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THE CHARACTER TABLE OF A SHARPLY 5-TRANSITIVE SUBGROUP OF
THE ALTERNATING GROUP OF DEGREE 12

NICK GILL AND SAM HUGHES

Communicated by

ABSTRACT. We calculate the character table of a sharply 5-transitive subgroup of Alt(12), and of a
sharply 4-transitive subgroup of Alt(11). Our presentation of these calculations is new because we
make no reference to the sporadic simple Mathieu groups, and instead deduce the desired character

tables using only the existence of the stated multiply transitive permutation representations.

1. INTRODUCTION

Let Alt(n) denote the alternating group on n points. In this paper we will be interested in subgroups
of Alt(n) that are sharply k-transitive, for some integer k& > 4. Recall that a permutation group G
acting on a set (2 is sharply k-transitive if, first, G acts transitively on the set of k-tuples of distinct
elements of € and, second, the (point-wise) stabilizer of any k-tuple of distinct elements of € is trivial.

Notice that “l-transitivity” is the same as “transitivity”. In this paper we prove the following theorem.
Theorem 1.1.

(1) If G is a sharply 5-transitive subgroup of Alt(12), then its character table is given by Table[]]
(2) If G is a sharply 4-transitive subgroup of Alt(11), then its character table is given by Table[d

A corollary of this theorem is that the subgroups in question are simple groups. This theorem is not
new — item (1) is a consequence of the fact that the sporadic simple Mathieu group M3 is the unique
sharply 5-transitive subgroup of Alt(12), and the fact that the character table of Mjs is known; item
(2) is a consequence of the two analogous statements for the sporadic simple Mathieu group Mp;. Our

proof of the theorem is new, however, because it makes no reference whatsoever to the groups Mi
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Gip | 112 20 26 33 31 42 2242 52 21316l 62 218! 418! 2'10! 11} 11}

X0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X1 1 3 -1 2 -1 3 -1 1 0 -1 1 -1 -1 0 0
X2 1 3 -1 2 -1 -1 3 1 0 -1 -1 1 -1 0 0
X3 6 0 4 -2 1 0 0 1 0 1 0 0 -1 w w
X4 6 0 4 -2 1 0 0 1 0 1 0 0 -1 w w
X5 45 -3 5 0 3 1 1 0 0 -1 -1 -1 0 1 1
X6 54 6 6 0 O 2 2 -1 0 0 0 0 1 -1 -1
X7 5 7 =5 1 1 -1 -1 0 1 1 -1 -1 0
X8 55 -1 -5 1 1 -1 3 0 -1 1 -1 1 0
X9 % -1 -5 1 1 3 -1 0 -1 1 1 -1 0

X10 66 2 6

3 0

x1 9 3 -1 0 3 -1 -1 -1 0 -1 1 1 -1
3 0
0

x12 | 120 =8 O 0 0 0 1 0 0 0 0 -1 -1
x13 | 144 0 4 -3 0 0 -1 0 1 0 0 -1 1 1
x4 | 176 0 —4 —4 -1 0 0 1 0 -1 0 0 1 0 0

TABLE 1. The character table of Gz, where w = $(—1+ /=11).

Gun | 1M 2t 33 42 52 213l6! 218Y 218 11} 11}
xo |1 1 1 1 1 1 1 1 1 1
xt [0 2 1 2 0 -1 0 0 -1 -1
x2 |10 -2 1 0 0 1 a a -1 -1
x3 |10 -2 1 0 0 1 @a a -1 -1
x+ |11 3 2 -1 1 0 -1 -1 0 0
xs |16 0 -2 0 1 0 o o0 B B
xe |16 0 —2 0 1 0 0O 0 B8 p
xr |4 4 -1 0 -1 1 0o 0 0 0
xs |4 -3 0 1 0 0 -1 -1 1 1
xXo |5 -1 1 -1 0 -1 1 1 0 0

TABLE 2. The character table of G11, where a = /=2 and 8 = $(—1+ /—11).
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and Mio but, instead, deduces the character table using nothing more than the stated assumptions
about sharp multiple transitivity.

The motivation in proving this theorem starts with Frobenius’ famous 1904 paper in which (amongst
many other things) he calculates the character table of M9 and May [Fro04]. Understanding Frobenius’
methods is important because, in the late nineteenth century, there appeared to be some lingering
doubt as to the “existence” of the Mathieu groups (that is to say, people questioned whether the
permutations that Mathieu wrote down in his original paper [Mat73] generated alternating groups,
rather than any genuinely “new” groups). As late as 1897, Miller published a paper claiming that
My, did not exist [Mil97], although he retracted this claim soon after [Mil00].

In fact, studying Frobenius’ 1904 paper, it seems that Frobenius was in no doubt as to the existence
of the Mathieu groups and, indeed, he uses specific properties of these groups when he calculates their
character tables (see the MathOverflow discussion on this subject for more detail [Lad]). Nonetheless,
it is natural to ask whether, in principle, Frobenius could have calculated the character table of Mis
using nothing more than the property of sharp 5-transitivity — the main result of this paper confirms
that the answer to this question is “yes”! In particular, note that the proof of Theorem below uses
little more than the basics of character theory, all of which would have been available to Frobenius in
1904 — the results that we make use of are summarized at the start of

There is interest from others in results similar to our main theorem; note, for example [LP10, §2.10],
where the authors calculate the character table of the Mathieu group M;i; using only its simplicity,
and its order. Note that our hypothesis is slightly different and that we also deal with the Mathieu
groups Mg and Mg as well as the sporadic simple group Mis. In addition, our methods are somewhat
more elementary: in [LP10], the theory of Frobenius-Schur indicators is employed; this theory was not

introduced until 1906 [ES06], some time after the publication of Frobenius’ 1904 paper.
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2. CONJUGACY CLASSES

In what follows we will consider groups Gg, G1g,G11 and Gi1s. For ¢ = 9,...,12, the group G;
denotes any sharply (i — 7)-transitive subgroup of Alt(¢) on i points. In this section we calculate the
conjugacy class structure of Gg, G1g, G117 and Go.

