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Abstract 

Seismic tomography inverse problems are among the largest high-dimensional parameter 

estimation tasks in Earth science. Although iterative algorithms can be used to efficiently solve 

these problems, their size gives rise to several issues such as the intractability of the computation 

of the model resolution and the model posterior covariance matrices that provide the means of 

assessing the robustness of the solution. In this work, we utilize methods from combinatorics and 

graph theory to study the structure of typical regional seismic body-wave tomography problems, 

and to effectively decompose them into subsets that can be solved efficiently by means of the 

least squares method. In combination with recent high performance direct sparse algorithms, this 

reduction in dimensionality allows for an efficient computation of the model resolution and 

covariance matrices using limited resources. We apply this methodology to a moderate size 

imaging of the structure of the crust and the upper mantle beneath Japan using deep local 

earthquakes recorded by the High Sensitivity Seismograph Network stations. Among the 

prominent features that are being imaged is a strong low-velocity region beneath the subducting 

Pacific slab along the entire Japan trench. 
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1. Introduction 

Seismic tomography problems can be considered as high dimensional optimization problems, 

where a set of model parameters are sought to satisfy observations and a priori constraints. 

Seismic tomography problems are non-linear in principle, in that the inferred model 

perturbations alter the sensitivity kernels, although this non-linearity is often weak and is 

neglected (Ellsworth, 1977; Bijwaard & Spakman, 2000; Mercerat & Nolet, 2013). Due to the 

significant computational cost of the forward calculations, gradient-based optimization methods 

are the most convenient in solving seismic tomography problems. Commonly, a cost function, 

that combines the data misfit penalty and prior constraints, is locally approximated about an 

initial Earth model, and perturbation-based methods are used to acquire successive linear updates 

to the starting model until a convergence or termination criterion is met. Computationally, this is 

equivalent to solving a linear system of equations once or multiple times (e.g., Aster et al., 2005; 

Nolet, 2008). Modern tomography problems involve large numbers of observations and model 

parameters, and thus require the inversion of large matrices. Iterative solvers, such as Krylov 

subspace methods (e.g., Saad, 2003) allow the derivation of the solution without explicitly 

forming the inverse operator, and consequently, without large requirements in memory or 

computational time. One of the disadvantages of using iterative methods for the inversion is that 

the computation of the basic tools for assessing the quality and the first order uncertainty of the 

solution, namely the model resolution and the posterior covariance matrices (Backus & Gilbert, 

1968; Wiggins, 1972; Menke, 1989; Parker, 1994; Tarantola, 1987, 2005), is no longer 

straightforward. It should be noted that the resolution and covariance matrices are typically 

defined for linear inverse problems, however their validity can be extended on linearized inverse 

problems (e.g., Snieder, 1991). Other frequently used resolution proxies, such as the 
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checkerboard tests have proven to be misleading (e.g., Lévêque et al., 1993), although under 

certain conditions can be useful (e.g., Rawlinson & Spakman, 2016).    

Although several approaches based upon the LSQR (Paige & Saunders, 1982a,b) algorithm 

have been proposed to estimate the full resolution, and in some cases the covariance, matrix 

(e.g., Zhang & McMechan, 1995; 1996; Yao et al., 1999; 2001; Zhang & Thurber, 2007), such 

estimations can significantly depart from the actual resolution matrix. This is usually because 

only a small subspace of the full model space is explored, due to the limited number of iterations 

that is required for efficiency (Deal & Nolet, 1996; Berryman, 2000a, b; Zhang & Thurber, 

2007). For example, the method proposed by Nolet et al., (1999), although efficient, is accurate 

only under certain assumptions about the structure of the forward operator. Alternatively, 

stochastic approaches using matrix probing techniques with randomized vectors (Hutchinson, 

1990; Bekas et al., 2007) have been introduced to estimate the diagonal elements of the 

resolution matrix (MacCarthy et al., 2011; An, 2012; Trampert et al., 2013). They provide 

relatively accurate assessment of the diagonal elements (Bogiatzis et al., 2016), but ignore the 

off-diagonal elements that are crucial in assessing the trade-offs between different model 

parameters. Furthermore, depending upon the structure of the resolution matrix that may be 

unknown a priori, a large number of iterations may be necessary to yield satisfactory 

approximations (Bekas et al., 2007). Fichtner & Trampert (2011) propose a new method for 

extracting resolution information in full waveform inversion by utilizing the second order 

adjoints to compute the second derivatives of the data with respect to model parameters. This 

approach provides a generalization of the ray density tensor (Kissling, 1988) that quantifies the 

space-dependent azimuthal coverage i.e., a direction-dependent resolution length, but it does not 

address the trade-offs between model parameters. Recently, Voronin et al., (2014) proposed a 
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technique that clusters near parallel ray paths in global tomography problems, and then further 

gains in memory can be achieved by using singular value decomposition (SVD) to project the 

data onto a subspace associated with the largest few singular values of each cluster. This method 

is powerful in the case of global tomography studies and can potentially be used to derive the 

model resolution and covariance matrices from the compressed system. However, its application 

in the case of regional or local tomography problems is not straight-forward, as the ray-paths can 

diverge significantly in both the sources‟ and the receivers‟ side, and also due to the fact that the 

hypocenters parameters of the earthquakes are also among the unknowns to be estimated. 

Several researchers have suggested overcoming computational limitations of the direct 

methods by utilizing high performance computers that incorporate many multicore nodes under a 

distributed memory environment. For example, parallel dense Cholesky factorization using such 

system has been utilized to solve large, at the time, seismic tomography inverse problems 

(Boschi 2003; Soldati & Boschi 2005; Soldati et al., 2006). More recently, a dense Cholesky 

solver that stores and fetches the matrices in significantly slower external memory such as hard 

drives (also known as out-of-the-core capability; D‟Azevedo & Dongarra, 2000), has been used 

to calculate the resolution and covariance matrix for a global tomography model with ~230K 

parameters (Hipp et al., 2011; Ballard et al., 2016). This particular study required about 12 hours 

of computation time, using 400 threads distributed over 10 computational nodes, that had access 

to main memory that varied from 64 GB to 768 GB per node. Bogiatzis et al. (2016) have 

showed that similar problems can be solved efficiently with limited computational resources by 

using fill-reducing ordering algorithms to propagate sparsity throughout common matrix 

factorizations methods (e.g., Karypis & Kumar, 1998; Davis et al., 2004a, b; Amestoy et al., 

2004), and efficient direct sparse solvers that take advantage of memory hierarchy and 
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parallelism (Davis, 2011). In order to make large tomography problems more tractable, this 

manuscript examines a graph-based method that permutes the non-zero elements of the seismic 

tomography matrix to produce a block, upper triangular matrix. This permutation divides the 

initial inverse problem into significantly smaller ones, achieving substantial dimensionality 

reduction that allows more efficient handling of large tomography problems.  

