

1 **Heterogeneity in the extent of linkage disequilibrium amongst exonic, intronic, non-**
2 **coding RNA and intergenic chromosome regions**

3

4 Alejandra Vergara-Lope¹, Sarah Ennis¹, Igor Vorechovsky¹, Reuben J Pengelly¹, Andrew
5 Collins^{1*}

6

7 1. Human Genetics

8 Faculty of Medicine,

9 University of Southampton,

10 Duthie Building (808),

11 Southampton General Hospital,

12 Tremona Road, Southampton SO16 6YD

13 Tel: 44 (0) 2381206939

14 *Corresponding author email: arc@soton.ac.uk

15

16

17

18

19 **Abstract**

20 Whole genome sequence data enable construction of high resolution linkage disequilibrium
21 (LD) maps revealing the LD structure of functional elements within genic and sub-genic
22 sequences. The Malecot-Morton model defines LD map distances in linkage disequilibrium
23 units (LDUs), analogous to the centimorgan scale of linkage maps. For whole genome
24 sequence-derived LD maps we introduce the ratio of corresponding map lengths
25 kilobases/LDU to describe the extent of LD within genome components. The extent of LD is
26 highly variable across the genome ranging from ~38 Kb for intergenic sequences to ~858 Kb
27 for centromeric regions. LD is ~16% more extensive in genic, compared to intergenic
28 sequences, reflecting relatively increased selection and/or reduced recombination in genes.
29 The LD profile across 18268 autosomal genes reveals reduced extent of LD, consistent with
30 elevated recombination, in exonic regions near the 5' end of genes but more extensive LD,
31 compared to intronic sequences, across more centrally located exons. Genes classified as
32 essential and genes linked to Mendelian phenotypes show more extensive LD compared to
33 genes associated with complex traits, perhaps reflecting differences in selective pressure.
34 Significant differences between exonic, intronic and intergenic components demonstrate
35 that fine-scale LD structure provides important insights into genome function which cannot
36 be revealed by LD analysis of much lower resolution array-based genotyping and
37 conventional linkage maps.

38

39 **Keywords**

40 Linkage disequilibrium, whole-genome sequence maps, recombination, selection, intron,
41 exon, non-coding RNA

42 **Running title:** Heterogeneity in extent of linkage disequilibrium

43 **Introduction**

44 The genome-wide pattern of linkage disequilibrium (LD) reflects the combined impacts of
45 recombination, natural selection, genetic drift and mutation. Therefore, analysis of fine-
46 scale LD structure provides opportunities to increase understanding of these important
47 processes and their impacts on the genome. Previously, LD analysis has enabled the
48 development of cost-effective genome-wide association studies, and the consequent
49 mapping of numerous common disease genes, through development of arrays of 'tag' SNPs
50 (1). LD studies have also increased understanding of population structure and migration (2,
51 3), the nature of recombination hot-spots and the identification of sequence determinants
52 which promote recombination (4, 5).

53 The ability to undertake cost-effective high sequence quality whole-genome sequencing
54 (WGS), enables analysis of the properties of genomes at high resolution. Pengelly et al (6)
55 demonstrated that LD maps from whole genome sequences yield ~2.8 fold as many regions
56 of intense LD breakdown (which align with recombination hot-spots) compared to array-
57 based tag genotypes which miss substantial information. The increased resolution from
58 sequence-based LD maps may provide further insights into the processes of selection and
59 recombination operating at the gene and sub-gene levels. Furthermore, because the reliable
60 recognition of disease-related variation in patient sequence data is challenging, increased
61 understanding of the impact of recombination and selection at the genic and sub-genic level
62 (7, 8) may aid the prioritisation of candidate genes and variants.

63 LD maps based on the Malecot-Morton model (9, 10, 11) combine pairwise association data
64 between single nucleotide polymorphisms (SNPs) to quantify the variable rate of decline of
65 LD with distance across SNP intervals. LD map distances are additive and analogous to the

66 linkage map centimorgan (cM) scale, but expressed in linkage disequilibrium units (LDUs)
67 where one LDU is the (highly variable) physical distance along the chromosome over which
68 LD declines to 'background' levels. Plots of the LDU scale, compared to the physical kilobase
69 (kb) maps show 'steps' where LD breaks- down over narrow sequence intervals (often
70 aligning with recombination hotspots) and 'plateaus' where LD is strong (regions which align
71 with 'blocks' of low haplotype diversity, (1)). Earlier construction of genome-wide LD maps
72 using this approach for array-based data (11, 12), including HapMap phase II (13), indicated
73 that the genome of the CEU population (Utah Residents with Northern and Western
74 European ancestry) has 57,819 LDUs. Given that the genome sequence spans ~3,100,000 Kb
75 the average extent of LD (Kb/LDU) is ~54 Kb. However, this figure is based on data from
76 HapMap tag SNP arrays which have much lower resolution than WGS (6). The increased
77 resolution from WGS-derived maps enables analysis of the LD structure of much finer-scale
78 genomic features such as gene exonic and intronic sequences.

79 Previous analyses have considered the extent of recombination and LD within and between
80 genes. McVean et al (14) found recombination rates to be higher in inter-genic regions close
81 to genes, compared to recombination rates within genes. Eberle et al (15) found a
82 significant increase in the extent of LD in genic versus intergenic regions which could not be
83 explained purely by differences in the recombination rates, consistent with increased
84 selection in genic regions.

85 Kong et al (16) describe a fine-scale recombination map with 10 Kb resolution. Using 10 Kb
86 bins classified as genic, intergenic, or at gene boundaries, they demonstrated reduced
87 recombination rates in genic, compared to intergenic, regions along with some sex-specific
88 differences. They noted lower recombination rates in bins containing only exons and higher

89 rates for bins containing only introns, particularly for intronic bins distant from exons.
90 Similarly, in intergenic regions, recombination rates were found to increase with distance
91 from exons. For intergenic regions close to genes they observed reduced recombination
92 closer to the 5' ends of genes than to the 3' ends. Bins containing the first exon of a gene
93 were found to have a higher recombination rate than the last.