We label conjugacy classes via the cycle structure of their elements. Where there is more than one

conjugacy class with the same cycle structure, they are distinguished with subscript Roman letters —
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Type | 19 | 24 | 33 | 42 | 4% | 42,

Size | 1 | 9 | 8 [ 18| 18 | 18
TABLE 3. Conjugacy class sizes in Gg

see, for instance, Table |3 which lists the conjugacy classes of Gy, three of which contain elements of
type 42.

We remind the reader that a conjugacy class C' of G is called real if any element of C' is conjugate
to its inverse; similarly, a character of GG is called real if it takes real values for all elements of G. The

connection between these two concepts is given in Theorem [3.4] and will be exploited in

2.1. The conjugacy classes of Gg. Let N be a minimal normal subgroup of Gg. Since |Gg| = 72,
and Gy is sharply 2-transitive on 9 points, N must be elementary-abelian of size 9; moreover N must
act regularly on the set {1,...,9}. Now 2-transitivity implies that the stabilizer of the point 1, call it
H, acts transitively on the set {2,...,9}; since H is of order 8, we conclude that H acts regularly on
the set {2,...,9} and so H acts (by conjugation) regularly on the non-identity elements of N. This
action induces a 1-1 homomorphism H — Aut(N) = GL2(3).

Thus H is a group of order 8 that is isomorphic to a subgroup of GL2(3) that acts regularly on
the set of non-zero vectors in the associated vector space. An easy matrix calculation confirms that
H = Qg; thus G = (C3 x C3) % Qs.

The conjugacy classes of Gg can now be written down in Table 3| Note that all classes are real.

2.2. The conjugacy classes of G1g. The group G = Gy has order 720, and elements that fix at
least one point must have cycle structure in the list given in Table [3] with the possibility of fusion for
the elements of cycle type 42.

When one considers the cycle type of fixed-point-free elements of G, one must exclude all elements
that have non-identity powers that fix elements and that are not of a type listed in Table One
obtains immediately that the only possible new cycle types are 52 and 218!

There must be an element g € G of type 52, since 5 divides |G|. What is more, since Can(10)(9) = (9),
we conclude that Cg(g) = (g) and so the conjugacy class containing g has size 144. Let P = (g),
a Sylow 5-subgroup of Gig. Since Cg(P) = P, and Ng(P)/Cq(P) < Aut(P) = C4. We conclude
that Ng(P) has order dividing 20. Sylow’s theorems tell us that |G : Ng(P)| = 1 (mod 5) and we
conclude that |Ng(P)| = 20. Since all conjugates of P intersect trivially, we conclude that G contains
144 elements of order 5, hence there is precisely one conjugacy class of elements of type 5°.

We now consider the elements of type 32 (these come from the Gy subgroup, see Table . For
elements of type 33, we observe first that an element of this type fixes a unique point and, since the
stabilizer of a point contains a unique Sylow 3-subgroup of G, we conclude that each element of type
33 lies in a unique Sylow 3-subgroup of G. Now we use the fact that the stabilizer of a point is maximal
in G to conclude that there are precisely 10 Sylow 3-subgroups and, therefore, 80 elements of type 3>
in G.
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Type | 110 | 24 | 33 | 42 | 4% | 52 | 218L" | 218L7

Size | 1 |45(80| 90| 180 | 144 | 90 90
TABLE 4. Conjugacy class sizes in G1g

All remaining elements, of which there are 450, must be of type 4% or 2'8'. Now let P be a Sylow
2-subgroup of G and observe that P has two orbits, of size 2 and 8. Let {9,10} be the smaller orbit;
then the stabilizer of 9 is equal to the stabilizer of 10 and is equal to (g, a Sylow 2-subgroup of Gj.
The points in the other orbit each have stabilizers in P of size 2, and there are four distinct stabilizers;
this leaves four elements which must be fixed-point-free, and hence are of type 2'8'. What is more
these elements cannot be central in P, otherwise P would be abelian. We conclude that there are at
most two conjugacy classes in G of elements of type 2!8!, and they have size 90 (since they do not
commute with any non-identity elements of odd order).

In fact, it is clear that any Sylow 2-subgroup of Gig is characterized by its orbit of size 2. This
implies, first, that, since the same is true of elements of type 2!8!, each element of type 2'8' is in
a unique Sylow 2-subgroup; it implies, second, that there are precisely 45 Sylow 2-subgroups of G,
and so there are 180 elements of type 2!8!, split into two conjugacy classes of size 90.

Now there are at most three conjugacy classes in G of elements of type 42 containing a total of 270
elements; since these elements are real in Gg, they are real in G19 and so the classes have even order.
One of these classes must be squares of elements of order 8, and so at least one conjugacy class has
size 90; the others have size 90 or 180. There are, therefore, two possibilities for elements of type 42%:
three conjugacy classes of size 90, or two of size 90 and 180. Note that, since there are 180 elements
of type 2!8!, there are only 90 elements that are squares of these. Thus if there are three conjugacy
classes of size 90, then two of these must have a centralizer isomorphic to Cy x Cs. It is easy to check,
though, that this is not possible, given that all involutions are of type 2*.

