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Abstract—This paper presents a methodology for the forward
estimation of thermal risk in offshore wind farm cables under
scenarios where the farm is overplanted for economic purposes.
A dynamic thermal rating assessment of the cable is proposed to
estimate the thermal effects of probable load current scenarios
considering actual temperatures. Calculated future temperatures
are used to estimate the probability of the cable being overheated.
Due to the ability of the method to estimate forward thermal risk,
unnecessary power curtailment can be reduced while avoiding
thermal damage to the cable. Simulated results of online thermal
risk estimation and curtailment show additional power delivery
of 7.26%, 9.16% and 9.67% per year for a 6% 9.9% and 13.7%
wind farm overplanting respectively. The additional power is
calculated compared to the annual power delivered (Wh/year)
with the use of the traditional continuous rating limits for the
case studied.

Index Terms—Underwater cable, probabilistic estimation, ther-
mal risk, wind energy, wind farms, optimisation, overplanting,
power transmission.

I. INTRODUCTION

Offshore cable sizes are often based on continuous rating
calculations (IEC60287) [1] which estimate the maximum
ampacity of the cable. The main limitation for rating calcula-
tions is the maximum temperature of the insulation material
and the varying environmental thermal parameters along the
cable route which are a key medium for heat dissipation [2].
Although, other countries have established thermal restrictions
such as the 2K criteria evaluated for a point in the seabed
above the cable for ecological purposes [3], in most countries
this criteria is not applied and ratings are based on conductor
temperature limitations.

Wind farm export cables face intermittent power generation
which can lead to low cable temperatures and under-utilisation
of cable capacity. Given that export cables represent a signif-
icant percentage of the capital expenditure (CAPEX) of an
offshore wind farm, optimisation of cable size is essential to
reduce the levelised cost of energy (LCoE) [4]. Because of the
low temperature profiles found in submarine export cables, a
common practice in offshore wind farm projects is wind farm
overplanting (WFO) and the consideration of load cycles at a
design stage in order to optimise cable sizing/rating [3], [5],
[6].

WFO aims to optimise transmission capacity by increasing
the installed generation capacity over the continuous rating of
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the cable. The extra installed capacity captures more energy
at low wind speeds while power curtailment is applied when
high speeds generate full power over long durations. Although
loading the cable over the conservative continuous rating limits
could introduce the possibility of exceeding the cable temper-
ature limits, for projects in which it is necessary to reduce
LCoE a balance between optimisation of cable utilisation and
system margins can be achieved [4], [7].

Distributed temperature sensors (DTS) are used as a tool for
cable and ambient temperature monitoring in order to optimise
the cable system capacity [8]–[11]. Additionally, DTS can be
used as a security measure to generate instantaneous alerts and
avoid thermal damage in the cable. However, a methodology
that considers the thermal dynamics of the cable and the future
uncertainty in the wind power generation to estimate thermal
risk hours in advance can help to avoid unnecessary power
curtailment at times when the generated power is higher than
the continuous rating, but the cable temperature is low.

Dynamic rating methodologies have been used successfully
in conventional installations on land to increase the cable
ampacity compared to static ratings [12]. They measure or
estimate actual environmental conditions to calculate the cable
temperature and assess permissible future loading i.e. [13]–
[15]. However, real-time rating calculations do not consider
uncertainty of power generation into the future, making them
hard to apply to offshore wind power applications.

Numerous methodologies exist to perform forecasting and
estimation of wind speed and power generation in wind
farm installations, broadly divided in physical and statistical
approaches. The former are based on weather models and
meteorological stations to estimate wind speed given weather
variables in the studied site [16], [17] while the latter make use
of statistical modelling of weather variables using historical
data [18]–[20]. Statistical approaches can be easily applied
and can be accurate given that they are based on patterns
found in historical data over specific periods of time. The
most common methodologies include Moving Average (MA),
Auto-Regressive Moving Average (ARMA), Auto-Regressive
Integrating Moving Average (ARIMA) and Markov Chain
(MC) models [21], [22].