94 Berger et al (17) found approximately 13.6% more LD in genic, compared to non-genic,
95 regions of the genome in their study based on array-based genotyping (684,990 SNPs).
96 However their results do not correct for the substantial chromosome-size dependent
97 differences in the average extent of LD which reflect the higher recombination rates of
98 smaller chromosomes (11).

99 We describe linkage disequilibrium maps of the autosomal genome constructed from a large
100 WGS data sample from individuals in the Wellderly study (18)
101 (<https://genomics.scripps.edu/browser/>) of healthy, elderly, individuals aged >80 years
102 from the general US population sequenced at high depth on the Complete Genomics
103 platform. The much increased resolution of LD structure enables analysis of LD patterns on a
104 very fine scale at the level of individual gene exons providing novel insights into the impact
105 of recombination and selection on genome structure and function.

106 **Materials and Methods**

107 ***Samples used and single nucleotide polymorphism processing***

108 SNP genotypes were obtained from WGS data from the Scripps Wellderly Genome Resource
109 comprising 454 unrelated individuals of ethnically European origin from the Wellderly study
110 (18). Following Pengelly et al (6) we excluded SNPs with >5% missing genotypes and SNPs

111 with a Hardy-Weinberg deviation p-value of <0.001 (19). Since rare SNPs are uninformative
112 for LD we evaluated the impact of excluding SNPs with alternative minor allele frequencies
113 (MAF) of <0.05 and <0.01, using chromosome 22 as an example (Supplementary Figure 1).
114 We found both LD maps were very similar but using a <0.01 MAF cut-off produced a 3.4%
115 longer map. Using a MAF <0.01 cut-off retains many more SNPs (103,367, compared to
116 70,579 SNPs retained using the MAF <0.05 cut-off) and may help better resolve LD structure
117 in genomic regions with higher recombination rates. We therefore used all SNPs with a
118 MAF of 0.01 or greater for subsequent work. The completed LDU maps of chromosomes 1-
119 22 contain 7,162,973 SNPs (Table 1) spanning a total chromosome length of 2,791,110 Kb
120 indicating a density of one SNP every ~400 base pairs.

121 ***LD map construction***

122 We undertook the construction of LD maps in LDUs for the autosomal chromosomes 1-22
123 using the LDMAP program which implements the Malecot-Morton model. The program
124 constructs maps iteratively using composite likelihood (9, 11, 13). LD MAP evaluates the rate
125 of decline of LD (parameterised as ε), in each interval between adjacent SNPs, using a sliding
126 window which weights association data from all SNP pairs in the region which include the
127 interval of interest. The corresponding LDU distance for the interval is εd where d is the
128 physical distance in kilobases and LDU distances are additive to form a map contour
129 (Supplementary figure 2).

130 ***LDU map analysis***

131 We compared lengths of maps in LDUs with genetic map lengths in cM for chromosomes (20)
132 (Table 1). We also compared LD structure with recombination rates as LDU/cM for
133 chromosomes (Table 1).

134 We determined the extent of linkage disequilibrium as Kb/LDU for intergenic regions and
135 also for non-coding RNA regions, genes and exons and introns within genes. The boundaries
136 of gene, exon, intron, intergenic and non-coding RNA regions were identified using the NCBI
137 RefSeq gene definitions. However, we recognise that the definition of genomic features is
138 complex because, for example, there is variable exon utilisation in different transcripts and
139 so discrimination between alternative genome features is far from straightforward. Custom
140 scripts were used for linear interpolation to convert the sequence positions of the
141 boundaries of these features into corresponding locations on the LDU map. Although the
142 LDU maps are not linear the use of linear interpolation for analysis of high-resolution maps
143 is justified over short distances. We determined LDU locations and matched with approved
144 gene names for 18,268 autosomal genes. For analysis of genic and intergenic regions we
145 followed Berger et al (17) such that all genes which overlap with other genes were merged
146 into a smaller number of “genic regions”. A custom python script was implemented to
147 establish the boundaries of genic regions. Inter-genic regions were taken as any areas
148 flanked by, but not overlapped by, genic regions. Heterochromatic regions from acrocentric
149 chromosome p-arms were not included in the maps or subsequent analyses. All centromeric
150 intervals (which also include centromeric heterochromatin) between the last gene on
151 chromosome p-arms and the first gene on the q-arms of non-acrocentric chromosomes
152 were excluded from analysis of intergenic regions because of the distinct properties of these
153 regions. The LDU boundaries of all annotated exons and introns were determined by linear

154 interpolation in the same way and genes partitioned into those transcribed on either the
155 forward or reverse strand. The latter enabled unified analysis of all genes in the 5' to 3'
156 direction. The small number of exons and introns involved in production of transcribed
157 products on both forward and reverse strands were excluded from the exon/intron analysis.
158 Non-coding RNA data were also clustered where overlapping but were not distinguished
159 from other genomic features (such as our definition of intergenic regions) if they overlapped
160 these regions. The physical size of annotated features is given in Supplementary Table 1, the
161 LDU size of corresponding features in given in Supplementary Table 2 and the corresponding
162 counts of annotated features are given in Supplementary Table 3. To quantify the extent of
163 LD for each feature we used the ratio Kb/LDU throughout which represents the extent of LD
164 in kilobases for any genomic region (Table 2).

165 ***Variation in the extent of LD across genes***

166 We examined the profile of variation in extent of LD across all genes, considering exonic
167 and intronic regions separately. Because gene size is highly variable we divided all genes into
168 five bins oriented from 5' to 3', with bins equally sized for a given gene. The location of the
169 mid-point in the sequence of each exon and/or intron was used to sum the LDU and Kb
170 length of that exon or intron into the respective bin (Supplementary Table 4). To examine
171 the impact of highly variable gene size we constructed LD extent profiles using the set of
172 18,268 genes divided into two groups of 9,134 genes each corresponding to "small genes"
173 of size < 23.5 Kb and "large genes" of size > 23.5 Kb (Supplementary Tables 5 and 6).