The conjugacy classes of GG1p are summarized in Table Note that we have asterisked the two
conjugacy classes that are not real — it is clear that they are the only conjugacy classes that have a
chance of being non-real; to see that they are not real, simply observe that there are no elements of
type 42 in Alt(8) that send an 8-cycle to its inverseE|

2.3. The conjugacy classes of G11. The group G = Gjp1 has order 7920, and elements that fix
at least one point must have cycle structure given in Table [ with the possibility of fusion for the
elements of cycle type 42 or 2'81.

Taking into account the same sort of considerations as before, we obtain that any fixed-point-free

elements of G must have cycle type 11! or 21361,

1t is well-known that the group Gio is, in fact, Mig, the unique non-split extension of Alt(6). One can compare
our enumeration of the conjugacy classes of G1p with the enumeration of conjugacy classes of Mo that appears in the
ATLAS [CCNT85]; note that our class 4% is labeled 4C in the ATLAS; similarly the two classes of elements of order 8
are labeled 8C and D** in the ATLAS.
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Type | 11| 2% | 33 | 42 | 52 |213%6! | 218L" | 288%™ | 1147 | 11L°

Size | 1 | 165|440 | 990 | 1584 | 1320 990 990 | 720 | 720
TABLE 5. Conjugacy class sizes in G11

An element, g, of type 11! has centralizer in Alt(11) equal to (g), hence the same is true in Gyj.
We conclude that a conjugacy class of this type has size 720. Recall, next, that in Alt(11) there are
exactly two conjugacy classes of elements of cycle type 11!, so we deduce there are at least two in
G11. Moreover, a Sylow 11-subgroup of Alt(11) has a normalizer of size 55, hence Ng(({g)) has size 11
or 55. If the former, then one immediately concludes that there are 10 conjugacy classes of this type;
this means that there are a total of 720 elements in G that are not of type 11!. Since a point-stabilizer
of G11 has size 720 and does not contain any elements of type 11!, we conclude that a point-stabilizer
of G11 is normal, a contradiction. Thus |Ng({(g))| = 55 and we conclude, furthermore, that there are
exactly two conjugacy classes in G of type 111.

We know that there is a unique conjugacy class of elements of type 5% in G1g, hence the same is
true in GG11. What is more these elements are self-centralizing, hence this class has size 1584.

Now consider an element, g, of type 33. It is clear that Cg(g) contains an involution if and only if
there is an element of type 2'3'6'. If this is not the case, then the conjugacy class of type 3% has size
7920/9 = 880, and it is the only non-trivial conjugacy class that does not have size divisible by 3. But
now 7920 — 880 — 1 = 7039 is not divisible by 3, and we have a contradiction. Hence we conclude that
|Cc(g)| is even, and contains an element of type 213'6!. Since the Sylow 2-subgroup of C Al(11)(9) 18
of size 2, we conclude that |Cg(g)| = 18 and the conjugacy class of type 3% has size 440.

Let h be an element of type 2%. Then g is central in a Sylow 2-subgroup of G, and is also centralized
by an element of type 32; it is easy to check that it is not centralized by a Sylow 3-subgroup of G,
hence the conjugacy class of involutions has size 7920/48 = 165.

Elements of type 2'8' are self-centralizing, so these conjugacy classes have size 990; any fusion
of the two conjugacy classes would have to take place in a Sylow 2-subgroup and, since this Sylow
2-subgroup is the same as for GG19, we know that there are two such conjugacy classes.

The remaining elements are of type 4% and of type 2'3'6! and they make up the remaining 2310
elements. The size of the respective conjugacy classes is 7920/8 and 7920/6 and since these two
numbers sum to 2310 we know that there is a unique conjugacy class of each type.

The conjugacy classes of GG1; are now written down in Table [5} Note that we have asterisked the
four conjugacy classes that are not real. It is clear that all the other classes are real, and it clear that
the classes of type 11! are non-real, since they are non-real in Alt(11); similarly, the classes of type
218! are non-real since they are non-real in Gy and any putative “reversing element” in Gp; would

have to lie in G1g.

2.4. The conjugacy classes of G13. The group G = Gj2 has order 95040, and elements that fix
at least one point must have cycle structure given in Table [b] with the possibility of fusion for the

elements of order 8 and 11.
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Taking into account the same considerations as before, we obtain that any fixed-point-free elements
of G must have cycle type 21101, 3191, 418! 62, 2242, 34 26, In order to exclude elements of type

319!, we need a lemma:
Lemma 2.1. Let P be a Sylow 3-subgroup of G. Then P = He(3).

Here He(3) is the Heisenberg group over the field of order 3, a group of order 27. Note that all

non-trivial elements of He(3) have order 3, hence there are no elements of order 9 in G.

Proof. Let G act sharply 5-transitively on €2, a set of 12 points. Observe that |P| = 27. There are
five groups of order 27, three abelian and two non-abelian.

Let us suppose first that P is abelian. Suppose that A is an orbit of P in its action on {1,...,12},
and let A € A. Then, since P is abelian, any elements that fixes A must fix every element in A. Since
no element of G fixes more than 4 points, this means that |A| = 1 or 3. The group P must not fix
more than 4 points, thus there are at least two orbits of P of size 3, call these A1 and As. Now the
orbit-stabilizer theorem asserts that P has a subgroup P, of order 9, that fixes every element of Aj;
similarly P has a subgroup P, of order 9, that fixes every element of As. But now P; NP5 is non-trivial
(by order considerations) and an element in the intersection fixes at least the 6 points of A; UAy. This
is a contradiction.

