Noname manuscript No.
(will be inserted by the editor)

Computing expectations and marginal likelihoods
for permutations

Ben Powell .- Paul A. Smith

Received: date / Accepted: date

Abstract This paper demonstrates how we can re-purpose sophisticated al-
gorithms from a range of fields to help us compute expected permutations
and marginal likelihoods. The results are of particular use in the fields of
record linkage or identity resolution, where we are interested in finding pairs
of records across data sets that refer to the same individual. All calculations
discussed can be reproduced with the accompanying R package expperm.

Keywords linkage error - identity resolution - object tracking - random
permutation - matrix permanent

1 Introduction
1.1 Context

The work presented here is motivated by the need to make best use of multi-
ple, potentially inconsistent, data sources pertaining to a common population
of individuals. More specifically, we are concerned with quantifying the prob-
abilities that particular individuals in one data set correspond with particular
individuals in another.

Note that in this document we will use the word ‘match’ to refer to a
pair of records that truly do correspond to the same individual. A ‘link’ or
‘assignment’ refers to a pairing for records that we have proposed. A ‘linkage
solution’ or ‘assignment solution’ refers to a set of proposed pairings of records.
Given an initial assignment solution, we can permute the entries of one of the

B. Powell
University of York, UK
E-mail: ben.powell@york.ac.uk

P.A. Smith
University of Southampton, UK
E-mail: p.a.smith@soton.ac.uk

2 Ben Powell, Paul A. Smith

data sets in order to produce a new assignment solution. In this way we can
identify assignment solutions with permutations. An ‘expected assignment’
refers to a probability-weighted mean of assignments. More precisely, we will
identify an expected assignment with the expected effect of the corresponding
permutation on the rows of an identity matrix. Although this description is
made precise in Section 2, the following example helps us illustrate the concept
more intuitively. Suppose we have a pair of data sets, each containing three
records. The first data set contains records with labels {1, 2,3} and the second
data set has records with labels {a, b, c}. Suppose also that we initially assign
record 1 to record a, record 2 to record b and record 3 to record c. We can
understand this assignment as a bijection

1 a
2l —1b],
3

where the elements of one vector map to corresponding elements in the other.
Alternative assignments can then be written as assignments to permuted ver-
sions of the initial assignment’s image set, e.g.

1 a 100 a 1 a 100 a
21— |b]=1]010 b, 2]l —=|e]l=(001 b,
3 c 001 3 b 010 c
1 c 001 a 1 c 001 a
2l = la]l=1]100 b, 21— [b] =010 b,
3 b 010 3 a 100 c
1 b 010 a 1 b 010 a
21— le]l=(001 b, 2l = la]l=(100 b,
3 a 100 c 3 c 001 c

where the matrices of zeros and ones encode the permutations. It is via an
expectation for this permutation matrix that we will encode an expected as-
signment solution.

The identification and assessment of a good set of assignments between in-
dividuals is a well-studied problem. Indeed, the problem appears in many dif-
ferent fields of application, where the context adds significantly to the manner
in which it is approached. In official, or administrative, statistics, for example,
the problem is studied under the title of record linkage or identity resolution.
[1] was a landmark paper in this field and established a framework for many
further developments, including Bayesian interpretations and extensions of the
methodology ([2]). [3] provide an authoritative review of many of these devel-
opments and illustrate their use in several case studies. The data sets involved
in the official statistics setting are often extremely large, but the evidence on
which linkage is based tends to be relatively good. Official statisticians might,
for instance, be interested in linking individuals’ records based on different
versions of their name and temporally fuzzy information on their address. As
well as papers on the theory of record linkage, the literature includes reviews

Computing expectations and marginal likelihoods for permutations 3

of its practical implementation at National Statistical Institutes around the
world including Italy’s Istat ([4]) and the US Census Bureau ([5]).

Another application of record linkage problems arises when researchers
find multiple versions of the same paper from an Internet search drawing on
multiple databases. Correcting this failure to match records is known as de-
duplication. A review of this problem is provided by [6].

In signal processing, the problem occurs as part of object tracking (see
[7], for example). In this context we are interested in identifying the same
objects in different images, perhaps recorded at different times or from different
locations. Here, the number of individuals to link is commonly smaller, but
the identifying information is much more variable.

The identification of an optimal, most likely linkage solution is arguably
the most extensively researched aspect of the linkage problem. The relevant
optimization problem can be formulated as a linear program and solved exactly
using highly-optimized routines, namely auction algorithms (see [8]). Around
the set of optimal assignments, however, exist a large number of alternative
assignments to which we can attribute varying degrees of likelihood. Given a
prior distribution over assignments, the likelihood induces a posterior distribu-
tion encoding meaningful probabilistic statements about the true but unknown
assignment. In particular the posterior distribution admits the computation
of a posterior expectation.

Procedures for computing expected assignments have received less atten-
tion than those for computing optimal assignments. One reason for this is
the combinatorial explosion in the number of possible assignments to aver-
age over, the vast majority of which need never be visited by an optimization
algorithm. In this paper we describe and discuss a range of procedures for
computing expected assignments.

Note that for the time being we will assume we are given a method for
assessing the plausibility, or likelihood, of any two measurements genuinely
corresponding to a common individual. Typically such likelihoods will be com-
puted as exponentiated and normalized distances between noisy observations.
In the context of official statistics, for example, the distance could be an edit-
distance between character strings, while in the context of object tracking the
distance could actually be a physical distance or a deviation from a given
trajectory.

