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ABSTRACT  
With the ability to accurately forecast road traffic conditions several hours, days and even 
months ahead of time, both travellers and network managers can take pro-active 
measures to minimize congestion, saving time, money and emissions. This study 
evaluates a previously developed random forest algorithm, RoadCast, which was 
designed to achieve this task. RoadCast incorporates contexts using machine learning to 
forecast more accurately, contexts such as public holidays, sporting events and school 
term dates. This study aims to evaluate the potential of RoadCast as a traffic forecasting 
algorithm for use in Intelligent Transport Systems applications. Tests are undertaken 
using a number of different forecast horizons and varying amounts of training data, and 
an implementation procedure is recommended. 
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1. Introduction 

 
Road congestion places a burden on citizens worldwide. In 2016 alone, road congestion 
cost U.S. drivers more than $295 billion, U.K. drivers £30 billion, and German drivers €69 
billion (Cookson 2016). To tackle this, transportation investment has been increasingly 
directed toward Intelligent Transport Systems (ITS), which aim to make the most of existing 
transport networks with the use of technology. With the ability to accurately forecast 
congestion and traffic flow days, weeks or years ahead of time, a number of ITS 
applications could be improved, such as tolling policies, and route guidance systems. 

 
In a previous study, RoadCast, a random forest algorithm was developed to tackle this task 
(Evans, Waterson, and Hamilton 2018). Since that study, RoadCast has been iterated on, 
but the fundamental approach remains the same. RoadCast aims to accurately forecast at a 
horizon of multiple days by forming an understanding of how contexts affect traffic 
conditions. Contexts are planned to occur beforehand, and cause variation in a predictable 
way. RoadCast ‘learns’ from previous occurrences of contexts in a training dataset, then 
uses schedules of future context occurrences to account for their variation in its forecasts. It 
was designed to incorporate contexts in an automated way, so that it would be suitable for 
the ITS applications described. To do this, standardised methods to encode features, and 
an automatic optimisation algorithm were developed. 
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This study provides an in depth evaluation of RoadCast’s ability to forecast traffic 
conditions. The aim of this evaluation is to assess RoadCast’s suitability for ITS 
applications, such as incident detection, context aware route guidance and improved 
scheduling strategy (planned road works, public transport, congestion charging etc.). To do 
this, RoadCast will be tested under a number of scenarios with different forecast horizons 
and amounts of training data, and will be compared to a historical average, which is a 
commonly used predictor in ITS applications. Based on these tests, an implementation 
procedure will be recommended for RoadCast’s potential use in ITS applications. 

 
2. Relevant literature 

 
The fields of traffic forecasting and traffic variation are vast, so a complete review has not 
been included. Instead, the most closely related research on state of the art forecasting 
algorithms are described, and the gap in literature being filled by RoadCast is identified. 

 
A large portion of the traffic forecasting field is dedicated to short-term forecasting, where 
algorithms typically have horizons of up to an hour (Vlahogianni, Golias, and Karlaftis 2004; 
Leshem and Ritov 2007; Zarei, Ghayour, and Hashemi 2013). However, as these 
algorithms are based on recent observations of traffic conditions, they are incapable of 
forecasting at a horizon of multiple days. Research using longer horizons typically focus on 
forecasting aggregated travel behaviour (such as yearly vehicle miles travelled) many years 
into the future. Little research has been dedicated to forecasting specific traffic conditions 
(such as five minute flows) at a horizon of multiple hours, days, weeks or years. When such 
a forecast is required, a form of historical average based on the time of day and day of the 
week is typically used (Syrjarinne 2016; Chrobok et al. 2000). 

 
Many traffic variation studies found that variation can be caused by contexts, such as 
weather and sporting events (Thomas, Weijermars, and van Berkum 2008; Stathopoulos 
and Karlaftis 2001). However, few have built on these studies to create predictive models, 
and few forecasting algorithms incorporate contextual data. As such, when projects require 
forecasts of days or weeks ahead of time, variation from contexts is rarely accounted for. 

 
Zhang et al. showed that short-term forecasts can become more accurate when weather 
and holiday data is incorporated (Zhang et al. 2015). This was shown with a ‘system 
identification’ method using the average speeds of taxis in Hangzhou, China, from devices 
with GPS. However, this algorithm’s forecast horizon was at most 10 hours because it relied 
partly on recent observations. Jia, Wu, and Xu found that accuracies improved when rainfall 
data was incorporated within their neural network short-term forecasting algorithm, but their 
forecast horizon was at most 30 minutes (Jia, Wu, and Xu 2017). Both of these algorithm’s 
horizons were limited as they used recent observations of traffic conditions as inputs. 