Suppose, then, that P is the non-abelian group of order 27 that is not He(3). This is the extraspecial
group of exponent 9; it has center, Z, of order 3; it has a normal elementary-abelian subgroup, Py,
of order 9; and all the elements in P\ Py are of order 9. Since all of the elements of order 9 are
fixed-point-free, and since a stabilizer of a point in G has order divisible by 9, we conclude that P
stabilizes a point, indeed it must fix 3 points. But, since the elements of order 3 in P have cycle type

33 this implies that all elements of P of order 3 fix the same 3 points. This is impossible. U

The same argument as before gives two conjugacy classes of self-centralizing elements of type 111
Similarly there is a single conjugacy class of self-centralizing elements of type 2'3'6!. In addition there
is an easy counting argument that says that the number of elements that fix exactly four points is
(142) x 7 = 3465. There are only two conjugacy classes that do this — of type 24 and 42; what is more,
using the fact that the stabilizer of 4 points is (Jg, we see that there are six times as many elements
of type 42 as there are of type 2*. This leaves us with 495 of type 24 and 2970 of type 42.

Let g be an element of type 52. Then |Cg(g)| is even if and only if there is an element of type
2110%. Suppose that this is not the case — then C(g) is of order 5 and all other non-trivial conjugacy
classes have order divisible by 5. But 95040 — 1 — 95040/5 is not divisible by 5, a contradiction. We
conclude that |Cg(g)| = 10, and there exist elements of type 2110'. What is more Ng((g)) must be a
group of size 40 with C(g) a normal cyclic subgroup of order 10. If h is a generator of C(g), then
Na((g)) acts by conjugation on Cg(g) = (h) and is transitive on the elements of order 10 in (h); we
conclude that there is a unique conjugacy class of elements of type 2'10', and this conjugacy class has
size 9504.
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Let us examine the Sylow 3-subgroup of G in more detail. The orbits of P must be of size 3 and 9,
and a count of elements in the stabilizers immediately yields that P contains 14 elements of type 33
and 12 that are fixed-point-free, i.e. of type 3*. Since 14 # 0 (mod 3), we conclude that the non-trivial
central elements of P are of type 33, and the centralizer of an element of type 32 is divisible by 27. In
addition, for g of type 3%, |Caj12)(9)| is not divisible by 4, and so we conclude that |Cg,,(g)| = 54.

A straightforward counting argument tells us that there are 35310 fixed-point-free elements in G;
we currently have 47190 elements unaccounted for, of which the only type that is not fixed-point-free
are those of type 2'8!. We conclude that there are 11880 of these; on the other hand, consulting

Table 4] there are 90 elements in conjugacy class 218114 for the stabilizer of any two letters. Thus

12

each conjugacy class of this type has size (2

) x 90 = 11880, and we conclude that there is a unique
conjugacy class of this type.

We are left with the fixed-point-free elements of G — there are 35310 of these, and they are of types
26 3% 2242 62, 4'8! and 2'10' (although we do not yet know if all of these occur). We already know
that there are 9504 elements of type 2'10! and this leave us 25806 elements for the rest.

Our earlier calculations imply that the centralizer of an element of type 3* is divisible by 9 but
not 27; we conclude that the centralizer is of size 9, 18 or 36. Suppose that g is of type 3, and that
Cc(g) is not of size 9 — then there is an element of type 2° that centralizes g and we conclude that G
contains an element h of type 62. Now Cg(h) is of size at most 12. But now, since % = 1—12 + %, we
conclude that in any case there are at least |G|/9 = 10560 elements of type 3* or 6.

The remaining fixed-point-free elements of G all have order a power of 2. Let us, therefore, examine
P, a Sylow 2-subgroup of G. Since P is of size 64, we know that P does not fix any points; thus the
orbit structure of P is either 8—4 or 8—2—2 (since a Sylow 2-subgroup of Gy has orbit structure 8—1).

Suppose that the orbit structure is 8—2—2. If « is a point in an orbit of size 2, then P, is a normal
index 2 subgroup of P, and so P, fixes all points in the orbit. If 3 is in the other orbit, then Pg does
likewise, and so P, N Pg has size at least 16 and fixes 4 points, a contradiction.

Thus the orbit structure is 8—4. Let A be the orbit of size 4, let I" be the orbit of size 8, and let K
be the kernel of the action on A; then K = Qg, the Sylow 2-subgroup of Gg. Since N = Ngyp,g)(K)
has size 192 =64 x 3, we conclude that P is isomorphic to a Sylow 2-subgroup of N. What is more
the natural map P — Sym(4), given by considering the action of P on A, yields that P/K = Dy, the
dihedral group of order 8.

Next observe that C' = Cgyy(s)(K) is isomorphic to Qg, and Z(C) = Z(K); indeed all non-central
elements of C' and K act on I' as elements of type 4—4 that all square to the same element. Then the
non-central elements of C' must be of type 4—4— 2—2 in the action on 2; in particular C induces the
normal Klein 4-subgroup of Sym(4) in the action on A. But now one can easily check that the four
cosets of K in N \ C all contain an 8-cycle; since two of these cosets must induce a 4-cycle on A, we
conclude that G contains elements of type 8 —4. These elements are self-centralizing in Alt(12), and
so likewise in G; what is more there are not enough elements left unaccounted for to allow for more
than one such conjugacy class. Thus there is a unique conjugacy class of type 8 —4 and it has size
|G|/8 = 11880.
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Type | 112 | 24 | 26 | 3% | 3% | 42 | 2242 | 52 |21316' | 62 | 2!8' | 418! |2t10' | 1147 | 11%7

Size 1 1495|396 | 1760 | 2640 | 2970 | 2970 | 9504 | 15840 | 7920 | 11880 | 11880 | 9504 | 8640 | 8640

TABLE 6. Conjugacy class sizes in G2

There are, in addition, elements of type 2242, and these have a centralizer of size at most 32; again,
a count of remaining elements leads us to conclude that there is a unique conjugacy class of elements
of this type and it has size |G|/32 = 2970.