When forecasting wind generation, the cubic relation be-
tween power and wind speed has been identified as the main
source of errors, given that, a small wind prediction error
generates a large power output error [22]. Additionally, mete-
orological models designed for prediction of weather onshore
cannot be directly applied in offshore environments where the
wind speed changes have a stronger impact on generation due
to the flatness of the environment [21], [22].
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A small number of works study how the fluctuating power
generation is reflected in the thermal rating of the cable.
For instance [5] studied the thermal effect of a cyclic load
profile in offshore cables as a technique to optimise the sizing
of cables while [23] studied the thermal behaviour of the
aerial part of power cables in offshore wind sites considering
stochastic wind power generation with the similar objective to
optimise cable sizing. The results of these studies evidenced
the capacity to reduce cable sizing for cable systems operated
under highly variable loads. An example of industrial appli-
cation considering a dynamic cable sizing/rating technique is
described in [6] where a worst-case dynamic load profile is
derived from historical data and used in the planning stage of
the Horns Reef 3 400 MW offshore wind farm by the Danish
TSO Energinet.dk allowing a 25% reduction in cable size.

This paper proposes a methodology for the forward esti-
mation of thermal risk in offshore wind farm cables under
wind farm overplanting. The dynamic algorithm calculates the
real-time thermal rating of the cable while also estimating
the thermal effects of sampled future load current scenarios
considering its actual temperature. The calculated 6h ahead
cable temperatures are used to estimate the probability of the
cable being overheated. The methodology does not attempt to
forecast weather variables but estimates the likely load scenar-
ios based on the direct relationship between historical data and
the statistical analysis of the load current generation profile.
Finally, the focus of the paper is towards the performance
evaluation of the proposed methodology as a tool that could
be used 1) in early stages of wind farm projects to test and
evaluate possible increments in rating or reduction of cable
sizing, or 2) as a tool for planned and controlled curtailment
strategies. In the latter case reliable temperature monitoring
technology in limiting spots along the line is a required factor
as a protection mechanism against thermal damage in the
cable.

II. PROPOSED METHODOLOGY

A. Methodology Overview

The proposed methodology is a non-parametric analysis of
historical data based on Markov Chain (MC) models to predict
probable load current states, from which a Monte Carlo Simu-
lation (MCS) generates a series of likely load current scenarios
that the cable could experience in the following hours. A finite
difference model (FDM) is used to solve the thermoelectric
equivalent network of the cable and calculate the temperature
in real time, while a subroutine of the algorithm calculates the
cable temperatures given the estimated load current scenarios
and the actual cable temperatures. The resulting probability
distribution of temperatures is analysed to estimate a likely
risk of thermal overheating 6h ahead.

B. Markov Chain Models (MCM)

Markov Chain models are used to model stochastic pro-
cesses in order to generate probabilistic forecasts i.e. wind
speed and wind power forecasts [20], [24]. They are based on
the statistical analysis of data from the variable studied and

the selection of a finite number of states thus they present non-
restrictive or parametric characteristics regarding the probabil-
ity distribution function (PDF) of the data. The analysis of the
historical data is used to build a Transition Probability Matrix
(TPM) containing the probabilities of change, of the variable,
from one state at time t to another one at t+ 1.

Time series load current data sets are studied in this paper
and the system states are defined based on the percentage of
rated heat produced in the cable. MCM considering a different
number of states q = 4 (4S), q = 8 (8S) and, q = 17 (17S);
with first (MC1) and third (MC3) order TPM were modelled
and tested in order to select the most accurate for the purpose
of thermal risk estimation in the offshore case scenario.

1) Defining system states: Given that the heat output in
the cable is approximately proportional to the square of the
load current, 50% of the maximum load current Is (calculated
as in IEC60287) would generate 25% of heat output in the
cable. This assumes negligible dielectric losses, while charging
current must be considered carefully as discussed in section
VI. The percentages of heat output selected to calculate
load current limits according to the number of states are:
4S=[15, 50, 75, 100] (%), 8S=[15, 30, 50, 60, 70, 80, 90, 100]
(%), 17S=[15, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
90, 95, 100] (%).

2) First Order MC-TPM: For the studied variable I a dis-
crete number of states q is selected such that Q = {1, 2, . . . q}
are the system states, thus, the probability of transition from
state i to state j is defined as

pij = p{I(t+1) = qj | I(t) = qi}, ∀i, j ∈ {1, 2, . . . , q}. (1)

To capture seasonal behaviour, these transition probabilities
are calculated based on the analysis of the historical data on
a monthly basis (eq. from [20]) as

pij =
historical transitions of qi → qj

historical transitions of qi → Q
, (2)

to form the elements of the TPM Pm such that

Pm =

p11 . . . p1q

...
. . .

...
pq1 . . . pqq

 (3)

where m = {1, 2, 3 . . . 12}. Depending on the number of states
in the system the size of Pm increases i.e. q system states
generates a q by q matrix.