 
Chung developed a Small Large Ratio (SLR) clustering algorithm to forecast travel times on 
ultrasonic detectors on a highway in Tokyo, using rainfall, holiday, and day of the week 
contexts (Chung 2003). The algorithm clustered similar travel times together, grouped these 
clusters using the contexts, then used these groups as the base for a historical average 
predictor. That is, it would classify each time being forecasted into one of its groups, then 
use the average value of this group’s travel times as the forecast. The predictor was found 
to be more accurate with contexts by 0.1% mean absolute percentage error. However, this 
was an unsupervised machine learning algorithm which clustered data based only on the 
traffic data. The contextual data was only used to explain the outputs of this algorithm. As 
such, this method did not automatically ‘learn’ the patterns of travel times with respect to 
contexts, but instead relied on human intuition to interpret the outputs of the algorithm, 
meaning significant manual calibration would be required for implementation. 
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Of the algorithms presented that were capable of forecasting at a horizon of multiple days, 
many were forms of historical average (Syrjarinne 2016; Chrobok et al. 2000). Few have 
incorporated contexts, and none have done so in an automated way. The most similar 
algorithm to RoadCast presented was a recurrent Jordan neural network for forecasting 
loop detectors flows (Yasdi 1999). The longest horizon used was one week. First, different 
types of day were defined manually, ordinary Mondays, Tuesdays/Wednesdays/Thursday, 
Fridays, Saturdays, Sundays/holidays, and special event days (e.g. football matches, road 
works etc.). The type of day, along with recent observations of volumes, would be used as 
the input to the algorithm. This study demonstrated that different types of day can be 
incorporated within a machine learning traffic forecasting algorithm to improve accuracies. 
Unfortunately, no results were stated for the algorithm using a one week horizon. This 
approach differs from RoadCast in that it involved labour intensive and inflexible processes. 
The creation of different types of day was done manually, which would take time, effort and 
expertise to replicate for implementation in a new network. It would also be inflexible when 
different detectors required different groupings. For example, if Sundays had different flows 
than holidays on detectors near shopping malls, or Saturdays were similar to Sundays at 
detectors in industrial areas, the algorithm’s presented groupings would be unsuitable. 
RoadCast differs from this approach in that it uses machine learning to automatically ‘learn’ 
how different contexts affect each detector. 

 
RoadCast is novel in that it uses contextual data within a machine learning algorithm to 
forecast traffic conditions at a horizon of multiple days. An advantage of the machine 
learning approach is that the effect of each context can be ‘learnt’ automatically, so that 
when implemented in a new location, accurate forecasts can be achieved with minimal 
manual calibration. As the algorithm does not use recent observations as input, it has a 
longer horizon than short-term forecasting algorithms, making it better suited to certain ITS 
applications, such as scheduling road works. To ensure the algorithm would be transferable 
and easily implemented, an automatic optimisation algorithm was also developed, which 
automatically selects appropriate contexts, and optimises RoadCast’s parameters at each 
detector. This differentiates RoadCast from the state of the art in that it allows the 
calibration of contexts at each detector to be done automatically, reducing the manual time 
and expertise required for implementation. 

 
 

3. Methodology 
 

3.1. Approach taken 
 

In order to find the most suitable method for the problem, many types of machine learning 
and statistical methods were developed and compared in preliminary tests. The random 
forest algorithm was chosen for use in RoadCast for a number of reasons: 

 
 Found to be more accurate than a historical average in terms of mean squared error 

during preliminary tests.  
 Capable of stating prediction intervals (Meinshausen 2006).  
 Methods exist to interpret the algorithm’s predictions (Palczewska et al. 2014).  
 Minimal manual calibration required to obtain forecasts for the study test set. 
 Fast training and testing times. 

 
 
3.2. Random forest theory 

 
Decision trees make splits in training data to create subsets in which messages have similar 
feature values and similar target variable values. Random forests create many decision 
trees on various subsets of the training data, and each of which make their own prediction. 
The random forest prediction is then the average of each of these tree’s predictions. The 
RoadCast algorithm was developed using the Scikit-learn library in Python (Pedregosa et al. 
2011). 
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The random forest algorithm used in RoadCast is formally described in the following 
algorithms. Algorithm 2 describes how many decision trees (algorithm 1) are combined into 
the random forest used in RoadCast. Each detector and target variable combination used a 
separate random forest. Breiman provides further explanation of the random forest method 
(Breiman 2001). However, the algorithm presented below is a modified version of Breiman’s 
original random forest method.  

