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Abstract 

The size of a partly observed population is often estimated with the capture – recapture (for two 
sources) or multiple – recapture (for multiple sources) estimation method. An important assumption 
of these models is that records in different sources can be identified such that it is known whether these 
records belong to the same unit or not, i.e. records can be perfectly linked between sources. This 
assumption of perfect linkage is of particular relevance if identification is not obtained by some perfect 
identifier (like a tag or id-code) but by indirect identifiers (like name and address or animal’s skin 
patterns). In that case the perfect linkage assumption is often violated, which in general leads to biased 
population size estimates. A solution to this problem was provided by Ding and Fienberg (1994), Di 
Consiglio and Tuoto (2015) and De Wolf et al. (2018). These authors show how to use linkage 
probabilities to correct the capture - recapture estimator for linkage errors. Recently, Di Consiglio and 
Tuoto (2018) extended their method to three sources. In this paper we provide a general framework 
that allows us to extend this work further in two ways. First, we extend this work further to any number 
of sources. Second, our framework allows to incorporate covariates in a better way. We do this by 
generalising the standard log - linear modelling approach used in multiple - recapture estimation such 
that it incorporates linkage error correction. We show how the method performs in a simulation study 
with data that resemble real data. 

Keywords: dual – system estimation, multiple – recapture estimation, population size estimation, 

capture - recapture, record linkage, linkage errors. 

1. Introduction 

Capture – recapture (CR) estimation and multiple – recapture (MR) estimation provide 

a standard approach to estimate the size of the unobserved part of a population 

(Petersen, 1896, Fienberg, 1972, Bishop et al., 1975). These models are also known 
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under other names, such as dual - system, multiple – system and mark – recapture 

estimation (see e.g. IWGDMF, 1995). CR estimation uses two sources while in order 

to correct for source dependence / heterogeneous catchability, MR estimation uses 

three or more sources (e.g. Fienberg, 1972). Here, a source refers to a set, list or 

register of records in which each record represents a unit or individual that belongs to 

the target population, where no unit is represented more than once in each source. 

Furthermore, in general sources do not cover the full target population, so there are 

units that belong to the target population but are not represented by any of the records 

in any of the sources. Both CR and MR models can be written as a specific formulation 

of a log – linear model, which connects them to the general framework of log – linear 

Poisson regression analysis. One of the main assumptions that underlie the capture – 

recapture estimate (CRE) and multi – recapture estimate (MRE) is that records can be 

accurately identified over sources as being the same unit or not. If not, there is a non 

- zero probability that records will be falsely linked (a mismatch), or falsely not linked 

(a missed match) and the resulting population size estimate (PSE) may be biased 

(Wolter, 1986, Chao, 2001, Chen and Kuo, 2001, Cadwell, 2005, Gerritse et al., 2017). 

We write ‘may’ because in theory both types of linkage errors may cancel out each 

other, which we will elaborate on later. First we provide some notation and give an 

example of linkage error bias. 

Imagine there are two sources 𝑆𝑆1 and 𝑆𝑆2 that are linked by some linkage procedure 𝐿𝐿 

into a combined source 𝑅𝑅, denoted as 𝑅𝑅 = 𝐿𝐿(𝑆𝑆1,𝑆𝑆2) = [𝑆𝑆1, 𝑆𝑆2]. Each (population) unit 

may then be (captured) only in 𝑆𝑆1, only in 𝑆𝑆2, in both or in neither of the sources (they 

are unobserved). The occurrences of these four events can be represented as counts, 

which we refer to as ‘cell counts’. We denote the true cell counts as 𝑚𝑚 =

(𝑚𝑚11,𝑚𝑚10,𝑚𝑚01) that are the cell counts that would occur without linkage errors. We 

denote the observed cell counts 𝑛𝑛 = (𝑛𝑛11,𝑛𝑛10, 𝑛𝑛01) that are the cell counts that are 

observed after linkage. In case of perfect linkage 𝑛𝑛 = 𝑚𝑚 and in case of non - perfect 

linkage, which generally implies records are linked based on probabilities, they may 

differ. Elements in 𝑚𝑚 and 𝑛𝑛  are indicated as 𝑚𝑚𝑖𝑖𝑖𝑖 and 𝑛𝑛𝑖𝑖𝑖𝑖 where 𝑖𝑖 ∈ {1,0} corresponds 

to records in 𝑆𝑆1 and not in 𝑆𝑆1 and 𝑗𝑗 ∈ {1,0} corresponds to records in 𝑆𝑆2 and not in 𝑆𝑆2 

respectively. Furthermore, 𝑖𝑖 and 𝑗𝑗 can both have the value +, where 𝑖𝑖 = + indicates 

all records in 𝑆𝑆2 and 𝑗𝑗 = + indicates all records in 𝑆𝑆1. This notation implies that the cell 

counts 𝑚𝑚00 and 𝑛𝑛00 are both unobserved and 𝑛𝑛1+ = 𝑚𝑚1+ and 𝑛𝑛+1 = 𝑚𝑚+1 are equal 
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because they represent the size of the sources 𝑆𝑆1 and 𝑆𝑆2, which are unaffected by 𝐿𝐿. 

Finally we refer to cells indexed by 𝑖𝑖𝑖𝑖 ∈ {11,10,01} as linkage cells. 

As an illustration of this notation and linkage error bias we introduce a simple example. 

When 𝑛𝑛1+ = 𝑚𝑚1+ = 300, 𝑛𝑛+1 = 𝑚𝑚+1 = 150 and 𝑚𝑚11 = 100 and due to linkage errors 

the observed cell count is 𝑛𝑛11 = 90. This implies that the number of missed links is 10 

more than the number of false links. This case is represented in table 1. 

 

Table 1: Example of true and observed cell counts table of two sources. 

Linkage cell Cell count 

𝑖𝑖 𝑗𝑗 𝑚𝑚 𝑛𝑛 

1 1 100 90 

1 0 200 210 

0 1 50 60 

 

When all the CR model assumptions (see Wolter, 1986) are met, an unbiased CRE 

for the unobserved part of the population 𝑚𝑚00 can be obtained by: 𝐸𝐸[𝑚𝑚00|𝑚𝑚] =
𝑚𝑚10∗𝑚𝑚01
𝑚𝑚11

= 200∗50
100

= 100, an estimator that is also known as the Petersen (1896) or 

Lincoln - Petersen (Lincoln, 1930) estimator. However, due to linkage errors not 𝑚𝑚 but 

𝑛𝑛 is observed and when this is naively ignored the CRE becomes: 𝐸𝐸[𝑛𝑛00|𝑛𝑛] = 𝑛𝑛10∗𝑛𝑛01
𝑛𝑛11

=

210∗60
90

= 140, leading to a linkage error bias of 40%, something better not left ignored. 

Linkage errors are especially prone to occur if a perfect identifier that perfectly 

identifies units over different sources is not available. In this case records may be 

linked by means of indirect identifiers called linkage keys, such as surname, address, 

animal skin patterns or a combination of different identifiers. Linkage models that use 

such keys to link records in different sources are referred to as probabilistic linkage 

models (e.g. see Fellegi and Sunter, 1969, Winkler, 1988 or Jaro, 1989), which in 

general come with non - zero probabilities of false links. In general these probabilistic 

linkage models are designed to minimise the number of false matches. In practice this 

implies there is a threshold probability that tells the model what linkage probability is 
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acceptable in linking two records, which in practice is often set at 50%. This implies, 

for instance, when two individuals are both in two sources and are only known under 

their name, probabilistic linkage will fail to link any of these records, because each 

single match would have at least a 50% probability of being false, which is too high. 

This implies that instead of adding 2 to 𝑛𝑛11, the probabilistic linkage model will add 2 

to 𝑛𝑛10 and 2 to 𝑛𝑛01, even when a person’s name is a strong identifier. From the CR 

perspective this result is unfortunate, because when name is a strong identifier, it is 

quite likely that these four records represents the same two units and are better added 

to 𝑛𝑛11. 

In order to correct for linkage error bias, Ding and Fienberg (1994) (D&F) propose a 

linkage error correction method. The basic idea behind their method is that when the 

probabilities of mismatches and missed matches are known, they can be used to 

correct the CRE for linkage errors. D&F show how these probabilities can be 

calculated with the help of a (small) study, which is a survey that takes a random 

portion of the matches and non - matches in the two sources under clerical review, 

hereby establishing which matches were correct and which were not. The drawback 

of the D&F method is twofold. First, the D&F method does not explicitly concern 

covariates and second the correction can only be applied to the CRE and not the MRE. 

Because the implications of these drawbacks are not straightforward we will discuss 

both of them in more detail in section 3.1 and 3.2. 

The model that is presented in this paper is both a simplification and a generalisation 

of the D&F model. It is simpler in the sense that instead of calculating probabilities of 

true and false matches on the record level it evaluates the accuracy on the cell counts 

level. This simplification allows us to easily generalize the CR and MR with the 

extension of multiple sources and covariates. This general framework is referred to as 

the weighted multiple – recapture (WMR) model. This model owns its name to the 

record level weights that are updated each time a new source is linked. The sums of 

these record weights replace the dependent variable in the specific log – linear 

regression formulation of the CR and MR model. This replacement leads to the 

weighted capture – recapture estimate (WCRE) and weighted multiple – recapture 

estimate (WMRE), which are corrected for linkage errors. 

