roots of unity. Hence, ;1 = —2 and y; = 0. Continuing in this manner we

obtain:
X2 10 -2 1 0 0 1 X6 Tg xT7  XT7

xs |16 0 -2 0 1 0 w ¥ vy U1

The remaining values xg, =7, yg, and y7 can be calculated by repeat applications of the row and column relations.
We find that z¢ = V=2, z7 = —1, yg = 0 and y; = %(—1 + +/—11). Table [ shows the complete character table.
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G11 o2t 33 42 52 21316t 218Y 218) 11l 11}
X0 1 1 1 1 1 1 1 1
X1 10 2 1 0 -1 0 0o -1 -1
X2 10 -2 1 0 1 o a -1 -1
X3 10 -2 1 0 0 1 a a -1 -1
X4 1 3 2 -1 1 0 -1 -1 0 0
X5 6 0 -2 0 1 0 0 0o B B
X6 6 0 -2 0 1 0 0o B B
X7 4 4 -1 0 -1 1 0 0 0
X8 45 -3 0 1 0 0 -1 -1 1 1
X9 5. -1 1 -1 0 -1 1 1 0 0
TABLE 7. The character table of G, where o = v/—2 and 8 = %(—1 +—11).

3.4. The Character Table of G12. We begin by noting that G2 has 15 conjugacy classes and 15 irreducible
characters, one of which is the trivial character xg.

3.4.1. The Permutation Character and Tensor Products. By assumption, G712 acts 5-transitively on a set of size 12.
Hence, by Theorem [3] we get the permutation character y;.

G | 112 24 26 33 31 42 2242 52 21316 62 2181 418! 2'10' 11} 11}

X0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X1 1 -1 3 2 -1 3 -1 1 0 -1 -1 1 -1 0 0
Now, let xs and x4 be the symmetric and antisymmetric decomposition of x?.

XS 66 10 6 3 0 6 2 1 1 0 2 0 1 0 0
XA % -1 =5 1 1 3 -1 0 -1 1 -1 1 0 0 0

A quick calculation gives (xs,xs) = 3 and (x4, xa) = 1. Moreover, (xs, xo) = 1 and (xs, x1) = 1. Define xs = x4
and x¢ = X5 — Xo — X1- We have found two new irreducible characters of G12. Squaring these characters, however,
is not a viable plan; the characters obtained have dimensions 2916 and 3025.

X6 54 6 6 0 0 2 2 -1 0 0 0 0 1 -1 -1
X8 5 -1 =5 1 1 3 -1 0 -1 1 -1 1 0 0 0

3.4.2. Induction from G11. We will now try inducing characters from the subgroup Gi;. Let x be a character of
(G11; then using the centralizer orders and Theorem [5] we have:

12x(g) if g € 112
4x(g) if g € 24,42,
3x(9) if g € 3%
(x T G12)(9) = { 2x(9) if g € 5%
x(9) if g € 21361, 114, 11};
x(g4) +x(gp) if g € 2'8%;
0 otherwise.

(Here g4 and gp are elements from the Gqi-classes 2!8Y and 2'8% respectively.) Inducing the trivial character of
(11 gives a character equal to xo+ x1. Inducing the integer valued 10-dimensional character gives a character equal
to x1 + x6 + xs- Now, let x12 be the induced character of a complex valued 10-dimensional character of G11. We
see that (x12, x12) = 1, therefore, 12 is irreducible.

Let xv be the character obtained by inducing the 55-dimensional character of G1;. Finally, let x g be the induced
complex valued 16-dimensional character of G'1; and let w = %(—1 + +/—11), then we have:
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X12 120 -8 0 3 0 0 0 0 0 1 0 0 0 -1 -1
XV 660 —4 0 3 0 0 -4 0 0 -1 2 0 0 0 0
XB 192 0 0 -6 O 0 0 2 0 0 0 0 0 w w

Note that (x5, x5) = 2 and (xv, xv) = 6, but the inner product of x5 with any known irreducible is 0. We have
{xv,Xx12) = 1, but the inner product is 0 for any other known irreducibles. These do not give us any new irreducible
characters, but we will use these characters later.