The obtained one-step TPM can estimate the most probable
state of the system at time t + 1 considering the actual state
at time t while its successive powers i.e. Ph

m, result in the
calculation of the most probable state at time t+ h.

3) Third Order MC-TPM: Additional to the testing of a
greater number of system states, third order TPM were studied.
Following the process for the calculation of the first-order MC-
TPM in (1) where the estimation of state t+ 1 depends only
on the state at time t, in a 3rd order MC-TPM the transition
probabilities pij are calculated as

pij = p{I(t+1) = qj | I(t) = qi, I(t−1) = qj, I(t−2) = qk},
∀i, j, k ∈ {1, 2, . . . , q}.

(4)
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Equation (4) implies that the probability of the load current
state at time t + 1 depends on the analysis of the states at t,
t− 1 and t− 2.

The study of additional past data values i.e t−3, could im-
prove the accuracy of the estimations however, the complexity
of the TPM calculation will be increased which would require
higher computational times and computer capabilities.

C. Scenario Sampling
The estimation of the most probable future state q at time

t+h is followed by the random sampling of load current values
from the PDF formed by the data in state q for the month in
which the estimation is performed. Matrix X is built by n
series of h load current values as

X(n×h) =

x11 . . . x1h
...

. . .
...

xn1 . . . xnh

 (5)

where n represents the number of iterations in the MCS and
h represents the number of steps ahead in the estimation.
D. Submarine Cable Finite Difference Model (FDM)

A FDM of the cable is used to calculate the cable tem-
perature dynamically considering hourly load current updates
in the model. The thermoelectric equivalent circuit of the
submarine cable with a jacket around each core is based on
the model proposed in [25].

The circuit differential equations for the calculation of tem-
peratures at nodes of interest are obtained and approximated
using the backward difference approach, defined as (from [26])

d

dt
θz =

θz(t)− θz(t− 1)

∆t
. (6)

The obtained system of linear equations A×u = B is solved
for u at each time step to obtain the temperatures at each node
of the cable considering changes in load current data.

It is known that for the case of 3-core SL-type, armoured,
submarine power cables the IEC60287 calculation of the
armour losses λ2 may produce overestimated values [9],
[27] which leads to additional conservatism in the calculated
ratings. The present paper is focused on the performance
evaluation of the risk estimation methodology, for a given
thermal model.
E. Thermal Risk Estimation

The main FDM described above (fdmmain) is depicted
inside the green rectangle in Fig. 1, it calculates the dynamic
temperature of the cable at time t while a subroutine of
the same FDM (fdmsub), depicted inside the red rectangle,
evaluates the sampled load current scenarios in the system
considering temperatures in the cable at time t as initial
conditions.

1) Forward Estimated Risk: A forward estimation of ther-
mal risk R′ is calculated at each time step t considering the
probabilistic distribution of conductor temperature (PDFT ′

c
(t))

obtained from fdmsub. The risk R′(t) is calculated by

R′(t) = T
′
c (t+ 1, . . . , t+ h) ≥ Tlimit

h
(7)

where T ′c (t + 1, . . . , t + h) ∈ PDFT ′
c
(t) represents the h

most probable conductor temperatures considering the central
tendency values.

Start

Data Pre-processing:
Given ws(m/s) calculate:

I(t) = IWFO(t)

Statistical Analysis:
Given I(t) calculate: Pm

fdmmain:
Given I(t)

Calculate Tc(t)

New Data:
I(t)

State Estimation:
Given I(t), q = i, and Ph

m

Calculate state
q = j for I(t + h)

Scenario Sampling:
For state I(t+ h) ∈ q = j,

MCS generates: X(n×h)

fdmsub:
Given X(n×h) and
Tc(t) Calculate

PDFT ′
c
(t)

Risk Estimation:
Given PDFT ′

c
(t)

Calculate R′(t)

Risk Calculation:
Given

Tc(t + 1, . . . , t + h)
Calculate R(t)

Thermal risk?
Curtailment:

I(t) = IB(t + 1)

yes

I(t) = I(t + 1)

no

Fig. 1. Offline (black) and online (black+blue) methodology, flowchart.

2) Realistic Thermal Risk: The realistic thermal risk R is
calculated considering the conductor temperatures calculated
by fdmmain. Given that R′(t) represents a likely thermal risk
h hours ahead, the conductor temperatures Tc from time (t+1)
to (t+ h) are used to estimate the thermal risk R(t) as

R(t) = Tc(t+ 1, . . . , t+ h) ≥ Tlimit

h
(8)

which reflects the number of occasions on which the cable
temperature exceeded Tlimit = 90◦C. R′(t) and R(t) are
given in a [0 to 1] range where 1 = 100% thermal risk h
hours ahead.

