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Abstract	15	

Evapotranspiration	 (ET)	 is	 a	 key	process	 affecting	 terrestrial	 hydroclimate,	 as	 it	16	

modulates	 the	 land	surface	carbon,	energy	and	water	budgets.	Evapotranspiration	17	

mainly	 consists	 of	 the	 sum	 of	 three	 components:	 plant	 transpiration,	 soil	18	

evaporation	 and	 canopy	 interception.	Here	we	 investigate	how	 the	partitioning	of	19	

ET	into	these	three	main	components	is	represented	in	CMIP5	model	simulations	of	20	

present	and	future	climate.	21	

A	 large	 spread	 exists	 between	 models	 in	 the	 simulated	 mean	 present-day	22	

partitioning;	even	the	ranking	of	the	different	components	in	the	global	mean	differs	23	



	 2	

between	models.	Differences	in	the	simulation	of	vegetation	Leaf	Area	Index	appear	24	

to	be	an	important	cause	of	this	spread.	Although	ET	partitioning	is	not	accurately	25	

known	 globally,	 existing	 global	 estimates	 suggest	 that	 CMIP5	 models	 generally	26	

underestimate	 the	 relative	 contribution	 of	 transpiration.	 Differences	 in	 ET	27	

partitioning	 lead	 to	 differences	 in	 climate	 characteristics	 over	 land,	 such	 as	 land-28	

atmosphere	fluxes	and	near-surface	air	temperature.	29	

On	the	other	hand,	CMIP5	models	simulate	robust	patterns	of	future	changes	in	ET	30	

partitioning	under	global	warming,	notably	a	marked	 contrast	between	decreased	31	

transpiration	and	 increased	soil	evaporation	 in	 the	Tropics,	whereas	 transpiration	32	

and	 evaporation	 both	 increase	 at	 higher	 latitudes	 and	 both	 decrease	 in	 the	 dry	33	

Subtropics.	 Idealized	 CMIP5	 simulations	 from	 a	 subset	 of	 models	 show	 that	 the	34	

decrease	in	transpiration	in	the	Tropics	largely	reflects	the	stomatal	closure	effect	of	35	

increased	 atmospheric	 CO2	 on	 plants	 (despite	 increased	 vegetation	 from	 CO2	36	

fertilization),	whereas	 changes	 at	 higher	 latitudes	 are	 dominated	by	 radiative	CO2	37	

effects,	with	warming	and	increased	precipitation	leading	to	vegetation	increase	and	38	

simultaneous	(absolute)	increases	in	all	three	ET	components.	39	

	40	

	41	

1. Introduction	42	

Evaporation	of	water	from	the	land	to	the	atmosphere	is	a	key	process	regulating	43	

and	coupling	the	carbon,	energy	and	water	budgets	of	the	land	surface.		As	such,	it	is	44	

critical	that	land	evaporation	be	represented	accurately	in	model	simulations	of	the	45	
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physical	climate	and	in	Earth	System	Model	simulations	of	the	coupled	carbon	cycle	46	

and	climate	system.		47	

Representing	 the	 land-atmosphere	 fluxes	 of	 water	 and	 energy	 in	 response	 to	48	

available	energy	(e.g.,	radiation)	and	water	input	(e.g.,	precipitation)	is	the	primary	49	

task	of	 the	 land	 surface	 component	 of	 climate	models.	 The	 representation	of	 land	50	

evaporation	is	challenging	because	part	of	this	flux	occurs	through	vegetation	(plant	51	

transpiration)	 and	 part	 of	 it	 occurs	 through	 abiotic	 processes.	 The	 latter	 include	52	

evaporation	from	bare	soil,	and	evaporation	from	water	intercepted	and	stored	on	53	

the	 canopy	 following	 precipitation	 events	 (hereafter	 referred	 to	 as	 canopy	54	

interception).	 These	 fluxes	 result	 from	 different	 processes,	 and	 thus	 respond	55	

differently	to	environmental	drivers.	For	instance,	canopy	interception	depends	on	56	

the	 structural	 properties	 of	 vegetation	 and	 precipitation	 characteristics	 (e.g.,	57	

Miralles	et	al.	2010);	transpiration	differs	from	soil	evaporation	in	that	plants	have	58	

access	to	deeper	reservoirs	of	water,	and	stomatal	conductance	can	vary	in	response	59	

to	specific	environmental	drivers	like	atmospheric	CO2	and	humidity.	As	a	result,	the	60	

total	 flux,	 called	 evapotranspiration	 (hereafter	 referred	 to	 as	 ET),	 is	 usually	61	

represented	in	land	surface	models	as	the	sum	of	these	three	main	terms,	calculated	62	

separately	(other	more	minor	 terms	 in	 the	annual	mean	 include	evaporation	 from	63	

snow,	and	evaporation	from	open	water	on	land	such	as	lakes	and	rivers).		64	

Because	of	the	complexity	of	the	land-atmosphere	interface,	the	historical	lack	of	65	

observational	 constraints	 on	 land-atmosphere	 exchanges,	 and	 the	 different	66	

modeling	choices	made	in	the	representation	and	parameterization	of	land	surface	67	

processes,	 climate	 models	 show	 large	 differences	 in	 their	 simulation	 of	 land-68	
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atmosphere	fluxes,	including	ET	(e.g.,	Mueller	and	Seneviratne	2014	and	references	69	

therein).	Much	research	has	been	directed	over	the	past	decade	towards	evaluating	70	

the	 representation	 of	 ET	 in	 climate	 models,	 based	 on	 global	 land	 ET	 products	71	

derived	 from	 observations,	 such	 as	 remote-sensing	 data,	 upscaled	 in	 situ	72	

measurements,	and/or	land	surface	models	driven	by	observations	(e.g.,	Mueller	et	73	

al.	 2013).	 Perhaps	 less	 attention	 has	 been	 devoted,	 until	 recently,	 to	 assessing	 in	74	

more	 detail	 how	 models	 represent	 the	 partitioning	 of	 ET	 into	 its	 three	 main	75	

components.	An	obvious	challenge	to	such	an	assessment	is	that	the	partitioning	of	76	

ET	is	not	accurately	known	at	the	global	scale:	large-scale,	extensive	observations	of	77	

the	different	ET	components	are	simply	not	available.	 Indeed,	ET	components	can	78	

be	measured	in	situ	by	different	techniques,	such	as	through	a	combination	of	stable	79	

isotope,	sap	flow,	and	eddy	covariation	techniques	(Williams	et	al.	2004,	Kool	et	al.	80	

2014);	 however,	 such	 observations	 remain	 sparse	 for	 now	 and	 are	 affected	 by	81	

methodological	 uncertainties.	 Because	 ET	 cannot	 be	 directly	 sensed	 from	 space,	82	

global	ET	products	based	on	 remote	 sensing	 include	some	amount	of	modeling	 to	83	

retrieve	 ET	 based	 on	 observable	 variables;	 because	 of	 different	 modeling	84	

assumptions,	they	produce	vastly	different	estimates	of	ET	partitioning	(Miralles	et	85	

al.	2016).	More	recently,	global	estimates	of	the	fraction	of	transpiration	in	ET	have	86	

been	 proposed,	 based	 on	 different	 approaches	 including	 isotopic	 techniques	87	

(Jaseschko	 et	 al.	 2013,	 Coenders-Geritt	 et	 al.	 2014,	 Good	 et	 al.	 2015),	 as	 well	 as	88	

available	direct	observations	upscaled	based	on	global	vegetation	distribution	(Wei	89	

et	al.	2017).	Schlesinger	and	Jasechko	(2014)	and	Wei	et	al.	(2017)	provide	reviews	90	

of	 all	 these	 approaches,	 as	 well	 as	 of	 available	 in	 situ	 observations	 (Wang	 et	 al.	91	
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2014):	 while	 they	 indicate	 a	 wide	 range	 of	 estimates	 for	 the	 global	 fraction	 of	92	

transpiration,	from	25	to	90%,	estimates	coalesce	around	a	central	value	of	around	93	

60%,	which	thus	arguably	represents	our	best	knowledge,	at	this	point,	of	the	global	94	

role	 of	 transpiration.	 By	 complementarity,	 this	 also	 constrains	 the	 relative	 size	 of	95	

the	 soil	 evaporation	 and	 canopy	 interception	 components.	 Independent	 global	96	

estimates	of	canopy	interception	over	forests	have	been	proposed	that	are	broadly	97	

consistent	with	 such	 values	 (e.g.,	 10-20%	of	 precipitation	 is	 intercepted	 by	 forest	98	

canopies;	Miralles	 et	 al.	 2010).	 However,	 the	 exact	 global	 role	 of	 soil	 evaporation	99	

and	 canopy	 interception	 remains	 uncertain	 as	 well.	 It	 should	 be	 noted	 that	100	

regionally,	 soil	 evaporation	 and	 canopy	 interception	 may	 be	 significant	 or	 even	101	

dominant	 terms.	Overall,	knowledge	of	ET	partitioning	at	 the	global	 scale	 remains	102	

poorly	constrained,	beyond	the	general	orders	of	magnitude	of	the	different	terms.	103	

In	 the	 present	 study,	 we	 focus	 on	 investigating	 the	 representation	 of	 ET	104	

partitioning	in	current-generation	climate	models,	using	the	models	from	phase	5	of	105	

the	Coupled	Model	 Intercomparison	Project	 (CMIP5).	 Some	 studies	 have	 analyzed	106	

ET	 partitioning	 within	 a	 given	 climate	 model	 (e.g.,	 Lawrence	 et	 al.	 2007).	 More	107	

recently,	Lian	et	 al.	 (2018)	and	Chang	et	 al.	 (2018)	have	compared	 the	 fraction	of	108	

transpiration	 in	 ET	 from	 climate	 models	 to	 site	 measurements,	 and	 analyzed	109	

systematic	 biases.	 Here,	 we	 explore	 model	 spread	 in	 the	 representation	 of	 the	110	

different	terms	of	ET	partitioning.	Because	of	the	limitation	of	global	observational	111	

constraints	 on	 the	 different	 ET	 components,	 we	 do	 not	 seek	 here	 to	 explicitly	112	

evaluate	ET	partitioning	in	climate	models	in	detail	(beyond	the	central	estimate	of	113	

transpiration	 fraction	 from	 Wei	 et	 al.	 (2017)).	 Rather,	 we	 aim	 to	 document	 the	114	
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diversity	 in	 ET	 partitioning	 across	 CMIP5	 models.	 Because	 ET	 partitioning	 is	115	

strongly	 linked	 to	 vegetation	 (e.g.,	Wang	 et	 al.	 2010,	 2014),	 we	 explore	 how	 this	116	

diversity	 is	 linked	 to	 differences	 in	 simulated	 vegetation	 across	 models.	 We	 also	117	

explore	 the	 potential	 relationships	 between	 the	 spread	 in	 ET	 partitioning	 and	118	

general	 aspects	 of	 the	 simulated	 climate	 in	 these	 models.	 Finally,	 we	 investigate	119	

what	 future	changes	 in	partitioning	models	simulate	 in	response	to	anthropogenic	120	

forcing	and	global	warming,	and	what	factors	are	driving	these	changes.	121	

		122	

2. Data	and	Methods	123	

We	 use	 monthly	 outputs	 from	 historical	 and	 representative	 concentration	124	

pathway	8.5	(RCP8.5;	Riahi	et	al.	2011)	simulations	from	the	CMIP5	experiment.	We	125	

choose	the	RCP8.5	simulation	to	maximize	the	projected	changes	in	the	future	and	126	

the	potential	differences	between	models.	We	analyze	the	following	variables:	total	127	

