
Particle and salinity sensing for the marine environment 

via deep learning using a Raspberry Pi  

James A. Grant-Jacob1, Yunhui Xie1, Benita S. Mackay1, Matthew Praeger1, Michael D. T. McDonnell1, Daniel 

J. Heath1, Matthew Loxham2, Robert W. Eason1 and Ben Mills1 

 

1 Optoelectronics Research Centre, University of Southampton, Southampton, UK;  

2 Faculty of Medicine, University of Southampton, Southampton, UK;  

E-mail: J.A.Grant-Jacob@soton.ac.uk; Tel.: +44-238-059-6975 

 

Abstract. The identification of mixtures of particles in a solution via analysis of scattered light 

can be a complex task, due to the multiple scattering effects between different sizes and types 

of particles. Deep learning offers the capability for solving complex problems without the need 

for a physical understanding of the underlying system, and hence offers an elegant solution. 

Here, we demonstrate the application of convolutional neural networks for the identification of 

the concentration of microparticles (silicon dioxide and melamine resin) and the solution 

salinity, directly from the scattered light. The measurements were carried out in real-time using 

a Raspberry Pi, light source, camera, and neural network computation, hence demonstrating a 

portable and low-cost environmental marine sensor. 
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1. Introduction 

It is estimated that around 35,000 tons of microplastics are present in the world’s oceans [1], with trillions of 

microbeads entering the marine environment daily in aquatic habitats of the United States alone [2]. These 

microplastics can arise from products such as cosmetics, toothpaste and face scrubs [3,4], which contain 

microbeads, but can also be formed from the breakdown of larger plastics already discarded into the sea [5,6]. 

Microplastics can have a direct negative impact on marine organisms [7,8], and impact other marine life through 

transfer via the food chain [9,10]. They have been found in fish and bivalve organisms, and have been shown to 

have negative effects on zooplankton and oysters [11–16]. Table salt from around the world has been found to 

contain microplastics [17,18], and the sea salt contamination, by plastic itself, has been shown to be an indicator 

of plastic pollution. Drinking water can also contain microplastics [19], and the potential impact on humans has 

been discussed [20,21], with specific negative impacts on epithelial inflammation [22] and muscle cell behaviour 

[23]. 

Monitoring such particles is necessary to help determine origin and distribution, whilst also providing data for 

mitigating the effects of plastic pollution [24]. Since microplastics can reach the marine floor, having been found 

in sediments at depths down to 5000 m [25], and in deposit feeders that ingest sediment [26], it is therefore 

important to monitor plastics before they reach the marine floor. Such a sensing device must have the capability 

to identify the different types of microplastics and natural occurring particles, such as sand, in order for accurate 

monitoring. However, a significant obstacle in monitoring such a global problem is the lack of a reliable portable 

and low-cost method for characterisation of the pollution particles. Manta nets [27] can be used to collect plastic 

particulate matter from the marine environment of sizes down to ~ 333 µm, with additional laboratory sieving 

used to separate out smaller micro particles [28,29], and material characterization carried out subsequently using 

a range of spectroscopic and imaging techniques [30–34]. Such collection and characterization methods are 

extremely time-consuming and expensive, and hence alternative methods are required.  

A holographic technique that involves analysing the scattered light from particles, has shown the potential for the 

characterisation of particle contaminants in water [35]. Scattered light from particles is dependent on the 

illumination wavelength and on the particle parameters, such as shape, size, refractive index and composition 

[36,37], therefore such parameters can be inferred from analysis of the scattered light in certain cases, via 

comparison to theoretical calculations. In the case of light scattering from a single homogenous sphere, a full 

electric field calculation, for example via Mie theory, can be used to produce a simulated scattering pattern. 



