
European Journal on Computational Optimization manuscript No.
(will be inserted by the editor)

Bilevel programming methods for computing
single-leader-multi-follower equilibria in normal-form and
polymatrix games

Nicola Basilico · Stefano Coniglio · Nicola
Gatti · Alberto Marchesi

Received: date / Accepted: date

Abstract The concept of leader-follower (or Stackelberg) equilibrium plays a central
role in a number of real-world applications bordering on mathematical optimization
and game theory. While the single-follower case has been investigated since the in-
ception of bilevel programming with the seminal work of von Stackelberg, results
for the case with multiple followers are only sporadic and not many computationally
affordable methods are available.

In this work, we consider Stackelberg games with two or more followers who
play a (pure or mixed) Nash equilibrium once the leader has committed to a (pure
or mixed) strategy, focusing on normal-form and polymatrix games. As customary in
bilevel programming, we address the two extreme cases where, if the leader’s com-
mitment originates more Nash equilibria in the followers’ game, one which either
maximizes (optimistic case) or minimizes (pessimistic case) the leader’s utility is se-
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lected. First, we show that, in both cases and when assuming mixed strategies, the
optimization problem associated with the search problem of finding a Stackelberg
equilibrium is NP-hard and not in Poly-APX unless P = NP . We then consider
different situations based on whether the leader or the followers can play mixed strate-
gies or are restricted to pure strategies only, proposing exact nonconvex mathematical
programming formulations for the optimistic case for normal-form and polymatrix
games. For the pessimistic problem, which cannot be tackled with a (single-level)
mathematical programming formulation, we propose a heuristic black-box algorithm.
All the methods and formulations that we propose are thoroughly evaluated compu-
tationally.

Keywords Bilevel programming · Game Theory · Stackelberg Games · Equilibrium
computation

Mathematics Subject Classification (2010) 91A10 · 91A65 · 91A90 · 90C26

1 Introduction

Leader-follower (or Stackelberg) games model the interaction between rational agents
(or players) when a hierarchical decision-making structure is in place. Considering,
for simplicity, the two-player case, Stackelberg games model situations where an
agent (the leader) plays first and a second agent (the follower) plays right after them,
after observing the strategy the leader has chosen.

The number of real-world problems where a leader-follower (or Stackelberg)
structure can be identified is extremely large. This is often the case in the security
domain [6,19], where a defender, aiming to protect a set of valuable targets from the
attackers, plays first, while the attackers, acting as followers, make their move only
after observing the leader’s defensive strategy. Other noteworthy cases are interdic-
tion problems [9,23], toll setting problems [20], network routing problems [3], and
(singleton) congestion games [10,22].

While, since the seminal work of von Stackelberg [31], the case with a single
leader and a single follower has been widely investigated, only a few results are
known for the case with multiple followers and not many computationally afford-
able methods are available to solve the corresponding equilibrium-finding problem.

In this paper, we focus on the fundamental case of single-leader multi-follower
games with a finite number of actions per player where the overall game can be
represented as a normal-form or polymatrix game—the latter is of interest as it plays
an important role in a number of applications such as, e.g., in the security domain,
where the defender may need to optimize against multiple uncoordinated attackers
solely interested in damaging the leader. Throughout the paper, we assume the setting
where the (two or more) followers play simultaneously in a noncooperative way, for
which it is natural to assume that, after observing the leader’s play (either as a strategy
or as an action), the followers would reach a Nash Equilibrium (NE) (see [30] for a
thorough exposition of this equilibrium concept). We refer to an equilibrium in such
games as Leader-Follower Nash Equilibrium (LFNE).
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As it is typical in bilevel programming, we study two extreme cases: the opti-
mistic one where, if the leader’s commitment originates more NE in the followers’
game, one which maximizes the leader’s utility is selected, and the pessimistic one
where an equilibrium which minimizes the leader’s utility is chosen.

In particular, the leader’s utility at an optimistic equilibrium corresponds to the
largest utility the leader may get assuming the best case in which the followers would
(somehow) end up playing a Nash equilibrium which maximizes the leader’s utility.
Differently, the leader’s utility at a pessimistic equilibrium corresponds to a utility
value the leader could always get independently of the followers’ behavior. From this
perspective, a risk-taking leader would play according to an optimistic equilibrium,
whereas a risk-averse leader would play according to a pessimistic equilibrium. For
more types of solution concepts related to these two, we refer the reader to [2].

The original contributions of our work are as follows.1 First, we illustrate that the
optimization problem associated with the search problem of computing an LFNE in
mixed strategies when the followers play an NE which either maximizes or minimizes
the leader’s utility isNP-hard and not in Poly-APX unless P = NP . After casting
the general problem with mixed strategy commitments in bilevel terms, we propose
different nonlinear and nonconvex single-level mathematical programming formu-
lations for the optimistic case, suitable for state-of-the-art spatial-branch-and-bound
solvers. For the pessimistic case, which does not admit a single-level mathematical
programming reformulation of polynomial size, we propose a heuristic method based
on the combination of a spatial-branch-and-bound solver with a black-box algorithm.
We also briefly investigate (easier) variants of the problem obtained when restrict-
ing either the leader or the followers to pure-strategy commitments. We conclude
by providing a thorough experimental evaluation of our techniques on a (normal-
form and polymatrix) testbed generated with GAMUT [26], also encompassing some
structured games, employing different solvers: BARON, SCIP, CPLEX, SNOPT, and
RBFOpt (the latter is used for black-box optimization).

2 Notation

Let N = {1, . . . , n} be the set of agents. For each p ∈ N , we denote by Ap the
agent’s set of actions, with mp = |Ap|. For each agent p ∈ N , we denote by
xp ∈ [0, 1]mp , with eTxp = 1 (where e is the all-one vector), their strategy vector
(or strategy, for short). Each component xap of xp represents the probability by which
agent p plays action a ∈ Ap. We call xp a vector of pure strategies if xp ∈ {0, 1}mp ,
or of mixed strategies in the general case. We denote a strategy profile, i.e., the col-
lection of the strategies each agent plays, by x = (x1, . . . , xn).

For each agent p ∈ N , we define their utility function as up : [0, 1]m1 × · · · ×
[0, 1]mn → R. A strategy profile x = (x1, . . . , xn) is an NE if and only if, for each
agent p ∈ N , up(x1, . . . , xn) ≥ up(x

′
1, . . . , x

′
n) for every strategy profile x′ where

x′q = xq for all q ∈ N \ {p} and x′p 6= xp (this corresponds to assuming that no
unilateral deviations would take place). We consider two game classes: Normal-Form
(NF) and PolyMatrix (PM).

1 Some parts of the paper were presented at a preliminary stage in [7] and [8].
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For NF games (see [30] for a reference), we let Up ∈ Rm1×...×mn denote, for
each agent p ∈ N , their (multidimensional) utility (or payoff) matrix where each
component Ua1,...,anp denotes the utility of agent p when all the agents play actions
a1, . . . , an. Given a strategy profile (x1, . . . , xn), the expected utility of agent p ∈ N
is equal to the multilinear function up(x1, . . . , xn) = xTp

(
Up ·

∏
q∈N\{p} xq

)
.