Additionally, to the estimated risk R′(t) an interval of
likely conductor temperatures is derived at each time step
from PDFT ′

c
(t). The central value of the interval, T ′c50(t), is

represented by the 50th percentile which is the value below
which the 50% of the observations in the sampled PDFT ′

c
(t)

fall. The minimum and maximum values of the interval are
given by the 5th and 95th percentiles, T ′c5(t) and T ′c95(t)
respectively.

III. DEFINITION OF CASE STUDY

A. Description of Cable System

The export cable studied is a 132 kV 3-core XLPE insulated
cable, 800mm2 copper conductor, with a Tlimit = 90◦C. The
underwater section of the cable is considered assuming normal
installation conditions: 1000mm burial depth; 15◦C ambient
temperature; and 0.7(Km/W ) soil thermal resistivity. The
length of the submarine section is assumed as 50 km, a one-
line diagram of the cable system is presented in Fig. 2.

The assumed environmental parameters and burial depth are
kept constant for the section of the cable studied however, this
can be easily modified to study a different section of the cable
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such as a limiting hot spot or multiple analysis of the cable
at k different sections considering different soil parameters i.e
thermal conductivity, laying depth and ambient temperature.

132:33kV400:132kV

Submarine 

Cable

Land

Cable

Landfall

HVAC cable cross 

sectional area

Offshore Wind Farm Array
(8MW Wind Turbines)

Grid

50 km

Fig. 2. One-line system diagram.

B. Wind Speed Data and Generation Profiles

The study analysed two data sets of hourly sampled
wind speed data, extrapolated from 50m to 110m over
sea level. Data set 1 (DS1) is dated from 01/01/1996 to
31/12/2015 while data set 2 (DS2) is dated from 01/01/1979
to 19/02/2016 these are representative of different offshore
locations in the North Sea and have been obtained from
MERRA analysis [28].

The time series wind speed data was converted to power
output using the power curve model of an 8MW wind turbine
(Vestas 160-8). The output power is multiplied by the number
of turbines in the wind farm conservatively assuming no wake
losses. A reductive factor for wake losses could easily be added
once details of wake losses for a particular site are known.

1) Base Case Wind Farm (BWF): The BWF is sized
according to the continuous current of the cable, Is = 923 A
calculated as per IEC60287 [1]. Given the selected wind
turbine power curve the BWF size is defined considering the
number of 8MW wind turbines connected without exceeding
the maximum continuous rating Is. Thus the resulting output
power of the BWF is 208 MW per cable represented by
26×8MW wind turbines, IBmax

= 910 A.
2) Wind Farm Overplanting Cases (WFO): The variable

output power of wind farms ensure that the cable temperature
limit is never reached or exceeded if it is sized by the static
rating. Thus for the purpose of the proposed methodology,
overplanting cases are defined by the addition of a greater
number of wind turbines compared to the BWF. The three
overplanting cases studied are: WFO1=106% represented by
28 turbines, Imax = 980 A; WFO2=109.9% represented by
29 turbines, Imax = 1015 A and; WFO3=113.7% represented
by 30 turbines, Imax = 1050 A.

A load cycle characterised by a 45 day period of 77%
load followed by a 7 day full load period (100%) as in [3]
was tested for the case of WFO1 and the temperature profile
obtained is shown in Fig. 3 along with the realistic temperature
profile for the same case. The results showed that the use
of generalised load cycles might not always be suitable for
different wind farm locations. For instance, the use of the
mentioned load cycle applied to DS1 would ensure no risk
of thermal overheating for WFO1 while in reality the highly
variable loads during winter are underestimated.
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Fig. 3. Conductor temperature profile using cyclic load vs real load.

IV. SIMULATION AND EVALUATION PROCESS

The computational algorithm and the simulations described
below were developed using MatLab software. The described
MCM analysed the first 5 years of DS1 and DS2 to obtain the
TPM’s while year 2015 was used for testing. All the models
were tested considering DS1 and a 6h ahead estimation win-
dow while DS2 was used to demonstrate that the methodology
can be applied to different offshore locations given its non-
parametric nature.

