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Abstract

Weather routing methods are essential for planning routes for commercial shipping and

recreational craft. This paper provides a methodology for quantifying the significance

of numerical error and performance model uncertainty on the predictions returned from

a weather routing algorithm. The numerical error of the routing algorithm is estimated

by solving the optimum path over different discretizations of the environment. The

uncertainty associated with the performance model is linearly varied in order to quan-

tify its significance. The methodology is applied to a sailing craft routing problem:

the prediction of the voyaging time for an ethnographic voyaging canoe across long

distance voyages in Polynesia. We find that the average numerical error is an order

of magnitude smaller than the performance model uncertainty. These results illustrate

the significance of considering the influence of numerical error and performance un-

certainty when performing a weather routing study.
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1. Introduction

Marine weather route modelling aims to identify a route where variables such as

time, fuel usage or risk, amongst others are optimised given the performance model

and the weather that is expected on a given route. Within the context of sailing craft

weather routing, the most common optimised variable is time.5

Route modelling can be used within the design process for new designs, such as
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in sailing craft hull design [1], or operationally, in order to provide routes for existing

craft. When applied operationally, weather routing is essential for improving the safety

of mariners at sea through identifying routes which minimise fuel costs, risk or time.

Quantifying the significance of uncertainty in the weather routing process allows10

the credibility of the predictions to be quantified, managing the expectations of the op-

erators with regards to the accuracy of the supplied route. Key sources of uncertainty

are the weather data, the accuracy of the performance model and the numerical error

in the solution of the optimisation algorithm. However, research has not investigated

the quantification of the numerical error of the routing algorithm or the impact of un-15

certainty in the performance model. The increasing availability of high performance

computing and associated improvement of programming languages allows previously

computationally intractable problems to be simulated.

This paper introduces a methodology for quantifying the significance of numeri-

cal error and performance uncertainty in a marine weather routing study. Initially the20

numerical error of the optimisation algorithm will be quantified through varying the

discretization of the environment. The influence of uncertainty of the performance

is estimated through varying the performance linearly about the original performance

model.

A marine weather routing problem with a high level of uncertainty is the modelling25

of ethnographic voyaging canoes completing colonisation voyages across Polynesia.

This problem involves predicting the voyaging time of a sailing craft over a given route

for a range of weather conditions, a typical design problem. It is possible to model the

performance of any marine craft as a function of wind and wave conditions, allowed

this method to be applied to any marine craft.30

1.1. Literature review

This review will discuss the literature on sailing craft performance prediction and

weather routing algorithms. The weather routing process predicts the optimum route

for a sailing craft to take between two points. The method considers the performance

model of the sailing craft, the optimisation algorithm and the environmental data used35

to identify the optimum path.
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The performance of a sailing craft is determined by the balance of the driving force

generated by the wind passing over the sail against the resistance of the hull and ap-

pendages. The wind passing over the sail also generates a heeling moment which is

balanced against the righting moment of the hull. The interaction of these key force40

balances and the additional moments determine the speed and heel angle of the sailing

yacht [2].

Static and dynamic velocity prediction programs (VPPs) are used to model the

performance of a sailing craft. Static VPPs predict the conditions at which the forces

and moments acting on a sailing craft are balanced [2]. Dynamic VPPs evaluate the45

forces acting on the sailing craft over a series of time steps, within the context of a short

race [3]. Static VPPs require less information than dynamic VPPs on the design of a

sailing craft to provide performance predictions but are considered to be less accurate

as a result.

The first research into solving the sailing craft route optimisation problem used50

a recursive dynamic programming formulation which divided the domain into nodes

over which the minimum time path was calculated [4]. Different wind models [3, 5]

or race strategy and opponent models [6, 7] have been used to improve the accuracy of

sailing routing models.

The influence of different methods of modelling the ability for a sailing craft to sail55

upwind has been explored [8] along with modelling the time taken to complete course

changes [9]. Sailing craft race modelling has typically minimised either the time taken

to complete a course [10], risk of losing to an opponent [11, 6] or reliability [12].