ET	and	its	components	–	transpiration,	soil	evaporation	and	canopy	interception	–	128	

surface	climate	variables	such	as	2m-temperature	and	turbulent	and	radiative	land-129	

atmosphere	fluxes.	For	vegetation	data,	we	focus	primarily	on	Leaf	Area	Index	(LAI).	130	

Indeed,	 LAI	 is	 the	 primary	 vegetation-related	 variable	 considered	 in	 studies	 that	131	

investigate	the	influence	of	vegetation	on	ET	partitioning	(e.g.,	Wang	et	al.	2014),	as	132	

the	surface	area	of	vegetation	directly	affects	transpiration	and	canopy	interception,	133	

and	 indirectly	 soil	 evaporation	 (by	 covering	 the	 ground).	 Other	 vegetation	134	

properties	 that	 may	 differ	 across	 models	 may	 influence	 ET	 partitioning	 (e.g.,	135	

stomatal	conductance),	but	are	not	analyzed	here.	Data	for	the	historical	simulations	136	

are	 analyzed	 over	 1950–2005,	 and	 for	 RCP8.5	 over	 2071–2100.	 For	 models	 for	137	
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which	several	ensemble	members	are	available,	we	only	use	the	first	member	(‘r1’’	138	

in	 the	 CMIP5	 archive).	We	 compute	 annual	means	 as	well	 as	 summertime	means	139	

(summertime	 being	 defined	 as	 June-July-August	 in	 the	 Northern	 Hemisphere	 and	140	

December-January-February	in	the	Southern	Hemisphere).		141	

ET	outputs	from	the	historical	simulations	were	available	from	48	CMIP5	models.	142	

Not	 all	 models	 provided	 all	 three	 variables	 of	 ET	 partitioning,	 either	 because	 of	143	

omissions	 or	 because	 these	 variables	 are	 simply	 not	 provided	 by	 the	 models	144	

themselves,	or	because	of	errors	in	the	reporting	(e.g.,	the	sum	of	two	components	145	

was	 reported	 under	 one	 variable).	 Where	 possible,	 outputs	 were	 corrected	 to	146	

account	for	obvious	errors	in	reporting	(e.g.,	one	variable	was	subtracted	from	the	147	

sum	of	the	two	in	the	other	file).	Overall,	complete	ET	partitioning	was	available	for	148	

32	models	 from	 the	historical	 simulations.	 For	 the	RCP8.5	 simulations,	24	models	149	

provided	 ET	 partitioning.	 LAI	was	 available	 for	 30	models	 in	 the	 present,	 and	 27	150	

models	 in	 the	 future.	 Atmospheric	 and	 land-atmosphere	 flux	 variables	 were	151	

typically	 available	 for	 more	 than	 40	 models.	 Models	 used	 are	 listed	 in	152	

Supplementary	Table	S1.	153	

To	analyze	 the	 relationship	between	ET	partitioning	and	other	aspects	of	model	154	

simulations,	 such	 as	 vegetation	 or	 surface	 climate,	 we	 compute	 cross-model	155	

(Pearson)	 correlations.	 That	 is,	 for	 a	 given	 pair	 of	 variables,	 we	 compute	 the	156	

correlation	across	models	between	long-term	means	for	these	variables,	on	a	pixel	157	

per	 pixel	 basis.	 Note	 that	 the	 ensembles	 of	 models	 available	 do	 not	 necessarily	158	

overlap	similarly	for	each	pair	of	variables;	in	the	interest	of	maximizing	the	number	159	

of	 models	 used	 in	 these	 correlations	 (given	 the	 overall	 low	 number	 of	 available	160	
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models),	for	each	variable	that	we	cross	with	ET	partitioning,	we	use	the	maximum	161	

number	 of	 common	models	 available.	 Thus,	 rather	 than	 having	 a	 common	 set	 of	162	

models	 for	 the	 whole	 analysis,	 the	 number	 of	 models	 considered	 for	 different	163	

combinations	 of	 variables	 differs	 slightly;	 given	 that	 the	 number	 of	models	 to	 be	164	

included	 in	 these	 correlations	 is	 not	 large,	we	 favor	 including	 as	many	models	 as	165	

possible	 in	 our	 analysis	 (the	 number	 of	models	 used	 is	 indicated	 in	 each	 figure’s	166	

caption).	167	

Finally,	we	also	analyze	outputs	from	idealized	single-forcing	CMIP5	experiments	168	

meant	 to	 separate	 the	 total	 effect	of	atmospheric	CO2	 increase	on	climate	 into	 the	169	

radiative	 effect	 of	 CO2	 on	 the	 atmosphere	 and	 the	 physiological	 effect	 of	 CO2	 on	170	

vegetation.	 In	 the	 control	 simulation	 (1pctCO2	 in	 CMIP5	 terminology),	 both	 the	171	

atmospheric	model	and	the	land	surface	scheme	of	a	climate	model	are	subjected	to	172	

a	 1%	 annual	 increase	 of	 atmospheric	 CO2	 year	 starting	 from	 preindustrial	 levels	173	

284ppm),	for	140	years	(ending	at	1132ppm).	In	simulation	esmFixClim1,	only	the	174	

vegetation	 module	 experiences	 the	 increase	 in	 CO2,	 while	 the	 atmosphere	175	

continuously	 experiences	 pre-industrial	 CO2	 levels.	 Conversely,	 in	 simulation	176	

esmFdbk1,	only	 the	atmosphere	experiences	 the	 increase	 in	CO2,	while	vegetation	177	

continuously	 experiences	 pre-industrial	 CO2	 levels.	 EsmFixClim1	 thus	 isolates	 the	178	

impact	 of	 CO2	 increase	 on	 climate	 through	 the	 physiological	 effect	 of	 CO2	 on	179	

vegetation	 (which	 affects	 land-atmosphere	 fluxes	 and	 thus	 feeds	 back	 on	 the	180	

atmosphere),	while	esmFdbk1	isolates	the	radiative	effect	only	of	CO2	increase	on	181	

climate.	 We	 thus	 hereafter	 refer	 to	 simulations	 1pctCO2,	 esmFixClim1	 and	182	

esmFdbk1	 as	 CTL,	 PHYS	 and	 RAD,	 respectively.	 These	 simulations	 and	 the	183	
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corresponding	decomposition	of	CO2	effects	into	physiological	and	radiative	parts	in	184	

CMIP5	 models	 have	 been	 used	 in	 previous	 studies	 (e.g.,	 Swann	 et	 al.	 2016,	185	

Lemordant	 et	 al.	 2018)	 –	 although	 ET	 partitioning	 specifically	 has	 not	 been	186	

investigated.	For	each	run	we	analyze	the	first	20	years	and	the	last	20	years	of	the	187	

simulations	 to	 obtain	 the	 corresponding	 changes	 (note	 that	CO2	 concentrations	 in	188	

the	RCP8.5	scenario	reach	around	935	ppm	by	the	year	2100).	Only	6	models	took	189	

part	 in	 these	experiments	and	provided	all	 the	outputs	necessary	 for	our	analysis	190	

(including	ET	partitioning):	bcc-csm1-1,	CanESM2,	CESM1-BGC,	GFDL-ESM2M,	IPSL-191	

CM5A-LR,	and	NorESM1-ME.	192	

Finally,	for	all	simulations,	all	model	output	is	regridded	to	a	common	2x2	degree	193	

grid	before	analysis.	194	

	195	

3. Results	196	

3.1	Mean	ET	partitioning	in	CMIP5	models	197	

Figure	 1	 shows	 the	 mean	 annual	 surface	 evaporation	 in	 CMIP5	 models	 and	 its	198	

partitioning	into	transpiration,	soil	evaporation	and	canopy	interception.	Reflecting	199	

the	overall	 zonal	pattern	of	wet	and	dry	regions,	 land	ET	(Figure	1a)	 is	highest	 in	200	

equatorial	 regions	 (where	 it	 can	 be	 locally	 higher	 than	 over	 oceans;	 not	 shown),	201	

lowest	 in	 dry	 sub-tropical	 regions,	 and	 in	 some	 regions	 like	 Eurasia	 reaches	 a	202	

secondary	maximum	 at	mid-high	 latitudes.	 The	 overall	 pattern	 of	 ET	 partitioning	203	

largely	reflects	 the	role	of	vegetation	 in	 favoring	one	pathway	of	evaporation	over	204	

another.	The	dominant	term	is	transpiration	(Figure	1b),	reaching	40-60%	of	ET	in	205	

the	Tropics,	in	many	parts	of	the	mid-latitudes	and	in	Southeast	Asia.	This	primarily	206	
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corresponds	 to	 the	 distribution	 of	 vegetation	 around	 the	 globe	 (Figure	 2a):	more	207	

vegetation	 leads	 to	 more	 of	 total	 ET	 to	 occur	 as	 transpiration.	 However,	 as	208	

vegetation	 gets	 denser	 (higher	 Leaf	Area	 Index,	 LAI),	 the	 fraction	 of	 transpiration	209	

tends	 to	 saturate	 in	 the	 models	 (Figure	 2b).	 For	 instance,	 in	 the	 Tropics,	 where	210	

vegetation	is	the	densest,	the	share	of	transpiration	is	not	much	greater	than	in	the	211	

mid-latitudes.	This	is	because	canopy	interception	starts	to	play	a	significant	role	as	212	

LAI	 increases	(Figure	2c):	precipitation	rates	and	high	LAI	values	are	 typically	 the	213	

two	 drivers	 of	 canopy	 interception	 parameterization	 in	 climate	 models	 (e.g.,	214	

Lawrence	 et	 al.	 2007).	 In	 the	 Tropics,	 with	 high	 rainfall	 and	 high	 LAI,	 canopy	215	

interception	 amounts	 to	30-40%	of	 total	ET	 (Figure	1c).	 Canopy	 interception	also	216	

represent	a	large	fraction	of	ET	in	some	high-latitudes	regions	like	Alaska/Western	217	