2. Reducing large linear problems with the Dulmage-Mendelsohn 

permutation  

Linear systems of equations can be represented with “bipartite graphs” (e.g., Pothen & Fan, 

1990).  For example, let an     matrix   to be the matrix of a linear system of   equations 

with   unknowns. For convenience, let us assume      with no loss of generality, since in the 

case that     we only need to consider the transpose of  . If   and   are the set of vertices 

that represent the indexes of the rows and the columns of  , respectively, then we can define a 

bipartite graph that describes   as an ordered triple         , where   is the set of edges 

between   and  . Edge       corresponds to the non-zero element       , and connects the row   

(member of  ), with the column   (member of  ) (Fig. 1).  

In a bipartite graph, we call “matching”  , a subset of edges with no common vertices (Fig. 

2). A vertex is considered matched (or covered) if there is an edge of the matching that is 

incident on it. If such an edge does not exist, then the vertex is called unmatched (Fig. 2).  When 

a matching has the largest number of vertices, then it is called “maximum matching”. 

Following the graph formulation, a system of equations is structurally under-determined (or 

under-constrained), i.e., there are fewer equations than unknowns, when the system‟s associate 
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bipartite graph has a maximum matching covering all nodes of   and         where     

denotes the number of its members. Similarly, it is structurally over-determined, i.e., there are 

more equations than unknowns, when its associate bipartite graph has a maximum matching 

covering all nodes of   and        . Finally, it is well-determined when its associate bipartite 

graph has a maximum matching covering all nodes of   and        . 

Dulmage and Mendelsohn, in a series of papers (1958, 1959, 1967), first described a unique 

decomposition of a bipartite graph that separates the graph into a structurally under-, well-, and 

over-determined parts that is now known as the Dulmage-Mendelsohn coarse permutation (see 

Appendix). The well-determined part can be further decomposed into smaller parts with fine 

decomposition (Pothen, 1984; Pothen & Fan, 1990; Davis, 2006), however, we will focus on the 

coarse decomposition that is more applicable to tomographic problems. The algorithm takes a 

bipartite graph         as its input, and outputs three sub-graphs (i.e., subsystems) that 

correspond to an under-determined component  , a well-determined component  , and an 

over-determined component  ,  In matrix notation, the application of the Dulmage-Mendelsohn 

permutation produces the following block triangular form of  , 

        [

            

        

      

      

], (1) 

where   and    are     and     permutation matrices obtained by permuting the rows of 

the identity matrix.    ,     and     are square matrices with non-zero diagonals. Furthermore, 

the diagonals of    ,     and     define a maximum marching of  . The block 

          represents the structurally under-determined subsystem of equations   and, if present, 

it is always rectangular with more columns than rows.     is the structurally well-determined 
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subsystem  , and it is always square. Finally,     
     

    is the structurally over-determined 

subsystem , which, if present, is always rectangular with more rows than columns. The columns 

of      correspond to the unmatched unknowns, and the rows of     correspond to the 

unmatched equations. It should be noted that although the Dulmage-Mendelsohn permutation is 

unique in terms of the members of     , and  , the exact ordering of the rows       and    

as well as the columns       and    may change within these three sub-graphs provided that 

they still return a valid Dulmage-Mendelsohn permutation. Since there may be more than one 

maximum matchings, selecting a different maximum matching may swap columns between     

and     and rows between    and    . The Dulmage-Mendelsohn method yields the structural 

rank of the matrix that is the maximum possible numerical rank of the matrix based on its non-

zero pattern. 

The Dulmage-Mendelsohn permutation offers significant advantages in solving linear 

systems of the form, 

      , (2) 

where   is the     vector with the unknowns to be determined, and   is a     vector with 

the observations that are related to   through  . For example, it allows division of the initial 

problem into smaller problems, which, depending upon the structure of  , may significantly 

reduce the required computational resources needed. By applying the Dulmage-Mendelsohn 

permutation to Eq. 2, it can be converted as, as, 

             ,  (3) 
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where          , and       .  It should be noted that      and     always exist since    

and   are non-singular as a permuted version of the identity matrix. Using Eq 1, we can rewrite 

Eq. 3 in matrix form,  

 [

            

        

      

      

]  

[
 
 
 
  

 

  
 

  
 

  
 ]
 
 
 

 

[
 
 
 
  

 

  
 

  
 

  
 ]
 
 
 

,  (4) 

where the indices in   
  and   

  indicate the elements of these vectors that correspond to the     

column and the     row of the block    , respectively. The general steps for solving Eq. 4, by 

taking advantage the Dulmage-Mendelsohn form are the following (e.g., Davis, 2006): 

I. Solve the subsystem [
   

   
]    

  [
  

 

  
 ]  to obtain  ̂ 

  where ̂  denotes an estimation 

of the model vector. 

II. Solve        
    

        
  to obtain   ̂ 

 . 

III. Solve           [
  

 

  
 ]    

       ̂ 
       ̂ 

  to obtain   ̂ 
  and  ̂ 

 . 

The structural properties of each subsystem, such as the block upper triangular form of    , can 

be exploited by selecting the appropriate solving approach for efficiency (e.g., Davis, 2006). It 

should be noted that the subsystems are characterized from useful properties such as full 

structural rank and zero-free diagonal that are crucial in reducing the amount of work when using 

direct sparse solvers such as those based upon Cholesky, LU and QR factorizations. 