However, the majority of sailing craft routing research only applies to a minimum time

route sailed over a small spatial and temporal domain. Research has considered other60

factors such as risk [13], energy efficiency [14] and fuel and comfort [15].

The long course modelling problem can be characterised through its consideration

of larger spatial and temporal domains over which the shortest path is solved. Typical

drawbacks of short course routing methods involve their requirement for a predictable

wind field and the requirement for the entire course to be modelled as being flat with65

respect to the curvature of the earth. The haversine formula becomes accurate at dis-

tances longer than 1 nm [4], this provides an indication at the crossover between short
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and long course routing methods.

The marine weather routing literature has developed a range of different shortest

path algorithms. The different approaches were classified into calculus of variations,70

grid based approaches and evolutionary optimisation [16]. A time dependent approach

based on the calculus of variations solved the shortest path problem through identi-

fying the shortest path to take through considering a series of fronts reached within

incremental time steps [17]. Forward dynamic programming approaches involve re-

cursively solving the shortest path over a grid of locations generated along the great75

circle line between the start and finish locations [4]. This approach can be two dimen-

sional or three dimensional considering how the variables such as time and fuel cost

are optimised [18]. A claimed improvement is to use a floating grid system which up-

dates potential locations every time step [19]. Using a 3D forward dynamic programing

method it was possible to optimise energy efficiency through varying the engine power80

and ship heading [20]. These grids can be generated based off local wind conditions

[7], although this approach would be challenging for larger spatio-temporal domains

as found in long course routing.

Another route modelling approach has involved generating candidate routes using

biased Rapidly exploring Random Trees which solve for the minimum energy path85

using the A∗ algorithm [21]. A multi objective genetic algorithm has been applied to

solve for the optimum path considering multiple safety and fuel constraints [22]. A

real coded genetic algorithm allowed the consideration of ship rolling within the route

optimisation process, thereby improving safety [23]. An improvement came with the

implementation of a fuzzy logic model to model the performance of a sail driven vessel90

[24].

A method of iteratively aggregating the minimum time path over multiple weather

scenarios has been introduced [4]. The approach of using ensemble weather scenarios

has been shown to be more accurate than single scenarios with application to marine

weather routing [25]. Multiple algorithms and objective functions have been imple-95

mented and applied to the marine weather routing problem. To the authors knowledge

there has been no study of how uncertainties within the solution algorithm and objec-

tive function influence the confidence that may be had in the final result.
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1.2. Uncertainty analysis

Uncertainty analysis is the process of quantifing how likely certain states of a sys-100

tem are given a lack of knowledge on how certain parts of the system operate. The

choice of how to categorize and thus simulate uncertainty is significant in the scientific

modelling process [26]. In the marine environment it is possible to classify uncertainty

as being aleatory uncertainty or epistemic uncertainty [27]. Aleatory uncertainty is the

inherent randomness in a particular parameter, it is not possible to reduce this. Epis-105

temic uncertainty is knowledge based, it is possible to reduce this quantity through

collecting more information on the process in question. Epistemic uncertainty can

be broken down into data uncertainty, statistical uncertainty, model uncertainty and

climate uncertainty. Data uncertainty is associated with the error associated with col-

lecting data from experiment or model. Statistical uncertainty is a consequence of not110

obtaining enough data to model a given phenomenon. Climate uncertainty addresses

the ability for the climate variables over a given spatial-temporal domain to be repre-

sentative given the nature of the weather and climate change [28].

The weather has been described as a chaotic process [29]. The chaotic nature of

the weather limits the ability to utilise numerical models to predict into the future or115

to model what occured in the past. A chaotic system can be thought of as one where

the present state determines the future state, but the approximate present state doesn’t

determine the approximate future. The use of ensemble weather scenarios generated

using different intial conditions attempts to mitigate the associated uncertainty with

weather forecasts and reanalysis data [30]. Given that the weather is a chaotic process,120

it is likely that any solution process for the minimum time path sequential decision

making process may identify one or more stable solutions. Currently the simplest

method of simulating weather uncertainty is through using past weather data.

The error in a scientific model is the accuracy at which it estimates a real system.