The outline of this paper is as follows. In section 2 we discuss the classic CRE or 

Petersen estimator and its relation to the D&F model and later developments by Di 
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Consiglio and Tuoto (2015, 2018) (DC&T_15, DC&T_18) and De Wolf et al. (2018) 

(DW). In particular the theoretical results by DW we use to derive the WMR model. In 

section 3 we derive the WCRE and WMRE, in section 4 we present a simulation study 

to show they work and in section 5 we conclude and discuss the results. 

2. Capture - recapture estimation 

In this section we describe and discuss CR models and the linkage error correction 

method introduced by D&F, which we will use in section 3 to derive the WCRE and 

WMRE. We first describe the most basic CRE which was introduced by Petersen 

(1896) and next show how D&F correct this estimate for linkage errors. We further 

discuss DC&T_15, DC&T_18 and DW, because they provide a deeper understanding 

of the correction method. This is useful because it provides the intuition that helps to 

understand the derivation of the WCRE and WMRE. 

2.1 The Petersen estimator 

Under the appropriate assumptions (Wolter, 1986), including perfect linkage, a CRE 

can be obtained by the standard Petersen formula: 

𝑀𝑀�Petersen = 𝑛𝑛11 + 𝑛𝑛10 + 𝑛𝑛01 + 𝑛𝑛10𝑛𝑛01
𝑛𝑛11

= (𝑛𝑛11+𝑛𝑛10)(𝑛𝑛11+𝑛𝑛01)
𝑛𝑛11

= 𝑛𝑛1+𝑛𝑛+1
𝑛𝑛11

  (1), 

where 𝑀𝑀�Petersen is an estimate of the true population size 𝑀𝑀 based on the observed 

cell counts 𝑛𝑛. The Petersen estimator is closely related to a fitted value obtained from 

a log - linear Poisson regression model with cell counts data (e.g. see Cormack, 1989), 

i.e.: 

𝐸𝐸�𝑛𝑛𝑖𝑖𝑖𝑖� = 𝑒𝑒(𝛽𝛽0+ 𝛽𝛽1𝑖𝑖+𝛽𝛽2𝑗𝑗) for 𝑖𝑖, 𝑗𝑗 ∈ {1,0}      (2), 

where 𝑚𝑚𝑖𝑖𝑖𝑖 serves as the dependent variable in the log - linear regression model. The 

Poisson regression model uses maximum likelihood to obtain estimates 𝛽̂𝛽0, 𝛽̂𝛽1 and 𝛽̂𝛽2. 

The unknown portion of the population is represented by the unobserved 𝑚𝑚00 of which 

an estimate can be obtained by 𝐸𝐸�𝑛𝑛00|𝛽̂𝛽0� = 𝑒𝑒𝛽𝛽�0 = 𝑛𝑛10𝑛𝑛01
𝑛𝑛11

. This equality illustrates how 

equation (1) and (2) lead to the same result. However, an important difference is that 

the log – linear formulation in equation (2) can be easily extended with additional 

sources or categorical covariates and the interaction between them. For instance, let 
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𝑆𝑆3 be a third source in which presence is indicated by 𝑘𝑘 ∈ {0,1} and let 𝑥𝑥 be a 

categorical covariate with levels 𝑥𝑥 ∈ {0,1}. Then an example of a model is: 

𝐸𝐸�𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = 𝑒𝑒(𝛽𝛽0+𝛽𝛽1𝑖𝑖+𝛽𝛽2𝑗𝑗+𝛽𝛽3𝑘𝑘+𝛽𝛽4𝑖𝑖𝑖𝑖+𝛽𝛽5𝑖𝑖𝑖𝑖+𝛽𝛽6𝑗𝑗𝑗𝑗+𝛽𝛽7𝑥𝑥+𝛽𝛽8𝑥𝑥𝑥𝑥), where e.g. 𝑖𝑖𝑖𝑖 is the product of 𝑖𝑖 and 

𝑗𝑗. Extending the Petersen formula in this way would be non - trivial at best, while for 

each value in 𝑥𝑥 a PSE of the unobserved population can be relatively easily obtained, 

i.e.: 

𝐸𝐸�𝑛𝑛0000|𝛽̂𝛽0� = 𝑒𝑒𝛽𝛽�0 and 𝐸𝐸�𝑛𝑛0001|𝛽̂𝛽0, 𝛽̂𝛽7� = 𝑒𝑒𝛽𝛽�0+𝛽𝛽�7. 

Our reason to emphasize on the relation between the Petersen estimator and the 

Poisson regression is that in the next section we will use this relation to extend the 

D&F estimator in the same way. 

 

2.2 The D&F model 

The D&F model uses a rematch study to estimate probabilities of specific linkage 

errors. This is a survey that is assumed to be representative for 𝑅𝑅 and where, after 

sources were probabilistically linked, a subset of records are put under further scrutiny 

and it is checked whether these records were correctly matched or not. The outcome 

of such a study can be summarized as in table 2. 

Table 2: Rematch study with D&F structure. 

  Rematch study 

  𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐍𝐍𝐍𝐍𝐍𝐍 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 

Probabilistic 
linkage 

𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 

𝐍𝐍𝐍𝐍𝐍𝐍 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 

𝑎𝑎11 

𝑎𝑎01 

𝑎𝑎10 

𝑎𝑎00 

 

In table 2 we see how many records that are in the rematch study were correctly 

matched (𝑎𝑎11), correctly not matched (𝑎𝑎00), incorrectly matched (𝑎𝑎10) and incorrectly 

not matched (𝑎𝑎01). Based on this rematch study, D&F define a probability of a missed 

link 1 − 𝛼𝛼 and a probability of a mismatch 𝜃𝜃  by 𝛼𝛼 = 𝑎𝑎11
𝑎𝑎11+𝑎𝑎01

 and 𝛾𝛾 = 𝑎𝑎10
𝑎𝑎10+𝑎𝑎00

. With the 

help of these probabilities D&F define their so - called linkage error corrected CRE, 
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i.e. 𝑀𝑀�D&F. The D&F model recently received more attention from DC&T_15 and DW. 

DC&T_15 write the 𝑀𝑀�D&F as: 

𝑀𝑀�D&F = 𝑛𝑛11+𝑛𝑛10+𝑛𝑛01
𝑝𝑝�1+𝑝𝑝�2−(𝛼𝛼−𝜃𝜃)𝑝𝑝�1𝑝𝑝�2−𝜃𝜃𝑝𝑝�1

        (3) 

with 𝑝̂𝑝1 = −𝑛𝑛11+𝜃𝜃(𝑛𝑛11+𝑛𝑛10)
(𝜃𝜃−𝛼𝛼)(𝑛𝑛11+𝑛𝑛01) , 𝑝̂𝑝2 = −𝑛𝑛11+𝜃𝜃(𝑛𝑛11+𝑛𝑛10)

(𝜃𝜃−𝛼𝛼)(𝑛𝑛11+𝑛𝑛10)  and the observed cell counts 𝑛𝑛 as defined 

in table 1. These equations show that the D&F model is complex and hard to interpret. 

The formulas become more complex when DC&T_15 introduce their so called two - 

way linkage errors. DW further extend this by allowing the sources to be of different 

size (i.e. 𝜃𝜃 becomes (𝜃𝜃1,𝜃𝜃2)). For this purpose they propose so called asymmetrical 

two – way errors that use the size of the second source as additional parameter. In 

their 2018 paper, DC&T_18 extend their linkage error correction model from two to 

three sources also by using 𝛼𝛼 and 𝜃𝜃. They introduce a so called transition matrix that 

allows one to transform the observed cell counts into estimates of the true cell counts, 

which can serve as input for the Poisson regression. This is in itself a useful extension 

on their earlier model, but it is still limited in the sense that the method is not generic 

with respect to covariates and it is unclear how to add yet an additional source. 

Fortunately, beside DW’s asymmetrical two – way errors extension, DW provide us 

with another useful contribution. They show that in fact the D&F model, the DC&T_15 

model and their own extension all give identical outcomes when not only the formulas 

of  𝑀𝑀�  but also of 𝛼𝛼 and 𝜃𝜃 are chosen appropriately. In fact, they show that all three 

models can be written much more comprehensively as: 

𝑀𝑀�D&F = 𝑀𝑀�DC&T_15 = 𝑀𝑀�DW = 𝑚𝑚1+𝑚𝑚+1
𝑚𝑚�11

= 𝑛𝑛1+𝑛𝑛+1
𝑚𝑚�11

     (4), 

where we define 𝑚𝑚� = (𝑚𝑚�11,𝑚𝑚�10,𝑚𝑚�01) as estimates of the true cell counts 𝑚𝑚 which are 

the observed cell counts 𝑛𝑛 corrected for linkage errors. Equation (4) shows that the 

D&F, the DC&T_15 and the DW model are all equal and generalisations of the 

Petersen estimator, in which the observed cell count 𝑛𝑛11 is replaced by 𝑚𝑚�11. Implicitly 

or explicitly, D&F, DC&T_15, DC&T_18 and DW all derive an expression for 𝑚𝑚�11 where 

𝑚𝑚�11 depends on 𝑛𝑛, 𝛼𝛼 and 𝜃𝜃. However, in the next section we will show that 𝑚𝑚�11 can 

be derived in a more simple and straightforward way, that no longer depends on 𝛼𝛼 and 

𝜃𝜃 altogether. This becomes clear when in the next section we reconstruct the rematch 

study into a structure that we will refer to as the ‘audit study’ structure. 
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2.3 Reformulation of the D&F model 

In order to reformulate the D&F model into a more simple and generalizable model, 

we first note that D&F evaluate linkage errors on the record level, while CR uses cell 

counts as input. As discussed by D&F, DC&T_15, DC&T_18 and DW, on the record 

level there may be several types of linkage errors. In contrast, on the cell count level 

there is basically only one, i.e. the observed count 𝑛𝑛11 may be either too large or too 

small. Also because 𝑛𝑛1+ and 𝑛𝑛+1 are insensitive to linkage errors, 𝑛𝑛11 automatically 

gives 𝑛𝑛10 and 𝑛𝑛01 as well. The difference in complexity between linkage errors on the 

record and cell counts level is illustrated with a simple example in figure 1. 