Furthermore, it ensures that the symbolic analysis, which precedes the factorization, and aims in 

reducing fill-ins as well as pre-allocating the data structures to hold the result of the numerical 

computation, is as effective as possible. Note that the Dulmage-Mendelson permutation is 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggz216/5489188 by U

niversity of Southam
pton user on 21 M

ay 2019



meaningful only in the case when   is sparse or can be converted into a sparse matrix so that it 

can be decomposed into the upper block-triangular form of Eq. 1. Also note that the concept of 

over-, well-, and under-determined subsystems should not be considered as a cheap, quantized 

version of the singular value decomposition where an ordered sequence of model-space vectors 

is derived based upon the singular values. In contrast, as it will be demonstrated in the next 

section, different blocks of the Dulmage-Mendelson permutation generally contain both large 

and small singular values, without any clear differentiation.   

3. A simple synthetic example  

To demonstrate the Dulmage-Mendelsohn analysis, and to explore its connections to other 

methods such as the singular value decomposition, we use a simple example of a 2-D seismic 

attenuation tomography problem (Fig. 3a). For simplicity, we assume that the velocity is constant 

throughout the model, therefore, the ray paths are straight (Fig. 3a).  The forward operator of the 

problem,   (Eq. 2; Fig. 3b) has 20 rows, equal to the number of the ray paths, and 16 columns, 

corresponding to each of the model blocks. Since each ray path samples only a subset of the 

model space,   is a sparse matrix, i.e., a large number of its elements is 0, which is common for 

seismic tomography problems (e.g., Nolet, 2008). From the matrix  , we can construct the 

associated bipartite graph   by considering its non-zero elements (Fig. 3c), and then to perform 

the Dulmage-Mendelsohn permutation. The new permuted matrix is shown in Fig. 3d, and the 

associated bipartite graph   in Fig. 3e. In this example, all blocks of the decomposition (i.e., 

every     of Eq. 4) are present.  
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The Dulmage-Mendelsohn decomposition shows that the number of edges of a maximum 

matching of   is 14 (note that different maximum matchings will also have the same number of 

edges, which also states the structural rank    of the problem is 14. The parameters 10, 11, 12, 

14, 15 and 16 make up the structurally under-determined part of the system, implying that, 

regardless the numerical values of the non-zero elements of  , there is a null space that can 

produce an infinite number of solutions that fit the observations. The parameters 13 and 9 belong 

to the structurally well-determined subsystem, and the parameters 1 through 8 belong to the 

structurally over-determined subsystem. Because the structural rank poses only an upper bound 

to the numerical rank, it is impossible to conclude if the structurally well-determined and over-

determined subsystems are of full numerical rank and well-posed problems without applying a 

more sophisticated analysis such as the singular value decomposition. To further explore this 

issue, we calculate and examine the singular values of different block combinations of the 

Dulmage-Mendelsohn permutation of   (Fig. 4). The singular values of the full matrix   show a 

large drop between the 13
th

 and 14
th
 singular value. The small singular values from the 14

th
 

onwards, are below the machine‟s precision, using a typical tolerance of                 

where   is the machine‟s floating-point relative accuracy (e.g., of the order of       for a double 

precision machine), and      is the largest singular value (e.g., Gander et al., 2014).  This 

implies that the numerical rank    of the problem is   , which is close to the structural rank 

      inferred from the maximum matching. It should be noted that small singular values 

occur even when the over-determined or the combination of the over- and well-determined 

subsystems are examined (Fig. 4). In both cases, the numerical rank is smaller than the structural 

column rank of the corresponding subsystem obtained from the Dulmage-Mendelsohn 

permutation. However, in each case, the condition number of the subsystems is about an order of 
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magnitude smaller than the condition number of the whole matrix. The condition number is 

calculated as the ratio of the largest over the smallest singular value, after omitting the tiny 

singular values based upon the tolerance described earlier. The under-determined subsystem, 

with structural column rank 4, happens to have 4 significant singular values too, but its condition 

number is similar to the condition number of the original system. 

Using the singular value decomposition and the tolerance described above, the 

orthonormal basis for the null space of   can be obtained. The three (i.e.,       )   -

dimensional vectors    are shown in Fig. 5. Any linear combination of these vectors lies in the 

null space of  . With the exception of the minimum norm solution that does not include 

components from the null space of the problem, most regularized solutions commonly used in 

geophysical tomography (e.g., Aster et al., 2005; Nolet, 2008), are characterized by arbitrary 

components in the null space that alter the solution, but not the misfit. Therefore, being able to 

determine the null space is particularly useful for evaluating the robustness of the solution (e.g., 

Deal & Nolet, 1996; de Wit et al., 2012). In the case of our synthetic example, the parameters 

corresponding to the structurally under-determined part of the system present significant 

components in the null space of   (i.e., large absolute values for the elements corresponding to 

these parameters in the null-space vectors shown in Fig. 5), indicating that they are not 

adequately constrained. This is also the case for some parameters that belong to the structurally 

well- and over-determined parts of   reflecting the linear dependence of the rows. Consequently, 

the practicality of the permutation as a diagnostic tool is limited for floating point arithmetic 

problems that involve errors, noisy data and ill-conditioned matrices, such as those in 

geophysical tomography problems. 
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In order to investigate the  accuracy of the Dulmage-Mendelsohn decomposition in solving a 

system of linear equations against typical methods, we generate a synthetic data set based upon 

the model shown in Fig. 6a (i.e., the true model) as             , and add white Gaussian 

noise with a signal-to-noise ratio of 2dB.  Using the synthetic data, we seek the minimum norm 

solution  ̂  with the Moore (1920) and Penrose (1955) pseudo-inverse operator, with the 

tolerance as discussed previously.  One approach is to utilize three submatrices obtained through 

the Dulmage-Mendelsohn permutation and follow the procedures described in Section 2. For 

comparison, the full system is also solved by applying the Moore-Penrose pseudo-inverse 

operator of the whole matrix  . The results are identical within the machine‟s precision limits 

(Fig. 6). This is to be expected as the Dulmage-Mendelsohn approach constitutes simply a 

blocked version of backward substitution in solving upper triangular systems.   

