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Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a

polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simu-

lation study on the effects of a polychromatic x-ray spectrum on the performance of this technique.

We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth

of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we charac-

terize the beam hardening artifacts in the reconstructed transmission and refraction angle images,

and we describe how the beam hardening also affects the dark-field signal provided by speckle

tracking. This study is particularly important for further implementations and developments of

coherent speckle-based techniques at laboratory x-ray sources. VC 2015 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4931145]

I. INTRODUCTION

X-ray phase-contrast and dark-field (or visibility-con-

trast) imaging have proven to be reliable imaging methods

and are used, in particular, in cases where conventional

absorption contrast can only yield poor results, i.e., to visu-

alize details in samples with little density variations, such

as soft tissue specimens. In these samples, phase-contrast

imaging can yield superior results because of its much

higher sensitivity to small density differences,1 while dark-

field imaging gives information on a sub-pixel scale by

revealing the scattering strength of structures in the sample,

which cannot be resolved directly by the detector, such as

fibers, cracks, and nanopores.2

Several methods using these advanced imaging modal-

ities have been developed, including propagation-based,3–5

analyzer-based,6,7 and grating-based methods.8–11 The latter

two allow the simultaneous reconstruction of multimodal

images (absorption, phase and dark-field images) from a sin-

gle data set.12,13 Propagation- and grating-based methods have

successfully been implemented at laboratory sources because

of their tolerance to divergent and polychromatic beams.14,15

Recently, a new approach for multimodal x-ray imaging,

namely “x-ray speckle tracking”, has been proposed.16,17

Single-shot x-ray speckle tracking only requires a simple setup

and is very efficient, as all three image modalities can be

obtained from a single data set. The method relies on generat-

ing a near-field speckle pattern created by interference of

x-rays scattered from a diffuser containing random structures,

such as a piece of sandpaper or a biological filter membrane.18

When a sample is inserted into the beam, the speckles are

displaced and distorted. The change in speckle position and

shape is analyzed by a digital image correlation algorithm to

reconstruct transmission, phase, and visibility-contrast images.

In single-shot speckle tracking, one image with the diffuser

only and one image with diffuser and sample in the beam are

taken and the image correlation algorithm is applied.16 In the

speckle-scanning technique, the diffuser is scanned in small

sub-pixel steps in the horizontal and vertical direction and the

analysis is performed pixelwise.17,19 This method has the

advantage of a higher spatial resolution, however high-

precision scanning stages are needed and a large number of

images are required, which makes it slower compared to the

single-shot technique.

The first demonstrations of x-ray speckle-based imaging

have been implemented at synchrotron sources using a

monochromatic beam.16,20 More recently, implementations

of x-ray speckle imaging with a polychromatic laboratory

source have been reported.19,21 A liquid-metal-jet source of

very high brightness22 and a piece of sandpaper as a random

diffuser were used in these experimental setups. Despite the

broad bandwidth of this source, quantitatively correct values

for phase and transmission were reliably retrieved in Ref. 21.

While experimental and theoretical studies have been

performed on the beam hardening effects due to the use of

polychromatic beams in the context of other x-ray phase-

contrast imaging methods,23–26 the effect of polychromatic-

ity on speckle-based images has not yet been investigated.

Here, we present a simulation study on the impacts of

using a polychromatic x-ray spectrum for speckle-based mul-

timodal x-ray imaging. In particular, we show how the

energy bandwidth affects the visibility of the near-field

speckles, and we discuss the effects of beam hardening on

the different image modalities accessed with this method.a)marie-christine.zdora@diamond.ac.uk
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II. SIMULATION SETUP AND PARAMETERS

The simulations performed for this study are based on a

wave-optical simulation framework developed in Python

with extensions in Cþþ.27–29

The simulated setup shown in Fig. 1 consists of an x-ray

source, a diffuser, a sample, and a detector. A parallel beam,

as coming from a distant source, and a pixel size of 4 lm are

used in the simulations. The propagation of the wavefront

between the different components is modeled using the dif-

fraction integral in the near-field Fresnel approximation. In

the paraxial approximation, the propagation between a start-

ing plane ðx0; y0; z0Þ and a plane ðx; y; zÞ downstream is

described as follows:30

W x; y; zð Þ ¼
exp ik z� z0ð Þ
� �

ik z� z0ð Þ

ð ð
W x0; y0; z0ð Þ

� exp ik
x� x0ð Þ2 � y� y0ð Þ2

2 z� z0ð Þ

" #
dx0dy0; (1)

where Wðx; y; zÞ denotes the wavefront in the plane ðx; y; zÞ
and Wðx0; y0; z0Þ the wavefront in the starting plane

ðx0; y0; z0Þ, with z as propagation direction. In the above equa-

tion, k ¼ 2p=k is the wavenumber and k is the wavelength of

the x-rays.