Figure 1: Simple example of two sources and linkage procedure.  

 

In figure 1 we see two sources 𝑆𝑆1 and 𝑆𝑆2 that are linked with some linkage procedure 

𝐿𝐿. 𝑆𝑆1 contains units A, B and C while 𝑆𝑆2 contains units B, C and D. We see that the 

first record in 𝑆𝑆1, unit A, is falsely matched to the first record in 𝑆𝑆2, unit B. Also the 

second record in 𝑆𝑆1, unit B, is falsely not matched to the first record in 𝑆𝑆2. In other 

words, on the record level there are two types of linkage errors. On top of these linkage 

errors, there is also a correct match of unit C and a correct non – match of unit D, 

which are also taken into account by D&F’s model. However, when we would look at 

this example from the cell counts level perspective, we see that both the observed cell 

counts 𝑛𝑛 and true cell counts 𝑚𝑚 are equal, i.e. 𝑛𝑛11 = 𝑚𝑚11 = 2, 𝑛𝑛10 = 𝑚𝑚10 = 1 and 𝑛𝑛01 =

𝑚𝑚01 = 1, so on the cell level there are no linkage errors at all. This implies linkage 

errors on the record level may cancel out on the cell counts level. When we extend 

this cell counts point of view to the D&F method, we can restructure the rematch study 
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in table 2 into a more simple structure that only contains observed and true cell counts. 

This structure we refer to as the audit study 𝑅𝑅∗ can be seen in table 3. 

 
Table 3: Audit study with true and observed cell counts. 

Linkage cell Cell count 

𝑖𝑖 𝑗𝑗 𝑛𝑛∗ 𝑚𝑚∗ 

1 1 𝑛𝑛11∗  𝑚𝑚11
∗  

1 0 𝑛𝑛10∗  𝑚𝑚10
∗  

0 1 𝑛𝑛01∗  𝑚𝑚01
∗  

 

In general throughout this paper symbols that refer to elements related to the audit 

study are complemented with a ∗. In table 3, instead of counting correct and incorrect 

matches as in table 2, we present the observed and true cell counts in 𝑆𝑆∗, both 

according to probabilistic (i.e. 𝑛𝑛∗ = (𝑛𝑛11∗ ,𝑛𝑛10∗ ,𝑛𝑛01∗ )) and perfect (i.e. 𝑚𝑚∗ =

(𝑚𝑚11
∗ ,𝑚𝑚10

∗ ,𝑚𝑚01
∗ )) linkage in 𝑅𝑅. Notice we write ‘in 𝑅𝑅’, which is important and implies that 

the observed cell counts in 𝑅𝑅∗ are based on the linkage of 𝑆𝑆1 and 𝑆𝑆2, not 𝑆𝑆1∗ and 𝑆𝑆2∗. 

We see that the audit study has the same structure as the cell counts table in table 1. 

The difference is that in the audit study, beside the observed cell counts also the true 

cell counts are known. Finally note that we can write 𝑛𝑛11∗  and 𝑚𝑚11
∗  as functions of 𝑎𝑎11, 

𝑎𝑎10 and 𝑎𝑎01 by 𝑛𝑛11∗ = 𝑎𝑎11 + 𝑎𝑎10 and 𝑚𝑚11
∗ = 𝑎𝑎11 + 𝑎𝑎01 while the remaining parameters 

𝑛𝑛10∗ ,𝑛𝑛01∗ ,𝑚𝑚10
∗  and 𝑚𝑚01

∗  are simply residuals of the audit study sample size (e.g. 𝑛𝑛10∗ =

𝑛𝑛1+∗ − 𝑛𝑛11∗ ). 

The main difference between the rematch and the audit study is the way in which they 

are presented. However, in practice it might also be slightly easier to compile an audit 

study, because in a rematch study each match has to be studied separately while in 

the audit study groups of matches may be studied at once. For instance, when there 

are two individuals with the same name, it might be hard to verify which person is 

exactly which person, but it might be easier to verify that both individuals concern the 

same two individuals, which is enough for the audit study. 
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Because the rematch and therefore the audit study is assumed to be representative 

for 𝑅𝑅, we can simply use the ratio of 𝑛𝑛11∗  and 𝑚𝑚11
∗  to obtain unbiased estimates for the 

true cell counts, i.e.: 

𝑚𝑚�11 = 𝑛𝑛11
𝑚𝑚11
∗

𝑛𝑛11∗
         (5a), 

𝑚𝑚�10 = 𝑛𝑛1+ − 𝑚𝑚�11         (5b), 

𝑚𝑚�01 = 𝑛𝑛+1 − 𝑚𝑚�11         (5c). 

Equation (5a) simply defines 𝑚𝑚�11 larger as or smaller than 𝑛𝑛11, depending on whether 

the number of links are over- or underestimated by the probabilistic linkage process. 

Equation (5b) and (5c) simply show 𝑚𝑚�10 and 𝑚𝑚�01 as residuals of the size of 𝑆𝑆1, 𝑆𝑆2 and 

𝑚𝑚�11. When 𝑚𝑚11
∗ = 𝑛𝑛11∗  (i.e. no linkage errors on the cell counts level), 𝑚𝑚�11 = 𝑛𝑛11 and 

𝑁𝑁�D&F = 𝑁𝑁�Petersen. Further note that plugging in equation (5a) into equation (4) gives a 

formula that contains substantially less parameters than equation (3).  

As an illustration in table 4 we extend the cell counts table in table 1 with the audit 

study. For simplicity we assume that we have an audit study that constitutes about 

10% of the original linked sources and is perfectly representative. 

 

Table 4: Example of true and observed cell counts with audit study. 

Linkage cell Cell count 

𝑖𝑖 𝑗𝑗 𝑚𝑚 𝑛𝑛 𝑛𝑛∗ 𝑚𝑚∗ 

1 1 100 90 9 10 

1 0 200 210 21 20 

0 1 50 60 6 5 

 

Under perfect linkage the Petersen estimator would be: 𝑁𝑁�Petersen = 300∗150
100

= 450 while 

under linkage errors and by using the audit study, DW showed that both D&F and 

DC&T_15 can be reduced to: 𝑁𝑁�D&F = 𝑁𝑁�DC&T_15 = 𝑁𝑁�DW = (90+210)∗(90+60)

90∗109
= 450, where 

we can see that 𝑚𝑚�11 = 90 ∗ 10
9

= 100. This implies that in this case the estimated cell 
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count 𝑚𝑚�11 is equal to the true cell count 𝑚𝑚11. Note here that the correction method only 

requires the additional expression 𝑚𝑚11
∗

𝑛𝑛11∗
, while 𝑛𝑛10∗ , 𝑛𝑛01∗ , 𝑚𝑚10

∗  and 𝑚𝑚01
∗  are not required. 

Finally we note that equation (4) and (5) are not only a pleasant simplification of the 

D&F model, they also make the D&F correction method much easier to understand 

because it shows that all it does is replacing the observed cell counts 𝑛𝑛 by the  

estimated cell counts 𝑚𝑚�  , which can be estimated with the help of audit study 𝑅𝑅∗. In 

the next section we show how this insight can be used to obtain the more general 

WMRE model. 

 

3 Derivation of the weighted multiple – recapture estimator 

In this section we derive the WMRE model by combining equation (2), (4) and (5) in 

the previous section. The derivation is performed in two phases. First, in section 3.1, 

the D&F model is extended with covariates, leading to the more general WCR model. 

Next, in section 3.2, this WCR model is further extended with additional sources, 

leading to the WMR model. 

3.1 Transformation of the D&F model into the WCR model with covariates. 

The D&F model does not explicitly concern covariates. However, just like the Petersen 

estimator the D&F model could be applied on groups separately, which might solve 

this issue in some cases. However, in the context of covariates and linkage errors 

there are two problems with this approach. The first problem is related to (sparse) 

model selection. When capture probabilities are potentially related to a larger number 

of covariates (and maybe also the interaction between them), in the D&F model there 

is no standard approach available that selects those variables that fit the data best 

while they are selected sparsely. This in contrast to regular CR models, because 

different log – linear Poisson regression models can be conveniently compared by for 

instance their Aikake Information Criterion (Akaike, 1974) or Bayesian Information 

Criterion (Schwarz, 1978). The second problem of covariates and linkage errors is that 

they may lead to spurious correlations. For instance, when there is no relation between 

gender and capture probabilities, gender should be considered an irrelevant covariate. 