For PM games (see [34] for a reference), we have a utility matrix Upq ∈ Rmp×mq

per pair of agents p, q ∈ A. Given a strategy profile (x1, . . . , xn), the expected utility
of agent p is equal to the bilinear function up(x1, . . . , xn) =

∑
q∈N\{p} x

T
p Upqxq .

We remark that, while in the NF case the degree of the polynomial corresponding
to an agent’s expected utility is equal to the number of agents, it is always equal to 2
in the PM case, independently of the number of agents involved. The computational
impact of this property will be discussed in the paper.

3 Previous works

Since the original work of Nash [25], the problem of computing Nash equilibria in
multi-player games (without a leader) has attracted a large interest—see the mono-
graph [32] and [11,17] where the complexity of the problem is addressed. For more
details on noncooperative game theory, we refer the interested reader to [30].

Most of the game-theoretical investigations on Stackelberg games have, to the
best of our knowledge, mainly addressed the case of a single follower. In such setting,
it is known that the single follower can play a pure strategy without loss of generality,
i.e., that there always is a pure strategy by which they can maximize their utility, and
that the optimization problem associated with the search problem of computing an
equilibrium is easy with complete information [33], while it becomes NP-hard for
Bayesian games [16]. Algorithms are proposed in [16].

For what concerns Stackelberg games with more than two players, some works
have investigated the case with multiple leaders and a single follower, see [21]. For
the problem involving a single leader and multiple followers (the one on which we
focus in this paper), only a few results are available. It is known, for instance, that an
equilibrium can be found in polynomial time if the followers play a correlated equi-
librium in the optimistic case [15] (see [30] for more detail on correlated equilibria),
whereas the associated optimization problem is NP-hard if they play sequentially
one at a time (as in a classical Stackelberg game with many players) [16].

4 Problem statements, bilevel perspective, and computational complexity

In this section, we formalize the problem that we address in the paper, cast it in bilevel
terms, and investigate its computational complexity and approximability.
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4.1 Problem statements

In formal terms, the two main versions of the problem of computing an LFNE that
we tackle in this paper, optimistic (O-LFNE) and pessimistic (P-LFNE), are defined
as follows:

O-LFNE: Given an n-agent game with n ≥ 3, find a strategy vector δ for the
leader such that, after committing, the largest leader’s utility over all the NE
in the followers’ game parameterized by δ is as large as possible.

P-LFNE: Given an n-agent game with n ≥ 3, find a strategy vector δ for the
leader such that, after committing, the smallest leader’s utility over all the NE
in the followers’ game parameterized by δ is as large as possible.

When notationally convenient, we will refer to an either optimistic or pessimistic
LFNE as O/P-LFNE.

We will distinguish between the cases where either the leader or the followers
are restricted or not to pure strategies, considering four cases: leader in mixed and
followers in mixed (LMFM), leader in pure and followers in mixed (LPFM), leader
in mixed and followers in pure (LMFP), and leader in pure and followers in pure
(LPFP).

In the general (mixed) case, we assume that the leader commits to a strategy, i.e.,
to a distribution of probability according to which they (the leader) select their action,
and that, while the followers can observe the distribution chosen by the leader, they
(the followers) cannot observe its realization (i.e., the action the leader plays). This
is the case in, e.g., security games. The case in which the leader’s strategy is pure is
the converse one in which the leader’s play is completely observable by the followers.
The assumption behind the followers playing mixed strategies is the same as in games
without a leader (e.g., one can consider repeated games in which the leader has to
commit to a single strategy before the game starts, whereas the followers can, at each
iteration, draw a different action profile from their distribution of choice, thus playing
mixed strategies).

For the sake of presentation, in the remainder of the paper we assume n = 3
(one leader, two followers). We remark that our results can be adapted to any n. In
Section 9, we will indeed report on computational experiments carried out for games
with more than two followers.

In the remainder of the paper, we assume that the last agent (the third), whom
we relabel as agent `, takes the role of leader. All the other agents (the followers) are
compactly denoted by the set F = N \{`}. When n = 3, F = {1, 2}. For all f ∈ F ,
we define f ′ := F \ {f}. We also denote x` (the strategy vector of the leader) by δ
and x1, x2 (the strategy vectors of the followers) by ρ1, ρ2. For each p ∈ N , we let
∆p be the simplex of strategies of player p, i.e., the set of nonnegative vectors δ, ρ1,
or ρ2 summing to 1.

4.2 Bilevel programming perspective

Computing an O/P-LFNE amounts to solving a bilevel programming problem.
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In the optimistic case, we can compute an O-LFNE by solving the following
problem:

(O-LFNE) max
(ρ1,ρ2,δ)∈
∆1×∆2×∆`

∑
i∈A1

∑
j∈A2

∑
k∈A`

U ijk` ρi1ρ
j
2δ
k (1a)

s.t. ρ1 ∈ argmax
ρ1∈∆1

{ ∑
i∈A1

∑
j∈A2

∑
k∈A`

U ijk1 ρi1ρ
j
2δ
k

}
(1b)

ρ2 ∈ argmax
ρ2∈∆2

{ ∑
i∈A1

∑
j∈A2

∑
k∈A`

U ijk2 ρi1ρ
j
2δ
k

}
. (1c)

Due to Constraints (1b)–(1c), the second level problems call for a pair (ρ1, ρ2) of
followers’ strategies forming an NE in the followers’ game induced by the strategy
δ ∈ ∆` chosen by the leader in the first level. Note that, due to the definition of
NE, the pair (ρ1, ρ2) is an NE in the game induced by δ if and only if ρ1 (resp., ρ2)
maximizes player 1’s (resp., player 2’s) utility when assuming that player 2 (resp.,
player 1) plays ρ2 (resp., ρ1). Subject to these constraints, the first level calls for a
triple (ρ1, ρ2, δ) maximizing the leader’s utility.

The problem is optimistic as, assuming that the second level admits many NE
(ρ1, ρ2) for the chosen δ, it calls for a pair (ρ1, ρ2) which, together with δ, maximizes
the leader’s utility. Notice that, while any triple (ρ1, ρ2, δ) ∈ ∆1×∆2×∆` is a feasible
solution to the problem as long as the pair (ρ1, ρ2) is an NE in the game induced by δ,
Problem (1a)–(1c) calls for a triple (ρ1, ρ2, δ) which is optimal—as, if not, the leader
would prefer to change their strategy and (ρ1, ρ2, δ) would not be a LFNE.

In the pessimistic case, computing a P-LFNE amounts to solving to the following
problem:

(P-LFNE) max
δ∈∆`

min
(ρ1,ρ2)∈
∆1×∆2

∑
i∈A1

∑
j∈A2

∑
k∈A`

U ijk` ρi1ρ
j
2δ
k (2a)

s.t. Constraints (1b), (1c). (2b)

This problem differs from its optimistic counterpart as, due to the assumption of
pessimism, the leader here maximizes the minimum value taken by their utility over
all pairs (ρ1, ρ2) which are NE in the followers’ game induced by δ—that is, for the
chosen δ, ρ1 and ρ2 always correspond to a NE which minimizes the leader’s utility.

4.3 Complexity results

As we will show, the optimization problem associated with the search problem of
computing an LFNE is bothNP-hard and inapproximable in both versions (O-LFNE
and P-LFNE) in the LMFM case even with a single leader action (which implies
that the result also holds for the LPFM case). This follows from the NP-hardness
and inapproximability of the problem of computing, in a two-player game, a mixed-
strategy NE which maximizes the sum of the players’ utilities (the so-called social
welfare) [17]:
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Proposition 1 ([17]) The problem of computing a mixed-strategy NE which maxi-
mizes the total players’ utility is NP-hard and it is not in APX unless P = NP ,
even when the game is polymatrix.