The wavefront after passing through the diffuser is

determined by calculating the complex transmission function

of the diffuser in the projection approximation31 and

multiplying it with the incoming wavefront. The same

procedure is performed for the sample positioned at a

distance ddiff-sam¼ 30 cm from the diffuser and the

resulting wavefront is recorded in the detector plane located

ddiff-det¼ 163 cm downstream of the diffuser.

As diffuser we simulate a piece of sandpaper with SiC

grains on a cellulose layer.32 It is modeled as a 3D volume of

total thickness 300 lm consisting of a layer containing ran-

domly distributed SiC spheres of 14.4–28.8 lm diameter and

a 243 lm thick cellulose support.

The sample is a cuboid with a quadratic base of size

500� 500 pixels in the x-z plane and a height of 400 pixels

in y direction, rotated by 45� around the y-axis so that an

edge is directly facing the beam (see Fig. 1). Cuboids of dif-

ferent materials–polymethylmethacrylate (PMMA) and alu-

minum–are simulated and the results are compared. The

simple geometry and composition of the object were chosen

to ensure that the effects of the polychromatic illuminating

x-ray beam are separated from the influence of the sample

properties.

A detector point spread function of two pixels

FWHM (full width at half maximum) is assumed and a

Gaussian smoother with a standard deviation of rsmooth

¼ ð2� pixel sizeÞ=2:355 is applied to all simulation results.

To observe the influence of the degree of polychromatic-

ity of the spectrum on the speckle pattern, different x-ray

energy spectra centered at E0¼ 20 keV with varying FWHM

are used and compared to the monochromatic case at 20 keV.

The shape of the spectra was modeled by convolving a box

function of certain width, varying from 2 to 38 keV, with a

Gaussian of form

f Eð Þ ¼ exp � E� E0ð Þ2

2r2

� �
; (2)

with r ¼ 2 keV.

For a small width of the box function, the energy spectra

created this way are almost Gaussian-shaped with increasing

FWHM. For larger widths of the box function, we obtain

nearly box-shaped spectra with smoothed edges. In addition,

we considered the extreme case of a non-smoothed box spec-

trum of width 40 keV. Some of these are unrealistic spectra

for laboratory setups, but give a good indication for the

effects in cases of a very broad x-ray spectrum.

As a measure of the bandwidth of the Gaussian-

smoothed box spectra, we use their FWHMs, which are

listed in Table I.

The Fresnel width at the mean energy E0 is
ffiffiffiffiffi
kz
p

¼ 10:1 lm, indicating that features at this scale and smaller

are strongly affected by diffraction effects. Equivalently, we

obtain a Fresnel number (as defined by Burvall et al.33) of 0.63,

which agrees with the Fresnel number of 0.11–2.02 for the

near-field speckle measurements reported by Cerbino et al.18

III. PROPERTIES OF X-RAY NEAR-FIELD SPECKLE
PATTERNS

Examples of near-field speckle patterns without and

with sample obtained as described above are shown in Figs.

2(a) and 2(b), respectively. The inset windows (c) and (d)

reveal an enlarged view of the speckles showing their dis-

placement caused by the sample. A spectrum with a FWHM

FIG. 1. Simulated setup using a plane-wave source, a piece of sandpaper as

diffuser and a rotated cuboid as sample. The simulated diffuser-sample dis-

tance is ddiff-sam¼ 30 cm, the diffuser-detector distance ddiff-det¼ 163 cm.

TABLE I. FWHMs of the Gaussian-smoothed box spectra for different box

widths.