At this stage, then, we have %KJ | elements unaccounted for; these are of type 3%, 62 and/or 29,

29|G| of them are of type 3% or 62. Thus there are at most |G|/240 elements

and we know that at least
of type 26. If there are no elements of type 26 centralized by an element of order 3, then we conclude
that there is a unique conjugacy class of elements of type 2%, and it must have size |G|/320. But this
also means that there are no elements of type 62, and that the elements of type 3% all have centralizers
of size 9. This does not yield the correct number of elements.

We conclude that there are elements of type 2° centralized by elements of order 3. By counting
remaining elements, we conclude that there is a unique conjugacy class of elements of type 62, and
it has size |G|/12; similarly, there is a unique conjugacy class of elements of type 3%, and it has size
|G|/36.

There are, therefore, |G|/240 elements of type 2%; let g be one such. Notice, first, that a Sylow
3-subgroup of G does not have a subgroup of order 9 for which all elements are of type 3*; we conclude
that |Cq(g)| is not divisible by 9. Next, notice by our arguments above, that we can take g € Z(KC);
it is now an easy matter to check that |Cp(g)| < 16, where P is a Sylow 2-subgroup of G. Thus
|Cc(g)| has size at most 240 and we conclude that there is exactly one conjugacy class of elements of
type 26,

We summarise what we have worked out in Table[6] Note that we have asterisked the two conjugacy
classes that are not real; it is clear that these are the only possible conjugacy classes that have a chance

of being non-real, and it is equally clear that they are non-real, since they are non-real in Alt(12).

3. CHARACTER TABLES

In this section we work out the character tables of Gg, G19, G11 and G12. To do this we will need
nothing more than the basics of ordinary character theory, along with enough information about the
ordinary characters of the symmetric group to calculate irreducible characters for Gys.

As a reminder we note down five results that will be particularly useful in what follows.

Theorem 3.1. [JLOI, p. 342] Let G act 2-transitively on a finite set Q, let g € G and define fix(g) to
be the set of points in Q fized by g. Then the function x(g) = |fix(g)| — 1 is an irreducible character.

Theorem 3.2. [JLOI, p. 196] Let G be a finite group and let g € G. Let x be a character of G,

then x%(g) decomposes as the direct sum of two characters, a symmetric part %(XQ(g) +x(g?)) and an

antisymmetric part %(XQ(g) — X(gZ)).
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Theorem 3.3. [JLO1, p. 236] Let G be a finite group, let H < G and suppose that x is a character
of H. For z € G, we set { to be the number of H-conjugacy classes making up H N zC and, provided
>0, we define

x(z1) X(@e) >
3.1 G)(z)=|Cal@)|| =+ -+,
where x1,...,xy € H are representative elements of the ¢ classes of H. If £ = 0, then we define

(x T G)(x) =0. Then x T G is a character of G.

Theorem 3.4. [JLOIl p. 264] The number of real characters of G is the same as the number of real

conjugacy classes of G.

Next we recall the definition of the inner product on characters: if x and ¢ are characters of G,
then we define

k
o x(gi)o(gi)
<Xa¢> - — |CG(gz)’ :

The next theorem is a reminder of Schur’s Orthogonality Relations; in particular it tells us how to use

this inner product to recognise irreducible characters.

Theorem 3.5. [JLOI, p. 161] Let x1,...,xx be the irreducible characters of G and let gi,..., gy be

representative elements of the conjugacy classes of G, then for every r,s € {1,...,k} we have:
(3.2) <X'r7 Xs> = 57“35
k
(3.3) > xilgr)Xa(gs) = 6rs|Ca(gr)].
i=1

Note that (3.2)) implies that if y is a character of G such that (x, x) = 1, then x is irreducible.

3.1. The character table of Gyg. We know that Gg has 6 conjugacy classes and hence 6 irreducible
characters. We also know that Gg has a normal subgroup N = C5 x C5, with G/N = Qg. We can
lift 3 linear characters and a 2 dimensional character from Qg. The final character x5 is given by the
2-transitive action of Gy on 9 points (Theorem . The character table is given in Table

Gy |19 20 33 4% 43 42
xo|1 1 1 1 1 1
xi|1 1 1 -1 1 -1
21 1 1 1 -1 -1
3|1 1 1 -1 -1 1
xe|2 -2 2 0 0 0
xs|8 0 -1 0 0 0

TABLE 7. The character table of Gy
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3.2. The character table of G1y. Note that GG1p has 8 conjugacy classes, hence 8 irreducible char-
acters. Let yo denote the trivial character of G1g and let y2 denote the irreducible character obtained
by applying Theorem [3.1] to the 3-transitive action of Gyg.

Gy |19 20 3% 42 42 52 218l 218}

X0 1 1 1 1 1 1 1 1
Y2 |9 1 0 1 1 -1 -1 -1
We will now try inducing characters from the point stabilizer Gg. Let x be a character of Gy, then

using the centralizer orders and Theorem [3.3] we have:

(

10x(9) if g € 11%
2x(9) if g €2t 42;
(x T G0)(9) =\ x(95) + x(g0) if g € 4%;
x(9) if g € 3%

0 otherwise.

(Here gp and g¢ are elements from the Go-classes 423 and 420 respectively.) Let x4, xp and y¢ denote
the lifts of the characters x1, x2 and x4 for Gg respectively (see Table .