The result is based on the fact that, for any SAT instance, it is possible to build a
symmetric two-player game (U1, U2), either NF or PM, such that:

i) there is a (pure-strategy) NE in which both players play their last action and re-
ceive a utility equal to ε > 0, where ε is an arbitrarily small constant;

ii) the game admits a (mixed-strategy) NE providing each player with a utility of
m, where m is the number of actions, if and only if the SAT instance is a YES
instance.

This implies that, in any such game, finding an NE where the players achieve a utility
strictly larger than ε would suffice to claim that the corresponding SAT instance is
a YES instance. It follows that one cannot decide in polynomial time whether such
games admit an NE providing the players with a utility strictly larger than ε unless
P = NP as, if that were the case, YES instances of SAT could be decided in poly-
nomial time. This also shows that finding an NE which maximizes the social welfare
(defined as the total players’ utility) is not in APX . This is because the existence of
an NE providing the players with a total utility strictly greater than 2ε would suffice
to conclude that the corresponding SAT instance admits answer YES.

We show that the result in [17] can be strengthened with a simple observation:

Proposition 2 The problem of computing a mixed-strategy NE which maximizes the
total players’ utility is not in Poly-APX unless P = NP , even when the game is
polymatrix.

Proof Let ε = 1
2m . On games corresponding to YES SAT instances (which admit an

NE with total utility 2m), an algorithm with approximation ratio 1
α would yield an

NE of total utility at least 1
α 2m. Note that, if 1

α 2m > 2ε (i.e., 1
α > ε

m ), the SAT
instance is proven to be a YES instance. Therefore, there cannot be a polynomial time
approximation algorithm with a factor better than ε

m = 1
2mm unless P = NP . Since

the reciprocal of this factor is superpolynomial, the problem is not in Poly-APX . ut

For the problem of computing an O/P-LFNE, we show the following result:

Proposition 3 The optimization problem associated with the search problem of com-
puting an O/P-LFNE in the LMFM and LPFM cases is NP-hard and it is not in
Poly-APX unless P = NP , even when the game is polymatrix.

Proof Let us consider the O-LFNE case first. Given a game with utilities (U1, U2)
and m actions per player as defined in [17], we construct a 3-player leader-follower
polymatrix game where:

– the leader only has one action and utility matrices U`f1 = U`f2 =
[
1, . . . , 1, 1

2m

]
;

– player f1’s utility matrices are Uf1` = 0 and Uf1f2 = U1;
– player f2’s utility matrices are Uf2` = 0 and Uf2f1 = U2.
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Due to having a single action, the presence of the leader is immaterial (note that,
therefore, the LMFM and LPFM cases coincide). Therefore, the set of followers’
equilibria in the leader-follower game is the same as that of the original two-player
game. It follows that SAT has answer YES if and only if the leader-follower game
admits an equilibrium with leader’s utility strictly larger than 1

2m , as that corresponds
to an NE in the followers’ game with utility strictly larger than ε for each player.
Along the lines of the previous proof, an algorithm with approximation factor 1

α
would yield, for a YES instance, a leader utility of at least 1

α , allowing us to conclude
that the instance is a YES instance if 1

α > 1
2m . This shows that the problem of

computing an O-LFNE is not in Poly-APX unless P = NP (even in polymatrix
games).

For the computation of a P-LFNE, the reasoning is the same except for defining
U`f1 = U`f2 =

[
1
2m ,

1
2m , . . . ,

1
2m , 1

]
. ut

We conclude the section by showing that deciding whether one of the leader’s
actions can be safely discarded is a hard problem, which implies that dominance-like
techniques often used in game theory to reduce the search space of an equilibrium-
computing algorithm are inapplicable.

Proposition 4 In the LMFM case, deciding whether an action of the leader is played
with strictly positive probability at an O/P-LFNE is NP-hard.

Proof Given a symmetric two-player game (U1, U2) withm actions as defined in [17],
we build a three-player game (U`, Uf1 , Uf2) in which:

– the leader has two actions, while f1 and f2 have m actions each;
– when the leader plays their first action, the payoffs of all the players are 1/4;
– when the leader plays their second action, the payoffs of f1 and f2 are those in
(U1, U2) and the leader’s payoffs are 1 for all the actions of f1 and f2, except for
the combination composed of the last action of f1 and the last action of f2, in
which the leader’s payoff is 0.

We show that the first action of the leader can be safely discarded from the game
(U`, Uf1 , Uf2) if and only if the game (U1, U2) admits a mixed-strategy NE providing
the players with a utility of m, which implies that deciding whether the first action
of the leader can be discarded is NP-hard. If the leader plays their first action, they
receive a utility of 1/4. If the leader plays their second action, the followers play the
best NE for the leader, which can be either i) the pure-strategy NE in which both
play their last action providing the leader with a utility of 0 or, ii) if it exists, the
mixed-strategy NE providing the leader with a utility of 1. For any mixed strategy of
the leader, the behavior of the followers does not change w.r.t. the case in which the
leader plays their second action as a pure strategy. This is because, when the leader
randomizes between their two actions, the utility of the followers f1 and f2 is an
affine transformation (with positive coefficients) of U1 and U2, making them play
exactly as in the case where the leader plays their second action as a pure strategy.
Thus, at an optimistic LFNE the leader plays a pure strategy, playing their first action
if (U1, U2) does not admit a mixed-strategy NE and their second action if it does.
The first action of the leader can therefore be safely discarded if and only if (U1, U2)
admits a mixed-strategy NE providing the players with a utility of m.
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The proof is analogous in the pessimistic case after interchanging the leader pay-
offs of values 0 and 1. ut

5 Optimistic case with Leader in Mixed and Followers in Mixed (O-LMFM)

In this section, we focus on the optimistic setting in the general case where each
player is allowed to play mixed strategies. We propose three different exact mathe-
matical programming formulations for NF games and then illustrate how they can be
simplified for PM games.

5.1 Exact formulations for NF games

We report the three formulations illustrating how to derive each of them in sequence.

5.1.1 O-NF-LMFM-I

To obtain a single level formulation for the problem, we proceed by applying a stan-
dard reformulation [30] involving complementarity constraints.

Let, for all i ∈ A1 and j ∈ A2, Ũ ij1 :=
∑
k∈A`

U ijk1 δk and Ũ ij2 =
∑
k∈A`

U ijk2 δk

be the matrices of the followers’ game, parameterized by δ. According to Constraint (1b),
for (ρ1, ρ2) to be a NE ρ1 must be an optimal solution to the Linear Program (LP):

max
ρ1∈∆1

{ ∑
i∈A1

∑
j∈A2

Ũ ij1 ρ
i
1ρ
j
2

}
,

where Ũ ij1 ρ
i
1ρ
j
2 is a linear function of ρ1 if ρ2 is fixed. Since the LP is feasible and

bounded for any ρ2 ∈ ∆2, by complementary slackness we have that ρ1 ∈ ∆1 is
optimal if and only if there is a scalar v1 such that the following holds for all i ∈ A1:(

v1 −
∑
j∈A2

Ũ ij1 ρ
j
2

)
ρi1 = 0

v1 ≥
∑
j∈A2

Ũ ij1 ρ
j
2.

v1 can be interpreted as the best-response value of follower 1, equal to the largest
utility the follower can achieve at an equilibrium. Applying a similar reasoning to ρ2,
we obtain that ρ2 ∈ ∆2 is optimal if and only if there is a scalar v2 such that the
following holds for all j ∈ A2:(

v2 −
∑
i∈A1

Ũ ij2 ρ
i
1

)
ρj2 = 0

v2 ≥
∑
i∈A1

Ũ ij2 ρ
i
1.
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We conclude that (ρ1, ρ2) is an NE if and only if there are v1, v2 ≥ 0 such that ρ1
and ρ2 simultaneously satisfy these four conditions.