3.4.3. Restriction from Sym(12). Using the Frobenius character formula, it is possible to construct low dimensional
characters of Sym(12) evaluated over the conjugacy classes of Gia; recall that these characters are labeled with
partitions of 12. In this section we consider the restriction of some of these characters to the group Gy2; for instance
we note that (x(11,1) 4 G12) = X1, (X(10,2) + G12) = x2 and (x(10,1,1) 4 G12) = X3-

The table below gives six new characters that we have constructed in this way. Note that we abuse notation
here: given a partition, A, of 12, we would normally write y, for the associated character of Sym(12) whereas
here we write x) for the restriction of the associated character to G12. Note too that, for ease of notation, we let
Aa=(9,1,1,1) and Ag = (8,1,1,1,1)A

Gy |12 24 26 33 3¢ 42 2242 52 213161 62 2181 418! 210! 11} 11}
Xog) [154 10 —6 1 4 -2 -2 -1 1 o 0 0 -1 0 0
Xa, | 165 —11 5 3 1 1 0 1 -1 -1 -1 0 0 0
Xsa) [275 11 15 5 —4 -1 3 0 -1 0 -1 1 0 0 0
X7s) [207 9 —15 0 0 5 -3 2 0 0 -1 -1 0 0 0
Xs21)[320 0 0 —4 —4 0 0 0 0 0 0 0 0o 1 1
Yap |330 -6 10 6 -3 -2 -2 0 1 0 0 0 0 0 0

We first check the inner product of each character with itself and then with each of the known irreducibles. We
find that the (xx,,xa.) = 2 and (xa,,x12) = 1, define x5 = xa, — x12 and note that (x5, x5) = 1. Hence, we have
found a new irreducible character of G1a.

s |4 -3 5 0o 3 1 1 0 0 -1 -1 -1 0 1 1

We find that (xxg,Xxs) = 3 and that (xaz,x12) = 1, hence we define xx = xxp — X12. Similarly we find that
(X(8,4)s X(8,4)) = 4 and that (x(s4),Xx6) = 1, hence we define xy = x(s4) — x6. Checking the inner products of
xx and yy with themselves and each other we obtain (xx,xx) = 2, {xv,Xxy) = 3 and {xx,xy) = 2. Define
X2 = Xy — Xx, we find that (x2, x2) = 1; we have found a new irreducible character of G1s.

Xy 221 5 9 5 —4 -3 1 1 -1 0o -1 1 -1 1 1
XX 20 2 100 3 -3 -2 -2 O 1 -1 0 0 0 1 1
X2 ‘ 1 3 -1 2 -1 -1 3 1 0 -1 -1 1 -1 0 0

Let xs and xa be the symmetric and antisymmetric decomposition of x3. We find that xs = xo + X2 + X6 and
X9 = XA is a new irreducible.

X9 ‘55 -1 -5 1 1 3 -1 0 -1 1 1 -1 0 0 0

2The history of this sort of restriction is worth a note: a classical result of Frobenius asserts that if ¢ is a natural number with
t < n/2, then a subgroup G < Sym(n) is 2t-transitive if and only if every character of Sym(n) labeled by a partition (A1, A2,...,\a)
with A2 4+ -+ + A¢ < ¢ remains irreducible when restricted to G. This result appears in [Fro04], the same paper in which Frobenius
calculates the character tables of M12 and May; indeed Frobenius makes use of this result in his calculation of these tables. Note that
Theorem [Bis a special case of Frobenius’ result. A modern version of Frobenius result, making use of the Classification of Finite Simple
Groups, was given in a beautiful paper of Saxl [Sax87] — his theorem considers G, a subgroup of Sym(n) or of Alt(n) and x, an ordinary
character of Sym(n) or of Alt(n), and he describes all pairs (x, G) where the restriction of x to G is irreducible. In our proof we do not
make use of Frobenius’ (or Saxl’s) result — it is enough for us to be able to calculate the restriction of various characters of Sym(12)
directly and naively.
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We will now check the inner product of every restricted character and xy with our known irreducible characters