We will also assume that all individuals have measurements in both data
sets. Although it is commonly appropriate to deviate from the latter assump-
tion, doing so will distract significantly from the methods we discuss below.
We reserve discussion of this issue for Section 5.

To our knowledge there are no existing R packages available for efficient
computation of expected permutations, nor of permanents, whose relevance to
the assignment problem we discuss in Section 2. There are, however, packages
employing similar algorithms to those presented below to perform calculations
related to permutation tests. The package pspearman ([9]), for example, em-
ploys Ryser’s inclusion-exclusion method to compute a p-value as part of a
hypothesis test for Spearman’s rank correlation. Several packages, including

4 Ben Powell, Paul A. Smith

permute ([10]) and permutations ([11]), include functions for enumerating all
permutations of a small number of items. These can help us compute expected
permutations, but, as we will see below, complete enumeration is liable to be
an untenably demanding approach to take for all but the smallest problems.

1.2 The practical value of expected permutations and marginal likelihoods

An expected assignment, conditioned on observed data, is liable to be of inter-
est to statisticians in its own right. Although, in general not actually describing
a single assignment, it may still be seen as an estimator for the true assignment.
Further, this estimator has the potential, via the use of partial assignments,
to convey far more information about the appropriate degree of confidence
to invest in it, than does a single, optimal assignment. The estimator is also
liable to be more robust to latching onto solutions that, while having high
likelihood, are supported by very little probability mass. The expectation for
the true assignment also allows us to compute an expectation for the correct
variables from one data set to associate with a measurement in the other data
set. In turn, we can compute expectations for estimators that are linear in the
first variable. Examples of using the expected permutation matrix in this way
in order to estimate regression coefficients in the presence of linkage error can
be found in [12], [13] and [14].

The marginal likelihood for any assignment of the records is the average
over permutations of the product of likelihoods for each individual assignment.
This statistic, made precise in equation (8), quantifies the evidence in support
of our modelling assumptions. These assumptions include: the appropriateness
of the chosen distance, and corresponding likelihood function, for potentially
matching pairs of individuals; and the idea that all individuals really do have
a correct match in the data set. The potential to quantify the likelihood of
the latter assumption holding is particularly important due to its relevance
to data ‘blocking’ or ‘clustering’. At least in the context of official statistics,
sorting large numbers of records into small blocks, in which their true match
is assumed to belong, is important because some statistical procedures for
making inferences in the presence of linkage error are only feasible due the
decomposability blocking brings about. Small, but plausibly correct blocks
are also of practical utility when records lacking a single, definitively most
likely assignment are designated for manual (human) checking. For example, a
human is likely to be able to spot quickly the correct matches in small blocks
of records, but small blocks may be less likely to contain correct matches. A
clustering algorithm based on the marginal likelihood for block membership
can be used to make this compromise precise and to compose blocks optimized
for manual checking. Record blocking has motivated its own small literature,
with notable contributions from [15], [16] and [17].

It is not the purpose of the current paper to formally investigate the relative
properties of optimal and expected assignments. We will pursue neither the
assessment of likelihood functions, nor algorithms for data-blocking. These

Computing expectations and marginal likelihoods for permutations 5

topics are mentioned here to motivate the algorithms described below. Our
own work on blocking procedures, however, is in progress and indeed makes
use of the algorithms.

2 Mathematical background

To assist in explaining the meaning and significance of various mathematical
quantities and procedures we find it convenient to refer to a particular ideal-
ized assignment problem. In this problem, individuals have personal records
stored on a central database that has been carefully constructed and well
looked after. We imagine that the database needs to be augmented as a mat-
ter of urgency with a new variable. A survey is sent to all n members of the
population requesting that they provide the extra data along with a binary
ID code that will allow their data to be correctly added to their record in the
database. We know, however, that, with a given probability ¢, an individual
will misremember a digit in their ID code. We thus question our ability to
correctly assign the new data to the old records.

In our example, the degree of correspondence between ID codes in the
database and the ID codes from the survey can be expressed in the form of a
distance matrix D with elements

D;j = |d; — 5o, (1)

where d; and s; denote database and survey ID codes and | - |o denotes a
Hamming distance that simply counts the positions in which the codes differ.
Given knowledge of the error process for the survey ID codes and the relative
frequencies of the database ID codes, the distances can be used to specify
likelihoods for all potentially matching pairs,

Aij = m(sj,di) = 7(s; | di)m(di) = (1 = q)q”m(dy). (2)

Looking ahead, we will see that all likelihoods for assignment solutions will
include the marginal 7(d;) terms via the product [[7_, m(d;). This product will
disappear when the posterior induced by the likelihood is normalized. These
terms are also redundant when we treat marginal likelihoods as conditional on
the d;. This is not unreasonable since we are generally not interested in the
process by which the ID codes were generated.

Let P;; be the indicator function for the event ‘database record i truly
corresponds with survey record j’. Collectively, these random variables form
the elements of a permutation matrix P that, when pre-multiplying a column
vector of survey data, reorders them to match up with the data in the database.

The elements of a valid permutation matrix are either zero or one, and their
row- and column-sums are equal to one. They are also orthogonal matrices,
satisfying

PTP=1, (3)

6 Ben Powell, Paul A. Smith

where I is the n x n identity matrix. As a consequence, pre-multiplying a
column vector by a permutation matrix and then its transpose returns the
original column vector. In this way the transposed permutation matrix undoes
the permutation. This can be made more explicit by considering the equations

y' = Py, y=PTy, v,y € R, (4)

where a 1 in the i** row and j** column of P means that the permutation
matrix effectively assigns the j** element of y to the i*" element of y’. The
matrix P has a corresponding 1 in its j** row and i*" column and sends the
it" element of 3/, which is the j** element of y, back to the j** position. A
more practical consequence of the orthogonality of the permutation matrices
is that we can consider permutation matrices either to rearrange the survey
records to match the database records, or to rearrange the database records
to match the survey records. The latter will just be transposes of the former.