4. Application to a real seismic tomography problem 

We apply the Dulmage-Mendelsohn technique to a seismic tomography problem where a 

regional model of P-wave variations is sought using travel-time observations. We use 87,616 P-

wave travel times recorded at the Hi-net station (Okada et a1., 2004) from 125 local earthquakes 

of Mw>4.4, with depth greater than 150 km (Fig. 7). The picking is performed automatically 

using the algorithm presented in Bogiatzis & Ishii (2015). Arrivals with signal-to-noise ratio 

greater than 2 are considered, and the weighted standard deviation of the picks along different 

scales of the continuous wavelet transform is used as the measure of uncertainty of the picks.  

The three-dimensional space spans from     E to      E in longitude,    N to     N 

in latitude, and from 4 km to -889.5 km elevation, where positive values are above sea level.  It 
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is parameterized using a grid of 234,000 nodes with           nodes along latitude, 

longitude and depth, respectively. The spacing along the latitude and longitude directions is 

constant, equal to       , while the spacing in depth varies smoothly using a tapered cosine 

function. The depth spacing is about 30 km at 11 km depth and increases gradually to 60 km at 

the deepest layer of 313 km depth. For depths shallower than 11km, there are three layers at -

5km, 0km and 4km to accommodate topography and near station conditions. 

4.1. Forward Problem 

The ray paths required for determining the P-wave travel times are calculated using the high 

frequency approximation of the elastic wave equation in two steps. First, Dijkstra‟s algorithm 

(e.g., Dijkstra, 1959; Moser, 1991; Bogiatzis, 2010) is applied to compute a first estimation of 

the ray path, in the sense of the fastest path that connects the source and the station following the 

Fermat‟s principle (e.g., Bóna & Slawinski, 2003; Červený, 2005). The ray path is constructed 

from linear segments that connect different nodes of the model, and the time delay along each 

segment is approximated by considering its length and the average of the velocities between the 

nodes it connects. The connectivity stencil is formed by the 27 closest nodes, except for those 

near the edges of the model, where the number is reduced accordingly. Next, the initial ray path 

is further optimized by means of the pseudo-bending method following the Fermat‟s principle 

(e.g., Moser et al., 1992; Papazachos & Nolet, 1997; Bogiatzis, 2010), and using Polak-Ribiere 

non-linear conjugate-gradient method (Press et al., 1997). To avoid being trapped into local 

minima and/or regions where the gradient of the travel time functional is relatively flat, a multi-

start approach is followed.  After optimizing the path generated from the Dijkstra‟s method, two 

more paths are considered as starting points. One is a straight path in the Cartesian space that 

connects the source and the station, and the other is the average of the straight path with the 
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output of the first optimization run that started from Dijkstra‟s algorithm path. Furthermore, the 

optimization algorithm for each starting path is repeated 3 times using different perturbation 

levels to compute the partial derivatives of the travel-time functional with respect to the location 

of the ray path points. The ray optimization problem is solved in local, vertical, Cartesian 

coordinates with the origin set to a point within the model, 

at                                                           . The velocity between 

the nodes of the medium is interpolated by means of tri-linear interpolation utilizing the 8 

surrounding nodes in the geodetic domain (i.e., latitude, longitude, elevation), rather than the 

curved Cartesian domain, under the assumption that within this small region between adjacent 

nodes, the effect of curvature is negligible. Both steps of the ray path determination are 

parallelized. In the case of Dijkstra‟s algorithm, each earthquake is assigned to a different 

processor, while at the second step, the total number of ray paths are divided into   subsets of 

approximately equal number of rays, where   is the number of processing units.  

4.2. Inverse problem 

We setup a nonlinear inverse problem to simultaneously determine the P-wave slowness at the 

nodes and the hypocentral parameters (i.e., the three spatial coordinates and the origin time). The 

arrival time      is a function of   which is the model vector where the first 234,000 elements 

correspond to the slowness nodes of the model, and the last 500 elements correspond to the 

earthquake parameters.      is then expanded about a starting model    that is constructed 

from a one-dimensional Earth model, IASP91 (Kennett & Engdahl, 1991), and the hypocentral 

parameters from the Japan Meteorological Agency catalogue (JMA; http://www.jma.go.jp; last 

accessed on February 2018).  The deviation of the observed travel time from those predicted 

using a starting model is related to model update, i.e., 
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|
  

     ,  (5) 

where   corresponds to higher order terms that are neglected under the assumption that   can be 

approximated as a linear function about   . After ignoring  , Eq. 5 has the form of Eq. 2 with 

            ,     
  

  
|
  

and     . The partial derivatives matrix   has the structure  

   [

       
       
     

       

],  (6) 

where    is a      submatrix containing the partial derivatives of the slowness for the    ray 

paths associated with the     event.    is      submatrix containing the partial derivatives with 

respect of the three spatial coordinates and the origin time, of the     event. 

The non-linearity of the problem is incorporated through calculation and application of 

successive updates to the model vector, until no further considerable improvements in misfit can 

be made.  

4.3. Analysis of the sensitivity matrix with the Dulmage-Mendelsohn 

permutation 

At each iteration, the Dulmage-Mendelsohn permutation of the   matrix is calculated, and 

solutions are obtained. For example, in the first iteration,   is a sparse matrix with only 0.9% of 

non-zero elements (Fig. 8). The Dulmage-Mendelsohn permutation reveals that all blocks     are 

present, and that the structural rank of   is 39,015 which provides an upper limit on its numerical 

rank (i.e., number of recoverable model parameters in model space coordinates). The structurally 

under-determined subsystem has dimensions               and the dimensions of the 

structurally over-determined subsystem are              . The submatrix     that 
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corresponds to the structurally well-determined subsystem is substantially smaller compared to 

any of the     submatrices, with dimensions of        . For simplicity, we combine the well-

determined and over-determined submatrices into             matrix, and thus merge the 

first two steps of the solution process (see section 2). Compared to the initial   matrix, the new 

submatrix contains 92% of the rows (i.e., observations), but only 14% of the columns (i.e., 

unknown parameters). The spatial distribution of the model parameters that belong to the 

well/over-determined system, is consistent with the regions of good ray path coverage (Fig. 9). 