Box width [keV] 2 6 10 14 18 22 26 30 34 38

FWHM [keV] 4.5 6.0 9.8 13.5 17.3 21.1 24.8 28.6 32.4 36.1
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of 9.8 keV was used, which can be representative of a filtered

laboratory source setup.

Two parameters are used to describe the properties of

the near-field speckle pattern: the speckle size and the

speckle visibility (speckle contrast).

The most common way to determine the dimensions of

the speckles is by using the 2D autocorrelation function of

the intensity interference pattern. Several ways to retrieve

the speckle size from the autocorrelation function have been

proposed.34–36 Here, the speckle size is calculated as the dis-

tance at which the autocorrelation function of the pattern

shows the first minimum in horizontal direction. Using this

method, we get an estimated speckle size of four pixels, cor-

responding to 16 lm, for the speckle pattern in Fig. 2(a),

which is close to the smallest features in the diffuser.

We define the visibility as the standard deviation nor-

malized by the mean intensity value of the pattern

v ¼ r
�I
; (3)

where r and �I are the standard deviation and mean value,

respectively, of the intensity I(x, y), evaluated over an area

larger than the speckle size. The speckle visibility is calcu-

lated locally in small windows of size 24� 24 pixels, which

are moved across the entire image in steps of one pixel. The

median value of the windows was taken as a measure for the

speckle visibility.37 The visibility of the pattern in Fig. 2(a)

is 40%.

Since the extraction of the image signals is based on

the analysis of the speckle shape and position, both speckle

size and contrast are expected to affect the differential

phase and transmission data retrieved with this method.

The size of the speckles can be controlled by the choice of

the diffuser properties as shown in Ref. 18. Well-resolvable

but small speckles are desired to maintain a high resolution

in the final data. Moreover, as for other multimodal imaging

techniques that rely on the use of a reference interference

pattern to access the image signals, such as x-ray grating

interferometry, a high visibility value is expected to provide

a higher signal-to-noise ratio in the retrieved images, see,

e.g., Refs. 38 and 39.

IV. EFFECT OF THE X-RAY ENERGY SPECTRUM
BANDWIDTH ON SPECKLE VISIBILITY

One of the factors that are expected to affect the speckle

contrast is the width of the illuminating x-ray spectrum. To

test this hypothesis and evaluate this effect, the visibility of

the speckle pattern is calculated for the spectra described in

Sec. II.

Figure 3 clearly shows a decrease in speckle visibility

with increasing bandwidth of the energy spectrum. This

can be attributed to the change in shape of the speckles

with energy (see Figs. 7(b)–7(e)). The superposition of

the interference patterns from the different energy contri-

butions of the polychromatic spectrum results in a blur-

ring of the speckle pattern, hence decreasing its visibility.

However, the drop in visibility from 43% for the mono-

chromatic case to 29% observed for the extreme case of

the box spectrum with width 40 keV is only moderate and

should not have a crucial impact on the reliability of the

tracking algorithm.

Figure 3 shows the spectra before reaching the diffuser.

Some hardening of the spectrum is expected due to the pres-

ence of the diffuser, which can be neglected for our further

simulations.40

The next sections are organized as follows. We first

(Sec. V) describe the signal extraction method, and discuss

the transmission, refraction angle, and visibility-contrast

images obtained with a monochromatic beam. In Sec. VI, we

discuss the effects of beam hardening on the three signals

separately.

V. MULTIMODAL IMAGE RETRIEVAL

The extraction of the image signals and beam hardening

artifacts on the retrieved data have been studied using simu-

lations with a homogeneous cuboid. The cuboid image

superimposed on the speckle pattern is shown in Fig. 2(b),

and the speckle displacement caused by the sample is high-

lighted in the insets in Figs. 2(c) and 2(d). Differential phase,

transmission, and visibility contrast images of this sample

obtained with polychromatic beams have been evaluated

FIG. 2. Simulated near-field speckle

pattern in the detector plane (a) without

sample and (b) with an aluminum

cuboid rotated by 45� as sample. The

regions of interest marked in white are

shown in enlarged views in (c) and (d)

for the reference image without sample

and the intensity image with sample,

respectively. Corresponding speckles in

(c) and (d) are marked, and the displace-

ment of the pattern and its decrease in

intensity are visible. The gray values are

arbitrary intensity units. A spectrum

with FWHM¼ 9.8 keV was used in the

simulations.
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against images of the same object accessed with 20 keV

monochromatic x-rays (Fig. 4).