174 ***Variation in extent of LD for different gene groups***

175 We examined the extent of LD for annotated genes by assigning them, where names and
176 locations matched, to one of the five gene groups defined by Spataro et al (21). The
177 classification is useful for examining the extent of LD and relationship to gene essentiality
178 and disease. The gene groups are defined as:

179 1. Essential non- disease genes (END), 1,572 putatively essential genes defined as
180 orthologues of mouse essential genes detected by knock-out experiments and not involved
181 in any human disease. 2. Non-disease Non-essential genes (NDNE), 13,135 genes not known
182 to be involved in any human disorder and not known to be essential. 3. Complex Non-
183 Mendelian (CNM), 2,388 genes uniquely associated with complex diseases. 4. Complex-
184 Mendelian (CM), 203 genes associated with both complex and Mendelian disorders. 5.
185 Mendelian Non-Complex (MNC), 684 genes uniquely causing Mendelian disease traits. We
186 determined the extent of LD in each of the five gene groups (Supplementary Table 7).

187 **Results**

188 ***Whole chromosome LDU maps and comparison with linkage maps***

189 The LD map of the autosomes (Table 1) has ~63,428 LDUs which is of similar magnitude to
190 earlier estimates from the CEU population using HapMap phase II data (but which also
191 included the X chromosome) of 57,819 LDUs (13). The Lau et al study considered four
192 populations with 1.9-2.3 million SNPs per population, compared with ~7.2 million SNPs in
193 the single population considered in the present study. The increased map length with
194 addition of SNPs, which was also observed over both HapMap phase releases, is likely
195 linked to improved resolution of LD structure in previously poorly covered regions, as
196 suggested by Pengelly et al (6). The latter study, using WGS data for 96 individuals from the

197 CEU population determined an LDU length of ~1021 for chromosome 22. This compares
198 with ~1184 LDUs from the present study (Table 1), however, a minor allele frequency cut-
199 off of 0.05 was used in the earlier study (unlike 0.01 used here) which would contribute to
200 the difference in map length.

201 The chromosome average Kb/LDU ratio (Table 2) suggests that LD extends across the
202 autosomes for ~42Kb in this population, somewhat less extensive than earlier estimates
203 from incompletely saturated maps using tag-SNP array data (11, 13). Comparison with the
204 genetic linkage map lengths of chromosomes in centimorgans (20) (Table 1, Supplementary
205 Figure 3) confirms the strong correlation (R^2 0.985) between LDU and recombination map
206 lengths, which must reflect a high degree of positional alignment between historical and
207 present day recombination events (11). However, on finer-scales the correlation
208 deteriorates in part because of the much lower resolution of genetic linkage maps and the
209 influence of other processes, including selection, mutation and drift, which impact the LD
210 structure. The present maps indicate an average of ~18.4 LDU/cM with a range of 16.7-19.9
211 for individual chromosomes (Supplementary Figure 3, Table 1).

212 Zhang et al (12) estimated an 'effective population bottleneck time' of 43,000 years based
213 on an estimate of 59,000 LDUs for an autosomal euchromatic genome spanning 34.36
214 Morgans. The current data suggest 63,428 LDUs/ 34.36 Morgans (Table 1) = 1846
215 generations or 46,150 years since an effective bottleneck, assuming 25 years per generation.
216 Consistent with the previous study the effective bottleneck time reflects the compound
217 effect of numerous population bottlenecks and not any single 'out of Africa' event.

218 ***Extent of LD in genic, exonic, intronic and intergenic regions***

219 We compared 16,742 genic regions with 16,720 intergenic regions (Supplementary Table 3).
220 Genic regions (introns and exons combined) comprise ~40% of the sequence, intergenic
221 regions ~55% and centromeric regions ~4.3% (Supplementary Table 1). Comparable LDU
222 lengths (Supplementary Table 2) are ~38%, ~61% and ~0.32% the greatly reduced LDU
223 lengths in centromeric regions reflecting deeply suppressed recombination and therefore
224 particularly strong LD. The extent of LD in centromeric regions (Table 2) is dramatically
225 different from the chromosome average of ~42 Kb being in the range 140 Kb (chromosome
226 19) to 3,773 Kb (chromosome 1). The average extent of LD across the genic regions of
227 autosomes is ~44.5 Kb compared to ~37.8 Kb for intergenic regions (Table 2). Hence LD is
228 ~16% more extensive in genic compared to intergenic regions presumably reflecting
229 relatively reduced recombination and/or increased selection across genic regions.

230 We determined the LDU lengths of individual gene exons and introns but quantified these
231 for all 18,268 genes, excluding overlaps. The former span ~2.23% of the genome sequence
232 length and the latter span ~35.53% (Supplementary Table 2). The overall difference in the
233 extent of LD between exons and introns is small (~4%, Table 2) with more extensive LD in
234 exons, however, there is a consistent difference across chromosomes (Table 2) with the
235 difference approaching significance ($P=0.078$, Table 3). The greater extent of LD across
236 exonic and intronic regions compared to intergenic regions is highly significant ($P<0.001$,
237 Table 3). The strong relationship between the extent of LD and chromosome recombination
238 rate (Figure 1) is evident with elevated recombination rates across the smaller
239 chromosomes (eg. cM/Mb) reflected in markedly reduced extent of LD for these
240 chromosomes. We compared the extent of LD across non-coding RNAs (ncRNA) which
241 comprise ~11% of the sequence (Supplementary Table 2). The extent of LD across these

242 regions is not significantly different from the extent in exons (Table 3) and LD is ~4.5% more
243 extensive than in intronic regions and ~21% more extensive than in intergenic regions (Table
244 3).