After substituting for Ũ1 and Ũ2 their linear expressions in δ, we obtain the fol-
lowing constraints for player 1 and for all i ∈ A1:(

v1 −
∑
j∈A2

∑
k∈A`

U ijk1 ρj2δ
k

)
ρi1 = 0

v1 ≥
∑
j∈A2

∑
k∈A`

U ijk1 ρj2δ
k.

For player 2 and for all j ∈ A2, we obtain:(
v2 −

∑
i∈A1

∑
k∈A`

U ijk2 ρi1δ
k

)
ρj2 = 0

v2 ≥
∑
i∈A1

∑
k∈A`

U ijk2 ρi1δ
k.

By imposing such constraints in lieu of the two second level argmax constraints of
Problem (1) (Constraints (1b)–(1c)), we obtain a continuous single level formulation
with nonconvex trilinear terms.2 Overall, the formulation reads:

max
ρ1,ρ2,δ,v

∑
i∈A1

∑
j∈A2

∑
k∈A`

U ijk` ρi1ρ
j
2δ
k (3)

s.t.
(
v1 −

∑
j∈A2

∑
k∈A`

U ijk1 ρj2δ
k

)
ρi1 = 0 ∀i ∈ A1 (4)

v1 ≥
∑
j∈A2

∑
k∈A`

U ijk1 ρj2δ
k ∀i ∈ A1 (5)

(
v2 −

∑
i∈A1

∑
k∈A`

U ijk2 ρi1δ
k

)
ρj2 = 0 ∀j ∈ A2 (6)

v2 ≥
∑
i∈A1

∑
k∈A`

U ijk2 ρi1δ
k ∀j ∈ A2 (7)

∑
k∈A`

δk = 1, δ ≥ 0 (8)

∑
i∈Af

ρif = 1, ρf ≥ 0 ∀f ∈ F (9)

vf ≥ 0 f ∈ F. (10)

The problem contains m1 + m2 cubic constraints, m1 + m2 quadratic constraints,
and a cubic objective function.

2 Note that strong duality can be employed in place of complementary slackness. Preliminary experi-
ments suggest that the second option is computationally preferable.
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5.1.2 O-NF-LMFM-II

What we propose now is aimed at achieving a formulation which can be solved
more efficiently. Since each term of the complementarity constraints we introduced
is bounded from above and below, we can apply a simple reformulation along the
lines of [28]. Let s1 ∈ {0, 1}m1 and s2 ∈ {0, 1}m2 be the antisupport vectors of
ρ1 and ρ2, (i.e., two binary vectors with m1 and, respectively, m2 components each
of which has value 0 if and only if ρ1 and, respectively, ρ2 is strictly positive in that
component). It suffices to impose the following constraints for all i ∈ A1:

ρi1 ≤ 1− si1

v1 −
∑
j∈A2

∑
k∈A`

U ijk1 ρj2δ
k ≤Msi1

and the following ones for all j ∈ A2:

ρj2 ≤ 1− sj2

v2 −
∑
i∈A1

∑
k∈A`

U ijk2 ρi1δ
k ≤Msj2.

M is an upper bound on the entries of U1, U2. This way, while still retaining the
original trilinear objective function only bilinear constraints are needed.

We obtain the following reformulation:

max
ρ1,ρ2,δ,v,s

∑
i∈A1

∑
j∈A2

∑
k∈A`

U ijk` ρi1ρ
j
2δ
k (11)

s.t. v1 −
∑
j∈A2

∑
k∈A`

U ijk1 ρj2δ
k ≤Msi1 ∀i ∈ A1 (12)

v2 −
∑
i∈A1

∑
k∈A`

U ijk2 ρi1δ
k ≤Msj2 ∀j ∈ A2 (13)

ρif ≤ 1− sif ∀f ∈ F, i ∈ Af (14)

sjf ∈ {0, 1} ∀f ∈ F, j ∈ Af (15)

Constraints (5), (7), (8)–(10). (16)

At the cost of introducing binary variables, with this formulation we achieve fewer
nonlinearities: only 2m1 +2m2 quadratic constraints and a cubic objective function.

5.1.3 O-NF-LMFM-III

Ultimately, we aim to solve the problem with spatial-branch-and-bound techniques,
such as those implemented in BARON and SCIP. The main strategy of such methods
to handle nonlinearities is to isolate “simple” nonlinear terms (bilinear or trilinear
in our case) by shifting them into a new (so-called defining) constraint to which a
convex envelope is applied.

We propose to anticipate this reformulation, so to be able to derive some valid
constraints. First, we introduce:
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i) variable yjk2 and constraint yjk2 = ρj2δ
k for all j ∈ A2, k ∈ A`,

ii) variable yik1 and constraint yik1 = ρi1δ
k for all i ∈ A1, k ∈ A`,

iii) variable zijk and constraint zijk = ρi1y
jk
2 for all i ∈ A1, j ∈ A2, k ∈ A`.

By substituting each bilinear and trilinear term with the newly introduced variables,
we then obtain a formulation which is linear everywhere, except for the defining
constraints themselves.

The advantage of carrying out this reformulation step a priori is that we can now
observe that, after introducing the new variables, the matrix {yjk2 }jk∈A2×A`

is, by
definition, the outer product of the stochastic vectors ρ2 and δ and, as such, is a
stochastic matrix itself. The same holds for the tensor {zijk}ijk∈A1×A2×A`

, which
is the outer product of the vectors ρ1, ρ2, δ and, as such, is a stochastic tensor. This
implies the validity of the following three constraints:∑

i∈A1

∑
k∈A`

yik1 = 1

∑
j∈A2

∑
k∈A`

yjk2 = 1

∑
i∈A1

∑
j∈A2

∑
k∈A`

zijk = 1.

We remark that these inequalities are a subset of those that are obtained by apply-
ing a relaxation-linearization technique à la Sherali-Adams [29] to Constraints (8)
and (9).