 
 

Algorithm 1 Decision tree algorithm 
 

1: Training procedure(set of training messages Ztr): 
2:     Create a node B0 and assign all training messages Ztr to it 
3:     While every leaf has more than M messages assigned to it: 
4:         Find the leaf node Bi with the most messages 
5:         From a random subset of features of size S, find the attribute a to split Bi’s messages 

into two subsets such that the sum of the subset’s target variable variances is minimized 
6:         Create child nodes Bj and Bj+1 from Bi 
7:         Assign Bi’s messages to Bj and Bj+1 according to their value of a 
8: End procedure  

 
 

Algorithm 2 Random forest algorithm 
 

1: Training procedure(set of training messages Ztr): 
2:     For a pre defined number of trees K: 
3:         Create a bootstrap random sample Zr

tr from Ztr of size |Ztr| 
4:         Create a decision tree Tr with Zr

tr using algorithm 1 
5: End procedure 
6: Testing procedure(set of testing messages Zts): 
7:     For each message x in Zts: 
8:         Predict a value yi for message x using each of the decision trees T1...Tk 
9:         Return the mean of the predicted values y 
10: End procedure  

 
 

3.3. RoadCast optimisation algorithm 
 

Incorporating contextual data within a complex forecasting algorithm could be an arduous, 
labour intensive task. But many real-world applications require minimal calibration time, 
effort and expertise for implementation. For example, a survey regarding the 
implementation of incident detection algorithms found that Traffic Management Centres 
(TMCs) require calibration to be achievable either automatically or by TMC staff (Guin 
2004). As such, the process of incorporating contextual data within RoadCast was 
automated as much as possible. 
 
As a part of this, an optimisation algorithm, algorithm 3, was developed to automatically 
select the most relevant contextual features and optimal parameters for each detector and 
each target variable (flow and average speed). This algorithm improved RoadCast’s 
accuracy by making it more transferable to different locations, but did not require any 
manual calibration. 

 
As can be seen in algorithms 1 and 2, the random forest has three tuning parameters, the 
number of trees grown K, the size of the subset of features used to split on S and the 
stopping criterion, which in this case was chosen to be the threshold number of messages 
required at each leaf M. The optimisation algorithm uses a 15-fold cross validation score 
(herein referred to as ‘score’), which returns 15 scores representing RoadCast’s forecast 
accuracy on each fold (i.e. subset) of the training data. Throughout the ‘context inclusion’ 
procedure, RoadCast uses parameters K = 10, M = 1 and S = 1. Once the optimisation 
algorithm is run on the training data, RoadCast is ready to make forecasts on test data. 
Algorithm 3 is a psuedocode describing the optimisation algorithm. 
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Algorithm 3 RoadCast optimisation algorithm 
 

1: Context inclusion procedure(set of training messages Ztr, set of features A): 
2:     For each contextual feature in A: 
3:         If the context didn’t occur during training: 
4:             Remove the feature from A 
5:     Set the benchmark score as the score with ‘time of day’ and ‘day of week’ features 

only 
6:     For each feature in A: 
7:         Add the feature to the algorithm and find the algorithm’s score 
8:         If the score improved on the benchmark on at least 14 folds: 
9:             Keep the feature in A 
10:         Else: 
11:             Remove the feature from A 
12:     Set the benchmark score as the score with the features in A 
13:     For each feature in A: 
14:         Remove the feature from the algorithm and find the algorithm’s score 
15:         If the score improved on the benchmark on at least two folds: 
16:             Remove the feature from A 
17:     If the feature ‘Christmas’ is in A: 
18:         Replace the ‘day of week’ feature with ‘modified day of week’ 
19: End procedure 
20: Parameter optimisation procedure(set of training messages Ztr, set of features included 

in A): 
21:     For M in [2, 5, 10, 25, 100, 200]: 
22:         For S = 1 to |A|: 
23:             Find the cross validation score with parameters M and S 
24:     Determine the parameters that achieved the best score, M* and S*  
25:     Retrain the algorithm on all available training data with the features in A, and 

parameters M*, S* and K=100 
26: End procedure  

 
 

4. Data 
 

4.1. Traffic data 
 

4.1.1. Location 
 

Southampton City Council provided the traffic data for this study. The problem of congestion 
comes at a significant cost to Southampton, predominantly in the form of losses in productivity 
and fuel costs. It was estimated that Southampton drivers spent an average of 24 hours in 
gridlock in 2016, resulting in a cost to the city of £74 million, or £748 per driver (Cookson 2016). 