Canada	 or	 Scandinavia,	 even	 though	 total	 LAI	 is	 lower	 than	 in	 the	 Tropics.	 We	218	

speculate	that	this	is	because	these	are	climatic	regions	where	rainfall	is	dominated	219	

by	 long-duration	 synoptic	 events,	 where	 low-intensity	 rainfall	 favors	 continuous	220	

wetting	of	the	canopy,	as	opposed	to	tropical	regions	where	rainfall	is	dominated	by	221	

shorter-duration,	 convective	 events	 with	 higher	 rainfall	 rates	 that	 may	 be	 less	222	

conducive	to	canopy	interception	(Miralles	et	al.	2010).	Overall,	while	the	fraction	of	223	

transpiration	 tends	 to	 saturate	 as	 a	 function	 of	 LAI,	 the	 fraction	 of	 canopy	224	

interception	 increases	 more	 linearly.	 We	 note	 that,	 since	 canopy	 interception	225	

parameterizations	 are	 typically	 not	 linear	 functions	 of	 LAI	 (e.g.,	 Lawrence	 et	 al.	226	

2007),	 this	 apparent	 linearity	 may	 emerge	 as	 a	 result	 from	 combined	 regional	227	

variations	in,	e.g.,	LAI	and	precipitation	characteristics.		228	
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Finally,	soil	evaporation	is	the	dominant	term	in	dry	subtropical	regions	with	little	229	

vegetation,	such	as	Australia,	Southern	Africa	or	Western	North	America,	 reaching	230	

up	 to	 60%	of	 total	 ET,	 and	 up	 to	 100%	 in	 desert	 regions	 like	 the	 Sahara	 and	 the	231	

Middle	East	(Figure	1d).	In	these	regions	total	ET	is	low	(Figure	1a).	The	fraction	of	232	

soil	 evaporation	decreases	 rapidly	 in	models	 as	LAI	 initially	 increases	 (Figure	2d)	233	

but	still	represents	around	10%	of	ET	in	the	Tropics,	and	between	20-40%	in	many	234	

mid-latitude	regions,	as	well	as	monsoon	regions	like	India	and	the	Sahel.		235	

	236	

3.2	Model	spread	in	ET	partitioning	in	CMIP5	models	237	

CMIP5	 models	 generally	 share	 the	 same	 first-order	 spatial	 patterns	 of	 ET	238	

partitioning.		However,	there	is	a	large	spread	in	amplitude	across	models.	Figure	3	239	

shows	 the	 mean	 partitioning	 averaged	 over	 the	 whole	 land	 surface	 and	 the	240	

distribution	across	CMIP5	models.	Transpiration	 is	 the	dominant	 term,	accounting	241	

for	42%	of	total	ET.	Soil	evaporation	comes	in	second,	with	a	mean	value	35%,	and	242	

canopy	 interception	 in	 third,	with	 a	mean	 value	 of	 22%.	However,	 the	 fraction	 of	243	

transpiration,	 for	 instance,	 extends	 from	 nearly	 15	 to	 60%.	 	 The	 fraction	 of	 soil	244	

evaporation	extends	from	13%	to	63%.	Model	differences	extend	to	the	very	rank	of	245	

the	three	components:	while	most	models	agree	on	the	order	of	terms	as	shown	in	246	

Figure	3,	 in	 some	models	 soil	 evaporation	 is	 the	 leading	 term,	whereas	 in	other	 it	247	

comes	last,	after	canopy	interception;	 in	some	models	transpiration	is	the	smallest	248	

term.	(Figure	S1).		We	discuss	the	realism	of	these	different	ET	partitioning	values	in	249	

the	discussion	section.	250	



	 12	

Figure	4	shows	 the	spatial	pattern	of	how	the	model	spreads	 in	 the	different	ET	251	

components	relate	 to	each	other,	displaying	cross-model	correlations	between	 the	252	

different	 terms.	 Generally,	 the	 transpiration	 and	 soil	 evaporation	 fractions	 are	253	

strongly	 negatively	 correlated	 everywhere	 (Figure	 4a):	 models	 with	 a	 greater	254	

transpiration	 fraction	 tend	 to	 have	 a	 smaller	 soil	 evaporation	 fraction.	 In	 many	255	

regions	of	the	Tropics	and	mid-latitudes,	higher	transpiration	fractions	also	come	at	256	

the	expense	of	canopy	interception	(Figure	4b).	However,	in	dry	subtropical	regions,	257	

as	 well	 as	 dry	 mid-latitude	 regions	 and	 at	 high	 latitudes,	 the	 fractions	 of	258	

transpiration	 and	 canopy	 interception	 are	 positively	 correlated	 –	 both	 then	 being	259	

negatively	correlated	with	the	fraction	of	soil	evaporation	(Figure	4c).	260	

Figure	5	shows	that	these	inter-model	differences	can,	to	some	extent,	be	linked	to	261	

differences	in	the	model	representation	of	vegetation.	The	large	majority	of	climate	262	

models	simulate	vegetation	and	LAI	 interactively	with	climate,	although	a	 few	use	263	

prescribed	 LAI	 (ACCESS1-0	 and	 ACCESS1-3,	 FIO-ESM,	 MIROC4h	 and	 MIROC5).	264	

Previous	 studies	 have	 found	 a	 large	 range	 of	 LAI	 values	 across	 models	 (e.g.,	265	

Mahowald	et	al.	2016).	Here	global	mean	model	LAI	ranges,	over	the	22	models	for	266	

which	we	have	both	LAI	and	ET	partitioning,	from	0.9	to	3.1,	with	a	median	of	2.1.	267	

Figure	S2	shows	the	model	spread	 is	 largest,	numerically,	 in	regions	of	higher	LAI	268	

(e.g.,	 Tropics),	 although	 when	 normalized	 by	 mean	 LAI,	 model	 spread	 is	 actually	269	

greatest,	 in	 relative	 terms,	 in	drier	areas	and	 in	 the	high	 latitudes.	The	 fraction	of	270	

transpiration	 is	 generally	 positively	 correlated,	 locally,	 with	 the	 amount	 of	271	

vegetation	 (LAI)	 in	 models	 (Figure	 5a);	 so	 is	 the	 fraction	 of	 canopy	 interception	272	

(Figure	 5c).	 The	 sum	 of	 both	 is	 thus	 clearly	 positively	 correlated	with	 vegetation	273	



	 13	

(Figure	 5d).	 In	 contrast,	 the	 fraction	 of	 soil	 evaporation	 is	 clearly	 negatively	274	

correlated	with	 LAI	 across	models	 (Figure	5b).	 These	 relationships	 are	 consistent	275	

with	those	established	in	Figure	2	for	the	multimodel	mean	pattern	of	partitioning,	276	

and	likely	stems	from	similar	processes:	higher	LAI	favors	transpiration	and	canopy	277	

interception	 at	 the	 expense	 of	 soil	 evaporation.	 Thus,	 not	 only	 does	 simulated	278	

vegetation	 explain	 the	 mean	 pattern	 of	 simulated	 ET	 partitioning,	 it	 also	 affects	279	

inter-model	 differences	 in	 partitioning.	 The	 role	 of	 vegetation	 also	 explains	 the	280	

patterns	seen	in	Figure	4:	since	vegetation	is	a	main	determinant	(positively)	of	the	281	

transpiration	 fraction	 and	 (negatively)	 of	 the	 soil	 evaporation	 fraction,	 both	282	

fractions	 are	necessarily	 anti-correlated	 across	models	 (Figure	4a);	 in	 addition,	 in	283	

dry	regions	where	mean	LAI	is	low,	both	the	transpiration	and	canopy	interception	284	

fractions	 increase	 with	 higher	 LAI	 (presumably	 associated	 with	 increased	285	

precipitation	as	well)	and	are	thus	positively	correlated	across	models	(Figure	4b).	286	

	287	

3.3	Relationship	between	ET	partitioning	and	surface	climate	in	CMIP5	models.		288	

Does	the	way	CMIP5	models	simulate	ET	partitioning	influence	the	characteristics	289	

of	 their	 simulated	 surface	 climate?	 Indeed,	 transpiration,	 soil	 evaporation	 and	290	

canopy	 interception	 respond	 differently	 to	 atmospheric	 variability,	 with	 thus	291	

potential	 implications	for	feedbacks	from	the	surface	to	the	atmosphere.	Typically,	292	

the	 time-scale	 of	 the	 evaporation	 response	 to	 a	 rain	 event	 can	 be	 expected	 to	293	

decrease	 from	 transpiration	 to	 soil	 evaporation	 and	 canopy	 interception:	 the	294	

superficial	 canopy	 water	 store	 is	 depleted	 most	 quickly,	 followed	 by	 soil	295	

evaporation	(which	mostly	draws	water	 from	the	 first	 top	centimeters	of	 the	soil)	296	



	 14	

and	transpiration,	since	plants	have	access	to	deeper	and	larger	soil	water	storage.		297	

Mean	ET	properties	can	thus	be	affected	by	how	ET	partitioning	is	simulated,	with	298	

attendant	 feedbacks	on	surface	climate.	Lawrence	et	al.	 (2007)	and	Williams	et	al.	299	

(2016)	 report	 changes	 in	 land-atmosphere	 coupling	 and	 surface	 climate	300	

characteristics	 (e.g.,	 changes	 in	 the	 frequency	 distribution	 of	 precipitation)	 when	301	

deliberately	altering	ET	partitioning	in	their	model.	Similar	effects	might	thus	be	at	302	

play	 across	 the	 CMIP5	 ensemble	 of	 models,	 with	 differences	 in	 ET	 partitioning	303	

feeding	 back	 on	 characteristics	 of	 surface	 climate.	 Here	 we	 explore	 these	 effects,	304	

investigating	 first	 potential	 differences	 in	 summertime	 temperature,	 as	 this	 is	 the	305	

variable	most	 likely	 to	 be	 affected	 by	 land-atmosphere	 processes	 (e.g.,	 Berg	 et	 al.	306	

2014).		307	

Exploring	potential	 climate	differences	 induced	by	differences	 in	ET	partitioning	308	

between	 models	 is	 made	 challenging	 by	 the	 compounding	 effect	 of	 model	309	

differences	 in	 surface	 climate	 and	 surface	 fluxes	 that	 exist	 independently	 of	 ET	310	

partitioning.	 	 In	 particular,	 any	 feedback	 from	 ET	 partitioning	 on	 surface	 climate	311	

may	be	compounded	by	concurrent	differences	 in	 total	ET.	 	Figure	6a	 shows	 that,	312	

indeed,	summertime	ET	partitioning	 is	partly	correlated	across	models	with	mean	313	