The key source of error is the ability for the optimisation algorithm to identify the125

optimal path based on the discretization of the environment. Typical discretization

error calculation methods require grids of significantly different sizes to be solved for

a given set of initial conditions [31]. Through examining the rate of convergence of

solutions from different grids it is possible to extrapolate the solution for an infinite
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discretization.130

2. Method

Figure 1 shows the method used in this research. The initial conditions such as

the route and environmental conditions are specified. A suitable routing algorithm is

identified and implemented. The numerical error is then estimated and the influence

of performance uncertainty is modelled. The method is concluded with an analysis of135

the impact of performance uncertainty and numerical error on the interpretation of the

final set of voyaging time results.

2.1. Routing model

This paper uses the Dynamic Programming (DP) algorithm as applied to long dis-

tance sailing craft in [4], the simplicity of this algorithm means that the source of140

uncertainty lies in the discretization of the domain over which the minimum time path

is solved.

We consider a large domain on the Earths surface over which the modelled sailing

craft could hypothetically sail. This domain is discretized into an equal number of

locations both in parallel and perpendicular to the Great Circle drawn between the start145

and finish locations. The distance between each location is controlled through defining

the maximum distance between nodes, dn. dn can be controlled seperately as the grid

height or grid width, as seen in Figure 2, for this research it is set as being equal. This

generates a grid of nodes with equal numbers of ranks as well as nodes within each

rank.150

For the position at any given node i the travel time between nodes i and a node on

the next rank j along the arc (i, j) starting at time t is carc(i, j, t). The cost function,

carc(i, j, t), provides an estimate of the time taken for a sailing craft to sail between two

points given the environmental conditions at time t. An intial speed estimate is taken

from interpolating the results of a performance prediction analysis for the specific wind155

condition. This speed is then modified in order to account for the wave conditions being

experienced. A final optimisation takes place to identify the optimum heading to sail
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Initial conditions

Routing algorithm

Numerical error

Performance uncertainty

Uncertainty

quantification

Figure 1: Method used to quantify uncertainty in marine weather routing.

Figure 2: Discretized domain along great circle line between voyage start and finish.

between the two points given the current the craft is exposed to. If it is not possible to

achieve a positive speed towards location i from location j then the speed will be set to

0 returning an infinite travel time for that particular arc. It is possible to penalise areas160

of the domain in this manner and identify combinations of initial conditions which are
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unable to return

The minimum time path is identified using a forward looking recursive algorithm,

described in Equation 1. f ∗(i, t) is the time taken for the optimal sequence of decisions

from the node-time pair (i, t) to the finish node and j∗(i, t) is the successor of i on the165

optimal path when in state t. Through solving j∗(i, t) within f ∗(i, t) it’s possible to

solve for the minimum time path. Γi is the set of all nodes on the graph. The algorithm

iterates from the start node to the finish node and updates each node in between with

the earliest time that it can be reached.

f ∗(i, t) =


0, i = n f inish

min j∈Γi [carc(i, j, t) + f ∗( j, t + carc(i, j, t))], otherwise

j∗(i, j) = arg min
j∈Γi

[carc(i, j, t) + f ∗( j, t + carc(i, j, t))], i , n f inish

(1)

2.2. Uncertainty simulation170

The primary sources of uncertainty in sailing craft route modelling lie in the ac-

curacy of the solution algorithm, the performance model of the sailing craft and the

weather. This section introduces the method used to investigate the solution accuracy

of the algorithm and the influence of performance uncertainty of a sailing craft.

The discretization of the environment is the primary source of numerical uncer-175

tainty in the solution algorithm. The key parameter determining the fidelity of the

simulation is the distance between nodes dn. We are interested in the significance of

this parameter on the results on any given routing analysis. In order to consider the

influence of the discretization of the domain on sailing craft routing results the lower

limit of dn must be identified which will allow two coarser grid sizes to be chosen.180

Other factors which influence the selection of dn include the discretization of the

sailing domain and the spatial and temporal resolution of the weather data used. For

example, if the time taken to travel between two locations is greater than the temporal

resolution of the weather dataset then there are changes in weather conditions which

are not being modelled.185

The weather data used is from the ERA20 climate model has a spatial resolution

of 125 km and a temporal resolution of 3 hours [32]. The weather data is linearly in-
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tepolated to the discretization of the nodes in the environment. If the distance between

nodes is much larger than the original spatial discretization of the weather data then

the change in the weather conditions will not be fully modelled. The voyaging time is190

used to look up the closest weather data time step.