of G12.
Character | xo X1 X2 X5 X6 Xs X9 X12
X(9,3) o o 0 o O o 0 o
XAa 0O 0o 0 1 0 o0 o0 1
X(8,4) 0O 0o 1 o 1 0 0 O
X(7,5) o 1 0 o 1 0 0 O
X(3,2,1) 0o o 0 O O o0 o0 o0
XAn 0O 0 0 O O o0 O 1
XV O 0o 0 1 0 o0 O 1
Define the following characters:
XC = X(9,3)
XD = X(7,5) — X1 — X6
XE = X(3,2,1)
XF = Xap — X12
XW = XV — X5 — X12
The values of these are as follows.
er 11224 26 33 3% 42 2242 52 213161 62 28 418! 210! 11Y 11}
Xc 154 10 -6 1 -2 -2 -1 1 0 0 0 -1 0 0
XD 231 7 -9 -1 -1 -1 1 1 0o -1 -1 1 0 0
XE 320 0 0 -4 -4 0 0 0 0 0 0 0 1 1
XF 20 2 10 3 -3 -2 =2 0 1 -1 0 0 0 1 1
xw | 485 b 5 -1 -1 -3 -3 0 -1 -1 1 1 0 1 1

Taking the inner products of each of these new characters with each other gives the following:

XC XD XE XF XW

Xc
XD
XE
XF
Xw

_ o O = N

— O = N

0

1
2
1
2

0

0
1
2
2

=~ N N =

Note, first, that this table of values implies that each of these characters is the sum of distinct irreducibles.
Writing these irreducibles as «, 3,7, and so on, we see immediately that we can write

Xc =a+f;
xXp =B+
XE =7 +0;
XF=7+6€

Xw=a+v+d+e

Now one obtains that a = %(XW —xrF + Xc — xXp)- Once we have « it is an easy matter to obtain the other four
irreducibles using the equalities just given. We therefore have five new irreducibles which we label as follows:

a=x11, B= X7, 7= X14, 0 = X13, € = X10-

Finally, we return to the character yp from earlier. We find that (x5, x14) = 1, and so we define x5 = x5 — Xx14.
Letting x4 be the complex conjugate of x3, we obtain our final two irreducibles. The full character table is given

in Table 8
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Gip |12 2% 26 33 3% 42 9242 52 91316l 2 2181 418! 210! 114 11}
xo |1 1 1 1 11 r 1 1 1 1 11
xx |11 3 -1 2 -1 3 -1 1 0 -1 1 -1 -1 0 0
X2 |11 3 -1 2 -1 -1 3 1 0 -1 -1 1 -1 0 0
xs |16 0 4 —2 1 o 1 0 1 0 -1 w @
X« |16 0 4 -2 1 0 o0 1 0 1 0 0 -1 T w
Xs |4 -3 5 0 3 1 0 0 -1 -1 -1 0 1
Xe |54 6 6 0 0 2 2 -1 0 0 0 0 1 -1 -1
X« | 7 -5 1 1 -1 -1 0 1 1 -1 -1 0 0 0
xs | -1 -5 1 1 -1 3 0 -1 1 -1 1 0 0 0
X |5 -1 -5 1 1 3 -1 0 -1 1 1 -1 0 0 0
Xo [66 2 6 3 0 -2 -2 1 -1 0 0 0 1 0 0
xu |99 3 -1 0 3 -1 -1 -1 0 -1 1 1 -1 0 0
X2 [120 -8 0 3 0 0 O O 1 0 O 0 0 -1 -1
xi3 [144 0 4 0 -3 0 0O -1 o0 1 0 0 -1 1 1
X4 |[176 0 -4 —4 -1 0 O 1 0 -1 0 0 1 0 0

TABLE 8. The character table of Gyz, where w = (=14 v/=11).

4. FINAL REMARKS

One can read off many properties of the groups G11 and G2 by looking at the character tables that we have
constructed. Note, for instance, that all of the irreducibles of the two groups have trivial kernel; one concludes
immediately that G11 and G152 are simple.

We saw above, in §2.1] that Gg = (C3 x C3) X Q5. We should note that, although we have not deduced the
isomorphism types of G19, G11 and G2, in each case it is well-known that they are unique up to group isomorphism.
Indeed G19 = Mg, the unique non-split degree 2 extension of Alt(6), while G117 = M;; and Gi2 = Mo, the two
smallest sporadic simple groups of Mathieu.
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