4.4. Calculation of the singular values 

The singular value decomposition (e.g., Lanczos, 1961; Golub & Reinsch, 1970; Demmel, 

1997) of the sensitivity kernel is a crucial diagnostic tool about the nature of the inverse problem. 

It also provides the most effective tool for solving ill-posed problems (e.g., Hansen, 1990, 1992, 

1998, 2007; Demmel, 1997; Snieder & Trampert, 1999; Aster et al., 2005). However, as data and 

model spaces become larger, the computational cost of singular value decomposition in floating 

point operations, and in particular, memory requirements, makes it intractable. Over the years, 

several algorithms have been developed to extend the applicability of singular value analysis, or 

some of its features to larger problems. For example, iterative methods such as SVDPACK 

(Berry, 1992) and PROPACK (Larsen, 1998) are very fast when only a small, a-priori fixed 

number of the singular values of large matrices is needed. More recently, algorithms based upon 

randomized sampling have been used to derive partial and approximate singular value 

decompositions (e.g., Drineas et al., 2006; Halko et al., 2010; Voronin et al., 2014). In all these 

methods, only a small subset of the largest singular values is returned, and the user must a-priori 

define this number.  
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We have chosen the PIRO_SKY algorithm (PIpelined plane ROtations of sparse SKYline 

matrices; Rajamanickam, 2009) to calculate the singular values of the seismic tomography 

problem.  This algorithm uses SPQR (Davis, 2011; also see next paragraph) to compute the QR 

factorization and reduces the sparse upper triangular   matrix to bidiagonal form. The bidiagonal 

matrix is further reduced to a diagonal form through LAPACK (Anderson et al., 1999), which 

contains the singular values of the original matrix. Among the advantages of this method is the 

efficient calculation of all singular values of the matrix, and it can be applied to large sparse 

matrices such as one considered for this study. All the singular values for both the well/over-

determined and under-determined subsystems are computed through this approach. The total 

computation time using a node on Harvard‟s Odyssey supercomputer with 32 CPUs and ~200 

GB of memory for the well/over-determined system was about 4.5 days, with the most time-

consuming part (4.4 days) being the bi-diagonalization of the   matrix returned from the QR 

decomposition.  The under-determined system took a few seconds as there are only 7019 rows. 

The results from both subsystems show gradual decay of the singular values (Fig. 10). In the case 

of the well/over-determined part, the singular values decay gradually and smoothly towards zero. 

The under-determined part of the system exhibits similar behavior, but there are a few abrupt 

slope changes. The gradual decay of singular values is a known property of discrete ill-posed 

problems, and in such cases, not only the determination, but the definition of the rank of the 

problem is ambiguous (e.g., Hansen, 2007). The singular values curve gives a rough estimate of 

the low limit for the regularization parameter as the point where the singular values start 

decreasing rapidly which correspond to singular values between ~50 and ~100 for the well/over-

determined part and ~100 for the under-determined subsystem. (Fig. 10). It should be noted that 

the computation of the singular values is a completely independent task, and it is not required for 
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the calculation of the model vector, the model resolution or the posterior model covariance 

matrices.   

4.5. Calculation of the Solution 

Inversion of both under-determined and well/over-determined subsystems are ill-posed 

problems, although the condition number of the well/over-determined submatrix is often smaller 

compared to the under-determined subsystem. Consequently, regularization is required to yield 

meaningful solutions. By assuming Tikhonov type regularization operators (Tikhonov & 

Arsenin, 1977), this corresponds to solving  
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where    and    are the norm damping operators for the well/over-determined and under-

determined systems, respectively.    ,     and     are finite-difference, smoothing operators 

that implement the second order Tikhonov regularization (i.e., Laplacian; Tikhonov & Arsenin, 

1977). Initially, the smoothing operator of the whole model is calculated as  

     ,  (8) 

where   is the adjacency matrix of the grid describing the connectivity from the node   to the 

node  . More specifically,     is the distance between nodes   and  , if these nodes are connected, 
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or null otherwise.    has been formed based upon a connectivity stencil of 27 neighboring grid 

points, in an equivalent manner to the matrix used for calculating the shortest paths in the 

forward problem.   is the degree matrix, i.e., a diagonal matrix with     ∑    
 
   . The 

matrices     and     are created by considering the rows and columns that correspond to 

well/over-determined and under-determined parameters, respectively, and     is obtained by 

considering the rows of the under-determined matrix and the columns of the well/over-

determined matrix. Note that    in Eq. (7b) incorporates the contribution of the model estimate 

obtained from the previous step of solving the well/over-determined problem. If only the norm 

damping is chosen to regularize the inversion, then the bottom row in Eq. (7a) and Eq. (7b) is 

omitted. 

The Dulmage-Mendelsohn decomposition into smaller submatrices makes the application 

of direct methods in solving Eq. (7a) and Eq. (7b) a tractable problem. We utilize the SPQR 

algorithm (Davis, 2011), which is a high-performance, parallel, multifrontal sparse solver based 

upon the QR factorization method (Duff & Reid, 1983). It breaks the factorization problem of 

large sparse matrices into many small dense submatrices using a dendritic organization that is 

suitable for parallelism. Furthermore, to reduce fill-ins, it includes a symbolic analysis phase that 

considers only the non-zero pattern of the matrix and tests the effectiveness of several fill-in 

ordering algorithms (e.g., Karypis & Kumar, 1998; Davis et al., 2004a,b; Amestoy et al., 2004) 

to select the one with the best performance. The applicability of this algorithm to seismic 

tomography problems has been demonstrated by Bogiatzis et al. (2016). The average 

computation time is slightly more than an hour for one inversion requiring less than 24 GB of 

memory. The algorithm is used here to produce several solutions with different types and 

strengths of regularization in order to define the optimum regularization by means of the L-curve 
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approach (e.g., Hansen, 2007; Aster et al., 2005). Alternatively, LSQR or similar iterative 

techniques can be used in solving Eq. (7), and they can accelerate the L-curve/surface 

construction. We determine that the optimum values correspond to damping weight close to 300 

and smoothing weight close to 20. Furthermore, one of the advantages of using a direct method, 

especially after the optimum regularization parameters have been determined, is the ability to 

calculate the model resolution and the posterior model covariance matrices (e.g., Bogiatzis et al., 

2016). The breakdown of the problem into two significantly smaller matrices with Dulmage-

Mendelsohn permutation further improves the computation of the solution vector and the model 

resolution matrix by limiting both the symbolic analysis and factorization only once as opposed 

to a more involved approach described by Bogiatzis et al. (2016).  