245 ***Variable extent of LD across genes from 5' to 3' ends***

246 The profile (Figure 2) shows more extensive LD in the exonic, compared to intronic regions
247 (bins 2-5, but the difference is only significant for bin 2, P=0.011, Supplementary Table 4). In
248 contrast, in bin 1, which is closest to the 5' end of genes, there is significant evidence that
249 introns have more extensive LD than exons (P=0.009, Supplementary Table 4). Reduced LD
250 in exons towards the 5' end of genes aligns with the recombination patterns reported by
251 Kong et al (20) who found bins containing the first exon of a gene have a higher
252 recombination rate than those containing the last exon.

253 Exons within the more central regions show elevated LD extending to ~52 Kb for bin 2
254 (Supplementary Table 4) with a decline in extent of LD towards the 3' end. Introns show
255 more uniform LD patterns across the gene with a decline in extent towards the 3' end. More
256 extensive LD amongst introns at the 5' end compared to the 3' end of genes might reflect
257 increased conservation of first introns which are enriched for active transcriptional signals
258 which are under increased selection (22). The first introns and exons of genes are noted to
259 be more GC rich than the last and internal (23, 24) a feature which may be related to
260 regulatory functions. Correlations between regions of high GC content and recombination
261 are well established (25) and differential GC content/recombination across genes, might
262 account for some of the variability in extent of LD shown in Figure 2. However, the much
263 lower resolution of recombination maps makes evaluation of recombination rates for very
264 fine-scale genomic features challenging.

265 Considering genes stratified into small and large size groups (Supplementary Tables 5 and 6,
266 Supplementary Figure 4) there is no significant difference in the extent of LD between exons
267 and introns of small genes but increased evidence for a difference in some bins for large
268 genes. LD also extends further generally for large genes in both exonic and intronic regions
269 compared to small genes. While it is possible that larger genes are subject to elevated
270 selective pressure since they have a higher density of exons corresponding to multiple
271 linked sites (26) further studies are required to fully interpret this difference.

272 ***Variable extent of LD across gene groups.***

273 Essential non-disease (END) genes (Figure 3, Supplementary Table 7) show significantly
274 more extensive LD (53.9 Kb) compared to genes implicated in complex phenotypes (CNM
275 and CM groups, 40.9 and 35.2 Kb respectively). However the small increase in extent of LD
276 relative to Mendelian genes (MNC) is not significant. Increased selective pressure in both
277 END and MNC gene groups, relative to genes involved in complex phenotypes where
278 variants have reduced phenotypic effect, might account for this difference. The large group
279 of genes classed as non-disease and non-essential (NDNE) also show extensive LD although
280 the extent to which some genes in this group are miss-classified because relationships with
281 disease phenotypes and essentiality are not yet known is unclear.

282

283 **Discussion**

284 The broad characteristics of LD maps constructed from WGS data compare quite closely
285 with the previously constructed SNP array-based maps. Map lengths are of similar
286 magnitudes, despite vastly more SNPs in the WGS maps, and the computed effective

287 bottleneck time of ~46,000 years is comparable with the previous estimate from a similar
288 population. The pattern of extensive LD across centromeres (shown as broad 'plateau'
289 regions in Supplementary Figure 2), as previously noted but not directly quantified, suggests
290 that LD extends ~one megabase on average in these regions. The high resolution maps
291 demonstrate that differences in fine-scale LD structure are detectable down to at least exon
292 level, despite exons encompassing only ~2% of the autosomal genome with an average exon
293 size of just ~300 base pairs. The resolution of this map contrasts, for example, with the Kong
294 et al (16) study which examined recombination patterns across a linkage map with ~10 Kb
295 resolution.

296 Berger et al (17) did not observe less extensive LD on the smaller chromosomes compared
297 to larger chromosomes, however, substantial differences are evident in the maps presented
298 here reflecting the much increased recombination rate of smaller chromosomes. For
299 example LD extends on average only ~30 Kb on chromosome 22 compared to ~50 Kb on
300 chromosome 1 (Table 2). The difference in recombination rate mirrors this observation (20)
301 since chromosome 22 recombines at a rate of ~2.1 cM/Mb compared to ~1.1 for
302 chromosome 1 and confirms the close alignment between extent of LD and recombination
303 rate. However, it is worth noting that, among other differences between the two studies,
304 Berger et al (17) used the r^2 metric to define pairwise LD.

305 Despite the differences in methodology, Berger et al demonstrated more extensive LD (an
306 increase of 13.6%) , compared to non-genic regions, which compares quite closely with the
307 findings from this study (~16% more extensive LD in gene regions, Table 3). Genic regions
308 are more conserved than non-genic regions and therefore the tendency for recombination
309 to be higher away from genic regions might reduce disruption of biological pathways (17).

310 Hence chromosome regions with low recombination are generally found to be enriched for
311 highly conserved genes with essential cellular functions (7, 27). However, genomic regions
312 or genes with low recombination rates may also have an excess of damaging variation,
313 through higher proportions of rare ($MAF < 0.01$) and non-synonymous variants, because
314 purifying selection is less effective given low recombination (27). Medically relevant rare
315 variants are more likely to be found in recombination cold-spots: ultra-sensitive regions of
316 the genome which have up to 400X enrichment of disease-causing variation (28) have a
317 greatly elevated number of recombination cold-spots. The more extensive LD in exonic
318 regions is considered to reflect selection against recombination within exons, and the
319 possibility that recombination is mutagenic (14, 29). Brick et al (30) indicate that the *PRDM9*
320 mechanism re-routes meiotic double-stranded breaks away from important genomic
321 functional elements which may have a protective role against the possible mutagenic effects
322 of recombination. Therefore there is a complex relationship between low recombination
323 rates, which may allow the build-up of damaging variation, and high recombination, which
324 may be mutagenic, and the interaction with selection.