The reconstruction algorithm used to retrieve the final

data is based on image correlation and is described in detail

in Ref. 21. A window of 24� 24 pixels is moved across the

entire matrix of reference (diffuser only) and sample (sample

and diffuser) images in steps of one pixel extracting the mi-

nute displacement and the decrease in intensity of the

speckle pattern within the window. From the displacement,

one can determine the refraction angle and, after integration

of the orthogonal differential phase data, the phase shift

induced by the sample.

A. Refraction angle

The refraction of x-rays, and thus the phase shift

induced by the sample, introduces a displacement of the

speckle pattern in the image plane. The measurement of this

displacement Dx;y in x/y direction allows the retrieval of the

refraction angles ax;y:

ax;y i; j½ � ¼ Dx;y i; j½ �
ddiff–det � ddiff–sam

; (4)

where i and j indicate the pixel index in the retrieved image

which corresponds to the position of the central pixel of the

masking window in the raw data.

For every point (x, y) of the observation plane, the

refraction angle is proportional to the first derivative of

the phase shift Uðx; yÞ caused by the sample with respect to

the reference beam

ax;y x; yð Þ ¼
k

2p

@U x; yð Þ
@x; y

: (5)

Moreover, Uðx; yÞ can be expressed in terms of the

thickness t(x, y) of the sample

FIG. 3. Visibility of the speckle pattern

versus the FWHM of the spectrum.

The visibility decreases with increas-

ing polychromaticity of the energy

spectrum. For the data points in the

boxes, the corresponding spectra are

shown in one of the inset windows.

The first data point (green) corresponds

to a monochromatic beam with an

energy of 20 keV. The last data point

(red) represents the case of a box spec-

trum of width 40 keV without smooth-

ing. The spectra shown here are before

the beam reaches the diffuser. A mod-

erate decrease in visibility with

increasing FWHM of the spectrum can

be observed.

FIG. 4. Reconstructed images of a

rotated aluminum cuboid obtained with

a monochromatic beam of 20 keV. (a)

Refraction along x, (b) refraction along

y, (c) transmission, and (d) visibility

contrast.
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U x; yð Þ ¼ �
2pd
k

t x; yð Þ; (6)

where d indicates the refractive index decrement.

We are using a cuboid rotated by 45� around the y-axis

(see Fig. 1). In this case, the thickness of the sample is given

by tðx; yÞ ¼ 62xþ ‘ for the left and right half of the rotated

cuboids, respectively, with ‘ corresponding to the diagonal

length of the base of the cuboid. Therefore, we expect a con-

stant refraction angle in horizontal direction for each half of the

cuboid depending only on the refractive index of the sample41

ax x; yð Þ ¼
k

2p

@U x; yð Þ
@x

¼ �d
@t x; yð Þ
@x

¼ 72d: (7)

In y-direction, the thickness of the sample does not change

and the refraction angle is zero. The predicted behavior is

confirmed in our simulation results in Figs. 4(a) and 4(b),

showing the refraction along the two directions for the case

of aluminum.

B. Transmission

A transmission image is retrieved by minimizing the

same cost function used for the refraction angle calcula-

tion.21 The algorithm evaluates the change in average inten-

sity of the pattern within the masking windows aligned for

the displacement caused by refraction. In case of minute dis-

placements smaller than one pixel as those usually observed

in speckle-based imaging, the transmission T in each pixel

can be approximated as

T i; j½ � ¼
�Isam i; j½ �
�Idiff i; j½ � ; (8)

where �Isam½i; j� is the mean intensity of the sample-and-dif-

fuser speckle pattern within the mask centered in pixel ½i; j�
of the raw data and �Idiff ½i; j� the mean intensity of the

diffuser-only speckle pattern calculated at the same position.

For every point (x, y) of the observation plane, the trans-

mission T is described by the Lambert-Beer law

Tðx; yÞ ¼ e�ltðx;yÞ ¼ e�lð62xþ‘Þ; (9)

where l is the linear attenuation coefficient.