 
However, Southampton was ranked as only the 18th most congested in the U.K. Each of the 
top 25 U.S. cities were found to be more congested than Southampton, and each of the 
world’s 25 most congested cities (covering 12 countries) were more than twice as 
congested as Southampton (Cookson 2016). Clearly then, the problem of congestion faced 
by Southampton is also faced across cities globally. Many ITS applications aim to improve 
the state of congestion in these cities, and a key part of many of these applications is an 
accurate traffic forecast. 
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4.1.2. Data description 
 

111 single inductive loop detectors around Southampton were used to collect traffic data for 
the study. Figure 1 shows the location of the detectors used. 111 single inductive loop 
detectors around Southampton were used to collect traffic data for the study. 726 days 
worth of data was collected from 16th March 2015 to 16th March 2017 (5 days of data were 
missing). In the various tests undertaken in this study, different subsets of this data were 
used for training and testing. Each detector’s values of flow and estimated average speed of 
vehicles in each 5 minute period (over the lane of the detector) were used as the target 
variables in this study. RoadCast would be implemented on each combination of detector 
and target variable separately.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Locations of the detectors used in this study. This image was created with Google Earth. 

 
4.2. Contextual Data 

 
A wide range of contextual data was collected with the aim of developing contextual 
features that would improve the accuracy of RoadCast’s forecasts. In a previous study, the 
first year of the Southampton dataset was used to develop contextual features for RoadCast 
(Evans, Waterson, and Hamilton 2018). Firstly, influential contexts were identified by 
observing disruption in traffic conditions on the dates of particular contexts. Then by running 
preliminary tests on the first year of data, contexts were developed into features if they were 
found to improve RoadCast’s forecasts. 
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Context 
type 

Encoding method Contexts used in the 
Southampton network 

Time Hour of the day + minutes/60 Time of day 
Day of week Integer, 0 to 6 (Monday to Sunday) Day of week 
Modified day 
of week 

Integer, 7 if during Christmas, 0 to 6 
otherwise 

Modified day of week 

Single  day 
events 

Number of days + Number of hours/24 + 
minutes/1440 to the start of the nearest 
occurrence of the event. 10 if not within 
a given time-frame of the event 
occurrence starting. 

Football and cricket 
matches, Southampton 
marathon, charity event 
and New Year’s Eve 

Multiple day 
events 

Number of days since the start of the 
nearest occurrence of the event. 10 if 
not during the event. 

Music festival, boat show, 
public holidays, Easter. 

Christmas Number of days since/until the nearest 
Christmas day. 10 if not during the 
holiday. 

Christmas 

 
Figure 2. Standard method used to encode each type of context, and contexts used in the Southampton network. 

 
A caveat of this study was that the contextual data was collected after the contexts took 
place, because schedules of contexts from 16th March 2015 were not available. If 
RoadCast were to make forecasts a year into the future, it would need to use schedules of 
these contexts. Many of these schedules would not change (such as public holidays and 
New Year’s Eve), but some may (such as rescheduled football matches). If contexts were 
rescheduled, RoadCast could account for this by remaking its forecasts with updated 
contextual features, albeit at a shorter forecasting horizon. 

 
When studying weather contexts for RoadCast, historical weather forecasts were not 
available. Instead, historical observations were used to understand whether RoadCast’s 
forecasts would improve with accurate weather data. When forecasting into the future, 
clearly RoadCast would need to use weather forecasts. These forecasts may differ from 
observations, particularly when using a forecast horizon of a year. As such, weather 
contexts were not included in RoadCast in this study. 

 
To minimise the manual time and expertise required to implement RoadCast, standardised 
methods were developed to define how contextual data can be encoded into features that 
RoadCast can use as input. These methods were developed by studying the first year of 
data in Southampton. However, they were designed to be transferable to different locations 
and data types. Figure 2 defines the methods developed, as well as the features used for 
the Southampton dataset. These features were used in the tests described in the results 
section below. 

 
Each event context was given an arbitrary value of 10 if not within a given time-frame of the 
event starting. These time-frames captured the period in which each type of context could 
be expected to affect traffic conditions. In this study, each single day event context was 
given a time-frame of six hours. However, in locations where events may take longer (e.g. 
American football matches), a longer time frame may be appropriate. This nuance was 
developed because when developing RoadCast on the training data, over fitting to spurious 
patterns in some values of contexts would occur occasionally. For example, RoadCast 
could split a node based on higher/lower than 4.5 days to the nearest football match. One 
can see that this split wouldn’t truly differentiate traffic patterns at this time. However, 
RoadCast made splits such as this when there were few samples in a given node, and they 
happened to be correlated in this way. By giving a value of 10 days to messages that were 
not within six hours of a football match kickoffs, these messages could not be separated by 
the ‘football’ 
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    context. Hence, these spurious patterns in contexts were less likely to be found, and so 
this overfitting would be reduced. The time-frames of each of the single day event context 
would need to be defined before implementing RoadCast. 
 