However, if there is a relation between linkage errors and gender, for instance men 
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have a lower probability to be correctly linked, this leads to a spurious correlation 

between gender and capture probabilities. In this case the D&F model will 

(unnecessarily) be applied on men and women separately, which comes with 

additional noise in the resulting estimates. A better way would be to correct the cell 

counts for linkage errors first, hereby also removing the spurious correlation, and then 

estimate the population size without using gender as a covariate. In this section we 

will derive such a model. 

Equation (2) shows that the Petersen estimator can also be written as a fitted value 

from a log - linear Poisson regression with table 1 as input and 𝑚𝑚 as the dependent 

variable. As we have seen this Poisson regression can easily be extended with 

covariates. The first step is therefore to construct a new table that can serve as input 

for a log - linear Poisson regression such that it can be used to obtain the D&F 

estimator, which in table 5 can be seen to be pretty straightforward. 

 

Table 5: Estimated cell counts table of two sources. 

Linkage cell Cell count 

𝑖𝑖 𝑗𝑗 𝑚𝑚�  

1 1 𝑚𝑚�11 = 𝑛𝑛11
𝑚𝑚11
∗

𝑛𝑛11∗
 

1 0 𝑚𝑚�10 = 𝑛𝑛1+ − 𝑚𝑚�11 

0 1 𝑚𝑚�01 = 𝑛𝑛+1 − 𝑚𝑚�11 

 

In table 5 we have replaced the observed cell counts 𝑛𝑛 from table 1 with the estimated 

cell counts 𝑚𝑚� . We can now obtain a 𝑁𝑁�WCR without covariates, which results from the 

log - linear Poisson regression equation 𝐸𝐸�𝑚𝑚�𝑖𝑖𝑖𝑖� = 𝑒𝑒(𝛽𝛽0+ 𝛽𝛽1𝑖𝑖+𝛽𝛽2𝑗𝑗). The only difference 

with equation (2) is that 𝑛𝑛𝑖𝑖𝑖𝑖 is replaced by 𝑚𝑚�𝑖𝑖𝑖𝑖. This 𝑁𝑁�WCR is identical to the 𝑁𝑁�D&F in 

equation (4). This can be shown by: (𝑚𝑚�11+𝑚𝑚�10)(𝑚𝑚�11+𝑚𝑚�01)
𝑚𝑚�11

= 𝑛𝑛1+𝑛𝑛+1
𝑚𝑚�11

= 𝑁𝑁�D&F  (which further 

implies that 𝑚𝑚�00 = 𝑚𝑚�10𝑚𝑚�01
𝑚𝑚�11

 is the WCR estimate for 𝑚𝑚00). 

This regression formulation allows us to simply add a covariate 𝑥𝑥 to the equation, i.e.: 
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𝐸𝐸�𝑚𝑚�𝑖𝑖𝑗𝑗𝑥𝑥� = 𝑒𝑒(𝛽𝛽0+ 𝛽𝛽1𝑖𝑖+𝛽𝛽2𝑗𝑗+𝛽𝛽3𝑥𝑥+ 𝛽𝛽4𝑖𝑖𝑖𝑖+𝛽𝛽5𝑗𝑗𝑗𝑗), where e.g. 𝑖𝑖𝑖𝑖 is the product of 𝑖𝑖 and 𝑥𝑥. This can 

be further illustrated with a simple example. When we assume 𝑥𝑥 is a binary covariate 

and we define 𝛾𝛾𝑖𝑖𝑖𝑖0 as the proportion of 𝑥𝑥 = 0 within 𝑅𝑅 and 𝛾𝛾𝑖𝑖𝑖𝑖1 as the proportion 𝑥𝑥 = 1 

(so 𝛾𝛾𝑖𝑖𝑖𝑖0 + 𝛾𝛾𝑖𝑖𝑖𝑖1 = 1) within 𝑅𝑅, table 6 shows the estimated cell counts table for this case. 

 

Table 6: Estimated cell counts and one binary covariate. 

Linkage cell Cell count 

𝑖𝑖 𝑗𝑗 𝑥𝑥 𝑚𝑚�  

1 1 1 𝑚𝑚�111 = 𝛾𝛾111𝑚𝑚�11 

1 1 0 𝑚𝑚�110 = 𝛾𝛾110𝑚𝑚�11 

1 0 1 𝑚𝑚�101 = 𝛾𝛾101(𝑛𝑛1+ −𝑚𝑚�11) 

1 0 0 𝑚𝑚�100 = 𝛾𝛾100(𝑛𝑛1+ −𝑚𝑚�11) 

0 1 1 𝑚𝑚�011 = 𝛾𝛾011(𝑛𝑛+1 − 𝑚𝑚�11) 

0 1 0 𝑚𝑚�010 = 𝛾𝛾010(𝑛𝑛+1 − 𝑚𝑚�11) 

 

Table 6 provides an intuitively easy to grasp cell counts table for a D&F model 

including a covariate. By means of the log – linear Poisson regression on 𝑚𝑚�  it can be 

used to obtain the estimates 𝑚𝑚�001 = 𝑒𝑒�𝛽𝛽�0+𝛽𝛽�3� and 𝑚𝑚�000 = 𝑒𝑒�𝛽𝛽�0�. 

However, in order to add additional sources, which we will discuss in the next section, 

instead of splitting - up 𝑚𝑚�  on the cell count level as in table 6, we split - up 𝑚𝑚�  further 

into record level weights that add up to the cell counts 𝑚𝑚�  in table 6. In order to keep 

the notation of this split - up as simple as possible, we specify 𝑖𝑖 and 𝑗𝑗 on the record 

level in 𝑅𝑅, i.e.: 

𝑖𝑖𝑝𝑝 = �1 if record 𝑝𝑝 is in 𝑆𝑆1
0 if not

  and 

𝑗𝑗𝑝𝑝 = �1 if record 𝑝𝑝 is in 𝑆𝑆2
0 if not
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where 𝑝𝑝 = 1, … ,𝑃𝑃 with 𝑃𝑃 = 𝑛𝑛11 + 𝑛𝑛10 + 𝑛𝑛01 is the number of records in 𝑅𝑅. This implies 

that 𝑚𝑚 and 𝑛𝑛 can be calculated by summing up 𝑖𝑖𝑝𝑝′𝑠𝑠 and 𝑗𝑗𝑝𝑝′𝑠𝑠 in 𝑅𝑅. In fact, under 

probabilistic linkage we get ∑ 𝑖𝑖𝑝𝑝𝑝𝑝 = 𝑛𝑛1+, ∑ 𝑗𝑗𝑝𝑝𝑝𝑝 = 𝑛𝑛+1 and ∑ 𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑝𝑝 = 𝑛𝑛11 while under 

perfect linkage we get ∑ 𝑖𝑖𝑝𝑝𝑝𝑝 = 𝑚𝑚1+, ∑ 𝑗𝑗𝑝𝑝𝑝𝑝 = 𝑚𝑚+1 and ∑ 𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑝𝑝 = 𝑚𝑚11. The same can be 

done for 𝑛𝑛∗ and 𝑚𝑚∗. The introduction of 𝑖𝑖𝑝𝑝 and 𝑗𝑗𝑝𝑝 allows us to write: 

𝑤𝑤𝑝𝑝 = 𝑚𝑚�𝑝𝑝
𝑛𝑛𝑝𝑝

          (6), 

with 𝑚𝑚�𝑝𝑝 = 𝑚𝑚�𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝 ∈ (𝑚𝑚�11,𝑚𝑚�10,𝑚𝑚�01) and 𝑛𝑛𝑝𝑝 = 𝑛𝑛𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝 ∈ (𝑛𝑛11,𝑛𝑛10,𝑛𝑛01). In words, when a 

record in 𝑆𝑆1 is linked with a record in 𝑆𝑆2 they become a single record in 𝑅𝑅 that is part 

of linkage cell 𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝 = 11 and so 𝑚𝑚�𝑝𝑝 = 𝑚𝑚�11 and 𝑛𝑛𝑝𝑝 = 𝑛𝑛11. When covariates are involved 

𝑚𝑚�𝑝𝑝 and 𝑛𝑛𝑝𝑝 should be determined on the covariate level (e.g. if record 𝑝𝑝 is a man, 𝑚𝑚�𝑝𝑝 

and 𝑛𝑛𝑝𝑝 should refer to the linkage of men between sources). With equation (6) this 

implies that summing up the weights 𝑤𝑤𝑝𝑝 over the records within linkage cells returns 

our original 𝑚𝑚� , i.e. ∑ 𝑤𝑤𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝜖𝜖𝜖𝜖𝜖𝜖 = 𝑚𝑚�𝑖𝑖𝑖𝑖. In case of covariates, the definition of 𝑚𝑚�𝑝𝑝 can be 

slightly extended to 𝑚𝑚�𝑝𝑝 = 𝑚𝑚�𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑋𝑋 with 𝑋𝑋 = �𝑥𝑥𝑝𝑝1, … , 𝑥𝑥𝑝𝑝𝑝𝑝� is a set of 𝐶𝐶 categorical 

covariates. In table 7 we combine the example from table 6 with both this extended 

notation and equation (6). 