325 The variation seen in the LD profile across the exonic and intronic components of genes
326 (Figure 2) shows some interesting alignment with other studies which have evaluated the
327 exon-intron architecture of genes (31). The authors examined correlations with exon and
328 intron ordinal positions in genes for 13 species and found reductions in exon and intron
329 length, GC content and nucleotide divergence with increasing ordinal position from 5' to 3'.
330 While the functional basis for the patterns of variation are not well understood the authors
331 argue the relationships observed might reflect time-sequential evolution (earlier arising
332 introns and exons being longer or more divergent).

333 Discriminating between components of the LD structure determined by recombination from
334 those which reflect positive selection remains extremely challenging. This difficulty extends
335 even to the genetic region for lactase persistence (a region widely recognised as showing
336 strong positive selection) which is associated with at least five regulatory SNPs in a 14 Kb
337 region upstream of the *LCT* gene (32). The authors determine that, although extended
338 haplotype homozygosity (EHH) analysis shows extended haplotype lengths around the
339 selected alleles (consistent with positive selection) an ancestral haplotype also has an
340 extended length for reasons which are not likely to be related to selection for lactase
341 persistence. The region of EHH aligns precisely with a region with reduced recombination
342 and therefore strong LD in all populations. Regions of the genome with restricted
343 recombination can therefore provide misleading interpretations of the extent of selection.

344 If the similar patterns of strong LD observed here for exonic and ncRNA regions (Figure 2)
345 reflect increased positive selection this might align with evidence for the functional
346 significance of ncRNA regions. LD is 4.5% and 20.7% more extensive in ncRNA regions than
347 intronic and intergenic sequences respectively (Table 3). The ENCODE Project Consortium
348 (33) indicated that there are thousands of ncRNAs and the genome is “pervasively
349 transcribed”, suggesting they may have important functions. The ncRNA set includes long
350 non-coding RNAs (RNA transcripts with length > 200), which undergo splicing as mRNA
351 precursors, and have been implicated in many significant biological phenomena (34)
352 including imprinting, chromosome conformation, regulation of enzymatic activity,
353 coordination of cell state, differentiation, development and disease. Interestingly,
354 organismal complexity is more closely related to the diversity and size of non-coding RNA
355 expression profiles than with that of protein-coding genes (34). Further analysis of LD

356 structure differences between different ncRNA classes might be indicative of the relative
357 functional importance of the sub-types.

358 The findings demonstrate that LD structure provides insights into genome function at the
359 sub-genic level with demonstrable differences between LD patterns within features as small
360 as exons. Furthermore the pattern of LD varies across the gene profile although the
361 functional implications of this are not fully understood. Further analysis of fine-scale LD
362 structure in more genome sequence samples are likely to provide further insights into the
363 functional significance of these patterns.

364 **Data availability**

365 The LDU maps constructed and described in this study are available at: [repository URL to be
366 inserted in proof]

367 **Conflict of interest**

368 The authors state that there are no conflicts of interest related to this work.

369 **References**

370 1. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of
371 haplotype blocks in the human genome. *Science* 2002, Jun 21;296(5576):2225-9.
372 2. Service S, DeYoung J, Karayiorgou M, Roos JL, Pretorius H, Bedoya G et al. Magnitude
373 and distribution of linkage disequilibrium in population isolates and implications for
374 genome-wide association studies. *Nature Genetics* 2006, 38(5), 556-560

375 3. Jakkula E, Rehnström K, Varilo T, Pietiläinen OPH, Paunio T, Pedersen NL et al. The
376 genome-wide patterns of variation expose significant substructure in a founder population.
377 The American Journal of Human Genetics 2008, Dec 12;83(6):787-94.

378 4. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II
379 region of the major histocompatibility complex. Nature genetics 2001, Oct 1;29(2):217-22.

380 5. Myers S, Freeman C, Auton A, Donnelly P, McVean G. A common sequence motif
381 associated with recombination hot spots and genome instability in humans. Nature genetics
382 2008, Sep 1;40(9):1124-9.

383 6. Pengelly RJ, Tapper W, Gibson J, Knut M, Tearle R, Collins A et al. Whole genome
384 sequences are required to fully resolve the linkage disequilibrium structure of human
385 populations. BMC genomics 2015, Sep 3;16(1):666.

386 7. Gibson J, Tapper W, Ennis S, Collins A. Exome-based linkage disequilibrium maps of
387 individual genes: functional clustering and relationship to disease. Human genetics 2013,
388 Feb 1;132(2):233-43.

389 8. Pengelly RJ, Vergara-Lope A, Alyousfi D, Jabalameli MR, Collins A. Understanding the
390 disease genome: gene essentiality and the interplay of selection, recombination and
391 mutation. Briefings in bioinformatics 2017, bbx110.

392 9. Maniatis N, Collins A, Xu CF, McCarthy LC, Hewett DR, Tapper W et al. The first linkage
393 disequilibrium (LD) maps: delineation of hot and cold blocks by diplotype analysis.
394 Proceedings of the National Academy of Sciences 2002, Feb 19;99(4):2228-33.

395 10. Zhang W, Collins A, Maniatis N, Tapper W, Morton NE. Properties of linkage
396 disequilibrium (LD) maps. *Proceedings of the National Academy of Sciences* 2002, Dec
397 24;99(26):17004-7.

398 11. Tapper W, Collins A, Gibson J, Maniatis N, Ennis S, Morton NE. A map of the human
399 genome in linkage disequilibrium units. *Proceedings of the National Academy of Sciences of*
400 *the United States of America* 2005, Aug 16;102(33):11835-9.

401 12. Zhang W, Collins A, Gibson J, Tapper WJ, Hunt S, Deloukas P et al. Impact of population
402 structure, effective bottleneck time, and allele frequency on linkage disequilibrium maps.
403 *Proceedings of the National Academy of Sciences* 2004, Dec 28;101(52):18075-80.

404 13. Lau W, Kuo TY, Tapper W, Cox S, Collins A Exploiting large scale computing to construct
405 high resolution linkage disequilibrium maps of the human genome. *Bioinformatics* 2006, Dec
406 1;23(4):517-9.

407 14. McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P. The fine-scale
408 structure of recombination rate variation in the human genome. *Science* 2004, Apr
409 23;304(5670):581-4.