Previous work considering longer estimation windows (12h
and 24h) and the use of 10 and 19 years of historical data
[29], led to the selection of the 6h window as this time
is enough for planning and performing curtailment in an
offshore installation. Additionally, the use of 5 years of data
for the statistical analysis was proved to be enough to perform
accurate estimations.

A. Offline Thermal Risk Estimation

The offline simulation, shown in black in Fig. 1, consists
of the calculation of hourly 6h ahead thermal risk estimations
and conductor temperatures for the given WFO case over the
year of testing data.

The estimated variables R′(t), T ′c50(t), T ′c5(t) and T ′c95(t)
are stored at every time step while the corresponding Tc(t+6)
and R(t) are calculated 6h into the future. The variables are
then used to calculate the accuracy of the methodology to
estimate likely thermal risk ahead.

1) Accuracy of Risk Estimations: The accuracy of the
method to calculate thermal risk 6h ahead is first evaluated
considering the classification presented in Table I comparing
R(t) and R′(t) calculated during one year. This approach
reflects the actual success of the methodology in estimating
a thermal risk 6h ahead.

TABLE I
CLASSIFICATION OF ESTIMATED RISK

R
R > 0 R = 0

R
′

R′ > 0
True Positive False Positive

(TP) (FP)

R′ = 0
False Negative True Negative

(FN) (TN)
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Additionally, the error between the estimated (R′) and
realistic (R) thermal risk are evaluated considering the mean
absolute error (MAE)

MAE =
1

g

g∑
t=1

| R(t)−R′(t) | (9)

and root mean squared error (RMSE)

RMSE =

√√√√1

g

g∑
t=1

(R(t)−R′(t))2 (10)

where g represents the number of thermal risk estimations
performed during the testing year.

Both measurements represent the average prediction error in
the same units as the variable analysed and are negative ori-
ented, thus, the lower values obtained represent more accurate
estimation results. MAE is affected in direct proportion by the
absolute value of the error while, RMSE gives more weight
to large but infrequent errors. Thus, calculating both measures
gives an idea of the overall performance of the estimation.

B. Online Thermal Risk Estimation and Curtailment

The online simulation considers the same data used in the
offline simulation, however, it automatically performs curtail-
ment of power generation when the methodology estimates a
likely thermal risk 6h ahead (black + blue steps in Fig. 1).
For instance, if any percentage of risk is estimated at time t
a reduction in I(t + 1) is applied. The reduction in current
is equivalent to the curtailment of the additional capacity
installed according to the WFO case studied, in other words,
the BWF rating IB(t + 1) is applied. On the other hand, if
no thermal risk is estimated the original input current I(t+1)
for the WFO case is used.

The modified input current profile Inew(t) and correspond-
ing conductor temperature Tcnew

(t) are then used to calculate
the next 6h ahead thermal risk estimation R′new(t). Given
that the original data profiles are modified in real time a new
thermal risk Rnew is calculated, while the risk estimation for
the uncurtailed case (R) is also stored for comparison.

The accuracy of the methodology to mitigate thermal risk
is evaluated comparing the realistic thermal risk R(t) which
would be faced if no curtailment was applied and the new real
thermal risk Rnew(t) considering the curtailment performed
online. The compared values of thermal risk are classified as:
no risk (NR) when (Rnew(t) = R(t)) = 0; risk mitigated
(RM) when Rnew(t) = 0 and R(t) > 0; risk decreased (RD)
when Rnew(t) < R(t); risk increased (RI) when Rnew(t) >
R(t); and risk remained (RR) when (Rnew(t) = R(t)) > 0.

V. RESULTS

The results in this section correspond to the offline and
online evaluation of the proposed methodology considering
MCM of 1st and 3rd order TPM’s using 4, 8 and 17 states,
abbreviated as: 4S MC1, 4S MC3, 8S MC1, 8S MC3,
17S MC1, 17S MC3 through the rest of the section. DS1
was used for the modelling and evaluation of all the MCM in
section V-A and V-B while DS2 is used in section V-C.

A. Offline Simulation Results: DS1

1) MAE and RMSE errors of thermal risk estimation: Fig.
4 summarises results corresponding to the one-year evaluation
of MAE and RMSE errors between R′ and R. As shown
by the results the increment in the number of defined states
did not improve the accuracy of the estimation as expected
but generates slightly greater MAE and RMSE errors. On
the other hand, the MC3 models generated better results
for all the cases compared to the MC1 models. The most
accurate predictions of thermal risk 6h ahead are given by
the 4S MC3 model with a MAE=0.0158 and RMSE=0.1057
for WFO1, MAE=0.0417, and RMSE=0.1728 for WFO2 and,
MAE=0.0419 and RMSE=0.1601 for WFO3.