However, the calculations become rapidly more complex as the number of particles is increased, particularly if 

the particles are not identical. Crucially, however, the inverse calculation is what is needed, as the particle 

parameters should be determined directly from the scattering pattern. Although particle monitoring from 

observation of the scattered light has been demonstrated in [35,38], such methods require simulations and lack 

the flexibility for identification of non-spherical particles. Ideally, the technique should be able to determine the 

parameters for many particles simultaneously, whilst also being robust enough to deal with real-world effects such 

as non-spherical particles, variability in light sources and optics, and variability in the aqueous environment. 

Deep learning, which is an approach based on the application of neural networks (NNs) [39–41], has already 

enabled advances in imaging [42,43] and enabled automated classification of objects in images [44,45], such as 

label-free cell classification [46], as well as object classification through scattering media [47–49] and through 

scattering pattern imaging [50,51]. Using NNs to determine particle size and refractive index from their scattering 

pattern was proposed by [52] and has been subsequently demonstrated experimentally on colloidal spherical 

particles [53–56], showing that NNs can bypass the need to develop complex modelling [57]. Moreover, the ability 

to update a NN [58], for example to monitor additional particles without the need to physically change a sensor, 

makes such an approach particularly desirable, especially when implemented on a micro-computer, such as a 

Raspberry Pi [59,60]. 

In our previous work, we were able to use a NN to identify single particles of polystyrene and silicon dioxide on 

a glass substrate, and we demonstrated the ability to use a NN on a desktop computer for the real-time 

identification of a range of real-world airborne pollution particles (diesel soot, wood ash and pollen) on a glass 

substrate, directly from their scattering patterns, with each identification taking less than 50 milliseconds [61]. 

Others have demonstrated the combination of holography and deep learning, for the retrospective (i.e. not real-

time) classification of particles in water, using a Raspberry Pi for data collection and with the neural network 

instead run on a desktop computer [62]. In this work, we demonstrate a Raspberry Pi-based sensor, which runs a 

neural network, loaded onto it via Wi-Fi, to run in real-time and classify the concentrations in water of 5 µm 

silicon dioxide (a type of sand) and 8 µm melamine resin (a type of plastic used for tableware [63], which has also 

been found in fish [64]) microparticles.  

Because water salinity can impact on the health of marine life, and is a commonly used ocean parameter to study 

the effects of climate change [65], the ability to monitor the salinity without the need for additional electrical 

conductivity devices would be an extra benefit of using the sensing technique documented in this work. We thus 

also show that it is possible to determine the salt concentration of the water in which 8 µm melamine resin 

microparticles are present. In addition, we demonstrate the robustness of the NN, by performing a second set of 

measurements 20 days after the NN was trained, and after deconstructing and rebuilding the experimental setup, 

hence proving the potential for portable and low-cost sensing.  

1.1. Sample preparation 

Silicon dioxide microspheres of size 5 µm ± 100 nm (Sigma Aldrich, Product number 44054) and melamine resin 

microspheres of size 8 µm ± 200 nm (Sigma Aldrich, Product number 95523), with dimensions measured using a 

Coulter Multisizer II, were deposited via pipette into deionized water-filled glass cuvettes, each of external size 

12.5 mm x 12.5 mm x 45 mm, with an optical interaction length of 10 mm. To mimic seawater, saline samples 

that were used for NN training were prepared by adding salt (sodium chloride) to deionised water-filled cuvettes 

in steps of 10 ppt (parts per thousand by mass, where 1 ppt is approximately 1 psu (practical salinity unit) [66]), 

from 0 ppt up to 100 ppt, and 0.1 ppt of 8 µm-sized melamine resin microparticles was added to all samples. 

Additional cuvettes of deionized water were filled with different concentrations of mixtures of 5 µm silicon 

dioxide and 8 µm melamine resin microparticles, to give concentrations in the sample solution (referred to here 

as actual solids concentration) in the range of 0 to 0.1 ppt, in steps of 0.0125 ppt. 