Note that a general linear combination of permutation matrices, such as an
expected permutation matrix, is not necessarily itself a permutation matrix
since its elements can be non-binary. It is also not necessarily unitary. Its
elements are still non-negative, however, and it still possesses rows and columns
that sum to one.

The likelihood for any particular permutation matrix P is the product of
likelihoods for all the assignments it encodes,

(D] P) =[] 4i7, (5)

i,7=1

where the role of the permutation matrix here is to pick out likelihood terms
to multiply together.

In the absence of any extra prior information, the likelihood function in-
duces an unnormalized joint posterior density over the elements of the true
permutation matrix. We could use this to compute the relative posterior prob-
abilities of two complete sets of proposed assignments for example. What we
cannot do with it, at least directly, is compute marginal expected values for
each element of P.

The difficulty here arises from the fact that while the likelihood for the
whole matrix factorizes conveniently into terms corresponding to each of its
elements, the effective prior, saying that P is a permutation matrix, does not.
This is because of the correlations induced by the sum-to-one constraints for
its rows and columns.

The marginal expectations for the entries of P can be written as the ratio
of marginal likelihoods

ZPeMmPMﬂ m(D | P)
m(Py =1|D) = ' (6)
> pem™(D | P)
where we sum over all permutation matrices, denoted M here, and all permu-
tations such that P;; =1 in the denominator and numerator, respectively.

Computing expectations and marginal likelihoods for permutations 7

The sums of products of likelihoods that we encounter in equation (6) can
be identified with instances of an algebraic device called the permanent. This
realization unlocks a significant literature of theoretical results and numerical
experiments for us to draw on. A particularly nice guide to various statistical
problems to which the permanent is relevant is given in [18].

The permanent of a matrix is defined as a sum of products of its elements.
These elements are selected from each row and each column according to a
particular permutation. The sum is then taken over all permutations. We can
write this as

perm(4) = 3 [[4wy = 3] 4% (7)

c€S, i=1 PeMi,j=1

where o denotes a permutation, .5,, denotes the set of permutations of n objects
(also known as the symmetric group) and M denotes the set of all permutation
matrices.

We can now see that, given a uniform prior of permutations, the marginal
likelihood, or evidence, for all survey ID codes being assignable to all database
ID codes can be written as a scaled permanent

(D) = % O | P %perm(A). (8)

" PeMi,j=1
The expectation for an element of P can be written as

Ayjperm(A)
P,=1|D)=" """~ W) 9
,/T(J |) perm(A) ()
where A(; ;) denotes the sub-matrix obtained from deleting the it" row and jt*
column of A. The permanent is defined in a similar way to the determinant of
a matrix,

det(A) = Z sign (o) HAi’[,(i), (10)

o€S, i=1

but is significantly harder to compute. This statement was formalized by [19],
who showed that computing permanents exactly is in the class of #P prob-
lems. Without further discussion of this class, it is enough to note here that
improving on existing methods is likely to be highly challenging. What we can
do, however, is mine the literature on permanents for methods to compute
marginal likelihoods. This is trivial since the permanent and marginal likeli-
hood differ only by a known multiplicative factor. What is more challenging
is re-purposing the machinery used to compute permanents in order to effi-
ciently compute expected permutation matrices. We describe novel approaches
for doing so below.

8 Ben Powell, Paul A. Smith

3 A selected review of algorithms
3.1 Brute-force enumeration

Our first algorithm involves a naive, brute-force enumeration of all possible
assignments. Its computational cost is of order O(n!), and so is only appli-
cable for small n < 10. The most pleasing, and the only non-trivial, part of
the algorithm is its use of Heap’s algorithm ([20]) to produce the full set of
assignments sequentially and without repetition. Crucially, a full list of all
assignments, which is liable to fill up a computer’s RAM, need never be con-
structed.

The following function uses Heap’s algorithm to run through assignments
while keeping track of a running likelihood-weighted mean. Its output is the
final value of this mean, along with the total weight which is equal to the
permanent of the matrix of likelihoods.

brute <- function(A, return.permanent = FALSE) {
n <- nrow(A)
cnt <- rep(0, n)
ind <- 1:n
indmat <- cbind(1:n, ind)
W <- prod(A[indmat])
EP <- diag(n)

i<-0
while (i < n) {

The outer parts of this while loop implement Heap’s algorithm for
enumerating permutations.
if (entli + 11 < i) {
if (i%%2 == 0) {
ind[c(1, i + 1)] <- ind[c(i + 1, 1)]
} else {
ind[c(i + 1, cnt[i + 1] + 1)] <- ind[c(ecnt[i + 1] + 1, i + 1)]
}

cnt[i + 1] <- cnt[i + 1] + 1
i<-0

This part of the code updates the running weighted mean of permutation
matrices.

indmat <- cbind(1l:n, ind)

w <- prod(A[indmat])

W<-W+w

EP <- EP * (1 - w/W)

EP[indmat] <- EP[indmat] + w/W

Computing expectations and marginal likelihoods for permutations 9

} else {
cntl[i + 1] <=0
i<-1i+1
}
}

if (return.permanent) {
attr (EP, "permanent") <- W
}

EP

3.2 The Ryser method

The Ryser method, named after its first appearance in [21], involves comput-
ing the permanent of a matrix using an inclusion-exclusion argument. More
specifically, it cleverly breaks the permanent down into a sum of terms that
correspond to intersections of unions of assignments,

perm(A) = Y (-] 44, T={1,2,...,n}. (11)

JCT i€l jeg

The outer sum here is over all 2™ ways of selecting a subset of A’s columns.
The summands are products of row-sums of sub-matrices consisting only of
the selected columns. The sign term alternates according to the parity of the
number of sets whose intersection the summand corresponds to.