ET	(in	summer):	models	that	simulate	greater	ET	tend	to	also	be	the	ones	showing	314	

greater	fractions	of	transpiration	in	some	parts	of	the	subtropics	and	mid-latitudes,	315	

with	 correspondingly	 smaller	 fractions	 of	 soil	 evaporation.	 We	 interpret	 these	316	

relationships	 as	 mostly	 reflecting	 the	 impact	 of	 differences	 in	 precipitation	 in	317	

driving	 simultaneous	 and	 mutually	 reinforcing	 differences	 in	 vegetation,	318	

transpiration	 and	 overall	 ET.	 For	 instance,	 wetter	 models	 may	 simulate	 more	319	
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vegetation,	thus	increasing	the	transpiration	fraction;	since	plants	accesses	greater	320	

soil	water	stores,	greater	transpiration	may	also	help	to	sustain	even	higher	ET,	 in	321	

particular	throughout	the	summer.	On	the	other	hand,	model	differences	in	ET	lead	322	

to	 differences	 in	 near-surface	 temperature	 across	models	 (as	 greater	 evaporative	323	

cooling	cools	the	surface;	Figure	S3).	Thus,	cross-model	correlations	between	near-324	

surface	 climate	 and	 ET	 partitioning	may	 emerge	 that	 are	 primarily	 due	 to	model	325	

differences	 in	 precipitation	 and	 ET,	 rather	 than	 independent	 differences	 in	 ET	326	

partitioning.	We	 subsequently	 try	 to	 control	 for	 this	 effect	when	 investigating	 the	327	

relationship	 between	 ET	 partitioning	 and	 other	 variable,	 by	 using	 partial	328	

correlations	controlling	for	mode	differences	in	ET.	329	

Figure	 6b	 shows	 the	 partial	 correlation	 between	 ET	 partitioning	 and	 mean	330	

summertime	 2m-temperature	 across	 CMIP5	models,	 controlling	 for	 differences	 in	331	

mean	 (summertime)	 ET.	 The	 partial	 correlation	 is	 the	 correlation	 between	 the	332	

residuals	 from	 two	 regressions	 between,	 on	 the	 one	 hand,	 model	 ET	 and	 ET	333	

partitioning	 (whose	 correlation	 is	 shown	 on	 Figure	 6a),	 and,	 on	 the	 other	 hand,	334	

mean	ET	and	mean	temperature	(correlation	shown	on	Figure	S3).	 It	 thus	 isolates	335	

the	 relationship	 between	 model	 differences	 in	 ET	 partitioning	 and	 temperature	336	

after	removing	the	influence	of	model	differences	in	mean	ET.	Figure	6b	shows	that	337	

over	 many	 regions,	 greater	 transpiration	 fractions	 and	 lower	 soil	 evaporation	338	

fractions	 are	 associated	 with	 lower	 mean	 summertime	 temperature.	 This	 is	339	

particularly	 the	 case	 for	 soil	 evaporation	 fractions	 over	 South	 Africa,	 South	 and	340	

North	America	and	many	parts	of	Asia.	Because	we	control	for	differences	in	mean	341	

ET	between	models,	we	interpret	this	correlation	as	primarily	reflecting	a	feedback	342	
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from	ET	partitioning	 on	 near-surface	 air	 temperature.	We	note	 that	 if	we	 did	 not	343	

control	 for	 ET,	 patterns	 of	 the	 correlation	 between	 2m-temperature	 and,	 for	344	

instance,	 the	 transpiration	 fraction,	 would	 look	 significantly	 different,	 mostly	345	

reflecting	 both	 the	 relationships	 across	models	 between	 ET	 and	 temperature	 and	346	

between	ET	and	transpiration	fraction	(Figure	S4).		347	

When	 considering	 simple	 cross-model	 correlations,	 lower	 transpiration	 and	348	

greater	soil	evaporation	fractions	are	generally	associated,	as	expected,	with	higher	349	

sensible	 heat	 flux	 (consistent	 with	 reduced	 ET;	 Figure	 S4).	 However,	 when	350	

controlling	 for	 model	 differences	 in	 mean	 ET,	 the	 correlation	 pattern	 is	 more	351	

complex,	 with	 both	 reduced	 and	 increased	 sensible	 flux	 values	 (Figure	 6c).	 In	352	

particular,	 the	 partial	 correlation	 of	 soil	 evaporation	 fractions	 with	 sensible	 heat	353	

flux	 values	 (controlling	 for	ET)	 is	 nil	 or	 negative	 in	 the	mid-latitudes.	 This	means	354	

that	 for	 a	 given	 level	 of	 ET,	 models	 that	 have	 greater	 soil	 evaporation	 fractions	355	

actually	show	reduced	sensible	heat	flux	values.	This	lack	of	overlap	with	Figure	6b	356	

suggests	that	the	relationship	between	soil	evaporation	and	transpiration	fractions	357	

and	 2m-temperature	 on	 Figure	 6b	 is	 not	 simply	 explained	 by	 associated	 model	358	

differences	in	sensible	flux,	except	to	some	extent	in	the	Tropics.	Rather,	the	overlap	359	

between	 Figures	 6b	 and	 6d	 -	 which	 shows	 the	 partial	 correlation	 between	 ET	360	

partitioning	 and	 upwelling	 surface	 longwave	 radiation	 -	 suggests	 that	 part	 of	 the	361	

relationship	between	ET	partitioning	and	2m-temperature	(Figure	6b)	stems	 from	362	

the	 effect	 of	 differences	 in	 emission	 of	 longwave	 radiation.	 In	 other	 words,	 for	 a	363	

given	 level	 of	 ET,	 greater	 soil	 evaporation	 fractions,	 for	 instance,	 lead	 to	 greater	364	

near-surface	air	temperature	also	because	they	are	associated	with	a	greater	share	365	
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of	 the	 incoming	 surface	 energy	being	 re-emitted	 as	 longwave	 radiation,	 thus	with	366	

higher	 surface	 temperatures	 and	 higher	 near-surface	 temperatures	 (no	 such	367	

relationship	 was	 found	 between	 ET	 partitioning	 and	 net	 shortwave	 radiation	 or	368	

albedo;	not	shown).		369	

Overall,	Figure	6	shows	that,	beyond	the	feedback	of	differences	in	mean	model	ET	370	

on	surface	climate	(Figure	S3),	differences	in	how	a	given	level	of	ET	is	partitioned	371	

are	 also	 associated	 with	 differences	 in	 land-atmosphere	 fluxes	 and	 thus	 in	 mean	372	

surface	climate	across	CMIP5	models,	with	the	most	plausible	 interpretation	being	373	

that	differences	in	partitioning,	mostly	related	to	differences	in	vegetation	(section	374	

3.2),	feed	back	on	surface	climate.		375	

	376	

3.4	Future	changes	in	ET	partitioning	in	CMIP5	models.	377	

Figure	 7	 shows	 multi-model	 mean	 projected	 changes	 in	 ET	 and	 precipitation	378	

(using	a	subset	of	models	for	which	outputs	of	future	ET	partitioning	are	available).	379	

Changes	 in	 precipitation	 have	 been	 largely	 documented	 and	 analyzed	 elsewhere	380	

(e.g,	Scheff	and	Frierson	2012),	with	decreases	in	the	dry	subtropics	and	some	parts	381	

of	the	Tropics	(e.g.,	Central	and	South	America),	and	increases	at	mid-high	latitudes.	382	

Here,	we	 simply	note	 that	 there	 is,	 to	 leading	order,	 a	 qualitative	 correspondence	383	

between	 changes	 in	 precipitation	 and	 ET,	 with	 similar-sign	 changes	 in	 ET	 as	 in	384	

precipitation.	We	also	note	 that	changes	 in	ET	 in	 regions	of	negative	precipitation	385	

change	 tend	 to	 be	 of	 smaller	 magnitude	 than	 precipitation	 changes,	 implying	 a	386	

negative	 change	 in	 runoff.	Here	we	 investigate	 how	 changes	 in	 ET	 are	 realized	 in	387	

terms	of	ET	partitioning.				388	
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While	there	is	a	large	spread	between	models	in	the	simulation	of	the	present-day	389	

mean	 ET	 partitioning	 (section	 3.2),	 Figure	 8	 shows	 that	 CMIP5	 models	 project	390	

robust	future	changes	in	partitioning,	with	more	than	three	quarters	of	the	models	391	

agreeing	 on	 the	 sign	 of	 changes	 in	most	 regions.	 In	mid-high	 latitudes,	 as	well	 as	392	

over	 the	 Tibetan	 Plateau,	 all	 three	 components	 of	 ET	 increase	 in	 absolute	 value	393	

(Figure	8a-c).	However,	transpiration	increases	more	than	soil	evaporation,	so	that	394	

the	 fraction	 of	 transpiration	 increases	 while	 the	 fraction	 of	 soil	 evaporation	395	

decreases	 over	 most	 of	 these	 regions	 (Figure	 8d-f).	 Exceptions	 to	 this	 pattern	396	

include	parts	of	Europe,	Northeast	China	and	Eastern	US,	where	it	is	the	fraction	of	397	

soil	 evaporation	 that	 increases	 (although	 transpiration	 still	 increases	 in	 absolute	398	

terms).	Absolute	increases	in	all	three	components	are	consistent	with	increases	in	399	

precipitation	 in	 these	 regions.	 This	 precipitation-driven	 behavior	 also	 explains	400	

changes	in	dry	tropical	regions	where	precipitation	increases,	such	as	the	Sahel	and	401	

Eastern	Africa.	Similarly,	 some	dry	subtropical	 regions,	 such	as	 the	Mediterranean	402	

Basin,	 Southwest	US	 and	 Southern	Africa,	 see	 simultaneous	 decreases	 in	 all	 three	403	

terms,	reflecting	decreases	in	projected	precipitation.	In	these	regions	transpiration	404	

typically	decreases	more,	so	that	the	fraction	of	soil	evaporation	actually	increases.	405	

In	contrast,	large	parts	of	the	humid	Tropics	show	opposite	absolute	changes	in	ET	406	

components,	with	concomitant	absolute	decreases	 in	 transpiration	(Figure	8a)	but	407	

increases	 in	 soil	 evaporation	 (Figure	 8b)	 (changes	 in	 canopy	 interception	 being	408	

more	muted).	As	a	result	the	fraction	of	transpiration	decreases	(Figure	8d),	and	the	409	

fraction	 of	 soil	 evaporation	 increases	 (Figure	 8e).	 This	 is	 the	 case	 in	 the	Amazon,	410	