The reconstructed transmission image for an aluminum

cuboid is shown in Fig. 4(c). At the borders of the sample

edge enhancement leads to transmission values exceeding 1,

which do not represent the absorption properties of the

cuboid in this area.

C. Visibility contrast

The comparison of diffuser and sample-and-diffuser

data also enables us to determine a visibility-contrast image,

which quantifies the change in speckle visibility when a sam-

ple is introduced in the beam path. In previous publications

on speckle-based imaging, and in analogy to x-ray grating

interferometry, this signal has been called dark-field signal

as it can be caused also by small-angle x-ray scattering or

multiple refraction within the sample.17,21 Here, we prefer to

use the more general term “visibility contrast” that implicitly

includes different contributions other than scattering to the

signal formation.

We define our visibility-contrast signal V½i; j� as the ratio

of the visibility vsam½i; j� of the sample-and-diffuser intensity

pattern and the visibility vdiff ½i; j� of the diffuser-only pattern

V i; j½ � ¼ vsam i; j½ �
vdiff i; j½ � ¼

rsam i; j½ �
Trdiff i; j½ � ; (10)

where rsam½i; j� and rdiff ½i; j� denote the standard deviations

of the speckle patterns and T is the transmission through the

sample. A homogeneous object not containing tiny scattering

features that is illuminated by a monochromatic beam does

not alter the speckle visibility and thus the visibility-contrast

signal obtained this way for the aluminum cuboid is approxi-

mately 1 over the entire sample, see Fig. 4(d). The slight

deviation from unity observed in the image is due to the dis-

placement of the speckles by refraction in the sample-and-

diffuser image. This shift was not taken into account for

the calculation of the visibility-contrast signal as defined in

Eq. (10) and we therefore expect a small deviation of the

signal from 1, especially in areas of strong refraction, such

as the edges of the sample.

D. Residual error and phase retrieval

The speckle-tracking algorithm detects the lateral dis-

placement and allows to calculate the change in intensity and

visibility of the speckle pattern. However, there may also be

other modifications to the pattern, such as (i) the distortion

of speckles (e.g., speckles might be not only displaced, but

their shape might become more elongated as a consequence

of refraction or scattering) or (ii) the superposition with a

second speckle pattern created by the sample itself when it

contains features on the same length scale as the scatterers of

the diffuser. These effects can be taken into account by

another signal, which we call “residual error” q½i; j�. The re-

sidual error is the value of the objective function in the

reconstruction algorithm at the optimum with respect to the

fitting coefficients. It corresponds to the total remaining dif-

ference between the two images that cannot be interpreted as

speckle displacement or transmission.

It can be shown that the uncertainty on the speckle dis-

placement and hence on the refraction angle scales roughly

like T=
ffiffiffi
q
p

. Hence, this quantity can be incorporated to

define weights in a regularized phase integration algorithm,

which can greatly improve the quality of the reconstructed

phase image as recently demonstrated in Ref. 21.

The residual error image and the phase image retrieved

as described in Ref. 21 are shown in Figs. 5(a) and 5(b),

respectively. The residual error is especially high at the

edges of the object where the speckle shape is severely

affected by the presence of high-frequency features. The

phase signal in Fig. 5(b) shows a maximum phase shift of

�360 rad in the center of the cuboid. The retrieved phase U
matches well with the value calculated using Eq. (6). For

example, for a thickness t of approximately 2.8 mm at the

center of the cuboid, a wavelength of k ¼ 6:2� 10�11 m

113105-5 Zdora et al. J. Appl. Phys. 118, 113105 (2015)



corresponding to an energy of 20 keV and dAl;20 keV ¼ 1:36

�10�6 (see Ref. 42), the retrieved phase is expected to be

UAl;20 keV ¼ �390 rad.

VI. BEAM HARDENING ARTIFACTS IN THE
RETRIEVED IMAGES

Using a polychromatic beam has impacts on the trans-

mission, refraction, and visibility signals due to hardening of

the spectrum by the sample. Among others, Chabior et al.23

and Munro and Olivo24 analyzed this effect for grating-

based techniques. They showed that for both absorption and

refraction angle signal, the images retrieved with a polychro-

matic beam can be described by an effective energy that is

dependent on the sample properties. Here, we characterize

these effects for speckle-tracking imaging and we illustrate

that beam hardening also affects the visibility-contrast data.