The Ryser method effectively reduces the computational cost of the perma-
nent from O(n!n) to O(2"n?). In one respect this is a huge saving. However,
the cost still scales badly, with the effect that only problems with n < 20
are practical. Enumeration of the Ryser method’s summands can be achieved
efficiently using a Gray code binary generator such as Knuth’s algorithm L
(see page 10 of [22]), or a generator of combinations such as the Cool-lex al-
gorithm (see [23]). Like Heap’s algorithm, these algorithms produce one term
in a sequence from the preceding one, avoiding the construction of a full list.
We have opted for Knuth’s algorithm L in our implementation of the Ryser
method due to the computational efficiency afforded by its lack of internal
loops.

The same inclusion-exclusion strategy employed by the Ryser method for
computing the permanent can be used to compute an expected permutation
matrix. As far as we are aware, this strategy, implemented below, has not
been exploited elsewhere in the literature. The resulting algorithm involves the
selection of subsets of columns of A to set to zero, leading to modified matrices
A®) where k labels the subset. The modified matrix’s rows are normalized by
dividing them by the row sums. We then add the normalized matrix to a
running sum after multiplication by a weight equal to the product of the row
sums.

10 Ben Powell, Paul A. Smith

ryser <- function(A, return.permanent = FALSE) {
n <- ncol(A)
W <=0
EP <- matrix(0, n, n)
a <- rep(0, n)
f <- 0:n
p<- (-1)°n
while (£[1] < n) {

This part of the algorithm is Knuth’s algorithm L for generating a binary
Gray code.

p<--p

j <= £[1]

f[1] <- 0

f[j + 1] <= £[j + 2]

flj +2] <-j+1

alj + 11 <=1 - a[j + 1]

Ak <- A

This part of the algorithm is computing the terms of the incl/excl sum in
the same way as Ryser’s method for computing the permanent.
Ak[, a == 0] <- 0
rs <- rowSums (Ak)
W <- p * prod(rs)
if (1w ==0)) {
Ak <- sweep(Ak, 1, rs, FUN = "/")
W<-W+w
EP <- EP + w/W * (Ak - EP)
¥
}
if (return.permanent) {
attr (EP, "permanent") <- W
}

EP

3.3 The tridiagonal special case

The class of tridiagonal matrices is very special insofar as having permanents
that can be computed with cost O(n). In terms of the assignment problem,
these matrices correspond to two ordered sets of individuals that can only be
assigned to others whose place in the order differs by at most one.

In [24], the authors describe the geometric relevance of the matrix perma-
nent and many of its less obvious properties. Most importantly for us, they

Computing expectations and marginal likelihoods for permutations 11

introduce the notion of contractibility, which provides the key to computing
the permanent of a tridiagonal matrix efficiently. The authors define a matrix,
A, to be contractible on column k if column &, denoted A. j, contains exactly
two non-zero elements. Say that these two elements reside in rows 7 and j. The
contraction of A is defined to be a copy of A with its i*" row, denoted A, ., re-
placed with A; xA; .+ A; 1 A;.., and with the 5" row and k" column removed.
Lemma 3.2 in [24] states that the permanent of A and its contraction are equal.
We note that, in the context of the assignment problem, a contraction can be
understood as marginalizing, or integrating, over the possible assignments for
a particular individual.

When presented with a tridiagonal A, we can contract it by taking j =
k =1 and i = 2. We can then repeatedly contract the matrix like this until
it is a single number equal to the permanent of the original matrix. It can be
shown that the top-left elements of the sequence of contracted matrices in fact
provide us with the permanents of submatrices of A. Explicitly, defining the
sequence of contracted matrices F(") ¢ Rn—m)x(n=m) 44

pom _] A ™ =0, (12)
CFm=YD.j=k=1,i=2) m=1,...,n—1,

where C(- : j = k = 1,7 = 2) denotes the result of the contraction procedure
described above, it is the case that

Fl(Tfl) = perm(A1.m,1:m), 19)

)

where Aj.p 1.m is the top-left m by m submatrix of A. Similarly, we can
contract from the bottom-right to produce the sequence of contractions B("™) €
Rn—m)x(n=m) guch that

N CBMm V. .j=k=n—-myi=n-m-1) m=1,...,n—1,
(14)
and
B»SLT)nfL,n—m = perm(A(n—m):n,(n—m):n)- (15)

The two sequences of permanents can be used, via equation (9), to compute
the diagonals of the expected permutation matrix, i.e.