Tropical	West	Africa	and	Central	Africa,	the	Maritime	Continent	and	Southeast	Asia.	411	
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Globally,	Figure	9a	shows	that	soil	evaporation	and	canopy	interception	increase	412	

on	average	(in	absolute	values),	with	soil	evaporation	increasing	the	most;	the	mean	413	

change	 in	 transpiration,	 however,	 is	 close	 to	 zero,	 with	 the	 largest	 intermodel	414	

uncertainty	as	quantified	by	the	25	and	75%	quantiles.	Overall,	total	ET	increases	by	415	

0.07mm/d	 on	 average	 (an	 increase	 of	 around	 5%	of	 the	 present-day	mean	 of	 1.5	416	

mm/d).	As	a	result,	 the	 fraction	of	 transpiration	decreases	globally	 (Figure	9b).	 In	417	

the	Tropics	specifically,	 regional	averages	reflect	 the	behavior	described	above	for	418	

global	averages:	absolute	transpiration	decreases,	which	is	offset	to	some	extent	by	419	

increases	in	soil	evaporation.	Mean	ET	does	not	increase,	on	average.	The	fraction	of	420	

transpiration	 decreases	 by	 a	 mean	 of	 -2.3%,	 with	 only	 two	 models	 showing	 an	421	

increase.		422	

	423	

3.5	CO2	fertilization	and	future	changes	in	ET	partitioning	424	

Figure	10	 shows	 the	 spatial	patterns	of	how	 the	model	 spreads	 in	 the	projected	425	

changes	 in	 the	 different	 ET	 components	 relate	 to	 each,	 with	 cross-model	426	

correlations.	 Globally,	 patterns	 are	 similar	 to	 those	 for	 present-day	 partitioning	427	

(Figure	 4):	 across	 models,	 changes	 in	 transpiration	 fractions	 and	 canopy	428	

interception	fractions	go	hand	in	hand	in	most	regions	at	the	expense	of	changes	in	429	

soil	 evaporation	 fractions,	 except	 in	 the	Tropics	where	changes	 in	 the	 fractions	of	430	

soil	 evaporation	 and	 canopy	 interception	 are	 both	 negatively	 correlated	 with	431	

changes	in	transpiration	fraction.		432	

Given	 the	 role	 of	 vegetation	 in	 explaining	 both	 the	 mean	 pattern	 and	 the	433	

intermodel	 differences	 in	 ET	 partitioning,	we	 similarly	 investigate	 the	 correlation	434	
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across	models	between	changes	 in	LAI	and	changes	 in	ET	partitioning.	Figure	11a	435	

shows	that	overall,	LAI	increases	around	the	globe	in	model	projections,	including	in	436	

the	 Tropics.	 This	 projected	 increase	 has	 been	 noted	 before	 (e.g.,	 Mahowald	 et	 al.	437	

2016),	and	is	consistent	with	the	large	land	carbon	sink	projected	by	Earth	System	438	

Models	 (Friedlingstein	 et	 al.	 2014).	 It	 is	 also	 qualitatively	 consistent	 with	 the	439	

observed	“global	greening”	trend	in	remote	sensing	data	over	the	last	decades	(Zhu	440	

et	 al.	 2016).	 Globally,	 the	 relationship	 between	 changes	 in	 LAI	 and	 changes	 in	 ET	441	

partitioning	 is	 consistent	 with	 results	 from	 sections	 3.1	 and	 3.2,	 although	 more	442	

muted	 (Figure	 11b-d):	 models	 where	 LAI	 increases	 the	most	 tend	 to	 see	 greater	443	

increases	 in	 transpiration	 fraction	 and	 fraction	 of	 canopy	 interception,	 and	 lower	444	

increases	in	soil	evaporation	fraction.	However,	the	relationship	between	changes	in	445	

LAI	and	change	in	the	transpiration	fraction	tends	to	break	down	in	the	Tropics.		446	

The	 fact	 that	 multi-model	 mean	 LAI	 increases	 in	 the	 Tropics	 whereas	 mean	447	

transpiration	 decreases	 (both	 in	 absolute	 terms	 and	 as	 a	 fraction	 of	 ET)	 suggests	448	

that	 the	 negative	 impact	 of	 increased	 atmospheric	 CO2	 levels	 on	 stomatal	449	

conductance	(Cowan	1977)	compensates	the	increase	in	transpiration	that	could	be	450	

expected	 based	 on	 increases	 in	 LAI.	 To	 investigate	 this	 hypothesis,	 we	 analyze	451	

changes	in	ET	partitioning	from	6	models	from	the	CMIP5	experiment	CTL,	RAD	and	452	

PHYS,	 which	 allow	 us	 to	 separate	 the	 radiative	 and	 physiological	 effects	 of	453	

atmospheric	 CO2	 increase	 (see	 Section	 2).	 Figure	 12	 shows	 that	 in	 the	 6	 models	454	

analyzed,	 overall	 changes	 in	 precipitation,	 ET,	 ET	 partitioning	 and	 LAI	 in	 the	 CTL	455	

simulation	 are	 qualitatively	 consistent	 with	 multi-model	 mean	 changes	 from	 the	456	

larger	 CMIP5	 ensemble	 (Figure	 7,	 8	 and	 11).	 In	 particular,	 despite	 overall	 LAI	457	
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increases,	changes	in	transpiration	include	a	clear	decrease	throughout	the	Tropics	458	

and	an	increase	in	soil	evaporation,	similar	to	Figure	8.	Figure	12	(third	row)	shows	459	

that	this	tropical	decrease	in	transpiration	is	largely	due	to	the	physiological	effect	460	

of	CO2.	 In	PHYS,	CO2	fertilization	largely	 increases	LAI,	which	could	be	expected	to	461	

lead	to	an	increase	in	transpiration;	however,	this	effect	is	more	than	offset	by	the	462	

stomatal	 closure	 induced	by	higher	atmospheric	CO2	 levels	 (Cowan	1977),	 so	 that	463	

total	transpiration	is	strongly	reduced.	(This	is	reflected	in	total	ET,	which	decreases	464	

as	 well).	 Increases	 in	 LAI	 in	 PHYS	 lead	 to	 increases	 in	 canopy	 interception,	 and	465	

generally	to	decreases	in	soil	evaporation,	except	along	the	Equator	where	a	slight	466	

increase	in	soil	evaporation	is	detectable.	However,	the	increase	in	soil	evaporation	467	

in	 the	Tropics	 in	CTL	appears	 to	be	primarily	due	to	 the	radiative	effect	of	CO2,	 in	468	

particular	 over	 Central	 Africa.	 The	 radiative	 effect	 of	 CO2	 in	 RAD	 is	 to	 reduce	469	

vegetation	 in	 the	 Tropics,	 presumably	 from	 the	 negative	 effect	 on	 higher	470	

temperatures	 and	 possibly	 vapor	 pressure	 deficit	 on	 photosynthesis	 in	 a	 warm	471	

environment.	This	 leads	 to	 a	 shift	 towards	more	 soil	 evaporation	and	 less	 canopy	472	

interception.	 At	 higher	 latitudes,	 in	 contrast,	 vegetation	 increases,	 and	 all	 three	473	

components	of	ET	increase,	which	likely	reflect	the	effect	of	increased	temperature	474	

and	 precipitation	 from	 radiatively	 induced	 global	warming.	 These	 increases	 in	 all	475	

three	terms	dominate	the	overall	changes	in	CTL	in	these	regions;	 indeed,	changes	476	

in	PHYS	mostly	include	only	a	slight	decrease	in	transpiration.		477	

Finally,	we	note	that,	in	response	to	reduced	ET,	physiologically	induced	changes	478	

in	 precipitation	 of	 both	 signs	 occur	 in	 PHYS	 in	 the	 Tropics,	 as	 well	 a	 smaller	479	

precipitation	decreases	 in	 the	mid-high	 latitudes.	 This	 is	 consistent	with	 previous	480	
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studies	(Pu	and	Dickinson	2014,	Skinner	et	al.	2017)	which	interpret	this	pattern	as	481	

reflecting,	in	the	mid-high	latitudes,	reduced	precipitation	recycling,	whereas	in	the	482	

Tropics,	reduced	ET	also	leads	to	changes	in	circulation	and	moisture	convergence,	483	

resulting	 in	 a	 more	 heterogeneous	 pattern	 of	 precipitation	 change.	 In	 most	 land	484	

regions,	 however,	 the	 overall	 precipitation	 signal	 in	 CTL	 appears	 dominated	 by	485	

changes	from	RAD.	One	exception	is	perhaps	over	the	Amazon,	where	changes	from	486	

PHYS	appear	to	contribute	largely.	This	suggests	that	in	Figure	7,	while	most	of	the	487	

spatial	correspondence	between	changes	in	precipitation	and	ET	reflects	the	impact	488	

of	the	former	over	the	latter,	over	Tropical	South	America	the	causal	relationship	is	489	

partly	 reversed:	 physiologically	 induced	 reductions	 in	 transpiration	 lead	 to	 a	490	

decrease	 in	 precipitation.	 This	 is	 consistent	 with	 similar	 but	 single-model	 recent	491	

analysis	(e.g.,	Kooperman	et	al.	2018).	492	

Overall,	 Figure	 12	 confirms	 that	 the	 decrease	 in	 transpiration	 in	 the	 Tropics	 in	493	

Figure	7	is	primarily	caused	by	the	physiological	effect	of	CO2.	Model	differences	in	494	

projected	 changes	 in	 the	 fraction	of	 transpiration	 thus	 likely	 reflect	 differences	 in	495	

combined	 changes	 in	 LAI	 and	 stomatal	 conductance,	 hence	why	 there	 is	 no	 clear	496	

relationship	between	changes	in	LAI	alone	and	transpiration	changes	in	the	Tropics	497	

(Figure	 11b).	 Because	 of	 the	 physiologically	 induced	 transpiration	 decrease,	 the	498	

change	in	total	ET	in	the	Tropics	is	not	as	large	as	it	would	be	based	on	the	radiative	499	

effect	of	CO2	alone.	However,	 Figure	8	 shows	 that	 this	decrease	 is	offset,	 to	 some	500	

extent,	 by	 radiatively	 induced	 increases	 in	 soil	 evaporation,	 as	 well	 as	 by	 small	501	

increases	in	canopy	interception	resulting	from	the	physiologically-induced	increase	502	

in	 LAI.	 The	 total	 change	 in	 ET	 in	 the	 Tropics	 thus	 comes	 about	 as	 the	 result	 of	503	
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opposite	 changes	 in	 different	 components	 of	 ET	 partitioning,	 driven	 by	 different	504	

physical	and	biological	processes.		505	

	506	

	507	

Discussion	and	Conclusion	508	

We	 have	 comprehensively	 investigated	 how	 ET	 partitioning	 is	 represented	 in	509	

CMIP5	climate	simulations	of	present	and	future	climate.	Large	model	spread	in	ET	510	

partitioning	exists,	with	the	fraction	of	transpiration,	for	instance,	ranging	between	511	