Table 7: Example of 𝑅𝑅 with 𝑤𝑤𝑝𝑝. 

Record Linkage cell Cell count Weight 

𝑝𝑝 𝑖𝑖𝑝𝑝 𝑗𝑗𝑝𝑝 𝑥𝑥 𝑛𝑛𝑝𝑝 𝑚𝑚�𝑝𝑝 𝑤𝑤𝑝𝑝 

1 1 1 1 𝑛𝑛111 𝑚𝑚�111 𝑤𝑤1 = 𝑚𝑚�111 𝑛𝑛111�  

2 0 1 0 𝑛𝑛010 𝑚𝑚�010 𝑤𝑤2 = 𝑚𝑚�010 𝑛𝑛010�  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑝𝑝 𝑖𝑖𝑝𝑝 𝑗𝑗𝑝𝑝 𝑥𝑥𝑝𝑝 𝑛𝑛𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑥𝑥𝑝𝑝 𝑚𝑚�𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑥𝑥𝑝𝑝 𝑤𝑤𝑝𝑝 =
𝑚𝑚�𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑥𝑥𝑝𝑝

𝑛𝑛𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑥𝑥𝑝𝑝�  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑃𝑃 0 1 1 𝑛𝑛011 𝑚𝑚�011 𝑤𝑤𝑃𝑃 = 𝑚𝑚�011 𝑛𝑛011�  
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Here we should emphasize that 𝑝𝑝 is not a unit index but a record index in 𝑅𝑅, which 

may be larger or smaller than the number of true population units in 𝑅𝑅, depending on 

whether 𝑛𝑛11 is an over- or underestimation of 𝑚𝑚11, i.e. 𝑛𝑛11 + 𝑛𝑛10 + 𝑛𝑛01 = 𝑃𝑃 ≠ 𝑚𝑚11 +

𝑚𝑚10 + 𝑚𝑚01 and 𝑚𝑚�11 + 𝑚𝑚�10 + 𝑚𝑚�01 = ∑ 𝑤𝑤𝑝𝑝𝑝𝑝 ≠ 𝑃𝑃. We can interpret 𝑤𝑤𝑝𝑝 as an indicator that 

indicates whether a record is part of a linkage cell that is under- or overrepresented 

by the linkage procedure. Here 𝑤𝑤𝑝𝑝 < 1 implies that the linkage cell of record 𝑝𝑝 occurs 

more frequent and 𝑤𝑤𝑝𝑝 > 1 implies that the linkage cell of record 𝑝𝑝 occurs less frequent 

than observed cell counts suggests. For instance, if the linkage procedure 

underestimates the number of true matches, i.e. 𝑛𝑛11 < 𝑚𝑚11, then records in linkage 

cell 𝑖𝑖𝑖𝑖 = 11 should have weights larger than 1, in order to compensate for the low 

observed cell count 𝑛𝑛11. When 𝑤𝑤𝑝𝑝 is used to obtain the estimated cell counts of the 

different linkage cells as in table 6 and these estimated cell counts are used as the 

dependent variable in the log – linear Poisson regression model, this gives us a CRE 

that is corrected for linkage errors and includes 𝑥𝑥 as a covariate, hence the WCRE 

and the WCR model. 

 

3.2 Transformation of the WCR model into the WMR model. 

In section 3.1 the D&F model without covariates was transformed into the WCR model 

with covariates. However, the WCR model still only concerns two sources, which is 

insufficient in case of source dependence (i.e. when captures in 𝑆𝑆1 are related to 

captures in 𝑆𝑆2). The MR model is less sensitive to source dependence, because it can 

correct for it by using multiple sources (e.g. Fienberg, 1972). It is therefore desirable 

to have a model that can correct for linkage errors, covariate dependence and source 

dependence simultaneously. However, it is not straightforward to extend the WCR 

model with addition sources, which is the subject of this section. 

Considering both simplicity and practice, we assume that linkage of sources occurs 

sequentially, which implies that first two sources are linked and consecutively a new 

source is linked to this linked pair of sources as if they were one source. It was also 

argued by DC&T_18 that this linking approach is currently the most reasonable 

approach to consider because the alternatives of simultaneous or pairwise linkage 

suffer either from computational (i.e. the number of potential matches between multiple 
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sources increases exponentially) or methodological (e.g. what to do with inconsistent 

matching patterns like 𝐴𝐴 → 𝐵𝐵,𝐵𝐵 → 𝐶𝐶,𝐶𝐶 ↛ 𝐴𝐴?). Not coincidentally, the sequential 

approach is also quite common in practice. 

In order to add additional sources we extend 𝑤𝑤𝑝𝑝, 𝑖𝑖𝑝𝑝, 𝑗𝑗𝑝𝑝, 𝑛𝑛, 𝑚𝑚, 𝑚𝑚� , 𝑆𝑆1, 𝑆𝑆2, 𝑅𝑅, 𝐿𝐿 and 𝑃𝑃 with 

the additional sub- or superscript 𝑡𝑡 that indicates the number of linkage procedures, 

i.e. 𝑤𝑤𝑝𝑝 → 𝑤𝑤𝑝𝑝𝑡𝑡, 𝑖𝑖𝑝𝑝 → 𝑖𝑖𝑝𝑝𝑡𝑡 , 𝑗𝑗𝑝𝑝 → 𝑗𝑗𝑝𝑝𝑡𝑡 , 𝑛𝑛 → 𝑛𝑛𝑡𝑡,  𝑚𝑚 → 𝑚𝑚𝑡𝑡, 𝑚𝑚� → 𝑚𝑚�𝑡𝑡, 𝑆𝑆1 = 𝑆𝑆𝑡𝑡, 𝑆𝑆2 = 𝑆𝑆𝑡𝑡+1, 𝑅𝑅 → 𝑅𝑅𝑡𝑡, 

𝐿𝐿 → 𝐿𝐿𝑡𝑡 and 𝑃𝑃 → 𝑃𝑃𝑡𝑡, where 𝑅𝑅𝑡𝑡−1 is further defined as: 

𝑅𝑅𝑡𝑡−1 =

⎩
⎪
⎨

⎪
⎧
𝑅𝑅0 = 𝑆𝑆1                         
𝑅𝑅1 = 𝐿𝐿1(𝑆𝑆1,𝑆𝑆2)           
𝑅𝑅2 = 𝐿𝐿2(𝑅𝑅1,𝑆𝑆3)          

⋮
𝑅𝑅𝑡𝑡−1 = 𝐿𝐿𝑡𝑡(𝑅𝑅𝑡𝑡−2, 𝑆𝑆𝑡𝑡)   

  

This introduction of 𝑡𝑡 further implies a more nuanced interpretation of 𝑛𝑛𝑡𝑡, 𝑚𝑚𝑡𝑡 and 𝑚𝑚�𝑡𝑡. 

Beside a count variable, 𝑛𝑛𝑡𝑡 can also be interpreted as the observed sum of weights 

after 𝑡𝑡 linkages. Then, for 𝑡𝑡 = 1, 𝑛𝑛𝑡𝑡=1 is simply the original observed count variable 𝑛𝑛, 

but for 𝑡𝑡 > 1, 𝑛𝑛𝑡𝑡 is the observed sum of weights after 𝑡𝑡 probabilistic linkages and 𝑡𝑡 − 1 

updates. 𝑚𝑚𝑡𝑡 is the true sum of weights after 𝑡𝑡 − 1 probabilistic linkages and updates 

and a 𝑡𝑡𝑡𝑡ℎ perfect linkage. Finally 𝑚𝑚�𝑡𝑡 is the estimate of 𝑚𝑚𝑡𝑡. Here we should emphasize 

that the difference between 𝑛𝑛𝑡𝑡, 𝑚𝑚𝑡𝑡 and 𝑚𝑚�𝑡𝑡 is only due to the last linkage and update 

of weights, because all three variables are based on the same sums of weights at 𝑡𝑡 −

1, i.e. 𝑚𝑚�𝑡𝑡−1, obtained over the previous periods. 

When for the moment we ignore covariates, this extended notation allows us to write 

equation (6) as a record level update function that contains 𝑡𝑡, i.e.: 

𝑤𝑤𝑝𝑝𝑡𝑡 = 𝑤𝑤𝑝𝑝𝑡𝑡−1
𝑚𝑚�𝑝𝑝𝑡𝑡

𝑛𝑛𝑝𝑝𝑡𝑡
          (7) 

where 𝑚𝑚�11𝑡𝑡 = 𝑛𝑛11𝑡𝑡
𝑚𝑚11
∗𝑡𝑡

𝑛𝑛11
∗𝑡𝑡 , 𝑚𝑚�10𝑡𝑡 = 𝑛𝑛1+𝑡𝑡 − 𝑚𝑚�11𝑡𝑡 , 𝑚𝑚�01𝑡𝑡 = 𝑛𝑛+1𝑡𝑡 − 𝑚𝑚�11𝑡𝑡  and 𝑤𝑤𝑝𝑝𝑡𝑡=0 = 1 that can be 

considered ‘an individual starting weight of 1’. When covariates are also in the 

equation 𝑛𝑛𝑝𝑝𝑡𝑡  and 𝑚𝑚�𝑝𝑝𝑡𝑡  must be determined on the covariate level, e.g. the number of 

observed and estimated links between sources of both men and women. The starting 

weight of 1 also applies to records that are new in the last source 𝑆𝑆𝑡𝑡+1, i.e. 𝑤𝑤𝑖𝑖𝑝𝑝𝑡𝑡 𝑗𝑗𝑝𝑝𝑡𝑡∈01
𝑡𝑡 =

1. For 𝑡𝑡 = 1, equation (7) reduces to equation (6), but for 𝑡𝑡 > 1 equation (7) allows us 

to update weights after linking additional sources. As an illustration table 8 gives the 
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dependent variable 𝑚𝑚�𝑡𝑡=2 as a result of the updating of weights after linking three 

sources (i.e. 𝑡𝑡 = 2). 