0.0305 0.0304 0.0235 0.0221 0.0169 0.0158
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Fig. 4. Risk error calculated for the 6 MCM and 3 WFO cases.

2) Accuracy of risk estimation: Fig. 5 and Fig. 6 shown the
results of the analysis of thermal risk using the classification
in Table I. Each figure contains the results of the 6h ahead
estimation given by the models during the testing year for the
overplanting cases WFO1 (Fig. 5) and WFO3 (Fig. 6).
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Fig. 5. Percentage of positive and negative estimations, WFO1.

The sum of percentages of TP+TN represents successful
estimations while FN+FP represents unsuccessful estimations.
Consistent with previous results, higher accuracy is obtained
with 4S MC3 model for the 3 WFO cases. The most accurate
case is chosen as the one containing the highest percentage of
positive identifications and the smallest percentage of FN as
this case is potentially dangerous for the cable.

For the case of WFO1, in Fig. 5, 98.90% of the thermal risk
estimations correctly identified a thermal risk 6h ahead while
1.10% were wrongly identified. As the overplanting and load
current increases, the chances of exceeding the temperature
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Fig. 6. Percentage of positive and negative estimations, WFO3.

limit also increase as seen for the WFO3 in Fig. 6 where the
percentages of positive and negative estimations were 95.68%
and 4.32% respectively.

3) MAE and RMSE temperature errors: The results of the
temperature errors between T ′c50 and Tc(t + 6) are shown in
Fig. 7. The 4S MC3 model generated the smallest MAE and
RMSE errors with a MAE= 4.6 and RMSE= 7.9 for WFO1,
MAE= 5.1 and RMSE= 8.6 for WFO2 and, MAE= 5.5 and
RMSE= 9.3 for WFO3.

5.35
4.89 4.85 4.77 4.76 4.61

9.36

8.37
8.17 8.27 8.09 7.92

5.74
5.33 5.29 5.15 5.108 5.101

9.91

8.95 8.77 8.83
8.56 8.66

6.14
5.79 5.77

5.57 5.61 5.54

10.46

9.6 9.42 9.49
9.27 9.386

17S_MC3 17S_MC1 8S_MC1 4S_MC1 8S_MC3 4S_MC3

T
em

p
er

at
u

re
 E

rr
o

r 
(!

C
)

MC-Model

MAE_WFO1 RMSE_WFO1 MAE_WFO2

RMSE_WFO2 MAE_WFO3 RMSE_WFO3

Fig. 7. Conductor temperature error calculated for the 6 MCM and 3 WFO
cases.

A closer analysis of conductor temperature errors, con-
sidering 4S MC3 model, is presented in Fig. 8 for WFO1
case. The histogram of temperature errors obtained as: ε =
Tc(t + 6) − T ′c50(t); is shown in Fig. 8-a while Fig. 8-b
presents the conductor temperatures that the cable experienced
at times when these groups of errors were calculated. The
analysis shows that the chosen temperature T ′c50(t) as a point
estimate represents a high to medium overestimation(-) or
underestimation(+) during the periods of transitions from high
to low or low to high load current states while it is accurate
when high or low current loads are present in the cable. A
ramp rate study and a sensitivity analysis at turning points
could generate a more accurate point estimate for the purpose
of accuracy in conductor temperature tracking.

Fig. 9-a shows the conductor temperature Tc for WFO1
compared to the estimated value T ′c50 while, Fig. 9-b shows
Tc along T ′c5 and T ′c95 which are the values correspond to the
5th and 95th percentiles obtained from the obtained PDFT ′

c
.

The values T ′c50(t),T ′c5(t) and T ′c95(t) estimated at time (t),

Fig. 8. Temperature error analysis 4S MC3, WFO1.

are depicted at time (t+6) to show the method’s ability to
estimate future load and conductor temperature based on the
actual conductor temperatures and the cable thermal dynamics.
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Fig. 9. Conductor temperature profiles, 4S MC3 model considering WFO1.

B. Online Simulation Results with Curtailment, DS1

The results from the simulated thermal risk estimation
and curtailment are presented in Table II. The percentage
of cases where the curtailment action mitigates the thermal
risk 6h ahead (RM) and no risk (NR) are summarised as
Risk Mitigated while the cases where the thermal risk was
increased, decreased or remained the same (RI+RD+RR)
are presented as Risk Remained. The grey rows in the table
correspond to 4S MC3 model which generate the best risk
mitigation percentages for the 3 WFO cases studied.