The accuracy of the performance model is limited to certain scales, consequently

it may not make physical sense to apply such a model below a certain length of time

or distance. Despite this, a quantification of the numerical solution algorithm is still

required in order to identify whether the minimum time solution is stable. One index195

used to quantify numerical uncertainty in CFD is the grid convergence index (GCI)

[31, 33] which has only recently been applied to the sailing craft routing problem [12].

The method of numerically quantifying error using the Grid Convergence Index

(GCI) is fully described in [33]. It involves the solution of the algorithm over multiple

discretizations of the environment which exponentially increase in detail. The grid200

height, h, is the measurement unit of grid size and is calculated using Equation 2. ∆Ai

is the size of the ith cell and N is the total number of the cells used for computation.

The solution trend from the three distinct grid sizes is extrapolated towards h → 0

where the extrapolated solution is used to estimate the associated discretization error.

h =
[ 1
N

N∑
i=1

(∆Ai)
]

(2)

We wish to quantify whether uncertainty surrounding the performance modelling205

of a sailing craft is significant within the context of sailing craft route modelling. To

begin the process the performance model is varied linearly about its original perfor-

mance value. Each generated performance model is known as Punc, where unc is the

percentage that the original performance is varied by.

Algorithm 1 describes the uncertainty simulation routine for a specific route at a210

specific time. It shows how the minimum time, Vt,dn,unc, for a specific combination of

start time t, height dn, and performance uncertainty level unc is simulated for a given

route. A range of grid heights, hn, are selected based on studying how the estimates

from the routing algorithm converge as the height is reduced. The lower limit of dn is

selected based on the minimum distance at which the cost function retains accuracy.215
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The number of start times and uncertain performances to be simulated is dependent

on the computational resources available. The code for this method was implemented

in the programming language Julia [34].

Algorithm 1 Route modelling uncertainty simulation routine for a specific start time t

and route.
1: procedure Routing uncertainty simulation

2: for dn in [h1, h2, h3] do

3: Generate discretized environment

4: Spatially interpolate wind, wave and current data for each node

5: for Puncin[50%, ..., 150%] × Pprediction do

6: Vt,dn,unc ←Minimum time path(t, dn, Punc)

3. Application

The uncertainty route modelling analysis procedure is applied to quantifying the220

performance of Polynesian voyaging canoes, an application with previously irreducible

levels of uncertainty. Modelling the voyaging time for ethographic voyaging craft to

complete specific routes will assist understanding how it was possible for Polynesia

to be colonised, one of Pacific archaeology’s greatest unanswered questions [35]. Of

interest is the influence of the ENSO oscillation, a key weather phenomenon in the225

Pacific, on the voyaging time [36]. One voyaging route of interest is between Upolu and

Moorea. Through simulating the influence of performance uncertainty on the voyaging

time for a colonisation voyage it will be possible to quantify the influence of seafaring

technology on the rate of the colonisation of Polynesia. At the heart of this problem is

the solution of a marine weather routing algorithm with a prior requirement to simulate230

uncertainty.

The minimum time path between Tongatapu and Atiu was estimated for a range of

different grid sizes, performances and start times. The results from this series of simu-

lations can be used to estimate the difficulty of making the voyage between these two

locations using prehistoric seafaring technology. Twenty different performances were235
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(a) Vs as a function of true wind speed and direction for the

sailing craft [37].

(b) Vs varied 10% about the original performance for a wind

speed of 10 kts.

Figure 3: Performance of marine vessel used in study. The polar plots show the speed achieved by the vessel

for a specific true wind angle at different performance levels or true wind speeds.

generated linearly varying from −50% to +50% of the original performance model.