The formulation that we obtain is the following one:

max
ρ1,ρ2,δ,v,s,y,z

∑
i∈A1

∑
j∈A2

∑
k∈A`

U ijk` zijk (17)

s.t. v1 ≥
∑
j∈A2

∑
k∈A`

U ijk1 yjk2 ∀i ∈ A1 (18)

v2 ≥
∑
i∈A1

∑
k∈A`

U ijk2 yij1 ∀j ∈ A2 (19)

v1 −
∑
j∈A2

∑
k∈A`

U ijk1 yjk2 ≤Msi1 ∀i ∈ A1 (20)

v2 −
∑
i∈A1

∑
k∈A`

U ijk2 yik1 ≤Msj2 ∀j ∈ A2 (21)

yikf = ρifδ
k ∀k ∈ A`, f ∈ F, i ∈ Af (22)

zijk = ρi1y
jk
2 k ∈ A`, i ∈ A1, j ∈ A2 (23)∑

i∈Af

∑
k∈A`

yikf = 1 ∀f ∈ F (24)

∑
i∈A1

∑
j∈A2

∑
k∈A`

zijk = 1 (25)

yijf ≥ 0 ∀f ∈ F, i ∈ Af , k ∈ A` (26)
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zijk ≥ 0 ∀i ∈ A1, j ∈ A2, k ∈ A` (27)
Constraints (8)–(10), (14)–(15). (28)

Overall, we obtain m`(m1 +m2) +m`m1m2 quadratic constraints and a linear
objective function, yielding a tighter formulation than O-NF-LMFM-II, as we will
show computationally.

5.2 Exact formulations for PM games

We illustrate how the three formulations we proposed can be substantially simplified
for PM games.

5.2.1 O-PM-LMFM-I

In PM games, the expected utility for follower 1 corresponding to an action i ∈ A1

(which is a trilinear function for NF games with n = 3, and of order n in general) is
defined as the following linear function (which is linear for any n and, in particular,
for n = 3): ∑

k∈A`

U ik1` δ
k +

∑
j∈A2

U ij12ρ
j
2.

The leader’s utility is the following function, bilinear for any n:∑
k∈A`

∑
i∈A1

U ik`1ρ
i
1δ
k +

∑
k∈A`

∑
j∈A2

U jk`2 ρ
j
2δ
k.

As a consequence, the PM counterpart to formulation O-NF-LMFM-I reads:

max
ρ1,ρ2,δ,v

∑
k∈A`

∑
i∈A1

U ik`1ρ
i
1δ
k +

∑
k∈A`

∑
j∈A2

U jk`2 ρ
j
2δ
k (29)

s.t. v1 ≥
∑
k∈A`

U ik1` δ
k +

∑
j∈A2

U ij12ρ
j
2 ∀i ∈ A1 (30)

v2 ≥
∑
k∈A`

U jk2` δ
k +

∑
i∈A1

U ij21ρ
i
1 ∀j ∈ A2 (31)(

v1 −
∑
k∈A`

U ik1` δ
k +

∑
j∈A2

U ij12ρ
j
2

)
ρi1 = 0 ∀i ∈ A1 (32)

(
v2 −

∑
k∈A`

U jk2` δ
k +

∑
i∈A1

U ij21ρ
i
1

)
ρj2 = 0 ∀j ∈ A2 (33)

Constraints (8)–(10). (34)

Differently from the NF case, this formulation only contains m1 +m2 quadratic
constraints and a quadratic objective (as Constraints (5) and (7) become linear here,
while Constraints (4) and (6) and Objective (3) become quadratic).
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5.2.2 O-PM-LMFM-II

Applying for the PM case the same reformulation we carried out in O-NF-LMFM-II,
we obtain:

max
ρ1,ρ2,δ,v,s

∑
k∈A`

∑
i∈A1

U ik`1ρ
i
1δ
k +

∑
k∈A`

∑
j∈A2

U jk`2 ρ
j
2δ
k (35)

s.t. v1 −
∑
k∈A`

U ik1` δ
k +

∑
j∈A2

U ij12ρ
j
2 ≤Msi1 ∀i ∈ A1 (36)

v2 −
∑
k∈A`

U jk2` δ
k +

∑
i∈A1

U ij21ρ
i
1 ≤Msj2 ∀j ∈ A2 (37)

Constraints (8)–(10), (14)–(15), (30)–(31). (38)

Besides the binary variables, this formulation contains only linear constraints and
a quadratic objective.

5.2.3 O-PM-LMFM-III

Similarly to O-NF-LMFM-III, this formulation is derived by reformulating each mul-
tilinear term in O-PM-LMFM-II. In the latter, the only nonlinearity is in the objective
function. Therefore, O-PM-LMFM-III is obtained by just reformulating the products
δiρjf it contains for all f ∈ F and j ∈ Af , adding valid constraints identical to those
we added to O-NF-LMFM-III. We obtain:

max
ρ1,ρ2,δ,v,s,y

∑
k∈A`

∑
i∈A1

U ik`1 y
ik
1 +

∑
k∈A`

∑
j∈A2

U jk`2 y
jk
2 (39)

s.t. Constraints (8)–(10), (14)–(15), (22), (24), (26), (30)–(31), (36)–(37).
(40)

Similarly to O-NF-LMFM-III, O-PM-LMFM-III is completely linear except for
the m`(m1 +m2) defining quadratic Constraints (22).

6 Pessimistic case with Leader in Mixed and Followers in Mixed (P-LMFM)

Unless P = NP , it is clear that there is no single-level formulation of polynomial
size (in terms of variables and constraints) for the problem of computing a pessimistic
LFNE. This is because, given a triple δ, ρ1, ρ2, a single-level reformulation of poly-
nomial size for the problem would allow for checking whether, for the given δ, the
(ρ1, ρ2) pair yields not just an NE (this can be checked in polynomial time by in-
specting polynomially many constraints) but an optimal one. That is, it would allow
us to verify in polynomial time whether a given solution to an NP-hard problem is
optimal, which cannot be done in general unless P = NP .
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For this reason, we adopt a different approach here, designing a heuristic method
to tackle the pessimistic case based on a black-box solver coupled with an exact
oracle. While the method is conceived to tackle the pessimistic case, it can also be
used for the optimistic one (as we show in the computational results section).

The method is based on a Radial Basis Function (RBF) estimation which relies on
the solver RBFOpt [18]. The idea is of exploring the leader’s strategy space (variables
δ) with a direct search which iteratively builds an RBF approximation of the objective
function relying on the solution of an oracle formulation which is responsible for
carrying out the objective function evaluation.

Given any incumbent value δ̂, the oracle solves the (NF or PM) second level
problem exactly after imposing δ = δ̂. For NF games, the oracle formulation we use
is similar to O-NF-LMFM-III, employing a different reformulation with auxiliary
variables yjk = ρj1ρ

k
2 , which yields a tighter reformulation than the original one in

O-NF-LMFM-III when δ is given (as in this case). Crucially, in this formulation the
sign of the objective function has to be changed so to produce a pair (ρ1, ρ2) which
minimizes the leader’s objective function (rather than maximizing it) for the given
δ = δ̂.

The oracle formulation for the optimistic and pessimistic cases reads as follows
(± indicates that the sign of the objective function has to be flipped from + to − in
the pessimistic case):

max
ρ1,ρ2,v,s,y

±
∑
i∈A1

∑
j∈A2

∑
k∈A`

U ijk` yij δ̂k (41)

s.t. v1 ≥
∑
j∈A2

∑
k∈A`

U ijk1 ρj2δ̂
k ∀i ∈ A1 (42)

v2 ≥
∑
i∈A1

∑
k∈A`

U ijk2 ρi1δ̂
k ∀j ∈ A2 (43)

v1 −
∑
j∈A2

∑
k∈A`

U ijk1 ρj2δ̂
k ≤Msi1 ∀i ∈ A1 (44)

v2 −
∑
i∈A1

∑
k∈A`

U ijk2 ρi1δ̂
k ≤Msj2 ∀j ∈ A2 (45)

yij = ρi1ρ
j
2 ∀i ∈ A1, j ∈ A2 (46)∑

i∈A1

∑
j∈A2

yij = 1 (47)

yijf ≥ 0 ∀f ∈ F, i ∈ Af , k ∈ A` (48)

Constraints (8)–(10), (14)–(15). (49)

Besides the defining constraints for yij , the other parts of the formulation are all
linear.