4.6. Results  

The final solution of regional seismic tomography model of Japan is obtained after 6 

iterations, keeping the regularization values constant to those determined in the previous section. 

Both misfit in the sense of the root mean square error as well as the shape of the error 

distribution improve substantially with each iteration (Fig. 11). The corrections of the earthquake 

hypocentral locations and origin times are on the order of tens of km for the location and up to a 

few seconds for the origin time (Fig. 12).  The most prominent feature in the model is a linear 

high-velocity anomaly observed along the trench that dips to the west, corresponding to the cold 

subducting Pacific plate (Figs. 13 and 14). Our results are consistent with several previous 

regional and global studies of the region (e.g., Stern, 2002; Gorbatov & Kennett, 2003; Kennett 

& Furumura, 2010; Koulakov, 2011; Wei et al., 2012, 2015; Zhao et al., 1992; 1994; 2012; Liu 

& Zhao, 2016). The thickness of the Pacific plate is about 100 km. The upper boundary is 

imaged clearly almost everywhere, but the lower boundary of the slab becomes more 
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complicated at latitudes higher than      and at depths greater than 300 km (Figs 13 and 14). 

Another high-velocity anomaly with narrower width and weaker amplitude exists from Kyushu 

through Shikoku to Kansai, and this can be attributed to the Philippine plate subduction. It 

presents a complex structure and remains visible down to at least 300 km, which agrees with 

other recent results (e.g., Liu & Zhao, 2016).  An interesting feature is the upwards bending of 

the slab at the Japan Trench and depth of about 100-120 km (e.g., Fig 13d and e).  

In contrast, the mantle wedge beneath the back-arc areas above the subducting Pacific 

plate include smaller-scale low-velocity anomalies. The surficial extent of these low velocity 

bodies reaches the active volcanoes (Figs. 13 and 14), suggesting that the low velocity anomalies 

may be the sources of arc magmatism and volcanism.  These features are consistent with 

mineralogical and geodynamical results (e.g., Stern, 2002; Hacker et al., 2003) and previous 

tomographic studies (e.g., Zhao et al., 1992; 2012; Hasegawa et al., 2013; Liu & Zhao 2016) 

showing that the combination of corner flow in the mantle wedge (bringing hot asthenosphere 

from depths) and release of volatiles from the slab (lowering the melting temperature) lead to the 

presence of partial melts and lower seismic speed. 

Another prominent low velocity region occurs beneath the subducting Pacific slab, close 

to the bending axis of the Pacific lithosphere (Figs. 13 and 14). This feature becomes visible 

below the depth of 170 km, initially at latitudes greater than     and spreads along the entire 

Japan trench. A similar anomaly has been reported in Cascadia subduction zone and has been 

associated with the accretion of a thin asthenospheric layer that resists subduction due to its 

buoyancy (Hawley et al., 2016).  It has also been argued that similar structures can be artifacts 

due to the isotropic velocity assumption in the presence of significant anisotropy (Bezada et al., 

2016). 
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To assess the robustness of the model, the model resolution matrix (Fig. 15) and the 

posterior model covariance matrix (Fig. 16) are calculated as part of the last iteration. Instead of 

calculating the resolution and covariance for all model parameters, only the well- and over-

determined parameters are examined based upon the Dulmage-Mendelsohn decomposition. This 

substantially reduced the required computational resources and the overall computational time. 

For example, it would be impossible to calculate the full model resolution matrix, and in 

particular, the model covariance matrix, which is typically a dense matrix requiring more than 

200 GB of memory assuming only the upper triangular part is considered. With only the well- 

and over-determined components, it required less than 24 GB of memory and about one day to 

calculate both matrices. Regions with good ray path coverage are associated with better 

resolution and lower variances (Figs. 15 and 16).  

We choose not to interpret features that are in regions associated with the under-determined 

parameters even though similarities with previous studies may be noted. Such features are 

generally outside the resolving capability of our tomographic data and they cannot be robustly 

determined. 

5. Discussion and conclusions 

We show that through the Dulmage-Mendelsohn permutation, a matrix with different 

rank deficiencies can be quickly decomposed, allowing the separation of the structurally under-

determined and over-determined parts of the system. It should be noted that the Dulmage-

Mendelsohn technique is applicable only in the case where the matrix to be inverted is sparse. 

This translates to tomographic problems where the model is parameterized with local basis 
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functions such as grid points or cells, as opposed to global parameterizations such as spherical 

harmonics. Similarly, the observations should have localized sensitivity kernels as opposed to 

data such as normal-mode eigenfrequencies, where the sensitivity is distributed across the whole 

model. However, even in such cases, the initial matrix can be transformed to a sparse matrix 

using various sparse representation methods such as the wavelet basis functions (e.g., Simons et 

al., 2011; Voronin et al., 2015).     

Among the advantages of the Dulmage-Mendelsohn approach is a fast dimensionality 

reduction of the initial problem, which, in many cases, makes the application of direct solvers 

feasible. Nevertheless, in cases of very large problems with millions of data and/or unknowns the 

application of such solvers, depending the structure of the initial matrix, may still require 

unaffordable large amounts of memory. In such problems, techniques such as those presented by 

Voronin et al., (2014; 2015) can be used to compress and break the initial matrix to smaller 

blocks, before the application of the method presented in this manuscript. 