XA 0 2 1 -2 0 0 0 0

XB v 2 1 2 =2 0 0 0

pe; 20 -4 2 0 0 O 0 0

Taking inner products of the characters we find that x 4 is irreducible, (xp, xp) = 2 and (x¢, xc) = 2.
To keep with our naming convention, relabel x 4 to x4. Our next strategy will be to construct the anti-
symmetric parts of both x3 and x3, we will skip over the symmetric decomposition of these characters
because they do not yield information that is useful to our endeavours. Let xp and xg denote the

antisymmetric components of x4 and x? respectively.
xp |36 -4 0 0 0 1 0 0

XE 45 -3 0 1 -1 0 0 0

Taking inner products of xp with both itself and x¢ we find that (xp, xp) = 3 and (x¢, xp) = 2.
Let x7 = xp — xc; then (x7,x7) = 1 and, since x7(1) > 0, we conclude that y7 is an irreducible
character. Repeating the process with yg we find that (xg, xg) =4, (x7,xg) =1, (xB,xE) = 1 and
(xc,xE) =2. Let x3 = xXE—X7— XCc = XE — XD, then (xs,x3) = 1 and, since y3(1) > 0, we conclude

that xs is an irreducible character

xs |9 1 0 1 -1 -1 1 1
xr |16 0 —2 0 0 1 0 0
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Finally, observe that (xp,x3) = 1. Then x; = xp — x3 is irreducible. Using Theorem and
the fact that G19 has two non-real classes, we conclude that the remaining two characters occur as a

complex conjugate pair. These can, then, be calculated using the Schur orthogonality relations.

G | 110 2% 3% 4% 4% 52 218l 218}
xo |1 1 1 1 1 1 1 1
x1 |1 1 1 1 -1 1 -1 -1

v 9 1 0 1 1 -1 -1 -1
ys |9 1 0 1 -1 -1 1 1
xa |10 2 1 -2 0 0 0 0
vs |10 -2 1 0 0 0 w @
v |10 -2 1 0 0 0 @ w

X7 6 0 -2 0 O 1 0 0
TABLE 8. The character table of GG1g, where w = +/—2.

3.2.1. The structure of G19. Using the character table, the following result can be easily derived about

the structure of Gg.
Theorem 3.6. The group Gy is a non-split extension of Co by a normal subgroup K = ker(x1).

Proof. As the kernels of characters are normal subgroups we see that K < Gy and moreover this is
the only non-trivial proper normal subgroup of G1g9. Observe that G1o/K = Cj. Since there are no

involutions in Gyg \ K, we conclude that we have a non-split extension. Il

3.3. The character table of G1;. By assumption G1; acts 4-transitively on a set of size 11. By
considering the number of fixed points of each conjugacy class we obtain a 10 dimensional irreducible

character x; (Theorem [3.1).

Gn | 1M 2t 33 42 52 213l6! 218y 218 11} 11}

X0 1 1 1 1 1 1 1 1 1 1

X1 10 2 1 2 0 -1 0 0o -1 -1
Now, let xs and x4 be the symmetric and antisymmetric decomposition of X%-

XS 5, 7 1 3 0 1 1 1 0 0

xa |4 3 0 1 0 0 -1 -1 1 1
A quick calculation gives (xs,xs) = 3 and (x4, xa) = 1. Moreover, (xs,xo0) = 1 and (xs,x1) = 1.

Define xg = x4 and x7 = xs — xo — x1 and note that (x7,x7) = 1. Hence we have found two new

irreducible characters of G1;.
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yr |4 4 -1 0 -1 1 0 0 0 0
vs |4 -3 0 1 0 0 -1 -1 1 1

3.3.1. Induction from G19. We will now try inducing characters from the 1-point stabilizer subgroup

Gho- Let x be a character of Gyo; then, using the centralizer orders and Theorem [3.3] we have:

)
11x(g) if g € 110:
3x(9) if g € 24;
2x(9) if g € 3%;

(x 1 G11)(9) =
x(g9a) +2x(gp) if g € 4%
x(9) if g € 52, 218Y, 218%;
0 otherwise.

(Here g4 and gp are elements from the Gig-classes 4?4 and 423 respectively.) Let x4 be the induced
character of the non-trivial linear character of G1g and let xg be the the anti-symmetric decomposition

of x3.

X4 11 3 2 -1 1 0 -1 -1 0 0
X9 % -1 1 -1 0 -1 1 1 0 0
We find that (x4, x4) = 1 and (xo, x9) = 1, hence, they are both irreducible characters of Gy;.

3.3.2. Schur orthogonality. The remaining four characters come in complex conjugate pairs. We can
deduce this by using the fact that elements of cycle type 2'8' and 11' are not real and applying
Theorem Given that each pair will have the same dimension, we can attempt to calculate the
dimension of these 4 remaining characters. Let the dimension of the first pair be d; and the dimension
of the second pair be ds.

We have d? 4+ d3 +d3 +d% = 712, hence d? + d3 = 356. By an exhaustive search we find that 356 can
be expressed as the sum of two squares in exactly one way, that is 356 = 10% 4+ 162. It immediately
follows that d; = 10 and dy = 16.