‘Christmas’ had a different encoding method to other multiple day events because the day 
on which Christmas day falls changes each year, and the proximity of each message to 
Christmas day was found to be a useful indicator of expected traffic conditions. As such, the 
context was given a value based on the proximity to Christmas day if during the holiday, 10 
otherwise. The holiday was defined as the start of Christmas Eve until the end of the last 
non-working day after New Year’s Eve. 

 
During preliminary tests, RoadCast’s first split was often by the ‘day of week’ feature, 
meaning contexts that did not occur on the same day of the week in training and testing 
sets may not have been accounted for during testing. For example, Christmas occurred on 
a Friday in 2015, so the algorithm’s decision trees may only have split on the Christmas 
context over messages that occurred on a Friday. This would mean that when tested on 
Christmas Sunday in 2016, the ‘Christmas’ context would not have been used. To address 
this, the ‘modified day of week’ feature was created. This modification tackled the problem 
above by ensuring all messages during the Christmas holiday would be in the same part of 
each decision tree. This would then allow the Christmas feature to split messages 
depending on their date with respect to Christmas, rather than their day of the week. As 
described in the optimisation algorithm (algorithm 3), the ‘modified day of week’ was used 
instead of ‘day of week’ when the ‘Christmas’ context was found to improve RoadCast’s 
accuracy. 

 

 
5. Results 

 
5.1. Introduction 

 
This section evaluates RoadCast’s ability to forecast traffic conditions in a number of 
different scenarios. It is tested under different forecast horizons and amounts of training 
data, and its decision making process is examined. For these tests, the Road-Cast 
methodology and feature encodings were applied to the Southampton dataset described 
above. For each test, various subsets of this dataset were used for training and testing. The 
following subsections describe the findings of these tests, which would be used to make 
recommendations as to how RoadCast should be implemented in ITS applications. 

 
 
 

5.2. Performance metric 
 

In order to evaluate the accuracy of the presented algorithm, the Mean Squared Error 
(MSE) was used as the performance metric. For a detector d, MSE is defined as: 

 

𝑀𝑆𝐸ሺ𝑑ሻ ൌ
1
𝑁
෍ሺã൫𝑑, 𝑡௝൯ െ 𝑎൫𝑑, 𝑡௝൯ሻଶ
ே

௝ୀଵ

 

 
where N is the number of messages in the test dataset, ã is the predicted value at detector 
d at time tj, and a is the true value. 
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5.3. Historical average predictor 
 

When a traffic forecast of over an hour ahead is required, a form of historical average is 
typically used. During the development of RoadCast, it was found to be one of the most 
simple and accurate predictors. The most accurate form of historical average found was to 
take the mean of subsets of the training data corresponding to each combination of ‘time of 
day’ and ‘day of week’. That is, to forecast next Monday at 9:05am as the mean of all 
Mondays at 9:05am in the training data. Periods that had no messages in the training data 
were predicted as the same day, previous time period. This form of historical average was 
chosen for comparison with RoadCast because of its commonality of use throughout the 
literature (Syrjarinne 2016; Chrobok et al. 2000). 

 
 

5.4. Initial test 
 

5.4.1. Test devised 
 

Firstly, all the available data was used to evaluate RoadCast. The first year of data was 
used for training (up to 16th March 2016), and the second year for testing (16th March 2016 
onwards). A year of training and testing data was used so that every context could be 
‘learnt’ from in training, and evaluated in testing. This test can be seen as a preferable 
scenario for RoadCast being implemented, because a year of training data means that 
every context will have occurred at least once. 

 

5.4.2. Results 
 

Over all detectors, RoadCast’s flow forecasts had an average MSE of 79.9 vehicles 
squared, compared to the historical average’s 84.4, a 5.3% improvement. For average 
speed, RoadCast had an average MSE of 16.36 miles per hour (mph) squared, compared 
to the historical average’s 17.02, a 3.9% improvement. RoadCast was more accurate than 
the historical average on 93% and 97% of the detectors when forecasting flow and average 
speed respectively. 