1.2. Experimental setup 

The schematic of the experimental setup in figure 1 shows light from a ~ 1 mW laser diode operating at 650 nm 

that has been focused into the cuvette using a 2.5 cm focal length lens. This produced a spot size of approximately 

20 µm by 10 µm inside the cuvette. The scattered light from the microparticles was projected onto a white 

polyester screen 1.5 cm from the cuvette, and subsequently imaged by a CMOS camera (Raspberry Pi Camera 

Module, CSI-2, 3280 x 2464 pixels), placed 5 cm away. The total volume of the focal region was therefore 

considerably larger than the volume of a single sphere, enabling the potential for measuring larger particles from 



the same sensor design. The camera was connected to a Raspberry Pi 3 Model B+ computer to allow real-time 

capturing of scattering patterns, every 50 milliseconds, with an exposure time of 20 milliseconds. The images 

were then transferred to a desktop computer that had an NVIDIA Titan Xp GPU. One hundred scattering patterns 

were recorded for each of the samples stated in section 2.1 by interchanging the cuvettes in the setup. Each cuvette 

was shaken by hand prior to placing in the imaging setup. Once the NN was trained on the GPU, the NN was 

transferred via Wi-Fi to the Raspberry Pi, where it was subsequently used to conduct real-time measurements on 

scattering images. Here, the NN outputs corresponded to the microparticle mixture concentration, and in the 

second part of the work, the salinity of the water. The experiments were carried out at room temperature (22 ºC). 

 

Figure 1. (a) Schematic of setup for sensing microparticles, and salinity, using a Raspberry Pi. Experimentally 

recorded scattering patterns from (b) 5 µm diameter silicon dioxide microparticles, (c) 8 µm diameter melamine 

resin microparticles, and (d) mixture of 0.05 ppt 5 µm-sized silicon dioxide microparticles and 0.05 ppt 8 µm-

sized melamine resin microparticles.  

1.3. Neural network  

A convolutional neural network was used, which is a type of NN designed mainly for image processing [57,67], 

with a regression output. The regression output enabled the capability for the NN to produce a continuous output 

within a certain range [68]. The NN framework was Tensorflow [69] and was trained on a desktop computer with 

an NVIDIA Titan Xp graphics processing unit (GPU). Figure 2 shows a schematic of how the NN was used in 

this work. Owing to the restriction in random-access memory (RAM) that was available for the NN to compute 

on the Raspberry Pi (1 GB), the input images were cropped such that only one quadrant of the scattering pattern 

image was selected, in order to still retain high-frequency scattering information in the image data. After cropping, 

the camera images were resized to 100 x 100 pixels and converted to grayscale. Before the images were sent to 

the NN, each individual image was normalized to have a mean of 0 and a standard deviation of 1. The NN was 

formed of two convolutional layers, followed by a max pooling, dropout, and fully connected layer, with a 

regression output. In the case of the mixture determination, the NN had two outputs, corresponding to the 

concentration of 5 µm diameter silicon dioxide microparticles and 8 µm diameter melamine resin microparticles. 

For the salinity measurements, the NN had a single output, corresponding to the ppt of salinity. 



 

 

Figure 2. Schematic of the application of the NN for microparticle sensing. 

The input layer (greyscale cropped scattering pattern image of 100x100 pixels) was followed by two stages of 

convolutional then max pooling layers, whereby the convolutional layers had 64 filters with a kernel of 3x3 and 

stride of 1, and the max pooling layers had a kernel of size 2x2 and stride of 3 [70]. A dropout rate of 50% was 

used [71], leading to a fully connected layer of 512 neurons and weight decay of 0.0005 [70]. The learning rate 

of the NNs was 0.0001, while an adaptive moment estimation optimiser [72] was used to minimise mean square 

error cost function for regression. Through trial and error, the entire architecture was optimised so that the memory 

requirement of the NN was appropriate to be executed on a Raspberry Pi. 