Ay perm(A(; ;)
m(Py; =1 D) =T perm(4) (16)
:Aii perm(Alz(ifl)J:(ifl))) perm(A(i+1):n,(i+1):n) (17)
perm(A) '

The off-diagonals can now be calculated by leveraging our knowledge of the
row- and column-sum constraints for the expected permutation matrix, and
of its symmetry. This symmetry follows from the fact that, in the tridiagonal

12 Ben Powell, Paul A. Smith

case, the only admissible permutations are swaps between consecutive pairs.
This means that if the i*" record in the first data set matches with the (i+1)%"
record in the second data, then the (i + 1)** record in the first data set must
match with the i*" record in the second data set. Since the two matching
‘events’ must happen simultaneously they are essentially the same event and
must therefore have the same probability of occurring. The computational
strategy outlined in this section is implemented with the following function,
which we refer to as the BG algorithm in reference to Brualdi and Gibson,
who provided us with the contraction result.

BG <- function(A, return.permanent = FALSE) {
if (!'is.tridiagonal(A)) {
warning("Input is not tridiagonal.
This function only works for tridiagonal matrices!")

}

n <- nrow(A)

The algorithm begins by computing two sequences of permanents via the BG
contractions.
Fmat <- A
for (i in 2:n) {
Fmat[i, i:n] <- Fmat[i - 1, i - 1] * Fmat[i, i:n] + Fmat[i, i - 1] =*
Fmat[i - 1, i:n]
}
f <- diag(Fmat)
Bmat <- A
for (i in (n - 1):1) {
Bmat[i, 1:i] <- Bmat[i + 1, i + 1] * Bmat[i, 1:i] + Bmat[i, i + 1] *
Bmat[i + 1, 1:i]

}

b <- diag(Bmat)

The permanents are used to compute the diagonal of EP, the off-diagonals
are determined by the sum-to-one constraints.
EP <- matrix(0, n, n)
EP[1, 1] <- A[1, 1] * b[2]/b[1]
EP[n, n] <- Aln, n] * f[n - 1]1/b[1]
if (m > 2) {

for (i in 2:(n - 1)) {

EP[i, i] <- A[i, i] * f[i - 1] * b[i + 1]1/b[1]

¥

1

for (i in 1:(n - 1)) {
EP[i, i + 1] <- EP[i + 1, i] <- 1 - sum(EP[i, 1:i])
}

Computing expectations and marginal likelihoods for permutations 13

if (return.permanent) {
attr (EP, "permanent") <- b[1]
}

12

3.4 A variational approximation

The computational strategy described in this section leads only to approxima-
tions for the expected permutation and marginal likelihood. It is inspired by
[25], whose interest in permanents is motivated by the object tracking problem.
They suggest that a set of approximate expectations, called beliefs, satisfying
a minimal-energy condition are calculated. For a specific value of its hyperpa-
rameter, their energy function coincides with the Kullback-Leibler divergence
between the beliefs and the likelihood. For this reason we designate the beliefs
as variational approximations to the exact expectations.

Explicitly, we take as our approximation to the expectation the minimizer

of
) (18)

with respect to P, subject to sum-to-one constraints on its rows and columns.

The beliefs minimizing the divergence turn out to be surprisingly easy to
compute. They can be found by applying the iterated Sinkhorn operation (see
[26]) to A. This operation simply iterates between normalizing its argument’s
rows and columns. The function below implements the iterated Sinkhorn op-
eration while keeping track of the products of the row- and column-sums. We
can use Corollary 25 of [25] to show that the product of these products serves
as an upper bound on the permanent of A.

F(P,A)= Y Pylog (iz‘g

i,5=1 K

sink <- function(A, maxit = 99, return.permanent.bound = FALSE) {
n <- nrow(A)
u <- rep(1, n)
v <- rep(1, n)
its <- 0
rsums <- 0
while (its < maxit) {
its <- its + 1
rsums <- rowSums(A)
u <- rsums * u
A <- sweep(A, 1, rsums, FUN = "/")
csums <- colSums(A)
v <- csums * Vv

14 Ben Powell, Paul A. Smith

A <- sweep(A, 2, csums, FUN = "/")
}
W <- prod(u, v)
if (return.permanent.bound) {
attr(A, "permanent bound") <- W
}
A

The relevance of the iterated Sinkhorn operation to the variational approx-
imation is made precise in appendix 6.1. More formal analyses of the operation
may be found in [27], for example, who refer to it in terms of Iterative Pro-
portional Scaling or matriz raking.

4 Examples
4.1 Code tests

In this section we report on a set of checks and numerical experiments to test
the algorithms described above. These experiments can be replicated using
the expperm package, which contains implementations of the algorithms in
R and C++ as well as a data file with the experiment inputs. The R code is
intended to act as functional pseudocode to help the reader understand and
modify the algorithms for their own purposes. The C++ code is intended to
better demonstrate the speed of the algorithms, and to provide solutions to
real problems.

We begin by testing whether the algorithms actually produce the same
output for a particular seven-by-seven matrix of simulated likelihoods. We
observe the elements of the algorithms’ outputs to differ by less than 5 x 1014
here, suggesting that rounding errors in the manipulations and summations
performed by the algorithms are not significant at this scale. We also observe
the column- and row-sums of the outputs to differ from one by less than
1 x 10713, The reader is invited to reproduce these results using commands
such as:

library (expperm)

data(A)

data(trild)

max (abs(ryser(A) - brute(A)))
max (abs (rowSums (ryser (A)) - 1))

In Figure 1 we examine the differences between an example likelihood ma-
trix A, a maximum-likelihood permutation (maximizing (5)) and the expected
permutation matrix given A. It is clear that both the maximum-likelihood and
expected permutation matrices allocate high probability to the assignments

Computing expectations and marginal likelihoods for permutations 15

1 8

o o
o [N)
1

© o ¢
o N

1

o o

o N

(a) An example matrix of likeli-(b) A maximum likelihood per-(c) The expected permutation
hoods, A. mutation matrix given A. matrix given A.