Voyages were started every 72 hours from the 1st January to the 31st December. 1985

is used to provide weather data for a medium ENSO, an important condition in the

context of the study.

To quantify the efficacy of later voyaging canoe designs, performance data for an240

outrigger canoe was used. This performance was estimated based off CFD simulations

for the hull configuration and aerodynamic experiments for the sail. The full details for

the performance prediction may be found in [37]. It should be noted that it is possible

to substitute in any performance model within this framework, allowing application to

all marine vehicles.245

The cost function for this craft interpolates the performance from the polar perfor-

mance diagram, seen in Figure 3a. An example of how the performance is varied for a

specific wind condition is shown in Figure 3b. The wind and wave reanalysis data was

downloaded for the year 1982 from the ECMWF ERA20 model [32]. The current data

used was sourced from [38].250
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3.1. Numerical uncertainty

3.1.1. Illustration of simulation convergence

The numerical error in the routing algorithm is a function of the discretization of

the domain, parameterised by the grid width, dn. Figure 4 illustrates the predicted

routes between Tongatapu and Atiu where dn was reduced in stages between 40.0 to 5255

nm. It can be seen that as the fidelity of the simulation increases, the voyaging time,

Vt, reduces.

Figure 4: Routes between Upolu and Moorea starting at 00:00 GMT on the 1st January 1985 solved over

several different grid widths.

A convergence plot of Vt as a function of dn is shown in Figure 5. For the specific

initial conditions the relationship is that as dn reduces, so too does Vt. It can be seen

that there is a significant change in relationship between the results for dn = 40, 20260

and dn = 15, 10, 5 nm and Vt. This could be due to the grid discretization becoming

significantly finer than the resolution of the original wind and wave data.

The extrapolated Vt, GCI and order of convergence for three combinations of grid

height is included in Table 1. The extrapolated Vt value is where the predicted Vt for

the specified heights is extrapolated to dn = 0. The solution for dn = 10.0, 15.0, 20.0265

has a low GCI indicating the results for each of these grid heights appear to converge.

However, we see a slight increase in Vt and GCI for dn = 5.0, 10.0, 15.0 nm. This data

suggests a positive correlation between between Vt and GCI, but also that there is a
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Figure 5: Voyaging time, Vt , as a function of grid width for voyages between Upolu and Moorea starting at

00:00 GMT on the 1st January 1985.

relationship between dn and GCI which must be considered to qualify the results.

The resolution of the weather data could contribute towards inaccuracy at lower270

values of dn. The resolution of the weather data is at 67.49 nm, and the results may

also suggest that as dn decreases significantly below the resolution of the weather data

the solutions may become dependent on the interpolation techniques used to retrieve

the weather data.

There is a large computational cost associated with finer simulations which pro-275

hibits the number of simulations required to explore uncertainty in voyaging time.

These results show that the GCI calculation method for estimating numerical error

must be applied in a manner considering the physical implication of the parameters but

also the computational run time of the simulations.

The selection of dn is a compromise between simulation accuracy and computa-280

tional run time. Simulation accuracy is determined by the smallest and the largest

scales that the cost function can be applied to. The smallest scale is determined by

the haversine formula which has significant levels of error for distances below 1 nm.

The largest scale is determined by the rate at which spatio-temporal environmental

data becomes available. Parallel computing provides significantly more resources than285
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dn Vt (hrs) GCI OOC

5.0, 10.0, 15.0 274.00 0.0014577 2.25

10.0, 15.0, 20.0 272.49 0.0000955 4.34

15.0, 20.0, 40.0 272.64 0.0012429 2.59

Table 1: Calculation of extrapolated Vt , GCI and order of convergence.

available previously allowing an increase in the number of different initial conditions

that are required to be simulated. However, there are still large costs associated with

the finer simulations at dn = 2.5, 5.

Figure 5 illustrates that as dn is reduced significantly below the spatial distribution

of weather data there is a step change in the solution. The dn also influences the rate at290

which new weather data is retrieved and processed. If the journey time for a particular

arc between two nodes lasts longer than the time between weather conditions being

updated then the solution is being solved over incomplete information. The desire

for accuracy must be balanced against computational limitations. There is a cubic

relation between the computational run time and fidelity of the simulation. From this295

set of initial simulations it may be proposed that the dn = 10.0, 15.0, 20.0 nm provide a

collection of heights which balance the requirement for accuracy against computational

run time.