 

Table 8: Update of weights for 𝒕𝒕 = 𝟐𝟐. 

Linkage cell Cell count 

𝑖𝑖𝑡𝑡=2 𝑗𝑗𝑡𝑡=2 𝑚𝑚�𝑡𝑡=2 

1 1 𝑚𝑚�11𝑡𝑡=2 = 𝑚𝑚�11𝑡𝑡=1
𝑚𝑚�11∗𝑡𝑡=2

𝑛𝑛11∗𝑡𝑡=2
 

1 0 𝑚𝑚�10𝑡𝑡=2 = 𝑚𝑚�1+𝑡𝑡=2 − 𝑚𝑚�11𝑡𝑡=2 

0 1 𝑚𝑚�01𝑡𝑡=2 = 𝑚𝑚�+1𝑡𝑡=2 − 𝑚𝑚�11𝑡𝑡=2 

 

Table 8 shows that in order to obtain the elements in 𝑚𝑚�𝑡𝑡=2 all that is required is a value 

for 𝑚𝑚�11𝑡𝑡=2. This is sufficient because the total sums of weights in 𝑅𝑅2 and 𝑆𝑆3, i.e. 𝑚𝑚�1+𝑡𝑡=2 

and 𝑚𝑚�+1𝑡𝑡=2, are both unaffected by the updating of weights, i.e. 𝑚𝑚�1+𝑡𝑡=2 = 𝑚𝑚�1+𝑡𝑡=1 and 𝑚𝑚�+1𝑡𝑡=2 =

𝑚𝑚�+1𝑡𝑡=1. Finally, summing up weights over records in different linkage and covariate 

linkage cells give the estimated cell counts 𝑚𝑚�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 , where 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑟𝑟 , … , 𝑥𝑥𝐶𝐶) 

represents a set of 𝐶𝐶 categorical covariates. This updating of weights can be repeated 

after the linkage of each new source and using the sums of these weights per linkage 

cell as dependent variable in the log - linear Poisson regression constitutes the WMR 

model and the WMRE, which is corrected for linkage errors. 

A general formulation of this log - linear Poisson regression of the WMR model can be 

written as: 

𝐸𝐸�𝑚𝑚�𝑍𝑍𝑡𝑡� = 𝑒𝑒𝑓𝑓(𝛽𝛽,𝑍𝑍𝑡𝑡)        (8), 

where 𝑚𝑚�𝑍𝑍𝑡𝑡 is the linkage errors corrected cell count vector that depends on 𝑍𝑍𝑡𝑡 =

(𝑅𝑅𝑡𝑡,𝑋𝑋), e.g. for three sources and one binary covariate we get: 

𝑚𝑚�𝑍𝑍𝑡𝑡 = 𝑚𝑚�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑚𝑚�1111,𝑚𝑚�1110,𝑚𝑚�1101,𝑚𝑚�1100,𝑚𝑚�0111,𝑚𝑚�0110,𝑚𝑚�1011,𝑚𝑚�1010,
𝑚𝑚�1001,𝑚𝑚�1000,𝑚𝑚�0101,𝑚𝑚�0100,𝑚𝑚�0011,𝑚𝑚�0010,𝑚𝑚�0001,𝑚𝑚�0000

�. 
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Furthermore, 𝑓𝑓(𝛽𝛽,𝑍𝑍𝑡𝑡) transforms 𝑍𝑍𝑡𝑡 into an equation that contains all linear 

combinations of linkage cells, e.g. when there are three sources and one binary 

covariate we get: 

𝑓𝑓(𝛽𝛽,𝑍𝑍𝑡𝑡) = 𝑓𝑓(𝛽𝛽, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑥𝑥) =  

𝛽𝛽0 + 𝛽𝛽1𝑖𝑖 + 𝛽𝛽2𝑗𝑗 + 𝛽𝛽3𝑘𝑘 + 𝛽𝛽4𝑥𝑥 + 𝛽𝛽5(𝑖𝑖𝑖𝑖) + 𝛽𝛽6(𝑗𝑗𝑗𝑗) + 𝛽𝛽7(𝑘𝑘𝑘𝑘) +  

𝛽𝛽8(𝑖𝑖𝑖𝑖) + 𝛽𝛽9(𝑖𝑖𝑖𝑖) + 𝛽𝛽10(𝑗𝑗𝑗𝑗) + 𝛽𝛽11(𝑖𝑖𝑖𝑖𝑖𝑖) + 𝛽𝛽12(𝑖𝑖𝑖𝑖𝑖𝑖) + 𝛽𝛽13(𝑗𝑗𝑘𝑘𝑘𝑘)  

where e.g. 𝑖𝑖𝑖𝑖 is the product of 𝑖𝑖 and 𝑥𝑥. This equation will become larger quickly for 

more sources and covariates but this extension is straightforward while standard 

model selection techniques can be used to reduce the number of parameters. 

It is interesting to compare table 8 to the transition matrix given by DC&T_18. Due to 

the number of matching patterns of a record, their matrix contains four unknown 

parameters, has a dimension of seven by seven (i.e.  2 x 2 x 2 − 1 = 7) and will grow 

to six unknown parameters and a dimension of fifteen by fifteen (and still needs to be 

mathematically derived) if another source would be added. In fact, these numbers 

would grow exponentially with each newly added source and the exact transition 

matrix would have to be mathematically derived anew for each source. In contrast, 

because in the WMR model the updating of weights occurs after each new linkage, 

table 8 only requires one to know 𝑚𝑚�11∗𝑡𝑡  and 𝑛𝑛11∗𝑡𝑡 , which both can be directly obtained 

from the audit study. 

Finally it might be clarifying to show in table 9 how 𝑤𝑤𝑡𝑡 looks for an example of 𝑅𝑅 with 

three sources and a binary covariate 𝑥𝑥. 
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Table 9: Example of 𝑅𝑅 with three sources and a binary covariate 𝒙𝒙 

 Linkage cell Weight 

Record 𝑡𝑡 = 1 𝑡𝑡 = 2  𝑡𝑡 = 2 

𝑝𝑝 𝑖𝑖𝑝𝑝𝑡𝑡=1 𝑗𝑗𝑝𝑝𝑡𝑡=1 𝑖𝑖𝑝𝑝𝑡𝑡=2 𝑗𝑗𝑝𝑝𝑡𝑡=2 𝑥𝑥 𝑤𝑤𝑡𝑡=2 

1 1 1 1 1 0 𝑤𝑤1𝑡𝑡=2 =
𝑚𝑚�110𝑡𝑡=1

𝑛𝑛110𝑡𝑡=1  
𝑚𝑚�110𝑡𝑡=2

𝑛𝑛110𝑡𝑡=2  

2 0 1 1 0 1 𝑤𝑤2
𝑡𝑡=2 =

𝑚𝑚�011𝑡𝑡=1

𝑛𝑛011𝑡𝑡=1  
𝑚𝑚�101𝑡𝑡=2

𝑛𝑛101𝑡𝑡=2  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑝𝑝 𝑖𝑖𝑝𝑝𝑡𝑡=1 𝑗𝑗𝑝𝑝𝑡𝑡=1 𝑖𝑖𝑝𝑝𝑡𝑡=2 𝑗𝑗𝑝𝑝𝑡𝑡=2 𝑥𝑥𝑝𝑝 𝑤𝑤𝑝𝑝𝑡𝑡=2 =
𝑚𝑚�𝑖𝑖𝑝𝑝𝑡𝑡=1𝑗𝑗𝑝𝑝𝑡𝑡=1𝑥𝑥𝑝𝑝
𝑡𝑡=1

𝑛𝑛𝑖𝑖𝑝𝑝𝑡𝑡=1𝑗𝑗𝑝𝑝𝑡𝑡=1𝑥𝑥𝑝𝑝
𝑡𝑡=1  

𝑚𝑚�𝑖𝑖𝑝𝑝𝑡𝑡=2𝑗𝑗𝑝𝑝𝑡𝑡=2𝑥𝑥𝑝𝑝
𝑡𝑡=2

𝑛𝑛𝑖𝑖𝑝𝑝𝑡𝑡=2𝑗𝑗𝑝𝑝𝑡𝑡=2𝑥𝑥𝑝𝑝
𝑡𝑡=2  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑃𝑃 0 0 0 1 1 𝑤𝑤𝑃𝑃
𝑡𝑡=2 = 1 

𝑚𝑚�011𝑡𝑡=2

𝑛𝑛011𝑡𝑡=2  

 

The weight column in table 9 might look quite complicated, but on closer inspection 

each 𝑤𝑤𝑝𝑝𝑡𝑡=2 is just a 𝑤𝑤𝑝𝑝𝑡𝑡=0 = 1 that is multiplied twice with its true sums of weights that 

correspond to record 𝑝𝑝′𝑠𝑠 linkage cells and divided twice by its observed sums of 

weights that correspond to record 𝑝𝑝′𝑠𝑠 linkage cells, which all follow directly from the 

audit studies at 𝑡𝑡 = 1 and 𝑡𝑡 = 2. This shows why this updating of weights can be easily 

continued with additional sources. 