The severity of conductor temperatures for the Risk Re-
mained percentages is evaluated in Fig. 10. The box plots in
the figure are drawn by the values of conductor temperatures
that still exceed the limiting temperature of the cable for each
MC model and WFO case. The results evidence that, excluding
the outliers, the remaining risk after curtailment results in
temperatures which do not exceed 91.5◦C even for the case of
WFO3. Additionally, the mean temperature values for all the
WFO cases and MCM are found below 90.5◦C which could
be compared to errors generated by DTS measurements that
are within ±1◦C [30], [31].

Fig. 11-a presents the conductor temperature profile Tc for
the case of WFO3 (4S MC3) along the incidents (represented
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TABLE II
AFTER ONLINE CURTAILMENT EVALUATION

WFO Case MCM Risk Mitigated Risk Remained

WFO1

4S MC1 98.37% 1.62%
4S MC3 98.42% 1.55%
8S MC1 94.49% 5.50%
8S MC3 94.45% 5.51%
17S MC1 95.13% 4.86%
17S MC3 94.87% 5.10%

WFO2

4S MC1 95.89% 4.10%
4S MC3 96.04% 3.92%
8S MC1 92.51% 7.48%
8S MC3 92.52% 7.44%
17S MC1 93.43% 6.56%
17S MC3 93.46% 6.51%

WFO3

4S MC1 97.96% 2.03%
4S MC3 98.24% 1.73%
8S MC1 92.33% 7.66%
8S MC3 92.03% 7.93%
17S MC1 94.75% 5.24%
17S MC3 94.29% 5.67%
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Fig. 10. Analysis of conductor temperature for the remaining thermal risk in
Table II.

by * in black) where the offline methodology estimates a
forward temperature excedance (R′) while Fig. 11-b shows
the temperature profile Tcnew obtained considering the online
estimation and curtailment. Fig. 11-b shows that if action is
performed when the offline methodology estimates a forward
risk R′ the risk of exceeding the Tlimit is mitigated in 98.24%
of cases while the remaining risk does not exceed 91◦C as
shown in Fig. 10.
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Fig. 11. Conductor temperature profile offline vs online calculation for WFO3,
4S MC3.

The approximate amount of additional power that could
be transferred by the cables was derived from the online
simulation as the difference between the base case power PB

and the new profile of power Pnew calculated considering
online curtailment during the year of testing. The resulting
additional energy values are given in Table III accompanied by
an approximate revenue calculated considering a cable length
of 50km, a capital cost of £1.2m per km, and an energy price
of £72.50/MWh [32]. These results are accompanied by the
percentage of remaining thermal risk presented above in Table
II for the corresponding case studied.

TABLE III
POTENTIAL BENEFITS IN POWER DELIVERY

WFO Case MCM Additional Approx. Revenue
GWh/year million£/year

WFO1

4S MC1 83.52 6.05
4S MC3 83.52 6.05
8S MC1 85.44 6.19
8S MC3 85.40 6.19
17S MC1 84.83 6.15
17S MC3 84.79 6.14

WFO2

4S MC1 105.19 7.62
4S MC3 105.34 7.63
8S MC1 110.53 8.01
8S MC3 110.92 8.04
17S MC1 109.36 7.92
17S MC3 109.72 7.95

WFO3

4S MC1 111.37 8.07
4S MC3 111.25 8.06
8S MC1 120.89 8.76
8S MC3 122.46 8.87
17S MC1 119.12 8.63
17S MC3 121.35 8.79

C. Offline and Online Simulation Results: DS2

The results in this section were obtain considering DS2 and
the 4S MC3 model for the 3 WFO cases.

1) Offline simulation results: The results of the MAE and
RMSE for thermal risk and conductor temperature are both
shown in Fig. 12 distinguished by the subindex R and T .
The calculated MAE R lie between 0.0061 and 0.0277 while
RMSE R lie between 0.068 and 0.1367 for the corresponding
cases of WFO1 and WFO3. For the case of MAE T the
maximum and minimum error values were between 4.793◦C
and 5.547◦C while RMSE T values were between 7.795◦C
and 8.891◦C for WFO1 and WFO3 respectively.
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These results compared to results obtained using DS1
generate lower values of error related only to the historical
data set from the studied offshore location. For instance, it
was noticed that the profile of wind speed during the winter
months at the beginning and end of the testing year in DS2
was not as strong as in DS1 which in this case generate shorter
periods of maximum load current generation and consequently
lower chances of conductor temperature exceedances in the
three overload cases.