Beam hardening for speckle-based imaging has been

studied using the spectrum of FWHM¼ 9.8 keV illuminating

aluminum and PMMA cuboids. The profile plots of the simu-

lated images, obtained by averaging the signal along y, are

shown in Fig. 6. The results are plotted against the profiles

expected from a setup with monochromatic x-rays of an

energy of 20 keV, which are used as reference. These theo-

retical profiles (dashed lines) are calculated using Eq. (9) for

the transmission signal, Eq. (7) for the refraction angle sig-

nal, and Eq. (6) for the phase signal.

The values obtained from the simulations with a poly-

chromatic spectrum are compared with the effective quanti-

ties retrieved from analytical calculation. The results from

speckle-tracking are averaged along y at the horizontal posi-

tion indicated by the orange line in Fig. 6(a) and the error is

quantified as the corresponding standard deviation.

A. Beam hardening in the transmission signal

In the transmission line profiles of Fig. 6(a), a deviation

from the monochromatic case at 20 keV can be seen for alu-

minum, and it can almost be neglected for PMMA. This is

because the absorption coefficient lðEÞ is dependent on the

x-ray energy E (lðEÞ depends on 1=E3 when the attenuation

is dominated by the photoelectric effect), and the transmitted

polychromatic spectrum depends on the thickness of the

sample. As the beam hardens with increasing thickness of

the sample, the effective attenuation coefficient le changes

and the transmission curve deviates from the behavior for

the monochromatic case as illustrated in Fig. 6(a). The hard-

ening of the spectrum in the sample is strongly reduced for

PMMA as the attenuation coefficient is much lower than for

aluminum, leading to a high transmission of x-rays.

Ignoring the detector response, the effective linear

attenuation coefficient le for the polychromatic case can be

written as, see, e.g., Ref. 23,

FIG. 5. (a) Image showing the residual error in the aluminum cuboid data normalized by the transmission squared (in arbitrary units). (b) Integrated phase of

the aluminum cuboid illuminated by a monochromatic beam retrieved using the regularized phase integration method.

FIG. 6. Averaged line plots through

the different reconstructed images of a

rotated cuboid made of different mate-

rials (PMMA and aluminum) for a

spectrum centered at 20 keV with a

FWHM¼ 9.8 keV. (a) Transmission

image, (b) refraction along x, (c) phase

image, and (d) visibility-contrast image.

The dashed lines represent the theoreti-

cal curves assuming a monochromatic

beam with an energy of 20 keV. The

effect of hardening of the spectrum can

be observed in all image modalities.

The vertical orange dotted-dashed line

in panel (a) indicates the position at

which the values are compared with the

theoretically calculated effective quan-

tities in Secs. VI A–VI C.
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le ¼

ð
l Eð ÞS Eð Þ dEð

S Eð Þ dE
; (11)

where S(E) describes the transmitted spectrum. The transmit-

ted intensity fraction can be calculated by substituting this le

in the Lambert-Beer’s law in Eq. (9).

For example, when inserting in Eq. (11) the transmitted

spectrum through 1.4 mm aluminum (see position indicated

as the orange vertical line in Fig. 6(a)), one gets le;Al

¼ 7:6 cm�1, which yields a transmission value of 34% for

aluminum. For PMMA, an effective attenuation coefficient

of le;PMMA ¼ 0:7 cm�1 is obtained, giving a transmission

of 90%. From the speckle-tracking simulation in Fig. 6(a),

we retrieve transmitted intensity fractions of TAl

¼ ð29:160:2Þ% and TPMMA ¼ ð91:160:4Þ% at the same

position. The deviation is due to the fact that inserting the

effective l-value into Lambert-Beer’s law is an approxima-

tion only valid for weakly absorbing objects. Accurate effec-

tive transmission values can be obtained by performing the

integration over the exponential term

Te ¼

ð
exp �l Eð Þt

� �
S0 Eð Þ dEð

S0 Eð Þ dE
; (12)

where t is the object thickness and S0ðEÞ the spectrum im-

pinging on the sample after passing through the diffuser.