410 15. Eberle MA, Rieder MJ, Kruglyak L, Nickerson DA. Allele frequency matching between
411 SNPs reveals an excess of linkage disequilibrium in genic regions of the human genome.
412 *PLoS Genetics* 2006, Sep 8;2(9):e142.

413 16. Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A et al.
414 Fine-scale recombination rate differences between sexes, populations and individuals.
415 *Nature* 2010, Oct 28;467(7319):1099-103.

416 17. Berger S, Schlather M, de Los Campos G, Weigend S, Preisinger R, Erbe M et al. A scale-
417 corrected comparison of linkage disequilibrium levels between genic and non-genic regions.
418 PloS one 2015. Oct 30;10(10):e0141216.

419 18. Erikson GA, Bodian DL, Rueda M, Molparia B, Scott ER, Scott-Van Zeeland AA et al.
420 Whole-genome sequencing of a healthy aging cohort. Cell 2016, May 5;165(4):1002-11.

421 19. Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg
422 equilibrium. Am J Hum Genet 2005, 76:887-93

423 20. Kong A, Gudbjartsson DF, Sainz J, Jónsdóttir GM, Gudjonsson SA, Richardsson B, et al. A
424 high-resolution recombination map of the human genome. Nature genetics 2002, Jul 1;31(3).

425 21. Spataro N, Rodríguez JA, Navarro A, Bosch E. Properties of human disease genes and the
426 role of genes linked to Mendelian disorders in complex disease aetiology. Human molecular
427 genetics 2017, 26(3), 489-500.

428 22. Park SG, Hannenhalli S, Choi SS. Conservation in first introns is positively associated with
429 the number of exons within genes and the presence of regulatory epigenetic signals. BMC
430 genomics 2014, Dec;15(1):526.

431 23. Kalari KR, Casavant M, Bair TB Keen HL, Comeron JM, Casavant TL et al. First exons and
432 introns—a survey of GC content and gene structure in the human genome. In silico biology
433 2006, 6, no. 3 : 237-242.

434 24. Amit M, Donyo M, Hollander D, Goren A, Kim E, Gelfman S et al. Differential GC content
435 between exons and introns establishes distinct strategies of splice-site recognition. Cell
436 reports 2012, 1(5), pp.543-556.

437 25. Fullerton SM, Bernardo Carvalho A, and Clark AG. Local rates of recombination are
438 positively correlated with GC content in the human genome. *Molecular biology and*
439 *evolution* 2001, 18, no. 6: 1139-1142.

440 26. Payseur BA and Nachman MW. Gene density and human nucleotide polymorphism.
441 *Molecular Biology and Evolution* 2002, 19(3):336-40.

442 27. Hussin JG, Hodgkinson A, Idaghdour Y, Grenier JC, Goulet JP, Gbeha E et al.
443 Recombination affects accumulation of damaging and disease-associated mutations in
444 human populations. *Nature genetics* 2015, Apr 1;47(4):400-4.

445 28. Khurana E, Fu Y, Colonna V, Mu XJ, Kang HM, Lappalainen T et al. Integrative annotation
446 of variants from 1092 humans: application to cancer genomics. *Science* 2013, Oct
447 4;342(6154):1235587.

448 29. Hellmann I, Ebersberger I, Ptak SE, Pääbo S, Przeworski M. A neutral explanation for the
449 correlation of diversity with recombination rates in humans. *The American Journal of*
450 *Human Genetics* 2003, Jun 1;72(6):1527-35.

451 30. Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV . Genetic recombination
452 is directed away from functional genomic elements in mice. *Nature* 2012, 485, no. 7400: 642.

453 31. Zhu L, Zhang Y, Zhang W, Yang S, Chen JQ, Tian D. Patterns of exon-intron architecture
454 variation of genes in eukaryotic genomes. *BMC genomics* 2009, 10, no. 1 : 47.

455 32. Liebert A, López S, Jones BL, Montalva N, Gerbault P, Lau W et al. World-wide
456 distributions of lactase persistence alleles and the complex effects of recombination and
457 selection. *Human genetics* 2017, 136(11-12), pp.1445-1453.