 
Figure 3 shows the percentage improvement of each detector. Without context, RoadCast 
forecasted similarly, but slightly more accurately than the historical average (see figure 3). 
Accuracy improvements came from reducing variance by averaging over similar times of the 
day and days of the week (such as the similarly low flows on Sunday 23:35-23:55). When 
contextual data was added, further improvements in both average speed and flow were 
achieved. More detail on the way in which contexts affected RoadCast’s forecasts was 
analysed in a previous study (Evans, Waterson, and Hamilton 2018). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. RoadCast’s MSE percentage improvement over the historical average at each detector. 
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Notice that the incorporation of contextual data aided the flow forecast accuracy more so 
than average speed. This is thought to be because the contexts caused more variation in 
flow than average speed. Every context altered travel demand, and so was seen to cause 
flow variation. However, this would only lead to average speed variation if flows exceeded 
the road capacity, and so caused congestion. Variation in average speed may also have 
come from contexts affecting road capacity, such as road conditions being changed by 
rainfall, but this variation was found to be negligible in Southampton. 

 

On occasion, RoadCast could forecast less accurately than the historical average. This is 
thought to be caused by RoadCast training on unrepresentative data. For example, 
emergency road works caused severe congestion during Easter 2015 in Southampton, 
which disrupted flow and average speed values at some detectors. Emergency road works 
cannot be predicted, so the flow values were not representative of what could be expected 
to occur during future Easters. RoadCast used this data to predict very low average speeds 
during Easter 2016, which created large MSEs that were not produced by the historical 
average. Another example of RoadCast training on unrepresentative data was when 
detectors that had a major change in topology or travel demand nearby, or if a detector 
broke and hence returned values of the target variable of zero. RoadCast would make 
inaccurate predictions if such a change occurred during the training or testing period. In 
practice, if RoadCast were to be retrained regularly, inaccurate forecasts would occur until 
the training period was entirely after the change. To limit this drawback, manual intervention 
could be used, or an algorithm to automatically identify such a change, and retrain 
RoadCast accordingly, could be developed. 

 
 

6. Sensitivity to the amount of training data used 
 

In the initial test of RoadCast (section 5.4), RoadCast was tested with a year of training data 
so that all contexts could be ‘learnt’ from in training, and evaluated in testing. However, if 
RoadCast required one year of data to train, its use in the real world may be limited. If 
accurate traffic forecasts were needed within a year of data being collected for a particular 
location, it is unclear whether RoadCast would be suitable. As such, this section evaluates 
RoadCast’s forecast accuracy when using different amounts of training data. 

 
6.1. Test methodology 

 
The test devised would assess RoadCast’s ability to forecast traffic conditions when using 
different amounts of training data. The test would use the second year of data for testing 
(16th March 2016 onwards), but various length periods for training. Training periods would 
be of the last week, two weeks, month, two months, four months, eight months and one 
year before the testing period start date. A year of testing data was used so that RoadCast’s 
ability to forecast every context could be assessed. The same year was used each time so 
that the results of each test would be directly comparable. The training period was taken as 
the period before the test start date (rather than 16th March 2015 onwards) because this 
would be most similar to a real-world implementation of RoadCast. That is, if a certain 
amount of training data had been collected to date at a particular location, an idea of the 
accuracy of RoadCast’s forecasts would be gained. 

 
6.2. Flow 

 
Figure 4 shows each predictor’s mean squared error, averaged over all detectors, when 
forecasting flow while using different amounts of training data. As expected, when each 
predictor had more training data, forecasts became more accurate. When using only a week 
of training data, RoadCast had a very similar accuracy with and without contextual data 
because no event or holiday contexts occurred in the week between 9th and 16th March 
2016, and so the optimisation algorithm rarely included any contexts. However, the 
historical average predictor was much less accurate because it would simply use the 
message with the same time and day of the week as in the training data. RoadCast would 
hence forecast with less variance by averaging over messages of similar times and days of 
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    the week, minimising the error from the noise in the data. This resulted in a far lower 
mean squared error because each prediction’s absolute error would be relatively low, 
whereas the historical average would occasionally have a large absolute error, which would 
increase mean squared error by a large amount. This can be seen in figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Different predictor’s average mean squared error over all detectors when forecasting flow, using different 
amounts of training data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Flow forecast on the 17th March 2016 at detector C, after using one week of training data. 

 
 

When more training data was used, forecast errors decreased, and the historical average’s 
error became closer to RoadCast without context. This happened because the historical 
average’s forecast averaged over more values, and so reduced the variance from noise. 
From around two months of training data onwards, RoadCast showed improvements by 
incorporating contexts. At two months, this improvement was mainly from the ‘football’ 
context, because it was the only event or holiday type context that had occurred in the 
training and testing period (events and holidays 

 
 
 

11



    had most effect on forecast accuracies). A larger improvement was found at four months 
because the training period included Christmas (which had very different flows to other 
days), meaning forecasts of Christmas 2017 were far more accurate. Other days’ forecasts 
also improved slightly, as they would now be an average of messages that were not during 
Christmas, meaning the forecast would not be skewed by Christmas’s typically low flows. At 
eight months, ‘public holiday’ and many other event contexts were also included in the 
training data. At one year, ‘Easter’ was also included. As such, with more training data, 
RoadCast continued to improve by incorporating more contexts. The amount of training 
data required for RoadCast to benefit from particular contexts can be seen as a limitation for 
implementing RoadCast in a real world implementation. This test showed that if a context 
doesn’t occur (or rarely occurs) in the available training data, it cannot be accounted for in 
RoadCast’s forecasts. 
 