Fig. 1: Heat map plots of matrices used to test the algorithms for computing
expected permutations.

with high likelihood. This can be seen from the darker colours appearing
mostly in corresponding positions in the heat maps in each subfigure. It is
also clear that there is more than one assignment solution with appreciable
likelihood. This can be seen from the diffuseness of the shades in Figure 1lc
relative to Figure 1b.

We proceed to investigate the algorithms’ run-times with the help of the
microbenchmark package of [28]. Our numerical experiments involve simu-
lating r = 32 tridiagonal matrices of likelihoods for assignment problems of
increasing size. The time required by each algorithm to compute corresponding
expected permutation matrices is then recorded. The resulting computation
times are plotted in Figure 2. We expect to see super-exponential scaling for
the brute force algorithm, exponential scaling of the Ryser algorithm and the
sub-exponential scaling of the variational and BG algorithms. The boxplots
of Figure 2 cannot be said to verify these expectations, but appear to be ap-
proximately consistent with them. We observe that the first three algorithms
return their outputs at similar speeds for matrices of order n ~ 5. After this
point the Ryser algorithm beats the brute-force algorithm, and the variational
algorithm beats the Ryser algorithm. The BG algorithm comfortably beats all
the others, but is applicable only to tridiagonal likelihood matrices. Analogous
experiments on simulated likelihood matrices with nonzero entries in all po-
sitions produced almost identical results for the first three algorithms, so are
not presented here.

4.2 Simulated example

The data examined in this section were produced to facilitate a workshop on
the subject of record linkage run as part of a European Statistical System
network (ESSnet) project on data integration. The data, which were produced
by [29] from the UK’s Office for National Statistics (ONS), consist of three

16 Ben Powell, Paul A. Smith
-
- -
g 9 g 9
s 3 -~ s g
O o
Q [
’ - ’
E 8 E 8
s S - s S ==
g . %+ § P S
© S o S o S e o -&-'5'
8 e e e 8 e e e
3 T T T T T T T T 1 3 T T T T T T T T 1
123 456 7 8 910 12 3 456 7 8 910
Order Order
(a) Brute force algorithm. (b) Ryser algorithm.
- -
4 9 4 9
5 4 5
O O
@ @
12 12
))
E 9 E S
A [A [
g - g -
£ o 8 A £
- °
3 o 2 & 8 , 8 . o
- 8 o
3 <+ 8 e
3 T T T T T T T T 1 3 T T T T T T T T 1
123 456 7 8 910 123 456 7 8 910
Order Order

(¢) Variational algorithm. (d) BG algorithm.

Fig. 2: Computation times for algorithms computing expected permutation
matrices from simulated matrices of likelihoods. The x-axis corresponds to the
number of records to assign and the order of the resulting matrices. 32 simu-
lations are made for each order and the resulting distribution of computation
times is summarized using boxplots. Note the log-scaling of the y-axis.

sets of approximately 25000 fictitious records for individuals, all of which are
subject to transcription error.

We consider now small, equally sized subsets of records from two of the
data sets. To introduce more uncertainty, and so better demonstrate the value
of the expected rather than optimal linkage solution, we restrict our attention
only to recorded names and birth years. The data are presented in Table 1.

Computing expectations and marginal likelihoods for permutations 17

The subsets are selected by first running a naive, greedy assignment algo-
rithm on the two data sets. This involves working through the records in the
first data set and assigning them to their closest match in the second data set
according to a Damerau-Levenshtein edit distance (see [30]), which counts the
(minimum) numer of edits required to transform one word into another. All
distances are thus integer valued and ties are broken arbitrarily when identi-
fying the closest match. We select a subset of n = 18 assigned pairs, which are
close to each other according to the edit distance.

We then produce a matrix of edit distances between the subsets of records.
On the assumption that edits are independent and occur with probability
q = 0.2, this distance matrix is used to induce a matrix of likelihoods according
to equation (2). The likelihood matrix is then used to calculate an expected
permutation matrix using the Ryser algorithm. Note that this expectation is
conditional on all records in the subset having a match within the subset.

The distance matrix, maximum likelihood permutation matrix and the
expected permutation matrix for the subset of records are presented in Figure
3. We observe that the maximum likelihood matrix, which is computed using
the R package 1pSolve ([31]), does not coincide with the identity matrix. This
shows how the naive assignment procedure described above has failed to find
an optimal assignment. Indeed, the total number of edits between assigned
records in the optimal solution is 19 while the total number is 33 for the naive
solution. However, the maximum likelihood solution shows us just one highly
likely solution out of many candidates. Uncertainty regarding the true matches
is manifested in the intermediate shades appearing in Figure 3c. In particular,
the rows and columns containing no dark red cells identify records without a
single convincingly most likely assignment.

We consider this example to be a useful caricature of genuine record link-
age methodology. As discussed further in Section 5, it demonstrates how the
results of a naive but computationally convenient assignment procedure can
be analsyed and potentially called into question thanks to our algorithms.

5 Discussion

In the course of the work documented in this paper we have seen how the
search for good assignments between records in a pair of data sets is a rich
and demanding problem. We have seen how the problem relates to numerous
subfields of pure and applied mathematics, and how contributors to those
fields have provided us with tools for constructing sophisticated algorithms
for computing expected permutations. The sophistication of these algorithms
does not imply that they are unwieldy. Indeed they are implemented in tens of
lines of code and wrapped up in our R package expperm, which we encourage
readers to take apart and customize.