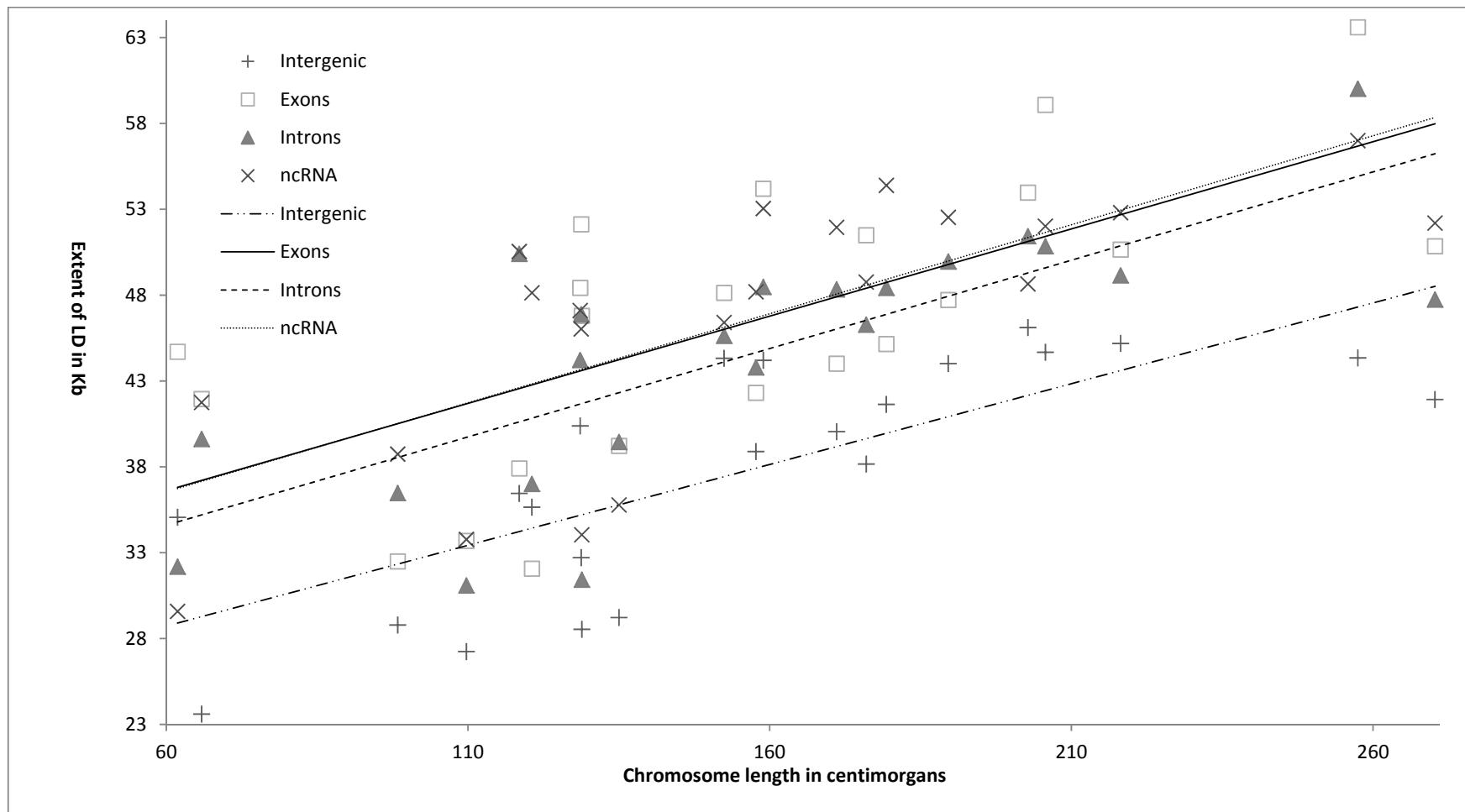
458 33. ENCODE Project Consortium. Identification and analysis of functional elements in 1% of
459 the human genome by the ENCODE pilot project. *Nature* 2007. Jun;447(7146):799.

460 34. Quinn JJ and Chang HY. Unique features of long non-coding RNA biogenesis and function.
461 *Nature Reviews Genetics* 2016, 17(1), p.47.

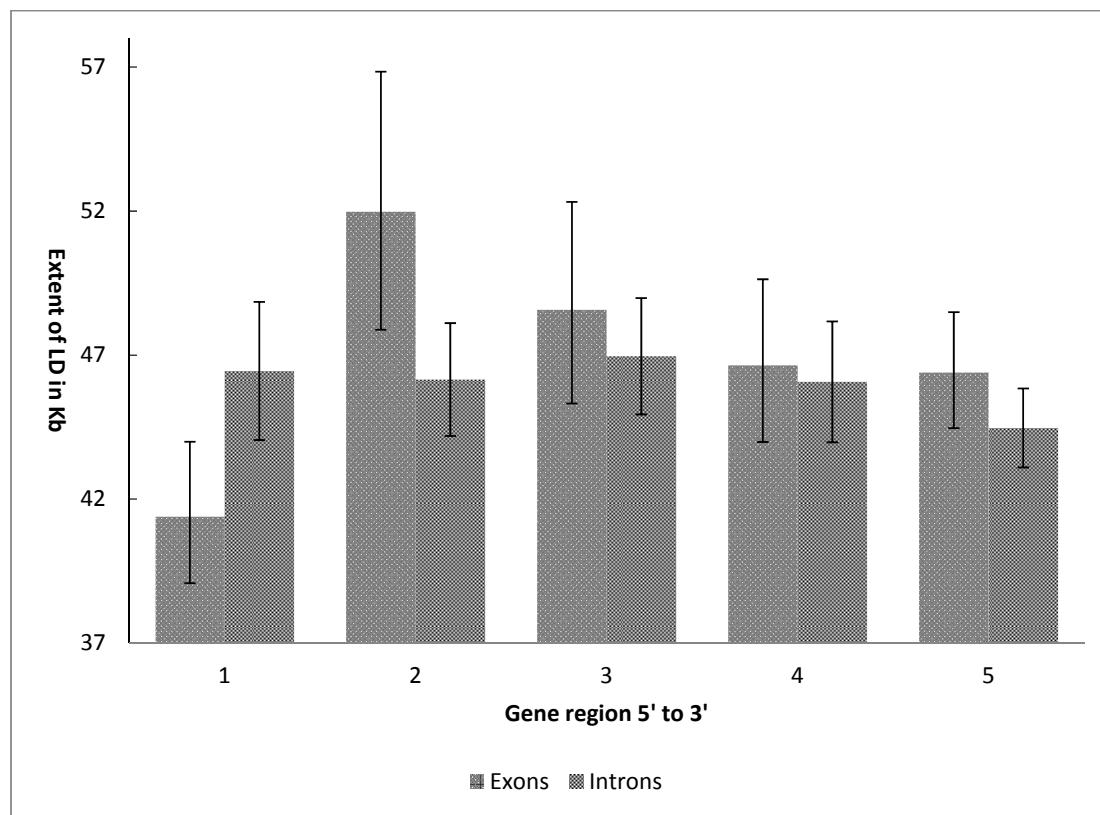
462 **Figure legends**

463 **Figure 1. The extent of LD (in kb) for chromosomes 1-22 against chromosome length in**
464 **centimorgans.** There is a strong linear relationship between chromosome genetic length
465 and extent of LD because smaller chromosomes have a higher rate of recombination per
466 unit physical length. Intergenic regions show significantly reduced extent of LD, intronic
467 regions occupying an intermediate position between exonic and ncRNA regions which show
468 the most extensive LD. The observed patterns indicate elevated selection and/or reduced
469 recombination in functionally sensitive genome regions.