Let x2(1) = x3(1) = 10 and x5(1) = x6(1) = 16. We will now use the column relations to calculate
the character values for the remaining conjugacy classes. We use the fact that x(g) = m, and let

the characters take the following values:
X2 11 1 ® x3 x4 T5 Xg Tg Ty I7
x3 |11 = ® w3 w4 ® T w6 Ty 7
xs |16y w2 ys w4 Ys Y6 Y Y1 Y1
xe |16 w1 y2 Y3 va  Ys Y6 Yo Y1 Yr
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Substituting the column containing x; for ¢ = 1,...5 and the first column of the character table into
(3.3) we can obtain values for x; and y;. We shall demonstrate this with x; as follows

1+2042x 10x1 +33+2 x 16y; + 176 — 135 =55 =10
which simplifies to
(3.4) 5x1 + 8y; = —10.
Substituting the column containing z; into twice gives

14+4+222 +9+2y7 +16+9+1 =48

which simplifies to
(3.5) i+ yi = 4.
Solving and , we obtain two solutions x; = —2, y3 = 0 and z; = %, Yy = %. The

second set of these cannot be expressed as a sum of 2nd roots of unity. Hence, 1 = —2 and y; = 0.

Continuing in this manner we obtain:

X2 10 -2 1 0 0 1 Te L6 Ty T

xs |16 0 -2 0 1 0 w Y6 yr U7
The remaining values xg, x7, ¥y, and y7; can be calculated by repeat applications of the row and

column relations. We find that z¢ = v/—2, 7 = —1, y¢ = 0 and y7 = %(—1 +v—11). Tableshows

the complete character table.

3.4. The character table of G12. We begin by noting that G12 has 15 conjugacy classes and 15

irreducible characters, one of which is the trivial character yp.

3.4.1. The permutation character and tensor products. By assumption, G5 acts 5-transitively on a

set of size 12. Hence, by Theorem [3.1 we get the permutation character yi.

Gip | 112 20 26 33 31 42 2242 52 2136l 62 218! 418! 2'10! 11} 11}

X0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X1 11 -1 3 2 -1 3 -1 1 0 -1 -1 1 -1 0 0
Now, let xs and x4 be the symmetric and antisymmetric decomposition of X%-

XS 66 10 6 3 0 6 2 1 1 0 2 0 1 0 0

XA 5 —1 -5 1 1 3 -1 0 —1 1 -1 1 0 0 0
A quick calculation gives (xs,xs) = 3 and (x4, xa) = 1. Moreover, (xs,xo0) = 1 and (xg,x1) = 1.

Define xs = x4 and xg = xs — xXo — x1- We have found two new irreducible characters of G1s.
Squaring these characters, however, is not a viable plan; the characters obtained have dimensions
2916 and 3025.

X6 54 6 6 0 O 2 2 -1 0 0 0 0 1 -1 -1
X8 5 -1 -5 1 1 3 -1 0 -1 1 -1 1 0 0 0
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3.4.2. Induction from G11. We will now try inducing characters from the subgroup Gi;. Let x be a
character of (G11; then using the centralizer orders and Theorem we have:

12x(g) if g € 112;
4x(g) if g € 24,4%;
3x(9) if g € 3%
(X T G12)(9) = { 2x(g) if g € 5%;
x(9) if g € 213161, 111, 11%;
x(ga) +x(gp) if g € 2'8Y
0 otherwise.

\
(Here g4 and gp are elements from the G1i-classes 2182 and 218]13 respectively.) Inducing the trivial
character of G1; gives a character equal to yo + x1. Inducing the integer valued 10-dimensional
character gives a character equal to x1 + X6 + xs. Now, let x12 be the induced character of a complex
valued 10-dimensional character of G1;. We see that (x12, x12) = 1, therefore, x12 is irreducible.

Let xy be the character obtained by inducing the 55-dimensional character of GG11. Finally, let xp
be the induced complex valued 16-dimensional character of G1; and let w = %(—1 +y/—11), then we

have:

xi2 (120 =8 0 3 O 0 0 0 0 1 0 0 0o -1 -1
xv 660 -4 0 3 O 0 -4 0 0 -1 2 0 0 0 0

xg 192 0 0 —-6 0 0 0 2 0 0 0 0 0 w w
Note that (xp, xp) = 2 and (xv, xv) = 6, but the inner product of xp with any known irreducible is
0. We have (xv, x12) = 1, but the inner product is 0 for any other known irreducibles. These do not

give us any new irreducible characters, but we will use these characters later.

3.4.3. Restriction from Sym(12). Using the Frobenius character formula, it is possible to construct
low dimensional characters of Sym(12) evaluated over the conjugacy classes of G12; recall that these
characters are labeled with partitions of 12. In this section we consider the restriction of some of these
characters to the group Gz; for instance we note that (x(11,1y 4 G12) = x1, (X(10,2) + G12) = X2 and
(x(10,1,1) + G12) = x3-

The table below gives six new characters that we have constructed in this way. Note that we abuse
notation here: given a partition, A\, of 12, we would normally write x) for the associated character
of Sym(12) whereas here we write x for the restriction of the associated character to G12. Note too
that, for ease of notation, we let A4 = (9,1,1,1) and A\p = (8,1, 1,1, 1)E|

2The history of this sort of restriction is worth a note: a classical result of Frobenius asserts that if ¢ is a natural
number with ¢ < n/2, then a subgroup G < Sym(n) is 2¢-transitive if and only if every character of Sym(n) labeled
by a partition (A1, A2,...,Aq) with A2 + -+ + Ay < ¢ remains irreducible when restricted to G. This result appears in

[Ero04], the same paper in which Frobenius calculates the character tables of M1z and Maa; indeed Frobenius makes use
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Gip | 112 20 26 33 31 42 2242 52 21316l 62 218! 418! 2'10! 11} 11}
X3 |154 10 -6 1 4 -2 -2 -1 1 0 0 0 -1 0 0
Xr, |65 -115 3 3 1 1 o0 1 -1 -1 -1 0 0 0
Xga [27511 15 5 -4 -1 3 0 -1 0 -1 1 0 0 0
X(s 297 9 =150 0 5 -3 2 0 0 -1 -1 0 0 O
X@en|320 0 0 -4 -4 0 0 0O O O O O 0 1 1
Xap 330 -6 10 6 -3 -2 -2 0 1 0 0O O 0 0 0

We first check the inner product of each character with itself and then with each of the known
irreducibles. We find that (xx,,xx,) = 2 and (xx,, x12) = 1, define x5 = x1, — Xx12 and note that

(x5, x5) = 1. Hence, we have found a new irreducible character of Gys.