We have intentionally prioritized the exposition of computational proce-
dures over the explanation of their role in data analysis problems. Nevertheless,
appreciation of the practical relevance of the computations to the motivating

18 Ben Powell, Paul A. Smith

PERNAMEI PERNAME2 DOB_YEAR PERNAMEI PERNAME2 DOB_YEAR
ALEX ANDERSON 1951 ALEX ANDERSON 1951
ALEX ANDERSON 1952 ALEX ANDERSON 1951
ALEXIS ANDERSON 1955 RLEXIS RNDERSON 1955
LEWIS ANDERSON 1956 LEWIS ANDERSON 1954
LEWIS ANDERSON 1954 LEWIS ANDEVSON 1954
LEWIS ANDERSON 1954 LEWLS ANDERSON 1956
LEWIS ANDEBSON 1996 LEWIS ANDERSON 1996
ELISE ANDERSON 1999 ELISE ANDERSON 1999
LIAM ANDERSON 1999 LIAM ANDERSON 1999
LIAM ANDERSON 1992 LIAM ANDERSON 1992
LIAM ANDERSON 1949 LIAM ANDERSON 1949
LIAM ANDERSON 1954 LIAM ANDERSON 1949
LIAM ANDEVSON 1947 LILY ANDERSON 1941
LILY ANDERSON 1941 LILY ANDERSON 1942
LILY ANDEASON 1942 LILY ANDERSON 1966
LILY AWDERSOW 1966 BELKY ANDERSON 1916
BECKY ANDERSON 1916 TOBY ANDERSON 1913
TUBY ANDERSUN 1913 RUBY ANDERSON 1956
(a) Example data subset 1. (b) Example data subset 2.

Table 1: Two subsets of the ESS data whose matching probabilities are calcu-
lated as part of Section 4.2.

1 4 7 10 14 18 1 4 7 10 14 18 1 4 7 10 14 18

0.6

0.4

0 7
o b e oo
18 14 10 7 4
.-":.
.

g
1 0 7
o o o o
segsg

0.0

18

(a) The distance matrix be-(b) A maximum-likelihood per-(c) The expected permutation
tween the two subsets ofmutation matrix for the records.matrix encoding the matching
records. probabilities for the records.

Fig. 3: Heat map plots of matrices relating to the example record linkage data
of Section 4.2. The matrix rows and columns refer to the records in subsets 1
and 2 , respectively.

problems, as described in the introduction, remains important. With this in
mind, we now discuss the value and limitations of the algorithms described
above.

We suggest that the algorithms are used as tools for assessing a proposed
assignment solution. As the expected permutations are clearly not themselves
permutations, our algorithms are not tools for finding assignments and are
not competing with algorithms for finding an optimal assignment. What the
expected permutation matrices show very well is the potential for uncertainty
for a true match. Informally, we can say that the less an expected permuta-
tion matrix looks like the maximum likelihood permutation matrix, the less

Computing expectations and marginal likelihoods for permutations 19

confident we should be that the maximum likelihood estimate is correct. This
sort of evaluation is useful even if it only scales up to moderately large blocks
of proposed assignments, as in the example of Section 4.2.

Although of value in their own right, expected permutation matrices are
also a vital component of statistical inference procedures, such as those de-
scribed in [12], [13] and [14]. Typically these inferences are applied given an
exchangeable linkage assumption, leading to expected permutation matrices
that, although mathematically convenient, are naive, since they do not use
record similarity measures in their construction. We have explained how our
algorithms can help us compute more appropriate expected permutation ma-
trices, which we would expect to improve statistical inferences, even if they
were not exact due to the computational demand involved in scaling up to
the whole of a large data set. We might ask, for example, how seriously does
specifying the wrong expectation for linkage error undermine inference? And,
how significantly is this problem improved with a less wrong misspecifation?
Answering these questions will require the investigation of inferential proce-
dures in the presence of parameter misspecificiation, which is likely to be a
considerable task and one that will benefit from expert knowledge on what
a ‘correct’ specification should really look like. This would make for valuable
future work.

We have also assumed that all records to be assigned have a true match
in the data sets available to us. In applications to official statistics this as-
sumption is likely to be particularly hard to justify. We are currently working
on extensions of the methods described above for which the assumption can
be compromised. Specifically, we are investigating averages over assignment
solutions for which some records remain unassigned or perhaps have multi-
ple assignments due to accidental record duplication. Permutations may no
longer be the objects to focus on in this new context, but related combinato-
rial mathematics remains relevant. As well as pursuing this methodology, it
is also interesting to consider how badly it is needed - how badly deviations
from the matchability assumption can undermine our inferences. We antici-
pate that the expected assignment for an unmatchable record will be mostly
uninformative. It is not useful to know, for example, that the record with name
‘George’ is closer to ‘Susan’ than it is to ‘Christobelle’. The degree to which
an unmatchable record undermines the expected assignments for the match-
able records is less obvious however. This robustness issue is another topic for
future research.

Acknowledgements

We would like to thank an anonymous reviewer for advice and suggestions
that have greatly improved this paper.

20

Ben Powell, Paul A. Smith

References

1.
2.

3.

10.
11.

12.
. P. Lahiri, M.D. Larsen, Journal of the American Statistical Association 100(469), 222

14.
15.
16.

17.