If a longer time period of training data were to be used, it is unclear how forecast accuracies 
would change. Accuracy improvements may come from reducing variance further by 
averaging over more data, but accuracies may worsen if this data is unrepresentative, for 
example if long term changes, such as population increase, altered traffic patterns. 
Accuracies of RoadCast without context and the historical average would be expected to 
converge, because with more data, RoadCast without context would be more likely to use 
subsets of each combination of time and day of the week. RoadCast with context would be 
expected to continue to improve relative to the other predictors, by ‘learning’ from more 
occurrences of rarely occurring contexts, such as ‘Christmas’. 

 
 

6.3. Average speed 
 

As can be seen in figure 6, the predictors followed a similar trend when forecasting average 
speed to forecasting flow, but there were some key differences. Firstly, the difference 
between RoadCast and the historical average was larger with one week of training data, 
because noise caused more variation in average speed data than flow data. With more 
data, this difference became proportionally smaller than the difference with flow because 
the historical average could become more accurate by averaging over more data, but 
RoadCast improved marginally because there was little to be gained from ‘learning’ from 
contexts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Different predictor’s average mean squared error over all detectors when forecasting average speed, 
using different amounts of training data. 
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7. Sensitivity to the forecast horizon 
 

This test aimed to discover whether RoadCast’s forecast accuracy would degrade when 
using a greater forecasting horizon. If it did by a large amount, regular re-training of the 
algorithm would be recommended so that forecasts would be based on representative data. 
It was clear that RoadCast’s and the historical average’s forecast would not differ greatly 
when forecasting with different horizons over small time periods, e.g. 5, 10, 15 minutes. 
This is because both algorithms are based on the patterns found in large periods of 
historical data, rather than recent observations. However, when forecasting many months 
into the future, long-term variations in traffic conditions (such as population growth or 
building construction) could cause lower forecasting accuracies. As such, RoadCast was 
tested over a variety of long-term forecasting horizons. 

 
 

7.1. Test methodology 
 

The test devised was to repeatedly test on the last month’s data (from 15th February 2017), 
using a year of training data from different periods before the test set. That is, a year that 
ended one day, one week, one month, two months, four months and eleven months before 
the testing period. Note that five detectors which had no messages during the testing 
period, due to missing or erroneous data, were not included in the results. 

 
 

7.2. Flow 
 

Figure 7 shows that as the forecast horizon increased, each predictor became less 
accurate, but RoadCast remained the most accurate throughout. Each predictor followed a 
similar trend in terms of the error and the rate of change of error as the forecast horizon 
increased. The increase in errors observed at greater forecast horizons were likely caused 
by long term changes in traffic conditions, such as population increase or travel mode 
change. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Different predictors’ average mean squared error when forecasting flow at different horizons. 
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Although mean squared errors increased by 3.6% as the horizon increased, figure 8 shows 
how the forecasts at a one year horizon still followed the actual travel conditions closely, 
and could still use contexts effectively to forecast more accurately. This suggests that the 
long term variation in Southampton’s traffic conditions between the two years was minor. 
However, it is expected that if the road network changed significantly, such as a new road 
was built near to the detector, forecasts would become inaccurate and so retraining would 
be required. Similarly, significant changes to contexts (such as a football team changing 
stadium) would result in forecasts of such contexts becoming inaccurate. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Flow forecast at a one year horizon, for Saturday, 4th February 2017, at detector A. Premier League 
football match against West Ham kicked off at 15:00 at St Mary’s Stadium. 

 
 

7.3. Average speed 
 

Figure 9 again shows that as the horizon increased, each of the predictors MSE increased, 
and the difference in MSE between the predictors changed little. However, the difference 
between the predictors was different for average speed than flow, in that RoadCast without 
context had a comparatively larger difference to the historical average, but comparatively 
less difference with and without context. The reasons for these differences were explained 
in the findings of the initial test (see section 5.4). 
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Figure 9. Different predictor’s average mean squared error when forecasting average speed at different horizons. 