Equation (12) gives transmission values of Te;Al ¼ 29 % and

Te; PMMA ¼ 90 %, which compare well with the values from

speckle tracking.

B. Beam hardening in the refraction angle and phase
signals

Figure 6(b) shows the refraction angle along x for differ-

ent simulation conditions. The decrease in refraction angle

with increasing thickness of the sample towards its center

can clearly be seen for aluminum. This decrease is caused by

the fact that low energies in the spectrum are absorbed more

strongly than high energies, leading to hardening of the spec-

trum. Moreover, since dðEÞ is proportional to E�2, the refrac-

tion angle aðEÞ also depends on E�2 for a given geometry.

For PMMA, the refraction angle remains nearly constant

because the much lower absorption of this material does not

have a strong effect on the spectrum.

As for the transmission signal, by neglecting the detec-

tor response and the change in visibility of the speckle pat-

tern over the energy spectrum, the effective refractive index

de can be written as, see, e.g., Ref. 23,

de ¼

ð
d Eð ÞS Eð Þ dEð

S Eð Þ dE
: (13)

Using the above formula, we obtain an effective refractive

index decrement, at the same position of the aluminum cuboid

as in Sec. VI A, of de;Al ¼ �1:18� 10�6, which agrees well

with the value dAl ¼ �ð1:1360:08Þ � 10�6 retrieved from

speckle tracking by using Eq. (7) (see Fig. 6(b)). Also, the cal-

culated effective decrement de;PMMA ¼ �0:70� 10�6 for

PMMA at this position compares well with the result

dPMMA ¼ �ð0:6260:05Þ � 10�6 from the reconstructed simu-

lation data.

The effects of beam hardening on the refraction angle

data are transferred to the integrated phase images, see Fig.

6(c). The simulated results for both materials agree with the

theoretically calculated curve for a monochromatic beam at

the borders of the cubes. With increasing thickness of the

sample, the effect of beam hardening leads to a deviation

from the monochromatic case.

C. Beam hardening in the visibility-contrast signal

In previous publications on beam hardening effects in

grating-based imaging, there was no discussion on the effects

of using a polychromatic beam on the dark-field images pro-

vided by these methods. However, for speckle-based imag-

ing, we observe that also the visibility contrast is affected by

the polychromatic nature of the beam, similarly to the trans-

mission and refraction signals. While for the monochromatic

case, the visibility-contrast signal is expected to be 1 for a

homogeneous object (see Sec. V C), Fig. 6(d) illustrates that

the visibility contrast deviates from unity in the area of the

sample when a polychromatic beam is used. In the following,

we describe this phenomenon in more detail.

For the monochromatic case, we evaluated the speckle

visibility from the spatially-dependent intensity pattern

I(x, y) as described in Eq. (3), where r and �I are the standard

deviation and mean value, respectively, of I(x, y), evaluated

over an area larger than the speckle size:

�I ¼ hIðx; yÞix;y; (14)

r2 ¼ hðIðx; yÞ � �IÞ2ix;y: (15)

The visibility of a speckle pattern produced by a polychro-

matic source is also defined numerically using Eq. (3). The

measured intensity pattern Ipolyðx; yÞ is a superposition of all

energy contributions in the spectrum

Ipolyðx; yÞ ¼
ð
IEðx; yÞ dE; (16)

where the quantity IEðx; yÞ has units of intensity per unit

energy. The detected spectrum is then SðEÞ ¼ �I E.

The variance of the total intensity field can be written as

r2
poly ¼ hðIpolyðx; yÞ � �IpolyÞ2ix;y

¼
ð
hðIEðx; yÞ � �I EÞðIE0 ðx; yÞ � �I E0 Þix;y dEdE0: (17)

The integrand in Eq. (17) is a cross-correlation between

speckles at two different energies. In the ideal case, the fluc-

tuations in the speckle patterns change in amplitude, but

keep the same spatial profile. The term in the integrand then

reduces to rErE0 , so that Eq. (17) reduces to rpoly ¼
Ð

rE dE,

where rE has unit of intensity per unit energy like IE.