For PM games, we can directly use formulation O-PM-LMFM-II: since each of
the nonlinear terms in O-PM-LMFM-II is bilinear and it involves δ, when δ is fixed
to δ̂ the formulation corresponds to a Mixed-Integer Linear Program (MILP).
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7 Optimistic case with Leader in Pure and Followers in Mixed (O-LPFM)

We focus now on the case in which the leader is restricted to pure strategies.

7.1 Exact formulations for NF and PF games

As it is clear, in the LPFM case the problem can be solved by using one of the for-
mulations we proposed after imposing δ ∈ {0, 1}m` . With a binary δ, though, we can
obtain different formulations which contain fewer nonlinearities. We present them
here for the NF and PM cases. We only consider the formulations denoted by III
since they turn out to be easier to solve in practice (as we will see in the computa-
tional results).

7.1.1 O-NF-LPFM-III

For δ ∈ {0, 1}m` , the quadratic defining Constraints (22) in O-NF-LMFM-III can be
dropped in favor of the following three linear constraints:

yikf ≤ δk ∀k ∈ A`, f ∈ F, i ∈ Af (50)

yikf ≤ ρif ∀k ∈ A`, f ∈ F, i ∈ Af (51)

yikf ≥ δk + ρif − 1 ∀k ∈ A`, f ∈ F, i ∈ Af . (52)

Together with yikf ≥ 0, these constraints constitute the so-called McCormick enve-
lope [24] of the set {(yikf , δk, ρif ) ∈ [0, 1]3 : yikf = δkρif}. When either δk ∈ {0, 1}
or ρif ∈ {0, 1}, the envelope yields an exact reformulation [1]. The resulting formu-
lation is obtained from O-NF-LMFM-III by dropping the quadratic (defining) Con-
straints (22) and substituting for them the linear Constraints (50)–(52). The only non-
linear constraints still present in the formulation are Constraints (23).

7.1.2 O-PM-LPFM-III

In O-PM-LMFM-III, the only nonlinearities are due to the quadratic (defining) Con-
straints (22). Due to δ ∈ {0, 1}m` , by applying the McCormick envelope via Con-
straints (50)–(52) we can remove all the nonlinearities from the problem, obtaining
an MILP.

7.2 O-NF/PM-LPFM-Implicit-Enumeration

When δ ∈ {0, 1}m` , an LFNE can also be found by solving m` times one of our
formulations. It suffices to change the sign of the objective function in the pessimistic
case, iteratively fixing δ = ek (where ek is the all zero vector with a single 1 in
position k) and selecting the best outcome over all the iterations as the solution to the
problem. While this method is correct for both variants (optimistic and pessimistic),
in the optimistic case we can design a better algorithm, which we now introduce.
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The main idea of the algorithm is pruning the search space A` so to solve fewer
subproblems thanks to a bounding technique. For each of the leader’s actions, we
compute the utility they would obtain if the followers played a Correlated Equi-
librium (CE) (which can be computed in polynomial time via linear programming,
see [30]). Since the set of correlated strategies is a (strict) superset of that of mixed
strategies, its computation yields an upper bound (UB). We can thus iterate over
i ∈ A` and solve one of our formulations with δ = ek (where ek is the unit vec-
tor with a single 1 in position k) only if the UB with δ = ek is better than the best
solution found thus far.

The algorithm reads:

1: for k ∈ A` do
2: UB(k) = BestCorrelatedEquilibrium(k)
3: end for
4: A` = DescendingSort(A`, UB)
5: LB = −∞
6: for k ∈ A` and UB(k) > LB do
7: LB = max{LB,Utility(ek)}
8: end for

BestCorrelatedEquilibrium(k) computes a UB with δ = ek by computing a
CE in polynomial time via linear programming, along the lines of [30]. After sorting
the leader’s actions in decreasing order of UB via DescendingSort(A`, UB), the
algorithm iterates over A`, computing with Utility(ek) the exact leader’s utility cor-
responding to playing the pure action δ = ek only if UB(k) is sufficiently promising.
In our implementation, Utility(ek) solves the same oracle formulations adopted in
the black-box method.

8 A note on solution approaches for the remaining cases

For completeness, in this section we address the remaining cases that are obtained by
restricting either the leader or the followers to pure strategies. Since all these cases
can be solved fairly easily with only one exception, we will not consider them in the
computational results section.

8.1 O/P-LFNE with Leader in Pure and Followers in Pure (O/P-LPFP)

The case where both the leader and the followers can only play pure strategies is
trivial in both the optimistic and pessimistic versions. For its solution one can, first,
construct each of the m3 possible outcomes of the three players and, then, discard
all the outcomes where the pair of followers’ strategies do not induce an NE for the
pure leader strategy they contain. For the optimistic case, it then suffices to compare
the leader’s utility corresponding to all the outcomes which have not been discarded,
identifying one where the leader’s utility is maximized. For the pessimistic case, an
extra step is needed as one has to, first, group all the outcomes by leader strategy and
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then identify, in each group, an outcome corresponding to the smallest leader utility.
An equilibrium is found by selecting, among all the remaining outcomes (at most one
per leader’s pure strategy) one which maximizes the leader’s utility.

8.2 O/P-LFNE with Leader in Mixed and Followers in Pure (O/P-LMFP)

In the optimistic setting, the case in which only the followers are restricted to pure
strategies can be solved by solving m2 linear programming problems, one per fol-
lowers’ outcome. In each problem, we only have to impose best-response constraints
on the followers’ utilities guaranteeing that there is a leader’s strategy δ for which the
chosen outcome is an NE, maximizing the leader’s utility at that outcome for δ. The
follower’s outcome and the corresponding δ yielding the largest leader utility is then
an O-LFNE.

It is not difficult to see that the previous algorithm (which, overall, runs in poly-
nomial time) is not correct in the pessimistic case. This is not surprising since, as
shown in [12,13], the optimization problem corresponding to the equilibrium-finding
problem is NP-hard in the pessimistic case even with followers restricted to pure
strategies. For its solution, we can resort to the same methods proposed in this paper
for the LMFM case, simply requiring ρ1 and ρ2 to be binary.

9 Computational results

For our computational experiments, we adopt a testbed composed of instances mainly
taken from two GAMUT [26] classes, Uniform RandomGames (NF games) and Poly-
matrixGames (PM games), generated with payoffs in [0, 100].

For simplicity, we assume that all the players have the same number of actionsm,
i.e., that mp = m for all p ∈ N . This is w.l.o.g., as one can always add extra actions
to a player with a payoff small enough to guarantee that such actions will never be
played at an equilibrium.

We experiment on games of increasing size of m and n, with m ∈ {2, 3, . . . , 10}
∪{15, . . . , 25} when n = 3 (2 followers) and m ∈ {2, 3, . . . , 10} when n ≥ 4 (3 or
more followers). We generate 10 instances per value of m, n, and game class.