15%	 and	 60%,	 and	 with	 corresponding	 differences	 in	 other	 components.	 Models	512	

even	show	differences	in	which	component	dominates	ET	globally.	The	mean	spatial	513	

pattern	 of	 ET	 partitioning	 can	 be	 primarily	 explained	 by	 the	 effect	 of	 vegetation	514	

distribution,	as	was	also	reported	recently	in	Lian	et	al.	(2018).		515	

Many	 differences	 in	 model	 parameterization	 of	 surface-atmosphere	 energy	 and	516	

water	processes	likely	contribute	to	model	spread	in	ET	partitioning.	Here,	we	show	517	

that	 not	 only	 the	multi-model	mean,	 or	model-specific	 spatial	 pattern	 (Lian	 et	 al.	518	

2018),	 but	 also	 the	 model	 spread	 in	 ET	 partitioning	 appears	 strongly	 linked	 to	519	

model	 differences	 in	 vegetation	 LAI,	 with,	 locally,	 models	 with	 more	 vegetation	520	

exhibiting	greater	transpiration	and	canopy	interception	fractions,	and	reduced	soil	521	

evaporation.	We	do	not	seek	here	to	explicitly	investigate	why	models	differ	in	the	522	

representation	 of	 LAI.	 As	 indicated	 earlier,	 some	 models	 use	 prescribed	 values,	523	

although	most	simulate	LAI	interactively.	Even	in	the	case	where	LAI	is	prescribed,	524	

different	data	sources	or	differences	in	how	different	land	cover	types	and	land	use	525	

transitions	are	implemented,	for	instance	(e.g.,	de	Noblet-Ducoudré	et	al.	2012),	can	526	
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lead	to	different	LAI	values.	Amongst	models	with	prescribed	LAI,	mean	global	LAI	527	

ranges	 from	 0.9	 (MIROC5h)	 to	 1.9	 (ACCESS1-0).	 Amongst	 models	 that	 simulate	528	

vegetation	 interactively,	 we	 find	 a	 strong	 correlation	 across	models	 between	 LAI	529	

and	 gross	 primary	 production	 (GPP;	 not	 shown),	 which	 suggests	 that	 model	530	

differences	 in	 the	 simulation	 of	 photosynthesis	 are	 partly	 responsible	 for	 model	531	

differences	in	LAI	(although	the	latter	can	also	feed	back	on	GPP).		532	

	As	 mentioned	 in	 the	 introduction,	 although	 the	 components	 of	 ET	 can	 be	533	

measured	in	different	ways	at	the	site	scale,	ET	partitioning	is	not	accurately	known	534	

at	 the	 global	 or	 even	 regional	 scale.	 Global	 remote	 sensing	 products	 of	 ET,	 for	535	

instance,	produce	vastly	different	estimates	of	ET	partitioning	(Miralles	et	al.	2016);	536	

while	 the	 first-order	 global	 spatial	 pattern	 of	 ET	 partitioning	 in	 these	 products	537	

shows	a	general	agreement	with	that	in	CMIP5	models	(Figure	1),	they	provide	little	538	

constraint	on	the	amplitude	of	the	different	ET	components.	However,	as	mentioned	539	

in	 the	 introduction,	 a	 review	 of	 the	 different	 estimates	 of	 the	 fraction	 of	540	

transpiration	 from	 multiple	 independent	 sources	 -	 including	 satellite-based	541	

estimations,	 reanalysis,	 land	surface	models,	 isotopic	measurements,	and	upscaled	542	

site	 measurements	 -	 indicates	 a	 central	 mean	 value	 around	 60%	 (e.g.,	 Wei	 et	 al.	543	

2017).	This	suggests	that	the	mean	transpiration	fraction	in	CMIP5	models	(Figure	544	

3)	 is	 underestimated,	 as	Wei	 et	 al.	 (2017)	note.	 Certainly,	 values	 lower	 than	40%	545	

appear	 inconsistent	with	 the	general	understanding	of	 the	 role	of	 transpiration	 in	546	

global	 ET	 (Lawrence	 et	 al.	 2007).	 The	 bcc-csm-1-m,	 BNU-ESM,	 CanESM2,	 and	547	

FGOALS	 models	 have	 global	 transpiration	 fractions	 lower	 than	 30%	 (Figure	 S1).	548	

These	models	 are	 also	 amongst	 those	with	 the	 highest	 soil	 evaporation	 fractions.	549	
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The	GISS	family	of	models	also	exhibits	low	transpiration	fractions,	and	the	highest	550	

fractions	 of	 canopy	 interception.	Models	with	 transpiration	 fractions	 greater	 than	551	

50%	 include	models	 from	 the	 IPSL,	NCAR,	NorESM	and	CNRM	 families	of	models.	552	

Only	the	IPSL-CM5A-MR	model	exhibits	a	transpiration	fraction	close	to	60%.		553	

The	positive	 relationship,	 across	models,	 between	 the	 transpiration	 fraction	and	554	

vegetation	 amount	 shown	on	 Figure	 5a	 could	 suggest,	 at	 first	 glance,	 that	models	555	

underestimate	mean	 transpiration	 fractions	because	 they	generally	underestimate	556	

LAI.	 However,	 several	 studies	 have	 evaluated	 vegetation	 in	 climate	 models,	 and	557	

found,	 on	 the	 contrary,	 that	 most	 models	 tend	 to	 overestimate	 LAI	 compared	 to	558	

satellite	observations,	by	up	to	a	factor	2	or	more,	and	that	this	is	true	at	all	latitudes	559	

(Anav	et	al.	2013,	Mahowald	et	al.	2016,	Zeng	et	al.	2016).	For	instance,	models	with	560	

the	highest	LAI,	here,	include	the	GFDL-ESM2M,	GFDL-ESM2G	and	MRI-ESM	models,	561	

with	global	LAI	values	between	2.9	and	3.1,	while	long-term	satellite	measurements	562	

indicate	 a	 global	 mean	 closer	 to	 1.5	 (Anav	 et	 al.	 2013,	 Zeng	 et	 al.	 2016).	 The	563	

overestimation	 of	 LAI	 in	 climate	 models	 has	 been	 linked	 with	 the	 general	564	

overestimation	 of	 GPP	 also	 simulated	 by	 these	 models,	 itself	 possibly	 linked	 to	565	

omission	 of	 nutrient	 constraints	 or	 of	 the	 negative	 effects	 of	 atmospheric	 ozone	566	

(Anav	et	al.	2013).	As	 indicated	above,	we	do	 find	 that	GPP	and	LAI	are	positively	567	

correlated	 across	models,	 which	would	 support	 this	 interpretation.	 Regardless	 of	568	

what	is	causing	models	to	overestimate	LAI,	this	overestimation	suggest	that	climate	569	

models	 are	not	underestimating	 the	 role	of	 transpiration	 simply	because	 they	 are	570	

underestimating	 vegetation,	 but	 rather	 that	 they	 are	 underestimating	 the	571	

relationship	 between	 vegetation	 cover	 and	 transpiration	 fraction.	 In	 other	words,	572	
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for	 a	 given	 amount	 of	 vegetation	 cover,	 systematic	 biases	 in	 model	573	

parameterizations	 of	 various	 land-atmosphere	 biophysical	 processes	 directly	574	

influencing	ET	partitioning	 lead	 to	an	underestimation	of	 transpiration.	Lian	et	 al.	575	

(2018)	 recently	 reached	 a	 similar	 conclusion.	 Because	 of	 the	 generally	 positive	576	

relationship	between	LAI	and	transpiration	fraction,	forcing	the	CMIP5	ensemble	of	577	

climate	 models	 with	 the	 observed	 LAI	 would	 actually	 enhance	 the	 overall	578	

underestimation	of	the	transpiration	fraction	in	these	models.	For	instance,	 if	over	579	

each	 pixel,	 we	 use	 a	 linear	 relationship	 between	 LAI	 and	 transpiration	 fraction	580	

derived	 from	 Figure	 5a,	 combined	 with	 observed	 LAI	 values	 (from	 the	 AVHRR	581	

GIMMS	 LAI3g	 dataset;	 Zhu	 et	 al.	 2013),	 this	 yields	 transpiration	 fractions	 that	582	

average	 globally	 to	 37%,	 compared	 to	 an	 initial	 multi-model	mean	 of	 44%	 (over	583	

areas	where	AVHRR	GIMMS	LAI3g	provides	data).	We	also	emphasize	here	that	the	584	

relationship	 between	 LAI	 and	 transpiration	 fraction	 on	 Figure	 5a	 is	 essentially	 a	585	

local	one.	Indeed,	while	most	models	overestimate	LAI	globally,	they	show	different	586	

spatial	 patterns:	 some	models	 simulate	 proportionally	more	 LAI	 at	 high	 latitudes,	587	

for	 instance.	 Consequently,	 the	 ranking	 of	 the	 different	 models	 in	 terms	 of	 how	588	

much	LAI	they	simulate	is	not	spatially	constant	across	the	globe	(not	shown).	When	589	

taking	 global	 averages	 of	 LAI	 and	 transpiration	 to	 compute	 the	 correlation	 at	 the	590	

global	scale,	these	spatial	differences	tend	to	compensate	each	other.	As	a	result,	this	591	

obscures	the	local	relationship	between	LAI	and	transpiration	fraction	(Figure	5a),	592	

and	the	positive	relationship	does	not	hold	well	at	the	global	scale	(i.e.,	using	global	593	

averages;	 r=0.18).	 For	 instance,	 the	 model	 with	 the	 largest	 global	 LAI,	 MRI-ESM	594	

(global	LAI	of	3.1)	does	not	have	 the	highest	 transpiration	 fraction	overall	 (39%);	595	
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IPSL-CM5A-MR	 exhibits	 the	 highest	 fraction	 (60%)	with	 a	 global	 LAI	 of	 1.9.	 This	596	

highlights	the	importance	of	analyzing	model	biases	at	the	regional	scale.		597	

By	 complementarity,	 the	 fact	 that	 climate	models	 underestimate	 the	 fraction	 of	598	

transpiration	 means	 that	 they	 overestimate	 the	 share	 of	 soil	 evaporation	 and/or	599	

canopy	 interception.	 	 Miralles	 et	 al.	 (2010)	 provide	 a	 global	 estimate	 of	 canopy	600	

interception,	which	 they	 obtain	 by	 driving	 an	 analytical	model	with	 observations.	601	