 

4. Model evaluation 
We evaluate the WMRE model with a simulation study. In this study the true 

population size (TPS) is known, and will be compared with estimates of the 

population size. In order to make the simulation study slightly less artificial, we use a 

quasi - real dataset to simulate from. This quasi - real dataset is a publicly available 

fictitious population dataset of 26 625 persons that is representative for the UK 

population census. It was created in the ESSnet DI (McLeod, Heasman and Forbes, 
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2011), a European project on data integration (Record Linkage, Statistical Linking, 

Micro integration Processing) that ran from 2009 to 2011. The dataset has linkage 

keys such as address and birthdate but also covariates such as gender and age. By 

generating sources from this quasi - real dataset, outcomes may reflect reality to 

some extent. 

The main goal of this simulation study is to compare the performance of the WMRE 

with the performance of other estimators that were discussed in section 2. The 

different performances are compared under different scenarios, where scenarios 

differ with respect to three elements: 

(i) Covariate dependence of capture probabilities, which implies the probability 

of a record to be in 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3 may vary due to differences in the covariate 

values of records (e.g. a male may have a higher probability to be in 𝑆𝑆1 and a 

lower probability to be in 𝑆𝑆2). 

(ii) Source dependence of capture probabilities, which implies the probability of a 

record to be in 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3 may depend on this record being in another 

source (e.g. a record in 𝑆𝑆1 may have a different probability to be in 𝑆𝑆2 than a 

record that is equal in all other aspects except being in 𝑆𝑆1). 

(iii) Linkage errors in the linkage procedure; sources are linked either with errors 

or are linked perfectly without errors. 

These three elements are of particular interest, because they are the sources of bias 

the WMRE model aims to correct for while the alternative models should suffer from 

at least one of them. In section 4.1 we describe the setup of this simulation study 

and in section 4.2 we discuss the results. 

 

4.1. Simulation study setup 

Before we discuss the details of the simulation study, we first discuss some general 

considerations. In a simulation study, in order to compare different estimators in a 

fair way there are two important elements to bear in mind, i.e. violations of 

assumptions and randomness due to sampling. Violations of assumptions that 

underlie the CR and MR model lead to bias. When multiple assumptions are violated 

simultaneously, the multiple sources of bias may occur simultaneously (and may 
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even coincidentally cancel out each other). In such a case, a bias in the estimate 

cannot be attributed to a single violation. Therefore, in order to know whether a 

model corrects for a specific source of bias, it is important to introduce the different 

sources of potential bias separately. In this way the sources of bias can also be 

identified separately. In table 10 we show the four simulation scenarios of our 

interest. 

Table 10. Simulation study scenarios. 

Scenario Linkage errors Covariate dependence Source dependence 

1 Yes No No 

2 Yes Yes No 

3 Yes No Yes 

4 Yes Yes Yes 

 

The four scenarios differ with respect to covariate and source dependence while all 

scenarios suffer from linkage errors. As a benchmark, for each scenario we also 

calculate the CRE and MRE that (falsely) assume that there are no linkage errors. 

Second, it is important to realise that even under perfect conditions a CRE or MRE 

may differ from its true value for two reasons. First, simply due to randomness in the 

sources. Sometimes a PSE overestimates and sometimes underestimates the TPS, 

which, if all the underlying model assumptions are met, should on average be close 

to zero if the sampling is repeated many times. Therefore, we replicate the sampling 

and estimation procedure a large number of times (i.e. 1 050)5, where in every 

replication both a new population and three population sources 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3 are 

generated. This gives, for each model and each scenario, 1 050 PSEs, which allows 

us to compare their mean and the distribution of each scenario. Second, in the 

context of the CRE, Poisson regression estimators have known finite sample bias 

(see e.g. Chapman, 1951, Menkens and Anderson, 1988 or Chen and Giles, 2009), 

which goes to zero when the sample increases to infinity. That is why we set the 

                                                           
5 The number is ‘only’ 1 050 because we use a spark cluster of fifteen cores (available at Statistics 
Netherlands mainly for Big Data related computations) that each does 70 replications with different 
random seeds, in which each single replication takes about 10 minutes. In total it takes almost two 
days to run all four scenarios, which is mainly due to the computation time of the probabilistic linking 
the three sources. 
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population size on 10 000, because this makes the finite sample bias practically 

ignorable. 

In is interesting to note that in our original simulation setup we first considered a TPS 

of 1 000, because due the computational intensity of linkage procedures this is much 

more convenient. However, as it turned out, our estimation results were slightly but 

statistically significantly biased and we could not eliminate the possibility that this 

bias was due to a mistake in our derivation of the WMRE. Fortunately, with a 

population size of 10 000 we found that this bias was indeed due to finite sample 

size bias, because after the scale - up the bias disappeared. Probably, an example 

of this finite sample bias can also be seen in DC&T_18 who present a simulation 

study with similar data and setup but with a TPS of 1 000. In this study, the mean of 

the PSEs that were unaffected by linkage errors deviates slightly but statistically 

significantly (i.e. by 1.05%) from the TPS. This small bias is similar to the finite 

sample bias that we encountered. 

From the available dataset we use the file ‘person_list.csv’. This list contains both a 

perfect identifier (id - code) and linkage keys (e.g. surname, address) and can 

therefore be used to link records both perfectly (i.e. deterministically without any 

errors) and probabilistically. In this simulation study we use a set of three linkage 

keys6. In order to have a certain degree of linkage errors, in each linkage key in each 

source, 3% of the records is replaced by a random value from the population, where 

in each source, each record has the same probability to be selected. Furthermore, 

the list contains several covariates, of which we use ‘SEX’ as covariate 𝑋𝑋 to affect 

capture probabilities. 

For each replication first a random population of 10 000 records is generated 

(without replacement) from the person list. Our aim is then to generate three sources 

of different sizes from this population (approximately 8 000, 5 000 and 2 000 

records) that may suffer from source and covariate dependence. The introduction of 

source dependence is not straightforward, because source dependence implies that 

no single source may be independent of other sources. However, when the first 

source would be generated while other sources do not yet exist, this first source is by 

definition independent of these other sources. Therefore, before the first source is 

                                                           
6 ‘PERNAME2’, ‘DOB_DAY’ and  ‘DOB_MON’ served as linkage variables, which corresponds to the 
‘bronze scenario’ in DC&T_15. 
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generated, we first generate three so called latent sources 𝑆̃𝑆 = �𝑆̃𝑆1, 𝑆̃𝑆2, 𝑆̃𝑆3� of 8 000 

records, which are simply random samples from the population of 10 000. These 

three latent sources allow us to introduce dependencies between sources such that 

no source in 𝑆𝑆 is independent of the other sources. This is done by giving each unit a 

probability to be in each source by: 

𝑃𝑃𝑝𝑝𝑝𝑝[𝑆𝑆𝑙𝑙 = 1] = 1
1−exp (−μ𝑝𝑝𝑝𝑝)

       (9), 

where μ𝑝𝑝𝑝𝑝 = 𝛿𝛿1,𝑙𝑙𝑆̃𝑆1,𝑝𝑝 + 𝛿𝛿2,𝑙𝑙𝑆̃𝑆2,𝑝𝑝 + 𝛿𝛿3,𝑙𝑙𝑆̃𝑆3,𝑝𝑝 + 𝛿𝛿4,𝑙𝑙𝑋𝑋𝑝𝑝, 𝑝𝑝 = 1, … ,10 000 refers to the records 

in the true population and 𝑙𝑙 = 1,2,3 refers to the three latent sources. Given equation 

(9) we can vary 𝜃𝜃′𝑠𝑠 and hereby control dependencies between any source in 𝑆𝑆 and 

the other two sources in 𝑆𝑆 and the covariate. For instance, when 𝛿𝛿1,1,𝛿𝛿2,1, 𝛿𝛿2,2,𝛿𝛿2,2 ≠

0, the probability of a record to be in 𝑆𝑆1 depends on it being in 𝑆𝑆2 while the probability 

to be in 𝑆𝑆2 also depends on it being in 𝑆𝑆1. Furthermore, the 𝛿𝛿′𝑠𝑠 control the size of 

each source. The values for the 𝛿𝛿′𝑠𝑠 in the simulation study can be found in table 11 

in appendix A. Because the varying of 𝛿𝛿′𝑠𝑠 affects the capture probabilities of records, 

different 𝛿𝛿′𝑠𝑠 also correspond to different estimates of the 𝛽̂𝛽′𝑠𝑠 from the Poisson 

regressions. Therefore, in order to assure that by varying 𝛿𝛿′𝑠𝑠 we introduce a 

substantial source and covariate dependence, in table 12 in appendix A we also 

present the mean values of estimated 𝛽̂𝛽′𝑠𝑠 over all replications of the benchmark case 

of no linkage errors. Here it is important to look at the case of no linkage errors, 

because otherwise we might be looking at dependencies that are the result of 

linkage errors, while we want the source and covariate dependency to occur also 

without linkage errors. 