For the experiments on NF games in the LMFM case, we also consider eight
GAMUT classes of structured normal form games, BertrandOligopoly, Bidirectional-
LEGs, MinimumEffortGames, RandomGraphicalGames, DispersionGames, Covari-
antGames, TravelersDilemma, and UniformLEGs, generating 10 instances with 2 fol-
lowers and m = 8 actions per player for each of them.

Throughout the section, the results of our experiments are compared w.r.t. com-
puting time (in seconds) and (multiplicative) optimality gap.3. For both values, we
report the arithmetic average for each game class and value of m and n over the 10

3 The optimality gap is defined as min{UB−LB
LB 100, 105}%, where LB and UB are, resp., the largest

lower bound (corresponding to the best feasible solution) and the smallest upper bound found by the solver
within the time limit. The min operator prevents an unbounded value for LB = 0. An optimality gap of
105 highlights that the method fails to produce a useful solution as, due to the payoffs being in [0, 100],
any strategy of the leader can achieve, at least, a utility of 0.
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corresponding instances. In all the boxplots that we report, the red dash indicates the
median, the box extends from the 25th to the 75th percentile, and dotted lines denote
the whole sample distribution. Outliers are highlighted with a red mark.

We adopt five solvers: BARON and SCIP (for globally optimal solutions to every
formulation, apart from O-PM-LPFM-III which is an MILP), CPLEX (for globally
optimal solutions to O-PM-LPFM-III, as well as to the oracle formulation for PM
games in the implicit enumeration and black-box methods), SNOPT (for locally op-
timal solutions to the formulations with purely continuous variables), and RBFOpt
as the backbone of our black-box heuristic for pessimistic cases of LFNE (we will,
nevertheless, also experiment with it for some optimistic variants). The O-NF-LPFM-
Implicit-Enumeration algorithm is implemented in C. The experiments are run on
a UNIX computer with a dual quad-core CPU at 2.33 GHz, equipped with 8 GB
of RAM. Each algorithm is run using a single thread within a time limit of 3600
seconds. For the exact methods, we halt the execution whenever the optimality gap
reaches 10−12%.4

9.1 O-NF-LMFM-I, II, and III (n = 3)

We compare the different NF formulations when solved with BARON and SCIP. For
RandomGames instances, the average computing time and optimality gap for each
combination of formulation and solver is reported in Figure 1 as a function of m.

The results obtained with the two solvers are quite different. BARON better per-
forms on O-NF-LMFM-I (the formulation with purely continuous variables), while
SCIP better performs on O-NF-LMFM-III (the “reformulated” formulation which
contains binary variables introduced to remove nonquadratic terms from O-NF-LMFM-
II, as well as extra valid constraints). These results suggest that the formulation which
is solved more efficiently with each solver is O-NF-LMFM-I with BARON and O-
NF-LMFM-III with SCIP. These results are in line with the general computational be-
havior of BARON and SCIP, as the former tends to exhibiting a better performance on
highly nonlinear and mostly continuous problems whereas the latter becomes more
efficient as the number of integer/binary variables of the problem increases.

Further inspecting Figure 1, we notice that, with SCIP, O-NF-LMFM-III always
outperforms O-NF-LMFM-II. This shows that SCIP is incapable of automatically
constructing the reformulation obtained with O-NF-LMFM-III.

As to the computing times, the largest m for which at least a game is solved to
optimality by BARON within the time limit is m = 8 for O-NF-LMFM-I and m = 7
for the other formulations. With SCIP, we reach m = 9 with O-NF-LMFM-III and
m = 3 with the other ones. In particular, SCIP with O-NF-LMFM-III always requires
a shorter computing time than BARON with O-NF-LMFM-I for every number of
actions.

In terms of optimality gaps, SCIP remarkably outperforms BARON. As one can
see in Figure 1 (b),(d), the gap achieved by BARON with O-NF-LMFM-I reaches

4 Preliminary experiments with four tolerance values, namely, 10−12%, 10−9%, 10−6%, and 10−3%,
showed, for a larger tolerance, a negligible reduction in computing time by, at most and only in few
instances, 2.5% with SCIP and 7.0% with BARON. The stricter tolerance was thus preferred.
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Fig. 1 Computing times and optimality gaps obtained with the NF-LMFM formulations.

105% when m ≥ 20. This is due to the solver returning an LB of 0 due to failing
find a feasible solution in the time limit. Differently, the gap achieved by SCIP with
O-NF-LMFM-III is below 15% for m up to m = 25. Such results suggest that, for
games of this size, one can always achieve an almost constant gap, contrarily to what
the intrinsic difficulty of the problem would suggest, namely, an exponential quality
degradation as the number of actions grows. Moreover, these results show that SCIP
with O-NF-LMFM-III always finds a feasible solution (an NE) for the followers’
game and for some leader’s strategy, differently from the other pairs of solver and
formulation.

These observations are substantially confirmed when experimenting with the same
solver/formulation pair on the eight structured classes of NF games. The average
computing times reported in Figure 2 are indeed in line with the trends we observed
for RandomGames, with SCIP outperforming BARON most of the times (on aver-
age). This trend becomes different when considering DispersionGames, where SCIP
performs less efficiently than for the other classes of games, achieving computing
times which are considerably larger than those obtained with BARON. This is due
to the solver failing to solve two game instances within the time limit. This can be
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better observed in Figure 3 which reports the computing times only for the instances
that are solved to optimality with the two solvers, as well as the percentage of such
instances. In particular, we observe that SCIP solves 91.875% of the instances on
average, whereas BARON only solves 81.25%.
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Fig. 2 Computing times obtained when solving formulation O-NF-LMFM-I with BARON and formula-
tion O-NF-LMFM-III with SCIP for different GAMUT classes of structured games.

9.2 O-PM-LMFM-I, II, and III (n = 3)

In Figure 4, we report the computing times and the optimality gaps obtained with
SCIP for games of the GAMUT class PolymatrixGames. Since the results obtained
with BARON are similar to those we illustrated for NF games, we omit them for the
sake of brevity.

Within the time limit, the largest m for which at least an instance is solved to
optimality is m = 15. For m ≤ 10, all instances are solved to within a gap of 0
(within the numerical tolerance we set). In particular, the optimality gap is always
below 15% for instances with up to m = 25, showing a trend which is substantially
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Fig. 3 Computing times only considering games for which the computations terminated; the percentage
of instances solved to optimality is reported on top of each bar.

less steep than that for NF games. This suggests that PM games are, as expected,
easier to solve.

9.3 O-NF-LMFM-I, local optimization (n = 3)

In Figure 5, we report the experimental results obtained with SNOPT for RandomGames
using formulation O-NF-LMFM-I. Due to the local optimization nature of the solver
for nonconvex problems, to obtain statistically more relevant results we run 30 restarts
with different initial starting solutions, sampled uniformly at random from the sim-
plices of the strategies of the three agents, and return the best solution found.

Figure 5(a) shows that the computing times with SNOPT (cumulated over the 30
random restarts) are much shorter than the computing times required by BARON and
SCIP, allowing for solving (to a local optimum) almost all the instances with m = 20
within the time limit. Differently, as shown in Figure 5(b) the quality of the solutions
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Fig. 4 Computing times and optimality gaps with SCIP with O-PM-LMFM formulations.
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Fig. 5 Computing times and LB
OPT ratios obtained with SNOPT with O-NF-LMFM-I within 30 random

restarts.

returned by SNOPT (measured as their ratio over the value of an optimal solution
found by SCIP or BARON) is rather poor even with very few actions. Indeed, the
median of the ratios is between 10% and 20% for games with up to m = 7. This em-
phasizes the effectiveness of our approach based on spatial-branch-and-bound meth-
ods.