The lower percentage of temperature exceedances in DS2 is
also evident in the positive and negative percentages of thermal
risk accuracy presented in Fig. 13, where WFO1 presented
a 98.54% of TN risk and just a 0.89% of TP risk during
the testing year while FN+FP represented a 0.56% of the
estimations. In the case of WFO3 the percentage of TN was
80.55% TP was 17.39% and FN+FP was 2.06% which is less
than half the negative cases compared to DS1 in Fig. 6.
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Fig. 13. Percentage of positive and negative thermal risk estimations.

2) Online simulation results: The evaluation of thermal
risk after curtailment for DS2 show a small percentage of
remaining risk, between 1.11% and 2.09%, considering all the
WFO cases as seen in Table IV. The economic analysis results
are summarised in the same table, showing that the resulting
additional power and approximate revenues were greater for
WFO2 and WFO3 compared to the results from 4S MC3 in
Table III due to the originally lower load current generated in
offshore site.

TABLE IV
AFTER ONLINE CURTAILMENT EVALUATION & POTENTIAL ECONOMIC

BENEFITS

4S MC3 Model

WFO Risk Economic Benefits

Mitigated Remaining Additional Approx. Revenue
case GWh/year Million £/year
WFO1 98.88% 1.11% 78.27 5.67
WFO2 97.90% 2.09% 106.95 7.75
WFO3 98.20% 1.79% 122.62 8.89

Finally, the severity analysis of conductor temperatures was
within 91◦C for the three overplanting cases, as per Fig. 14.

VI. DISCUSSION: EFFECTS OF CHARGING CURRENT IN
THE CABLE

The submarine section of the cable used represents the
middle section of the export system studied (25km offshore),
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Fig. 14. Analysis of conductor temperature exceedances for remaining thermal
risk in Table IV.

which would reflect almost no charging current impact con-
sidering reactive compensation at both ends of the cable route.
The maximum reactive current at one end of the cable would
be 5 A/km×50 km = 250 A in the worst case scenario thus,
considering a full load continuous rating Is = 923 A the re-
active current would lead to an increased current Ic1 = 931 A
(≤ 1%) without compensation.

Charging current effects would vary according to the case
studied depending on; the type of cable, operating voltage,
cable length, location of the reactive compensation, and point
of estimation in the transmission line (landfall, submarine
sections, offshore end). Thus, depending on the particular case,
charging current effects must be calculated and added to the
load current profile data.

The addition of the charging current into the load current
profile would limit the minimum value of load current that
is possible to reach, thus, the calculated probabilities in the
TPM’s would change if the lower state(s) of the system
become(s) less probable or physically impossible to attain.
However, the thermal risk estimation methodology would not
be affected given that the statistical analysis of the data per-
formed by the MCM would automatically reflect the changes
performed to the given set of data. Finally, the number of
additional wind turbines that could be connected to the cable
will be affected, thus, WFO cases (also induced in the data)
must be adjusted according to the studied cable system.

VII. CONCLUSION

A methodology was presented for the forward thermal risk
estimation in WF export cables considering uncertainty in
power generation. Future likely conductor temperatures in the
system are estimated through the use of monthly TPM derived
from 5 years of data MCS and a FDM of the cable. Six MCM
with a different number of system states and higher order
TPM’s were developed and evaluated.

Overplanting cases induced the risk of the cable exceeding
90◦C and the methodology proved to generate a high percent-
age of positive identifications of risk 6h ahead from 95.68%
in WFO3 to 98.09% in WFO1 during one year of offline
testing with a MAE of 0.0158 and 0.0419 respectively. An
online application of the methodology including a simulated
curtailment strategy generated a high percentage of thermal
risk mitigation while analysis the remaining percentage of
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thermal exceedances did not exceed a temperature higher than
91.5◦C for DS1 and 91◦C for DS2.

Additional power delivery of 7.26%, 9.16% and 9.67% per
year was enabled compared to the traditional limiting rating
based on IEC60287 (1149.58 GWh/year) with a calculated
approximate revenue of 6.05, 7.63 and 8.06 million £/year for
DS1. Tests performed in two datasets from different offshore
locations proved that the statistically-based method is easy to
use, non-restrictive or parametric to a specific set of data.
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