Finally, the last necessary element of the simulation study is the audit study 𝑅𝑅∗, 

which is generated by first selecting a random 10% (without replacement) of the 

population and within this selection only keeping those records that are also in one of 

the three sources 𝑆𝑆. With this audit study all ingredients are available to obtain the 

PSEs of interest in this simulation study, which is discussed next. 

In order to compare the PSEs we compare the CRE and MRE (with 3 sources) with 

three different dependent variables (𝑛𝑛, 𝑚𝑚 and 𝑚𝑚� ) under the four different scenarios 

from table 10. We refer to the use of 𝑛𝑛 as the naïve estimates, the use of 𝑚𝑚 as the 

perfect (but in practise unobtainable) estimates and 𝑚𝑚�  as the weighted estimates. 
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4.2. Simulation results 

In figure 2 below the simulation results of the four scenarios are presented as density 

plots. 

 

Figure 2: Density plots of two PSEs with three dependent variables and four scenarios  
(table 10).  
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Figure 2 contains twelve density plots that each contains two PSE densities. In the 

row direction there are the four scenarios from table 10 and in the column direction 

there are the three estimates, i.e. naïve, perfect and weighted. Ideally a density 

revolves around the TPS of 10 000. However, the first column shows that the densities 

of the naïve estimates do not. From the simulation study perspective, this is a good 

sign, because it shows that the estimates suffer from linkage errors in all scenarios, 

as intended by the simulation setup. In case of perfect linkage, in scenario 1 and 2 

both the CREs and MREs revolve around the TPS. However, when source 

dependence is introduced in scenario 3 and 4 the CR model (necessarily) fails while 

the MR model still performs well. This failure of the CR model implies that it suffers 

from source dependence as intended by the simulation setup. Finally, the third column 

contains the weighted estimates. Here the CR model performs well in scenario 1 and 

2, which implies the WCR model is able to correct for both linkage errors and covariate 

dependence simultaneously. However, in scenario 3 and 4 the CR model again 

(necessarily) fails, because it is unable to deal with source dependence. Fortunately 

the density of the MREs revolve around the TPS in all scenarios, which shows that the 

WMR model corrects for linkage errors, covariate dependence and source 

dependence simultaneously. 

 

5. Discussion 

In this paper we derived and tested the WMR model for population size estimation 

corrected for linkage error. The model is derived from the D&F model and is a more 

general extension than the models developed by DC&T (2015, 2018) and De Wolf et 

al. (2018) because it includes three or more sources and covariates, which are often 

necessary to correct for other sources of bias. The linkage error correction model we 

developed is incorporated in the more general family of log - linear regression models. 

It no longer has to be studied as an isolated issue in CR and MR models. Finally, the 

WMR model was tested and approved in a simulation study. 

In practise the WMR model does not solve all the linkage error problems. Although it 

might be easier to construct an audit study as in table 3 than a rematch study as in 

table 2, because table 3 does not require closer scrutiny on the record level but on the 

linkage cell level, the main practical problem is still the selection of records that 
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constitute the audit study 𝑅𝑅∗? Ideally the records in 𝑅𝑅∗ are representative for the 

records in 𝑅𝑅, both with respect to covariates and the quality of linkage keys. This last 

element should not be underestimated, because when for instance the records in the 

audit study are based on their high quality linkage keys (what makes it easier to audit 

them), they might suffer less from linkage errors than the rest of the population. This 

will lead to a biased correction. Another issue is the size of 𝑅𝑅∗, in particular when the 

population contains small specific groups with low capture probabilities, in practise it 

might not be easy to have this small group represented sufficiently in 𝑅𝑅∗. How large 

the impact of such issues is, requires further research. 

Also we should note that we paid little attention to the impact of the exact linkage 

procedure. We developed the WMR model in the context of sequential linkage, in 

which first two sources are linked and a third source is linked to this combined source. 

We think that in theory the order of linkage does not matter and also pairwise linkage 

(link each pair and then combine them into one) or simultaneous linkage (link all 

sources at once) can be incorporated into the WMR model, although this would require 

further research. In practise the exact linkage strategy may play a role, mainly because 

linkage is also often used to enrich sources. When, for instance one source contains 

data on say gender and another on income, the combined source usually contains 

both, which will probably affect the quality of linkage with a third source that also 

contains gender and income. 

Another point that deserves some discussion is the ‘individual starting weight of 1’. 

Lists or registers of individuals sometimes also contain individual sample weights, 

which indicate the size of the group that this individual represents as part of the total 

population. There is no reason why these sample weights cannot replace the starting 

weights of 1 in the WMR model. Furthermore, when additional sources also contain 

sample weights they can be used to calculate 𝑛𝑛𝑡𝑡, 𝑛𝑛∗𝑡𝑡 and 𝑚𝑚∗𝑡𝑡 in a slightly different 

way, i.e. simply by adding up sample weights instead of counting. This way we would 

get ‘linkage error corrected sample weights’. However, we should note that the 

presence of sample weights usually implies that the source only covers a (very) small 

part of the population, so when multiple sources contain sample weights the probability 

of matches becomes low, leading to very low cell counts and an unreliable PSE. How 

exactly sample weights can be combined with linkage and linkage error correction 

requires further research. 
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Appendix A 

Table 11: Parameter values of the four different scenarios. 
Scenario 1 𝛿𝛿1,1 𝛿𝛿2,1 𝛿𝛿3,1 𝛿𝛿4,1 

score𝑖𝑖1 6.3 0 0 0 

score𝑖𝑖2 0 3.5 0 0 

score𝑖𝑖3 0 0 1.9 0 

 

Scenario 2 𝛿𝛿1,2 𝛿𝛿2,2 𝛿𝛿3,2 𝛿𝛿4,2 

score𝑖𝑖1 5.6 0 0 2 

score𝑖𝑖2 0 4.6 0 −2 

score𝑖𝑖3 0 0 0.42 2 

 

Scenario 3 𝛿𝛿1,3 𝛿𝛿2,3 𝛿𝛿3,3 𝛿𝛿4,3 

score𝑖𝑖1 4.8 1.8 0 0 

score𝑖𝑖2 0 3.5 0 0 

score𝑖𝑖3 0 −0.5 2.3 0 

 

Scenario 4 𝛿𝛿1,4 𝛿𝛿2,4 𝛿𝛿3,4 𝛿𝛿4,4 

score𝑖𝑖1 3.9 1.5 0 2 

score𝑖𝑖2 1.5 3.3 0 −2 

score𝑖𝑖3 0 −0.5 1.8 1 

 

Table 12 below shows for each scenario the mean value of the 𝛽̂𝛽′𝑠𝑠 in case there 

would be no linkage errors that have a value significantly different from zero. 

Table 12: Average estimated 𝜷𝜷�′𝒔𝒔 per scenario without linkage errors 

Scenario 1* 2* 3* 4* 

Variable\Estimate 𝛽̂𝛽 𝛽̂𝛽 𝛽̂𝛽 𝛽̂𝛽 

Constant 13,0 12,8 13 13,3 

𝑆𝑆1 1,3 1,1 1,2 0,3 
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𝑆𝑆2 . 0,7 -0,2 . 

𝑆𝑆3 -1,3 -2,7 -1,3 -1,6 

𝑋𝑋 . -0,1 . -0,6 

𝑆𝑆1𝑋𝑋 . 0,6 . 1,5 

𝑆𝑆2𝑋𝑋 . -1,5 . -1,9 

𝑆𝑆3𝑋𝑋 . 2 . 0,8 

𝑆𝑆1𝑆𝑆2 . . 0,4 1,1 

𝑆𝑆1𝑆𝑆3 . . . . 

𝑆𝑆2𝑆𝑆3 . . -0,2 -0,2 

𝑆𝑆1𝑆𝑆2𝑋𝑋 . . . 0,2 

𝑆𝑆1𝑆𝑆3𝑋𝑋 . . . . 

𝑆𝑆2𝑆𝑆3𝑋𝑋 . . . 0,1 

* indicates ‘scenario without linkage errors’. 

 

Table 12 clearly shows that the estimated 𝛽̂𝛽′𝑠𝑠 correspond to the four scenarios. In 

scenario 1 neither covariate 𝑋𝑋 nor another source plays a significant role in 

describing the observed frequencies. In scenario 2 the observed frequencies do not 

depend on other sources but does depend on 𝑋𝑋. In scenario 3 the covariate 𝑋𝑋 is not 

significant while the other sources have significant explanatory power. In scenario 4 

both 𝑋𝑋 and the other sources play a significant role. This is in accordance with the 

four intended scenarios presented in table 10. 
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Colophon

Explanation of symbols

 Empty cell Figure not applicable

 . Figure is unknown, insufficiently reliable or confidential

 * Provisional figure

 ** Revised provisional figure

 2018–2019 2018 to 2019 inclusive

 2018/2019 Average for 2018 to 2019 inclusive

 2018/’19 Crop year, financial year, school year, etc., beginning in 2018 and ending in 2019

 2016/’17–2018/’19 Crop year, financial year, etc., 2016/’17 to 2018/’19 inclusive

 

  Due to rounding, some totals may not correspond to the sum of the separate figures.
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