X5 45 -3 5 0 3 1 1 0 0 -1 -1 -1 0 1 1

We find that (xa,, Xxz) = 3 and that (xx,, x12) = 1, hence we define xx = xx, — x12. Similarly we
find that (x(s4), X(s,4)) = 4 and that (x(s4), x6) = 1, hence we define xy = x(s.4) — x6. Checking the
inner products of xx and xy with themselves and each other we obtain (xx,Xxx) =2, {(xyv,Xxy) =3
and (xx,xy) = 2. Define xo = xy — xx, we find that (x2,x2) = 1; we have found a new irreducible

character of Gs.

Xy |221 5 9 5 —4 -3 1 1 -1 0 -1 1 -1 1 1
xx |210 2 10 3 -3 -2 -2 O 1 -1 0 0 0 1 1
X2 ‘ 1 3 -1 2 -1 -1 3 1 0 -1 -1 1 -1 0 0

Let xs and xa be the symmetric and antisymmetric decomposition of x3. We find that yg =
X0 + X2 + X6 and xg9 = x4 is a new irreducible.

X9 ‘55 -1 -5 1 1 3 -1 0 -1 1 1 -1 0 0 0

of this result in his calculation of these tables. Note that Theorem is a special case of Frobenius’ result. A modern
version of Frobenius result, making use of the Classification of Finite Simple Groups, was given in a beautiful paper of
Saxl [Sax87] — his theorem considers G, a subgroup of Sym(n) or of Alt(n) and x, an ordinary character of Sym(n) or
of Alt(n), and he describes all pairs (y, G) where the restriction of x to G is irreducible. In our proof we do not make
use of Frobenius’ (or Saxl’s) result — it is enough for us to be able to calculate the restriction of various characters of

Sym(12) directly and naively.
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We will now check the inner product of every restricted character and xy with our known irreducible

characters of Gio.

Character | xo X1 X2 X5 X6 Xs X9 Xi2
X(9,3) 0o 0 0o 0 0 0 0 O
XAa 0O 0 0o 1 0 o0 0 1
X(8,4) o 0o 1 0 1 0o 0 O
X(7,5) o 1.0 O 1 0 0 O
X(3,2,1) 0O 0 o 0 0 0o 0 O
XAp 0O 0 0 0 0O o0 0 1
XV 0o 0 0o 1 0 0 0 1
Define the following characters:
XC = X(9,3)
XD = X(7,5) — X1 — X6
XE = X(3,2,1)
XF = Xxp — X12
XW = XV — X5 — X12
The values of these are as follows.
Gip |19 2t 26 3% 3% 42 2242 52 2136t 62 2'8! 4'8! 2M10' 11} 11
xc |14 10 -6 1 4 -2 -2 -1 1 0 0 0o -1 0 0
XD 21 7 -9 -1 0 -1 -1 1 1 0o -1 -1 1 0 0
Xe 320 0 0 -4 -4 0 0 O 0 0 0 0 0 1 1
xXF 210 2 10 3 -3 -2 -2 0 1 -1 0 0 0 1 1
xw | 485 b 5 -1 -1 -3 -3 0 -1 -1 1 1 0 1 1

Taking the inner products of each of these new characters with each other gives the following:

XC XD XE XF XW
ye| 2 1 0 0 1
yo| 1 2 1 0 1
g | 0 1 2 1 2
xe | O 0 1 2 2
wl| 1l 1 2 2 4
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Note, first, that this table of values implies that each of these characters is the sum of distinct

irreducibles. Writing these irreducibles as «, 8,7, and so on, we see immediately that we can write

Xc=a+ 5
XD =B+
XE =7+ 0;
XF=71¢€

Xw=a+7y+06+e

Now one obtains that a = %(XW —XF + Xc — xp)- Once we have « it is an easy matter to obtain the
other four irreducibles using the equalities just given. We therefore have five new irreducibles which

we label as follows:
= X11, /8:X77 Y = X14, 6:X13a € = X10-

Finally, we return to the character xp from earlier. We find that (xp, x14) = 1, and so we define
X3 = XB — X14- Letting x4 be the complex conjugate of y3, we obtain our final two irreducibles. The
full character table is given in Table

4. FINAL REMARKS

One can read off many properties of the groups G11 and G2 by looking at the character tables
that we have constructed. Note, for instance, that all of the irreducibles of the two groups have trivial
kernel; one concludes immediately that G1; and G1o are simple.

We saw above, in that Gg = (C35 x C3) x Qg. We should note that, although we have not
deduced the isomorphism types of G1g, G11 and G12, in each case it is well-known that they are unique
up to group isomorphism. Indeed G19 = Mjg, the unique non-split degree 2 extension of Alt(6), while
G11 = My1 and G1o = My, the two smallest sporadic simple groups of Mathieu.

One wonders about proving the analogous theorem for the simple Mathieu group May, the theorem
would be similar to: “If G is a 5-transitive subgroup of Alt(24) of order 244823040, then the character
table of G is as follows...” It would be desirable to prove such a theorem using methods similar to the

arguments laid out here, although one might expect that the details would be rather onerous.
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