2. Results and discussion 

2.1. Identification of microparticle mixture concentration 

The NN was designed to produce two numerical outputs from the scattering pattern input, corresponding to the 

concentration percentage for 5 µm silicon dioxide and 8 µm melamine resin microparticles. The two outputs were 

independent of each other, and hence could be used to provide absolute concentration values. Figure 3 shows the 

results for a series of measurements of different mixtures, showing the output for a) 5 µm silicon dioxide and b) 

8 µm melamine resin microparticles, where each data point displays the mean and standard deviation for the NN 

predicted values of the microparticle concentration (predicted solids concentration) from 10 scattering patterns. 

The NN operated in real-time and entirely on the Raspberry Pi for computation.  

One set of test measurements was made on day 1 after the NN was trained, and a second set of test measurements 

was made 20 days later, following the deconstruction and reconstruction of the experimental setup that occurred 

after the test measurements on day 1. Whilst the experimental setup was therefore conceptually the same, the 

exact positioning of the light source, optics, sample and camera was slightly different for the second set of 

measurements on day 20 (although the cropping window was realigned with the focus of the beam), and hence 

the fact that the predictive capability of the NN did not decrease illustrates the robustness of this NN approach. 

The accuracy of the NN could be further improved by increasing the amount of training data, which could be 

achieved by physically taking more measurements, or artificially, via augmentation [73]. Whilst the particle 

concentrations in this proof-of-principle demonstration are higher than might be expected in the marine 

environment [74] owing to the need for sufficient signal collection, our previous work [61] has shown the 

capability for the identification of single particles using an alternative experimental setup.  



   

Figure 3. Prediction accuracy for the simultaneous identification of the absolute concentration of a) 5 µm silicon 

dioxide and b) 8 µm melamine resin microparticles, from a mixture of these particles in a solution. Each data point 

on the figure, which shows the mean and standard deviation, corresponds to the prediction from 10 scattering 

patterns. The R-squared value for the silicon dioxide data is 0.9902 and the R-squared value for the melamine 

resin data is 0.9978. 

2.2. Salinity identification 

As the concentration of salt in a solution increases from 0 ppt to 100 ppt, a change in the refractive index of the 

water occurs in which the microparticles are present. For example, at a wavelength of 589.3 nm, the refractive 

index ranges from 1.334 (0 ppt) to 1.343 (50 ppt) and 1.352 (100 ppt) [75]. Such a change in the refractive index 

therefore causes a change in the scattering pattern produced by the microparticles. Here, a NN was trained on 

salinity values of 0 ppt, in steps of 10 ppt, up to 100 ppt, with 10 scattering patterns recorded for each salinity. 

The NN was then trained for 100 epochs. Subsequently, the NN was trialled on a range of other salinities that 

corresponded to known values of water bodies, such as the Baltic Sea (8 ppt) and average sea water (35 ppt), 

which were predicted with mean values and standard deviation of 8.06 ± 1.67 ppt and 34.24 ± 4.03 ppt, 

respectively (see figure 4). Each data point on the figure corresponds to 10 recorded scattering patterns. The 

accuracy of the salinity measurements clearly shows the capability of the NN approach for detecting very subtle 

changes in the scattering patterns. 



 

Figure 4. Prediction accuracy of the NN for identification of salinity directly from the scattered light, showing 

the mean and standard deviation in the prediction. The R-squared value for the data is 0.999. Values of salinity 

taken from [76–81]. 

Conclusions 

In conclusion, we have shown the simultaneous identification of absolute concentration percentage of 5 µm silicon 

dioxide and 8 µm melamine resin microparticles, when the particles were present in water. Additionally, we have 

demonstrated the identification via a NN of salt concentration of water containing 8 µm melamine resin 

microparticles, for salinities including agriculture irrigation and average sea levels. By running the NN on a 

Raspberry Pi, we have shown the potential for a portable and low-cost marine environmental sensor. Since the 

scattering pattern from particles varies depending on the size and material, this proof-of-principle technique, 

which involves using an NN to classify concentrations of two materials of different sizes and refractive index, 

could be extended to particles of other sizes and materials, such as polystyrene and polyethylene. 
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