While,	again,	the	overall	pattern	of	canopy	interception	in	CMIP5	models	(Figure	1)	602	

generally	agrees,	qualitatively,	with	this	estimate,	Lian	et	al.	(2018)	note	that	models	603	

seem	 to	 overestimate	 the	 amount	 of	 canopy	 interception	 globally.	 Closer	604	

examination,	here,	shows	that	while	models	seem	to	simulate	a	reasonable	ratio	of	605	

canopy	 interception	 to	 precipitation	 in	 the	 mid-	 and	 high-latitudes,	 they	 largely	606	

overestimate	 this	 ratio	 in	 the	 tropics,	 with	 values	 around	 20-25%	 (not	 shown),	607	

whereas	Miralles	 et	 al.	 (2010)	 report	values	 closer	 to	10-15%.	These	 suggest	 that	608	

models	 may	 overestimate	 interception	 especially	 in	 the	 Tropics,	 which	 thus	609	

potentially	explains	why	they	underestimate	transpiration	at	least	in	those	regions.	610	

It	 is	 worth	 keeping	 in	 mind,	 however,	 that	 Miralles	 et	 al.	 (2010)	 only	 derive	611	

estimates	for	tall	forests	around	the	world	and	do	not	consider	shorter	vegetation,	612	

which	 might	 render	 the	 comparison	 with	 climate	 models	 problematic	 in	 some	613	

regions.	614	

Besides	 canopy	 interception,	 inaccurate	 representation	 of	 canopy	 light	 use	 and	615	

root	water	uptake	processes	in	land	models	have	been	suggested	to	be	responsible	616	

for	the	underestimation	of	transpiration	(Lian	et	al.	2018).	Chang	et	al.	(2018)	also	617	

incriminate	 the	 role	of	model	deficiencies	 in	 (or	absence	of)	 the	 representation	of	618	
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lateral	 water	 flow	 and	 water	 vapor	 diffusion	 within	 the	 soil,	 while	 Maxwell	 and	619	

Condon	(2016)	also	point	out	the	necessary	role	of	groundwater	flow,	generally	not	620	

accounted	for	in	land	models,	for	sustaining	higher	transpiration	fractions.	Further	621	

work	will	likely	identify	additional	sources	of	land	model	biases.	Some	studies	have	622	

described	deliberate	efforts	to	increase	the	transpiration	fraction	in	land	models	at	623	

the	expense	of	 the	other	 components,	 for	 instance	by	modifying	 formulations	 and	624	

parameters	 to	 increase	 water	 infiltration	 and	 access	 of	 vegetation	 roots	 to	 soil	625	

water,	 reduce	 canopy	 interception,	 or	 increase	 soil	 resistance	 to	 evaporation	626	

(Lawrence	 et	 al.	 2007,	 Williams	 et	 al.	 2016).	 However,	 a	 tension	 exists	 between	627	

implementing	such	modifications	and	potential	unintended	effects	on	other	aspects	628	

of	 simulated	 climate	 or	 projections	 (Lawrence	 et	 al.	 2007).	 Overall,	 most	 current	629	

models	fail	 to	correctly	capture	the	fundamental	role	that	vegetation	exerts	on	the	630	

water	cycle	through	transpiration.	631	

Our	 analysis	 further	 shows	 that	 biases	 in	 ET	 partitioning	 have	 implications	 for	632	

climate	 simulations.	 Differences	 in	 ET	 partitioning	 across	 models	 are	 associated	633	

with	differences	in	land-atmosphere	fluxes	and	surface	climate:	for	a	given	amount	634	

of	ET,	models	 that	have	 lower	 transpiration	and	more	 soil	 evaporation	 tend	 to	be	635	

warmer	 in	 summer	 over	 large	 continental	 regions.	 Given	 the	 systematic	636	

underestimation	of	transpiration	by	climate	models	shown	here,	this	also	suggests	637	

that	model	biases	in	ET	partitioning	may	play	a	role	in	the	well-known	warm	biases	638	

over	continents	in	summer	(e.g.,	Cheruy	et	al.	2014).	Although	model	differences	in	639	

(present-day)	ET	partitioning	may	also	influence	model	spread	in	future	projections	640	

of	land	hydroclimate,	(for	instance,	models	with	less	transpiration	warming	more),	641	
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our	 analysis	 revealed	 no	 clear	 evidence	 of	 such	 a	 relationship	 across	 the	 CMIP5	642	

ensemble;	it	may	be	that	the	potentially	modest	impacts	of	differences	in	(present-643	

day)	 ET	 partitioning	 are	 masked	 by	 the	 many	 other	 model	 differences	 affecting	644	

climate	 model	 projections.	 Although	 we	 have	 not	 explored	 these	 aspects	 in	 the	645	

present	 study,	 biases	 in	 ET	 partitioning	 may	 also	 carry	 implications	 for	 the	646	

simulated	 carbon	 cycle:	 because	 transpiration	 is	 coupled	 to	 the	 carbon	 cycle	647	

through	 photosynthesis,	 systematic	 underestimation	 of	 transpiration	 means	 that	648	

Earth	System	Model	simulations	of	the	carbon	cycle,	in	particular	of	the	land	carbon	649	

sink,	 may	 also	 be	 biased	 in	 some	 systematic	 ways	 –	 or	 that	 other	 parts	 of	 Earth	650	

System	Models	are	compensating	for	transpiration	biases	in	an	ad	hoc	manner.		651	

Finally,	we	have	shown	that	despite	very	large	model	diversity	in	the	simulation	of	652	

present-day	ET	partitioning,	models	project	consistent	changes	in	partitioning	in	the	653	

future.	 While	 all	 three	 ET	 components	 tend	 to	 change	 in	 similar	 directions	 (in	654	

absolute	terms)	in	many	regions	of	the	mid-high	latitudes	and	the	dry	Subtropics,	in	655	

the	Tropics,	model	project	a	clear	pattern	of	decreased	transpiration	and	increased	656	

soil	 evaporation	 –	 both	 in	 fractions	 and	 in	 absolute	 terms.	 This	 decrease	 in	657	

transpiration	 is	 clearly	 attributable	 to	 the	 physiological	 impact	 of	 CO2	 increase,	658	

which	 induces	 stomatal	 closure.	Overall,	 future	changes	 in	partitioning	are	 caused	659	

by	 a	 mix	 of	 radiatively	 and	 physiologically	 driven	 processes	 that	 affect	 the	660	

components	 of	 ET	 in	 different	 ways	 in	 different	 regions.	 This	 underscores	 the	661	

complexity	 of	 the	 evaporation	 response	 to	 global	 warming	 on	 land,	 and	 the	662	

challenges	 of	 both	 accurately	 capturing	 that	 response	 in	 numerical	 models	 and	663	

accounting	 for	 it	 in	 idealized	models	 of	 the	water	 and	 climate	 system	 (e.g.,	 Byrne	664	
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and	 O’Gorman	 2016).	 This	 challenge	 is	 all	 the	 more	 critical	 that	 this	 response	665	

represents	 a	 key	 element	 of	 future	 climate	 change:	 for	 instance,	 here	 we	 found,	666	

consistently	 with	 previous	 studies	 (e.g.,	 Kooperman	 et	 al.	 2018)	 that	 part	 of	 the	667	

precipitation	 response	 to	 anthropogenic	 forcing	 in	 the	 Tropics	 is	 due	 to	668	

physiologically	induced	decreases	in	transpiration.	More	generally,	previous	studies	669	

have	 highlighted	 the	 role	 of	 land	 evaporation	 changes	 in	 land	 regional	 climate	670	

change	 (e.g.,	 Berg	 et	 al.	 2015)	 but	 also	 in	 large-scale	 land-ocean	 contrasts	 in	671	

response	to	warming	(e.g.,	Berg	et	al.	2016)	and	in	aspects	of	the	global	hydrological	672	

cycle	response	to	C02	(e.g.,	DeAngelis	et	al.	2016).	Correct	representation	of	changes	673	

in	land	evaporation,	and	thus	in	its	components,	is	thus	essential	for	projections	of	674	

global	climate	change.	675	

Overall,	 our	 results	 highlight	 model	 differences	 in	 the	 simulation	 of	 ET	676	

partitioning.	 Given	 the	 importance	 of	 this	 partitioning	 for	 the	 simulation	 of	 the	677	

terrestrial	water,	energy	and	carbon	cycle	in	the	present	and	in	future	climate,	our	678	

study	 points	 to	 the	 critical	 need	 to	 better	 evaluate,	 and	 ultimately	 improve,	 the	679	

process-based	representation	of	ET	partitioning	in	Earth	System	Models.			680	
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Figure	captions	839	

	840	

Figure	 1:	 Multi-model	 mean	 annual	 mean	 values	 over	 1950-2005	 of	 (a)	 ET	841	

(mm/d)	 (b-d)	 fractions	of	 transpiration,	 canopy	 interception	and	soil	 evaporation,	842	

respectively,	in	total	ET.	32	models	with	full	ET	partitioning	are	used.			843	

		844	

Figure	2:	(a)	Multi-model	mean	annual	Leaf	Area	Index	(LAI)	over	1950-2005.	(b-845	

d)	 Relationship	 between	 the	 multimodel	 mean	 LAI	 and	 the	 multi-model	 mean	846	
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fraction	 of	 (b)	 transpiration	 (Tran),	 (c)	 canopy	 interception	 (Ecan)	 and	 (d)	 soil	847	

evaporation	(Esoil).	Each	dot	corresponds	 to	a	 land	pixel.	The	 full	 line	 is	a	binned	848	

average.	Multi-model	means	are	calculated	for	the	22	common	models	for	which	all	849	

three	components	of	ET	and	LAI	were	available.		850	

		851	

Figure	 3:	Mean	 value	 and	 spread	 across	 CMIP5	models	 of	 the	 global	 fraction	 of	852	

each	 ET	 component	 (in	 %	 of	 total	 ET).	 Ecan:	 canopy	 interception;	 Esoil:	 soil	853	

evaporation;	Tran:	transpiration.	32	models	with	full	ET	partitioning	are	used.		The	854	

thick	 line	represents	 the	median	of	 the	distribution,	 the	central	dot	 the	mean,	and	855	

edges	of	 the	box	 the	25%	and	75%	quantiles.	Whiskers	 represent	 the	 total	model	856	

range.	857	

	858	

Figure	4:	Cross-model	correlation	of	the	mean	annual	fractions	of	(a)	transpiration	859	

and	soil	evaporation;	(b)	transpiration	and	canopy	interception;	(c)	soil	evaporation	860	

and	canopy	interception.	32	models	with	full	ET	partitioning	are	used.	Red	and	blue	861	

contour	lines	indicate	positive	and	negative	correlations	significant	at	the	5%	level.	862	

	863	

Figure	5:	Cross-model	 correlation	of	mean	LAI	and	 (a)	 transpiration	 fraction	 (b)	864	

soil	 evaporation	 fraction	 (c)	 canopy	 interception	 fraction	 (d)	 sum	 of	 canopy	865	

interception	and	transpiration	fractions.	22	common	models	with	available	LAI	and	866	