 

 
8. Implementation procedure 

 
As was previously stated, minimal calibration time, effort and expertise is required for many 
applications of a traffic forecasting algorithm. As such, RoadCast was designed in such a 
way that implementation would be simple, quick and as automated as possible. This has 
meant developing standardised feature encoding methods and an automatic optimisation 
algorithm, and evaluating RoadCast in a number of different scenarios. Using the results of 
these tests, this section describes how best RoadCast can be implemented in a new 
location for an ITS application. 

 
The first step is to identify contexts which may affect road traffic conditions in the network 
being implemented, and a data source from which their schedules can be collected. This list 
doesn’t have to be exhaustive, as any relevant context added should only improve the 
forecasts made. Also, not every context identified has to necessarily affect conditions, 
because the optimisation algorithm will later rule out contexts that are not relevant to each 
detector and target variable. This step requires some local knowledge and intuition, which 
could be expected in many ITS applications, e.g. operators in TMCs to implement an 
incident detection algorithm. For this study, the author’s local knowledge was relied upon to 
identify relevant contexts in Southampton. This is the only labour intensive step in 
implementing RoadCast, and as such increases the time, effort and expertise required to 
implement RoadCast in real world applications. 
 
The next step is to collect historical data for training, both for the traffic variables being 
forecasted, and the identified contexts. One year of training data is recommended, because 
this was found to result in the best accuracy as all contexts could be accounted for. 
However, if less than a year of data was available for training, RoadCast could still be 
expected to forecast more accurately than the historical average. Single day event contexts 
also require a start time for each occurrence, and multiple day contexts require a start date 
and end date for each occurrence. For this study, the data was collected manually from 
various websites, but for implementation in ITS applications, an automatic web scraper 
would be recommended. 
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The next step is to encode each context as features to input into RoadCast. To do this, the 
standardised methods of encoding features, defined in figure 2, should be followed. The 
only manual step in this process is deciding on a time frame for each context, the time-
frame is a period in which the context could be expected to affect traffic conditions. 

 
At this point, the optimisation algorithm should be run. This takes the training data, and 
returns a trained random forest for each detector and target variable. 
 
Finally, RoadCast can make forecasts of future traffic conditions. RoadCast was found to be 
most accurate at the shortest forecast horizon, one day. As such, retraining is 
recommended as often as possible. 
 
In this study, RoadCast took 8.1 minutes to fully train and test per detector and target 
variable (30 hours for flow and average speed on all 111 detectors), which was achieved on 
an Intel(R) Core(TM) i7-6700, 3.40Ghz, 16GB RAM. Considering this training time, 
retraining every day may not be practical or even possible for implementation in some ITS 
applications, particularly for large networks or on computer systems with slow processing 
speeds or low memory capacities. However, RoadCast can be expected to achieve 
accurate forecasts if retrained just once per year. RoadCast’s MSE increased by 3.6% 
percent as the horizon increased from one day to 11 months. The retraining frequency is a 
trade off between accuracy and computation cost and time, which needs to be considered 
on a case by case basis. 

 

 
9. Conclusions 

 
This study provides an in depth evaluation of RoadCast, a novel algorithm that forecasts 
traffic conditions at a horizon of multiple days. The algorithm was compared to a historical 
average predictor under a number of different forecast horizons and amounts of training 
data. 

 
In each test, RoadCast was found to be consistently more accurate than the historical 
average in forecasting both flow and average speed. For low amounts of training data, this 
came from RoadCast’s ability to minimise the effect of noise by averaging over similar times 
and day of the week. For high amounts of training data, this came from RoadCast’s ability to 
‘learn’ from contexts. 

 
The major limitations of incorporating contexts within RoadCast were found to be the need 
to identify relevant contexts and their data sources, and acquiring sufficient training data for 
the contexts to be ‘learnt’ from. Another limitation to RoadCast’s accuracy occurs when the 
training data includes large amounts of unrepresentative data, such as incidents, erroneous 
detector values, or major topology or travel demand change. 

 
The tests show that RoadCast is transferable to many different scenarios of fore-casting 
horizons and amounts of available training data. The findings of these tests were used to 
form recommendations for how RoadCast could be implemented in ITS applications. 
Possible applications include: 
 

 Varying strategy of public transport and planned road works in response to 
forecasted traffic conditions. 

 
 Varying congestion charges and tolling based on forecasted congestion levels (see 

projects such as Stockholm’s congestion charging scheme (Eliasson et al. 2009)). 
 

 Incident detection algorithms that could better differentiate incidents from 
congestion caused by contexts. 

 
 Varying logistic companies’ schedules and routes based on congestion forecasts. 
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