18.
19.
. B.R. Heap, The Computer Journal 6(3), 293 (1963). DOI 10.1093/comjnl/6.3.293
21.
22.
23.
24.
25.
26.
. Y. She, S. Tang, Journal of Computational and Graphical Statistics pp. 1-13 (2018)
28.
29.

30.
31.

I.P. Fellegi, A.B. Sunter, Journal of the American Statistical Association 64(328), 1183
1969

SF.R. %3elin, D.B. Rubin, Journal of the American Statistical Association 90(430), 694
1995

£[‘. ngzog, F. Scheuren, W. Winkler, Data Quality and Record Linkage Techniques
(Springer New York, 2007)

N. Cibella, M. Fortini, M. Scannapieco, L. Tosco, T. Tuoto, et al., Rivista di statistica
ufficiale 9(2-3), 55 (2007)

W.E. Yancey, Bigmatch: A program for extracting probable matches from a
large file for record linkage. Tech. Rep. 1, US Census Bureau (2002). URL
https://www.census.gov/srd/papers/pdf/rrc2002-01.pdf

A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios, IEEE Transactions on knowledge and
data engineering 19(1), 1 (2007)

H. Pasula, S. Russell, M. Ostland, Y. Ritov, in International Joint Conferences on
Artificial Intelligence, vol. 99 (1999), vol. 99, pp. 1160-1171

D.P. Bertsekas, Mathematical Programming 21(1), 152 (1981)

P. Savicky, pspearman: Spearman’s rank correlation test (2014). URL https://CRAN.R-~
project.org/package=pspearman. R package version 0.3-0

G.L. Simpson, permute: Functions for Generating Restricted Permutations of Data
(2016). URL https://CRAN.R-project.org/package=permute. R package version 0.9-4
R.K.S. Hankin, permutations: Permutations of a Finite Set (2017). URL
https://CRAN.R-project.org/package=permutations. R package version 1.0-2

F. Scheuren, W.E. Winkler, Survey Methodology 19(1), 39 (1993)

(2005). DOI 10.1198/016214504000001277

G. Kim, R. Chambers, Computational Statistics & Data Analysis 56(9), 2756 (2012).
DOI https://doi.org/10.1016/j.csda.2012.02.026

M. Michelson, C.A. Knoblock, in Association for the Advancement of Artificial Intelli-
gence (2006), pp. 440-445

M. Bilenko, B. Kamath, R.J. Mooney, in Data Mining, 2006. ICDM’06. Sixzth Interna-
tional Conference on (IEEE, 2006), pp. 87-96

S.E. Whang, D. Menestrina, G. Koutrika, M. Theobald, H. Garcia-Molina, in Proceed-
ings of the 2009 ACM SIGMOD International Conference on Management of data
(ACM, 2009), pp. 219-232

P. Diaconis, R. Graham, S.P. Holmes, Lecture Notes-Monograph Series pp. 195-222
2001

£.G. %/aliant, Theoretical computer science 8(2), 189 (1979)

H. Ryser, Combinatorial Mathematics. Carus mathematical monographs (Mathematical
Association of America, 1963)

D. Knuth, The Art of Computer Programming: Generating all tuples and permuta-
tions. Addison-Wesley series in computer science and information proceedings (Addison-
Wesley, 2005)

F. Ruskey, A. Williams, Discrete Mathematics 309(17), 5305 (2009)

R.A. Brualdi, P.M. Gibson, Journal of Combinatorial Theory, Series A 22(2), 194 (1977).
DOI https://doi.org/10.1016,/0097-3165(77)90051-6

M. Chertkov, A.B. Yedidia, The Journal of Machine Learning Research 14(1), 2029
2013

g%. Sirzkhorn, Ann. Math. Statist. 35(2), 876 (1964). DOI 10.1214/aoms/1177703591

O. Mersmann, microbenchmark: Accurate Timing Functions (2018). URL
https://CRAN.R-project.org/package=microbenchmark. R package version 1.4-6

P. McLeod, D. Heasman, I. Forbes, Simulated record linkage data. Tech. rep., Office
for National Statistics (2011). URL https://ec.europa.eu/eurostat/cros/content/job-
trainingen

F.J. Damerau, Communications of the ACM 7(3), 171 (1964)

M. Berkelaar, others, IpSolve: Interface to ‘Lpsolve’ v. 5.5 to Solve Linear/Integer Pro-
grams (2015). URL https://CRAN.R-project.org/package=IpSolve. R package version
5.6.13

Computing expectations and marginal likelihoods for permutations 21

6 Appendix

6.1 (Outline) Proof for the iterated Sinkhorn operation leading to the
variational approximation

Consider the objective function combining the Kullback-Leibler divergence
with Lagrange terms encoding sum-to-one constraints

L= Zpijlogjj‘—kz:)\i(ﬁik_1>+z77j <Zpkj_1>’ (19)
i,j=1 J 1

K i=1 k= j=1 k=1

where \; and n; are the Lagrange multipliers.
The derivative of the Lagrangian with respect to F;; is

oL .
= zlogPij +1 —IOgAij +)\2 +7]j, (20)
ij
which is zero when
Pij = u; Agjvi, (21)
where
u; = exp(—1—X\;), v; = exp(—n;). (22)

Equation (21) is telling us that the Lagrangian has a stationary point when
P is a version of A with its rows and columns scaled by factors u; and v;.
Further, we know that these scalings must result in P having unit row- and
column-sums. [26] shows us that this can always be done for an A with strictly
positive elements. He also shows us that the iterative process of alternately
re-normalizing the rows and columns of A allows us to approximate P to
arbitrary precision.