ET	partitioning	outputs	were	used.	Red	and	blue	contour	lines	indicate	positive	and	867	

negative	correlations	significant	at	the	5%	level.	868	

	869	
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Figure	 6:	 (a)	 Cross-model	 correlation	 between	 summertime-mean	 precipitation	870	

and	 ET	 component	 fractions	 (columns).	 (b-d)	 Cross-model	 partial	 correlation	871	

between	summertime-mean	ET	component	fractions	and	(b)	2m-temperature	(Tas)	872	

(c)	 surface	 sensible	heat	 flux	 (Hfss)	 and	 (d)	 surface	upwelling	 longwave	 radiation	873	

(RLUS),	 controlling	 in	 each	 case	 for	 mean	 summertime	 ET	 (as	 indicated	 by	 the	874	

subscript	in	the	left	hand-side	labels;	see	text	for	details).	Summertime	is	defined	as	875	

JJA	 in	 the	 northern	 hemisphere	 and	DJF	 in	 the	 southern	 hemisphere,	with	means	876	

taken	 over	 1950-2005.	 29	 common	models	 for	which	 all	 variables	were	 available	877	

are	 used	 for	 all	 correlations.	 Red	 and	 blue	 contour	 lines	 indicate	 positive	 and	878	

negative	correlations	significant	at	the	5%	level.	879	

	880	

Figure	7:	Multi-model	mean	change	(mm/d)	in	(a)	annual	mean	precipitation,	(b)	881	

annual	 mean	 ET,	 defined	 as	 2071-2100	 minus	 1950-2005.	 For	 consistency	 with	882	

Figure	 8,	 24	models	 with	 full	 ET	 partitioning	 outputs	 for	 RCP8.5	 were	 used.	 For	883	

readability,	colors	saturate	beyond	the	color	scale	range	on	(a).		884	

			885	

Figure	8:	Multi-model	mean	change	(mm/d)	between	1950-2005	and	2071-2100	886	

in		(a)	transpiration	(b)	soil	evaporation	and	(c)	canopy	interception	(mm/d).	(d-f)	887	

same	 as	 (a-c)	 but	 as	 fraction	 of	 ET.	 Stippling	 indicate	 where	 more	 than	 80%	 of	888	

models	agree	on	the	sign	of	changes.	24	models	with	full	ET	partitioning	in	present	889	

and	future	were	use	to	compute	changes.			890	

	891	
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Figure	9:	Multi-model	mean	 changes	 in	 annual	ET	 and	 its	 components	 averaged	892	

globally	over	land,	in	absolute	values	(a)	and	as	fractions	of	ET	(b);	(c-d)	same	as	(a-893	

b)	but	over	the	Tropics	only	(-20-20°N).	The	meaning	of	the	boxplot	is	the	same	as	894	

in	Figure	3.	24	models	with	full	ET	partitioning	in	the	present	and	future	were	used	895	

to	compute	the	changes	896	

	897	

Figure	 10:	 	 Cross-model	 correlations	 of	 projected	 changes	 (between	 1950-2005	898	

and	 2071-2100)	 in	 the	 mean	 annual	 fractions	 of	 (a)	 transpiration	 and	 soil	899	

evaporation;	 (b)	 transpiration	 and	 canopy	 interception;	 (c)	 soil	 evaporation	 and	900	

canopy	 interception.	24	models	with	 full	ET	partitioning	 in	 the	present	and	 in	 the	901	

future	are	used.	902	

	903	

Figure	11:	(a)	Multi-model	mean	projected	change	between	1950-2005	and	2071-904	

2100	in	mean	annual	LAI	(-)	(b-d)	cross-model	correlations	of	projected	changes	in	905	

LAI	and	changes	in	fractions	of	(b)	transpiration,	(c)	soil	evaporation	and	(d)	canopy	906	

interception.	 18	 common	 models	 with	 available	 present	 and	 future	 LAI	 and	 ET	907	

partitioning	were	 used.	Red	 and	blue	 contour	 lines	 indicate	 positive	 and	negative	908	

correlations	significant	at	the	5%	level.		909	

	910	

Figure	12:	Multi-model	mean	 changes	 (from	 top	 to	bottom)	 in	precipitation,	ET,	911	

transpiration,	soil	evaporation,	canopy	interception,	LAI,	in	simulations	(from	left	to	912	

right)	CTL,	RAD,	PHYS,	between	the	 first	and	 last	30	years	of	each	simulation	(see	913	

text	 in	 section	2).	All	 changes	 in	mm/d,	 except	 for	LAI,	unitless.	 Stippling	 indicate	914	
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where	5	out	of	6	models	agree	on	sign	of	changes.	For	readability,	 colors	saturate	915	

outside	the	range	of	the	color	scale.		916	
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Figure	1:	Multi-model	mean	annual	mean	values	over	1950-2005	of	(a)	ET	(mm/d)	
(b-d)	fractions	of	transpiration,	canopy	interception	and	soil	evaporation,	
respectively,	in	total	ET.	32	models	with	full	ET	partitioning	are	used.		
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Figure	2:	(a)	Multi-model	mean	annual	Leaf	Area	Index	(LAI)	over	1950-2005.	(b-

d)	Relationship	between	the	multimodel	mean	LAI	and	the	multi-model	mean	
fraction	of	(b)	transpiration	(Tran),	(c)	canopy	interception	(Ecan)	and	(d)	soil	
evaporation	(Esoil).	Each	dot	corresponds	to	a	land	pixel.	The	full	line	is	a	binned	
average.	Multi-model	means	are	calculated	for	the	22	common	models	for	which	all	
three	components	of	ET	and	LAI	were	available.		
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Figure	3:	Mean	value	and	spread	across	CMIP5	models	of	the	global	fraction	of	

each	ET	component	(in	%	of	total	ET).	Ecan:	canopy	interception;	Esoil:	soil	
evaporation;	Tran:	transpiration.	32	models	with	full	ET	partitioning	are	used.		The	
thick	line	represents	the	median	of	the	distribution,	the	central	dot	the	mean,	and	
edges	of	the	box	the	25%	and	75%	quantiles.	Whiskers	represent	the	total	model	
range.	
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Figure	4:	Cross-model	correlation	of	the	mean	annual	fractions	of	(a)	transpiration	

and	soil	evaporation;	(b)	transpiration	and	canopy	interception;	(c)	soil	evaporation	
and	canopy	interception.	32	models	with	full	ET	partitioning	are	used.	Red	and	blue	
contour	lines	indicate	positive	and	negative	correlations	significant	at	the	5%	level.	
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Figure	5:	Cross-model	correlation	of	mean	LAI	and	(a)	transpiration	fraction	(b)	

soil	evaporation	fraction	(c)	canopy	interception	fraction	(d)	sum	of	canopy	
interception	and	transpiration	fractions.	22	common	models	with	available	LAI	and	
ET	partitioning	outputs	were	used.	Red	and	blue	contour	lines	indicate	positive	and	
negative	correlations	significant	at	the	5%	level.	
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Figure	6:	(a)	Cross-model	correlation	between	summertime-mean	precipitation	

and	ET	component	fractions	(columns).	(b-d)	Cross-model	partial	correlation	
between	summertime-mean	ET	component	fractions	and	(b)	2m-temperature	(Tas)	
(c)	surface	sensible	heat	flux	(Hfss)	and	(d)	surface	upwelling	longwave	radiation	
(RLUS),	controlling	in	each	case	for	mean	summertime	ET	(as	indicated	by	the	
subscript	in	the	left	hand-side	labels;	see	text	for	details).	Summertime	is	defined	as	
JJA	in	the	northern	hemisphere	and	DJF	in	the	southern	hemisphere,	with	means	
taken	over	1950-2005.	29	common	models	for	which	all	variables	were	available	
are	used	for	all	correlations.	Red	and	blue	contour	lines	indicate	positive	and	
negative	correlations	significant	at	the	5%	level.	
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Figure	7:	Multi-model	mean	change	(mm/d)	in	(a)	annual	mean	precipitation,	(b)	

annual	mean	ET,	defined	as	2071-2100	minus	1950-2005.	For	consistency	with	
Figure	8,	24	models	with	full	ET	partitioning	outputs	for	RCP8.5	were	used.	For	
readability,	colors	saturate	beyond	the	color	scale	range	on	(a).		
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Figure	8:	Multi-model	mean	change	(mm/d)	between	1950-2005	and	2071-2100	

in		(a)	transpiration	(b)	soil	evaporation	and	(c)	canopy	interception	(mm/d).	(d-f)	
same	as	(a-c)	but	as	fraction	of	ET.	Stippling	indicate	where	more	than	80%	of	
models	agree	on	the	sign	of	changes.	24	models	with	full	ET	partitioning	in	present	
and	future	were	use	to	compute	changes.			
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Figure	9:	Multi-model	mean	changes	in	annual	ET	and	its	components	averaged	

globally	over	land,	in	absolute	values	(a)	and	as	fractions	of	ET	(b);	(c-d)	same	as	(a-
b)	but	over	the	Tropics	only	(-20-20°N).	The	meaning	of	the	boxplot	is	the	same	as	
in	Figure	3.	24	models	with	full	ET	partitioning	in	the	present	and	future	were	used	
to	compute	the	changes	
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Figure	10:		Cross-model	correlations	of	projected	changes	(between	1950-2005	

and	2071-2100)	in	the	mean	annual	fractions	of	(a)	transpiration	and	soil	
evaporation;	(b)	transpiration	and	canopy	interception;	(c)	soil	evaporation	and	
canopy	interception.	24	models	with	full	ET	partitioning	in	the	present	and	in	the	
future	are	used.	
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Figure	11:	(a)	Multi-model	mean	projected	change	between	1950-2005	and	2071-

2100	in	mean	annual	LAI	(-)	(b-d)	cross-model	correlations	of	projected	changes	in	
LAI	and	changes	in	fractions	of	(b)	transpiration,	(c)	soil	evaporation	and	(d)	canopy	
interception.	18	common	models	with	available	present	and	future	LAI	and	ET	
partitioning	were	used.	Red	and	blue	contour	lines	indicate	positive	and	negative	
correlations	significant	at	the	5%	level.		
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Figure	12:	Multi-model	mean	changes	(from	top	to	bottom)	in	precipitation,	ET,	

transpiration,	soil	evaporation,	canopy	interception,	LAI,	in	simulations	(from	left	to	
right)	CTL,	RAD,	PHYS,	between	the	first	and	last	30	years	of	each	simulation	(see	
text	in	section	2).	All	changes	in	mm/d,	except	for	LAI,	unitless.	Stippling	indicate	
where	5	out	of	6	models	agree	on	sign	of	changes.	For	readability,	colors	saturate	
outside	the	range	of	the	color	scale.		
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