Within this assumption, and using the fact that rE ¼ vðEÞ�I E,
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the effective visibility ve in the polychromatic case is simply

given by

ve ¼

ð
v Eð Þ�I E dEð

�I E dE
¼

ð
v Eð ÞS Eð Þ dEð

S Eð Þ dE
: (18)

In practice, the change of the speckle pattern as a function of

energy reduces the value of rpoly, so that Eq. (18) can be

seen as an upper bound on the true visibility.

To verify our formalism, we performed further simula-

tions and we calculated the visibility of the near-field speckle

pattern obtained for the same propagation distance of 163 cm

by illuminating the diffuser with a monochromatic beam

with different energies between 8 and 100 keV. The curve in

Fig. 7(a) shows that the visibility strongly depends on the

energy and in general decreases with increasing energy of

the x-ray beam. We observe a peak at around 17 keV which

can be related to the maximum of the contrast-transfer func-

tion43 described, e.g., in Refs. 44–46 and applied to near-

field speckles in Ref. 18. Moreover, it can be seen in the

regions of interest (50� 20 pixels) shown in Figs. 7(b)–7(e)

that the shape of the speckles changes with the x-ray energy,

which is also an effect of the contrast-transfer function.46

Equation (18) allows to determine the effective visibility

ve of the speckle pattern obtained with the polychromatic

beam under the assumption of a constant speckle shape,

using the visibility values obtained from the simulations with

a monochromatic beam (see Fig. 7). Without the sample in

the beam path, this gives a value of ve;air ¼ 41:7 %. With the

aluminum cube in the beam, the visibility is reduced and

reaches a value of ve;Al ¼ 39:9 % at the horizontal position

indicated by the orange line in Fig. 6(a). For the PMMA

cube, the visibility is only slightly affected and has a value

of ve;PMMA ¼ 41:6 % at the same position.

Using Eq. (10), we can calculate the visibility-contrast

signal at the given horizontal position of the cube. A value

of Ve;Al ¼ 0:955 is determined for aluminum and Ve;PMMA

¼ 0:998 for PMMA, which agrees well with the results VAl

¼ ð0:94960:035Þ and VPMMA ¼ ð0:99960:024Þ obtained

from speckle tracking shown in Fig. 6(d).

VII. CONCLUSIONS

Following the first demonstration of x-ray speckle multi-

modal imaging with a laboratory source, we have presented

a study to describe speckle-based image formation and the

properties of the retrieved images when the sample is illumi-

nated by a polychromatic x-ray beam.

The visibility of the speckle pattern–a crucial parameter

for the image quality of speckle-based images–decreases

with increasing width of the x-ray spectrum. However, under

otherwise optimal conditions, as assumed in our simulations,

the speckle visibility does not drop to values critical for a

successful image reconstruction, even for broad energy spec-

tra. Our results suggest that coherent speckle-based methods

have the potential to be implemented not only at synchrotron

facilities but also at a wide range of laboratory setups and

can thus be extended for widespread use.

The analysis of the beam hardening effects in the multi-

modal images and the description of the formation of the

visibility-contrast signal are fundamental results for the

future development and improvement of speckle-tracking

methods with polychromatic beams.

Effects, such as noise, source size, and detector

response, are not considered in this study. Follow-up investi-

gations will be performed including these factors in our sim-

ulations to accurately model experimental setups and to

investigate the effects of different mean x-ray energies, dif-

fuser types, and propagation distances.

In this paper, the effective transmission and refraction

properties of a sample illuminated by a polychromatic beam

were evaluated using a general formalism considering the

detected spectrum S(E). However, the detected spectrum is

dependent on the geometry and the properties of the sample

and might hence be hard to retrieve. Nevertheless, it is possi-

ble for particular cases to make approximations and develop

a more specific model from the general formulas, which can

be used to correct for the beam hardening effects in the

retrieved signals as reported, e.g., in Ref. 23.

The results obtained here can also be applied to other

speckle-based imaging techniques, such as speckle scanning.17,19
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FIG. 7. (a) Visibility of the simulated

speckle pattern versus energy of the x-

rays. The simulations were performed

using monochromatic beams in the

energy interval 8–100 keV in steps of

1 keV. Panels (b)–(e) show a ROI of

size 50� 20 pixels of the speckle pat-

terns obtained with a monochromatic

beam of the energies 8 keV, 17 keV,

25 keV, and 50 keV (see red circles in

(a)).
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