With direct methods, the model uncertainty can be evaluated with the model resolution 

matrix and the model posterior covariance matrix. It should be noted that the ability to calculate 

the model posterior covariance matrix, is a first step towards putting error bars in moderate size 

tomographic models, and thus allowing more accurate quantitative interpretation of the 

tomographic models.  This further requires realistically determining the prior data errors and 

model covariance (e.g., Tarantola, 1987; Nolet et al., 1999; Rawlinson et al., 2014), and recently, 

significant effort has been focused on improving the determination of these priors (e.g., Bodin et 

al., 2012; Duputel et al., 2012, 2014; Rodi & Myers, 2013; Voronin et al., 2014; Ballard et al., 

2016).Furthermore, we show that the matrix decomposition, in combination with a recently 

developed singular value decomposition algorithm, allow the computation of the entire range of 
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singular values of both the well/over-determined and the under-determined subsystems giving 

insight into the problem. For example, it reveals the exact nature of the gradual decay of the 

singular values, which is of considerable interest for the efficient and accurate dimensionality 

reduction of the problem by means of low rank approximations (e.g., Voronin et al., 2014, 2015 

Gu 2015).  

Further study of the singular values can also provide insight into the required 

regularization and define a small region within which the L-curve analysis can be performed. In 

this manuscript we choose not to compute the orthogonal matrices that describe the row space 

and column space as they are typically dense matrices, requiring significant additional memory. 

However, one useful future direction is towards the modification of the PIRO_SKY algorithm 

(Rajamanickam, 2009) to directly calculate the Fourier coefficients    
     where    is the left 

singular vector and   is the right-hand side of Eq. (2). This will allow the evaluation of the 

discrete Picard condition, and provide a more definitive way to regularize the solution. 

The successful factorization of  , or at least of its well/over-determined portion, as well 

as the efficient computation of the resolution matrix and the singular values of the problem can 

be useful in the application of other uncertainty quantification approaches including the null 

space shuttle (Deal & Nolet, 1996; de Wit et al., 2012), the extremal bounds analysis (e.g., Meju, 

2009), the Lie group techniques (Vasco, 2007) and the sensitivity tests (e.g., Rawlinson & 

Spakman, 2016). For example, provided that the resolution matrix is available, sensitivity tests 

can be performed very efficiently as they are just a multiplication between a sparse matrix 

(resolution matrix) and the model vector. Therefore, a large number of tests such as 

checkerboard tests, and arbitrary realizations of the model space can be performed, and then 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggz216/5489188 by U

niversity of Southam
pton user on 21 M

ay 2019



statistics of the posterior variability of the model parameters can be used to distinguish robust 

from non-robust features of the solution. 

Finally, another future application of the Dulmage-Mendelsohn method is to accelerate 

the recently proposed formulation of the Backus-Gilbert inversion by Zaroli (2016), which takes 

advantage of the Subtractive Optimally Localized Averages (SOLA) technique. In this approach 

a system of linear equations is solved for each parameter of the model, using the LSQR solver. 

The Dulmage-Mendelsohn permutation can be used to break the problem into smaller ones, and 

make the matrix factorization affordable, using for instance the SPQR solver. Since the matrix 

remains the same, the analysis and the factorization is required only once, thus, the solutions for 

each of the unknown parameters can be retrieved rapidly, using backward substitution. The 

system considered by Zaroli (2016) contains 79,765 data and 38,125 unknown parameters, which 

is within the capabilities of the method presented in this manuscript.  
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Appendix 

The Dulmage-Mendelsohn algorithm 

In the methodology discussed above, the coarse Dulmage-Mendelsohn permutation was 

introduced, using primely the matrix notation, and focusing on the output of the permutation. 

Here, we present the basic algorithmic steps that are followed to perform the permutation, 

together with some necessary concepts of the graph-theory that are used in this method.  

In a graph, two vertices are adjacent if there is an edge that connects them. A “path” is a 

sequence of edges that connects a sequence of vertices which are all distinct from each other i.e., 

neither vertices nor edges can be repeated (Fig. 17a). An “alternating path” is a path that contains 

alternating matched and unmatched edges (Fig. 17b). In a directed graph the edges have a 

direction associated with them, therefore a path has the additional restriction that the edges 

should all be directed in the same direction (Fig. 17c). In a directed graph, a vertex   is called 

“ancestor” of another vertex  , if there is a path from   to  , and then    is called “descendant” of 

 .  Finally, a “source”, in a directed graph, is a vertex with no incoming edges (i.e., edges 

pointing at it), while a “sink” is a vertex with no outgoing edges (i.e., edges pointing to adjacent 

vertices). Based on the above, the Dulmage–Mendelsohn decomposition can be described as a 

partition of the vertices of a bipartite graph         , into three subsets that correspond to an 

under-determined component  , a well-determined component  , and an over-determined 

component  , with the following properties (e.g., Pothen & Fan, 1990): 

• The rows of                              , are reachable via alternating path from 

some unmatched column. 
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• The columns of the underdetermined subsystem   , are reachable via alternating path 

from some unmatched column. 

• The rows of the                            , are reachable via alternating path from 

some unmatched row. 

• The columns of the                            , are reachable via alternating path 

from some unmatched row. 

• The rows and columns of    are the remaining rows and columns of  . 

The procedures to calculate the three sub-graphs are given below. 

1. Find a maximum matching   of  . 

2. Create the directed graph  ⃗⃗  from  , by replacing each edge in   by two directed edges 

of opposite direction and orienting all other edges of   from the equations to the 

unknowns. 

3.  Let   be the set of all descendants of sources of  ⃗⃗ . 

4. Let   be the set of all ancestors of sink of the directed graph  ⃗⃗ . 

5. Calculate   by subtracting the nodes that belong to   and   from   

The first step controls the complexity of the entire algorithm, because it requires    √   

steps using, for example, the bipartite matching algorithm of Hopcroft & Karp (1973), where   is 

the total number of vertices (i.e.,      ) and   is the number of edges (i.e., the number of 

non-zero elements of  ). The procedures 2 to 5 require        steps. The algorithm is 

particularly efficient, because all steps involve only binary operations between binary arrays. In 

this paper we use the program cs_dmperm for computing the Dulmage-Mendelsohn permutation, 
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which can be found in the SuiteSparce software (Davis and Hu, 2011; also available from 

http://www.suitesparse.com, accessed on November, 2018). It receives as input a sparse matrix 

(e.g.,  ) and returns the row and column indexes of  ,   and   , as output. 