9.4 O-NF/PM-LMFM-III (n ≥ 4)

In Table 1, we report the average computing times obtained with SCIP when employ-
ing formulations O-NF-LMFM-III and O-PM-LMFM-III for games with 4 players
or more. In the time limit, we can solve NF games with up to m = 5 for n ≤ 4
(corresponding to up to mn = 625 different outcomes and nmn = 2, 500 differ-
ent payoffs) and up to m = 4 for n ≤ 6 (corresponding to up to mn = 4, 096
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outcomes and nmn = 24, 576 payoffs). Quite interestingly, with our methods we
can tackle instances of a size comparable to that of the largest instances used in [27]
(such instances are generated with GAMUT [26] and are comparable to the ones in
our testbed) to evaluate a set of algorithms proposed to find an NE (in a single level
problem), in spite of our problem being clearly harder (as it admits the former as a
subproblem). With PM games, our algorithms scale much better, allowing for finding
exact solutions to PM games with up to m = 10 for n ≤ 5 and up to m = 7 for
n ≤ 6.

Table 1 Computing times (in seconds) with SCIP and O-NF/PM-LMFM-III, within a time limit of 3,600
seconds.

Normal-form games
n / m 2 3 4 5

3 0.06 0.20 0.92 23.79
4 0.19 8.274 142.66 1304.45
5 278.06 409.78 2016.97 —
6 172.90 2350.95 2212.95 —

Polymatrix games
n / m 5 6 7 8 9 10

3 0.24 2.17 1.87 7.31 24.45 194.71
4 4.84 10.85 121.57 247.84 622.72 1947.54
5 7.51 90.83 332.04 1982.77 2396.01 2175.29
6 10.31 1169.50 2062.75 — — —

9.5 O/P-NF/PM-LMFM-BlackBox

When experimenting with the black-box method, we first consider the optimistic case
for NF games as, for it, we can compare the quality of the solutions we find to either
the optimal solution value or its tightest upper bound. Namely, we compare O-NF-
LMFM-BlackBox to O-NF-LMFM-III, the latter solved with SCIP within the time
limit. The results are reported in Figure 6.

In Figure 6(a) we observe, on average and form ≤ 10, that the black-box method
yields solutions to within 90% of the optimal ones found with SCIP. This suggests
that the method might be sufficiently accurate. As shown in Figure 6(b), for m ≥ 10
the burden of calling SCIP to solve the oracle formulation becomes too large, making
the black-box algorithm impractical.

An interesting result, see Figure 6(a), concerns the gap between the utility of the
leader at an optimistic LFNE or at a pessimistic LFNE. On the instances solved to
optimality (m ≤ 5), where we can verify the quality of the heuristic solutions, we see
that the gap is rather small, suggesting that, in RandomGames instances generated
with GAMUT, the leader can manage to force the followers to play a strategy which
provides the leader with a utility not dramatically smaller than that which they would
obtain in an optimistic LFNE.

In Figure 7, we report analogous results obtained with polymatrix games. In
the time limit, we compare O-PM-LMFM-III solved with SCIP to O-PM-LMFM-
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Fig. 6 Performance of the Black Box approach for O/P-NF-LMFM compared to O-NF-LMFM-III.

BlackBox. Differently from the NF case, Figure 7(b) shows that, for PM games, the
computing time needed to solve the oracle formulation (which is an MILP in this
case) is much smaller and scales much better with m. Except for the case of m = 2,
Figure 7(a) allows us to draw comparable conclusions to those that we have drawn
for the NF case, with the leader achieving, in the pessimistic case, solutions that are
not too far away from the corresponding optimistic ones w.r.t. their utility.
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Fig. 7 Performance of the Black Box approach for O/P-PM-LMFM compared to O-PM-LMFM-III.

9.6 O-NF/PM-LPFM and O-NF/PM-Implicit-Enumeration (n = 3)

Lastly, we focus on the case where the leader is restricted to pure strategies. We
report the results in terms of computing times obtained by imposing δ ∈ {0, 1}m in
O-NF/PM-LPFM-III with SCIP for RandomGames in Figure 8(a,b) and with CPLEX



26 N. Basilico, S. Coniglio, N. Gatti, and A. Marchesi

for PolymatrixGames (for which the formulation becomes an MILP) in Figure 8(c,d).
Interestingly, by imposing a binary δ to tackle the LPFM case the size of the largest
instances solvable within the time limit increases from m = 9 to m = 13 in Ran-
domGames and from m = 15 to m = 25 for PolymatrixGames when compared to
the LMFM case.

For both RandomGames and PolymatrixGames, a dramatic performance improve-
ment is obtained with O-NF/PM-LPFM-Implicit-Enumeration: with it, the size of the
largest instance that we can solve increases from m = 13 to m = 20 for Ran-
domGames and from m = 25 to m = 50 for PolymatrixGames. As expected, the
computing times for PolymatrixGames are much smaller (due to only requiring the
solution of an MILP at each step), allowing us to solve to optimality much larger
instances.
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10 Conclusions and future work

We have studied game-theoretic leader-follower (Stackelberg) situations with a bilevel
structure where multiple followers play a Nash equilibrium once the leader has com-
mitted to a strategy. After analyzing the complexity of the problem, we have provided
different algorithms and mathematical programming formulations to find an equilib-
rium for the optimistic case as well as a heuristic black-box method for the pessimistic
case. We have conducted a thorough experimental evaluation of the different meth-
ods we have proposed, using various optimization solvers. Our experiments suggest
that spatial branch-and-bound solvers can be used as effective solution methods when
coupled with our formulations, providing a reasonably good optimality gap even for
large games.

Future works include the study of structured games, with focus on understanding
how the specific structure of a game could be exploited to obtain easier to solve for-
mulations (as we did for polymatrix games in this work). Moreover, it would be of
interest to study the adaptation of our techniques to succint games (whose normal-
form representation has exponential size) relying on cutting plane methods to cope
with the presence of exponentially-many best-reponse constraints, possibly using no-
tions of diversity and bound improvement within the separation problem, see [4,5,
14], to achieve a faster convergence. It would also be of interest to combine state-
of-the-art equilibrium-finding algorithms for such games with methods similar to the
black-box one we have proposed, which would directly benefit from the existence
of an efficient equilibrium-finding algorithm for reoptimizing the followers’ problem
after changing the leader’s strategy.

Future works also include the study of equilibrium-finding methods based on
support enumeration, understanding, in particular, whether games which admit Nash
equilibria of small-support in the case without a leader would still admit small-
support equilibria in the Stackelberg case.

Among the challenging problems that we are interested to address in the future,
we mention the design of algorithms to find an equilibrium when the followers play
either a strong Nash equilibrium, a strong correlated equilibrium, or a solution con-
cept defined in cooperative game theory.

Acknowledgements The authors are thankful to Ruth Misener for pointing out the connection to RLT in
Section 5.1.3 and to two anonymous reviewers who helped improving the quality of the paper.
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