3.1.2. Numerical error of voyaging simulations

The numerical error from the application of the routing algorithm must be calcu-300

lated to qualify the solution. Each set of initial conditions require a new estimate of

numerical error. The average numerical error across a range of simulations will give

insight, and confidence, into how well the routing algorithm is able to solve across a

range of initial conditions.

The order of convergence, GCI value and extrapolated voyaging time were calcu-305

lated for the times generated as a function of the different grid sizes of 10, 15 and 20

nm. The order of convergence measures the rate at which the difference between the

magitude of each result changes as a function of the change of the grid width. 95.66%
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of the remaining results had an order of convergence greater than 1.0, a necessary re-

quirement in order to extrapolate the result to a grid width of approximately 0.310

The lack of convergence is due to the solution of a minimum time path algorithm, a

sequential decision making problem, over a chaotic environment. For those remaining

results it is possible to investigate the lack of convergence through running simulations

at reduced grid widths. For now, the use of the numerical error reduction procedure

helps identifying which combinations of initial conditions result in complex behaviour315

requiring more analysis.

The relationship between Vt and GCI is shown in Figure 6. From the fitting of

the line to the data it can be seen that there is no relationship between Vt and GCI.

This is because the same number of calculations are being performed over each grid

size. Large values of GCI indicates sets of initial conditions where more analysis is320

required in order to arrive at credible predictions. The average GCI value is 0.320%.

For the slowest performance the mean voyaging time is 506.92 with a numerical error

of ±1.62. For the fastest performance the mean voyaging time is 181.38 ± 0.58 hrs.

Quantifying the numerical error is a necessary stage for the application of any nu-

merical method. The magnitude of the numerical is significant if the weather conditions325

are fully known, such as in design situations or historical investigations. However, fore-

cast data currently has an ROC score of approximately 0.7 for predictions at the 120 hr

time period [39]. The numerical error is much smaller than the forecast uncertainty.

3.2. Performance uncertainty

The ethnographic voyaging canoe acts as an example of a typical marine craft de-330

sign problem, albeit one with large levels of uncertainty. Voyages between Tongatapu

and Atiu were started every 6 hours from the 1st January 1985 to the 31st December

1985. The performance model was varied for 21 steps between 50% and 150% of the

original performance. Simulations were solved over a grid size of dn = 10 nm. Signif-

icant variation in voyaging time can be seen for any given performance and across all335

changes in performance, as seen in Figure 7.

The mean voyaging time appears to be between 230 − 295 hours for the unaltered

performance with the variation being solely due to the range of environmental condi-
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Figure 6: Relationship between GCI index and voyaging time.

Figure 7: Voyaging time as a function of the different variations of performance. The standard deviation is

illustrated using error bars.

tions. This illustrates that even if there was a high level of confidence associated with

the accuracy of the performance model the weather conditions contribute signficantly340
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to the variation of voyaging time.

A large variation in voyaging time can be seen in the results. The minimum voy-

aging time is 98.42 hours, with a maximum of 682.77 hours. Increasing uncertainty in

the accuracy of the performance model contributes to the variation in voyaging time.

To reduce this uncertainty the accuracy of the performance model must be quantified345

before performing a routing study so it is possible bound the uncertainty associated

with the minimum voyaging time.

Of interest is the variance of the voyaging time as a function of the performance

variation. Understanding how as the varying of performance influences the voyaging

time indicates the degree of confidence that should be held in a given voyaging result,350

given the confidence in the performance mode.

Figure 8 shows the relationship between performance variation and the voyaging

time non-dimensionalised with respect to the original performance voyaging time for

each start date. This illustrates how variations in performance from the original perfor-

mance significantly alter the expected voyaging time. It can be seen that as the perfor-355

mance varies from the initial performance the standard deviation of the voyaging time

results increases. As time is a reciprocal of speed it can be seen that the magnitude of

the reduction of voyaging time in response to performance improvement is smaller than

the magnitude of the increase of voyaging time in response to performance reduction.