 

Figures 

 

 

 

Figure 1: An example of a sparse matrix (left) and its associated bipartite graph (right). The 

filled cells of the matrix denote elements with non-zero values. The graph consists from two 

columns of vertices, shown as circles. The left column represents the row-verices,   (black 

labels), and the right column represents the column-vertices   (blue labels). Each straight line 

represents an edge, and corresponds to a non-zero element of the matrix, connecting a row-vertex 

with a column-vertex. 
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Figure 2: An example bipartite graph of a system with 3 equations and 3 unknowns. Possible 

matchings are shown with thick edges. (a) In this case, the vertices eq1, eq2, var1 and var2 are 

matched, while the vertices eq3 and var2 are unmatched. (b) and (c) These two cases show two 

maximum matchings with thick edges..          
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Figure 3: Simple synthetic example and its Dulmage-Mendelsohn decomposition. (a) The 2D 

model space is discretized into 16 blocks of constant value that is sampled by 20 ray paths. (b) 

The associated forward operator  . The element        is the length that the     ray path is 

sampling the     parameter that is represented by color. (c) The bipartite graph associated with 

the sparse matrix   drawn in its initial order of rows and columns, corresponding to (b). A 

maximum matching is shown with thick edges. d) The Dulmage-Mendelsohn decomposition of 

 .       and    indicate the rows, and      ,    the columns that belong to the structurally 

under-, well- and over-determined systems, respectively. (e) Bipartite graph showing the 

Dulmage-Mendelsohn permutation of  , corresponding to (d). Thick edges correspond to the 

same maximum matching shown in (c), and the frames indicate the subgraphs derived from the 

Dulmage-Mendelsohn permutation. Note that this graph is a reordered version of the graph in 

(c).      
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Figure 4: Singular values of   and different parts of the Dulmage-Mendelsohn decomposition of 

  obtained from the singular value decomposition (Lanczos, 1961).  

 

 

 

Figure 5: The null space basis vectors of the model shown in in Fig. 3(a). The vectors are 

arranged column-wise, the same way as the 2-D layout of the model.  
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Figure 6: (a) True model. (b) Estimated solution by solving the whole system. (c) Estimated 

solution using the Dulmage-Mendelsohn approach and solving the sub-problems separately. In 

all cases, the Moore-Penrose pseudo-inverse operator (Moore, 1920; Penrose, 1955) is applied to 

derive the solution. The two different estimated models are identical within the machine‟s 

precision limits.  
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Figure 7: Topography, bathymetry (Amante & Eakins, 2008), and the major plate boundaries 

(Bird, 2002) of area around Japan. Convergent boundaries are shown with toothed lines. Small 

orange triangles show the location of Hi-net stations, and circles show the epicenters of the 

earthquakes with colors indicating the focal depth. Thin blue lines are the coastlines, while green 

horizontal lines mark the cross sections shown in Figs. 12, 14 and 15.   
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Figure 8: (a) The initial matrix  . (b) The Dulmage-Mendelsohn permutation of   (Eq. 1). The 

colors show the size of the entries with white being zero and dark blue indicating large absolute 

values.  

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggz216/5489188 by U

niversity of Southam
pton user on 21 M

ay 2019



 

Figure 9: (Left) The model space around Japan where a total of 87,616 P-wave ray paths (gray 

curves) from 125 earthquakes (stars; Fig. 7) are shown. (Right) Parameterization of the three-

dimensional space with 234,500 grids (gray and green spheres). Parameters that correspond to 

the columns of matrices     and     (poorly resolved) are colored in gray, while those of     

and     (well resolved) are colored in green. Well-resolved parameters correspond to regions 

where there is adequate ray coverage. The elevation model shown at the top of the model space 

is from Amante and Eakins (2009) and Hi-net stations are shown with triangles (Okada et a1., 

2004). 
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Figure 10: Spectra of the singular values for the under-determined (circles) and the well/ over-

determined (triangles) subsystems. Singular values smaller than      are not shown in the graph 

for the sake of visualization. 

 

Figure 11: (Left) Evolution of the root mean square error against the iteration. (Right) 

Histogram of the residuals at different iterations.  
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Figure 12: Perturbations of the earthquake hypocentral location (a, b and c) and origin time (d) 

after six iterations. The perturbations       and    refer to the local, vertical, Cartesian 

coordinates (see section 4.1).   
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Figure 13: Longitude-depth cross sections of the P-wave velocity anomaly at various latitudes 

(see Fig. 7). The black contour marks the region that encloses the well/over-determined 

parameters. The (a) to (f) labels of this figure correspond to the labels of the green lines in Fig. 7.   
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Figure 14: Depth slices showing the P-wave velocity anomaly. In (a) and (b), the locations of 

active volcanoes are also shown (triangles; Global Volcanism Program, 2013). The depth of the 

grid layer is shown on top of each slice. 
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Figure 15: Diagonal model resolution after the final iteration for only the well/over-determined 

parameters (black contour in Fig. 13). Darker areas correspond to better resolved regions. The (a) 

to (f) labels of this figure correspond to the labels of the green lines in Fig. 7.  
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Figure 16: Posterior variance, i.e., the diagonal elements of the posterior model covariance 

matrix that correspond to the well/over-determined parameters (black contour in Fig. 13), 

calculated after the final iteration. The (a) to (f) labels of this figure correspond to the labels of 

the green lines in Fig. 7. 
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Figure 17: (a) The graph from (Fig. 2c) with an example of a path is highlighted. More precisely 

two paths correspond to the highlighted edges, i.e., the path (var1, eq1, var2, eq3) or the path 

(eq3, var2, eq2, var1). (b) An example of two alternating paths (eq1, var2, eq3), or (eq3, var2, 

eq1) highlighted for the matching shown with the thick lines. (c) An example of a directed graph 

with the path (5, 4, 3, 2, 1) highlighted. In this case vertex 1 is a sink and vertex 5 is a source. 
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