There is also a difference between the change in the standard deviation of Vt for360

equivalent magnitude variations about the original performance. As the performance

decreases we see more significant reductions in speed and much larger increases in

standard deviation. As the performance increases the magnitude between successive

improvements decreases along with a reduction in standard deviation. It can be seen

that reductions in performance have more significant negative impacts on voyaging365

time than equivalent improvements. This non-linear response is due to the slower craft

spending more time at sea and consequently being exposed to more variation in the

weather.

Figure 9 shows how the standard deviation of the voyaging time varies as a function

of the performance variation. The average numerical is overlaid to provide an indica-370

tion of how significant it may be when using the results of this study. Figure 9 indicates
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Figure 8: Relationship between the voyaging time and change in performance. The standard deviation is

plotted as the error bars.

that the contribution of performance uncertainty is much larger than the numerical error

of the algorithm. A variation in performance of ±2.5% causes a standard deviation of

0.8− 1.1%, equivalent to 2.13− 2.93 hrs for the mean voyaging time of 266.40 hrs. As

the variation from the original performance increases to ±5% we see that the standard375

deviation increases rapidly to 2.41 − 3.08%Vt, or, 6.42 − 8.21 hours.

These results illustrate the influence of performance uncertainty on Vt. It is likely

that the uncertainty associated with forecast data is still the dominant source of uncer-

tainty, as has been specified earlier in this paper.

The weather conditions are updated every 3 hours. The magnitude of the numerical380

error and influence of low levels of performance uncertainty indicate that it is possible

for multiple changes in the weather to not be modelled. It would be difficult to quantify

the impact of this error on the ability for the weather routing model to approximate the

real situation.
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Figure 9: Relationship between performance variation and the standard deviation of Vt,P100% .

4. Summary and conclusions385

This paper has presented a method for evaluating the impact of numerical error and

performance variation in the voyaging time for a marine weather routing problem. This

method was applied to a typical design problem; the quantification of the time taken

for a sailing craft to complete a specific voyage given uncertainty in its performance.

The key results of this study can be summarised as follows;390

1. Uncertainty in performance and the numerical error reduce the accuracy of ma-

rine weather routing, the dominant source of uncertainty is likely to lie with

meteorological uncertainty for applications relying on forecast data.

2. The numerical error must be calculated for each set of initial conditions. For

this problem, 95.3% of all simulations converged with an average of 0.320%395

error. For the slowest performance the mean voyaging time is 506.92 with a

numerical error of ±1.62. For the fastest performance the mean voyaging time is

181.38 ± 0.58 hrs.

3. Slower craft spend more time at sea they are exposed to more variance in the

weather conditions, likely contributing towards the non-linear response of voy-400
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aging time to performance variation. This means that the uncertainty in the per-

formance model must be quantified to provide credibility to voyaging simula-

tions.

4. The influence of uncertainty in the performance model rapidly becomes more

influential than the routing algorithm numerical error. The relationship between405

uncertainty and the standard deviation of voyaging time increases sharply with

variations of 2.5% in performance being associated with standard deviations of

±0.8 − 1.1% about the mean voyaging time.

5. The weather data used updates every 3 hours. The combination of numerical

error and uncertainty in performance model may mean that the approximation of410

the minimum time path is being calculated based off incomplete sets of weather

data, or solved using more weather data than would be encountered in practice.

This method of quantifying the numerical error of the solution algorithm and per-

formance uncertainty could be applied to other cases involving marine vessels such as

cargo ships. This would allow an understanding of the maximum level of accuracy that415

could be achieved within commerical practice. Another investigation could be into the

uncertainty levels associated with the recorded reanalysis weather data used and how

this might influence the result.

Through applying an uncertainty analysis method to the marine weather routing

problem we have shown that the influence of performance uncertainty is much larger420

than any uncertainty associated with the optimisation algorithm used. To provide more

accurate routing the uncertainty associated with the performance model used must be

reduced.
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