470 **Figure 2. The extent of LD in Kb across the gene profile from 5' to 3'.**


471 The profile of LD across all genes with LDU and Kb data allocated to one of five (equally
472 sized within a gene) positional bins. The extent of LD is most variable for exonic regions: LD
473 is less extensive, suggesting relatively increased recombination and/or reduced selection,
474 towards the 5' end of genes. The 95% confidence intervals are shown.

475 **Figure 3. The extent of LD in Kb for different gene groups.**


476 Groups of genes classified according to essentiality and relationship to disease phenotypes
477 show wide variability in the extent of LD. Genes classed as essential (END) and Mendelian
478 disease genes (MNC) show elevated extent of LD compared to genes with variation related

479 to complex disease phenotypes (CNM, CM). This might reflect elevated selective pressure
480 within genes assigned to the Mendelian and essential groups. The large group of genes not
481 known to be associated with disease and not known to be essential (NDNE) also show
482 extensive LD but this group is likely to include some miss-classified genes not currently
483 identified as essential or disease related. The 95% confidence intervals are shown.

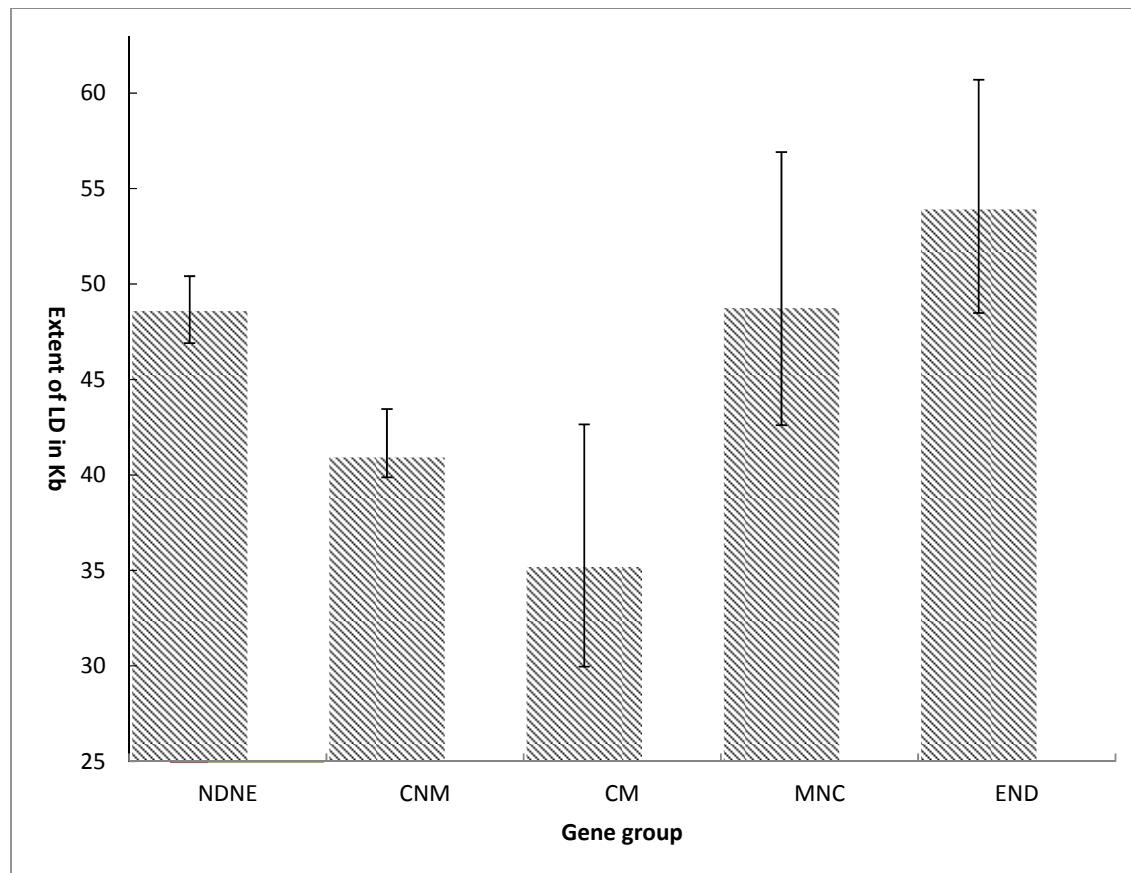

Figure 1. The extent of LD (in Kb) for chromosomes 1-22 against chromosome length in centimorgans

Figure 2. The extent of LD in Kb across the gene profile from 5' to 3'.

Figure 3. The extent of LD in Kb for different gene groups

Table 1. Characteristics of whole chromosome maps

Chromosome	Chromosome start location (Kb)	Chromosome end location (Kb)	Chromosome Kb coverage	Chromosome LDU length	Number of SNPs	Chromosome length (cM)	LDU/cM
1	69.51	249222.53	249153.02	5078.92	557873	270.27	18.79
2	11.94	239856.97	239845.03	4736.82	593868	257.48	18.40
3	60.20	197880.78	197820.58	4138.09	509066	218.17	18.97
4	13.26	191033.02	191019.76	3936.59	504243	202.8	19.41
5	13.33	1807165.00	180702.67	3785.07	459987	205.69	18.40
6	148.00	170919.74	170771.73	3604.75	472261	189.6	19.01
7	21.95	159127.02	159105.07	3460.39	415335	179.34	19.30
8	161.47	146296.84	146135.37	3101.18	400025	158.94	19.51
9	62.10	141102.87	141040.77	2953.02	311320	157.73	18.72
10	92.19	135506.38	135414.19	3140.77	367619	176.01	17.84
11	189.67	134945.77	134756.10	2943.56	351378	152.45	19.31
12	83.15	133838.99	133755.84	2990.16	345765	171.09	17.48
13	19168.01	115108.80	95940.79	2309.50	261818	128.6	17.96
14	19050.28	107288.38	88238.10	2158.42	239704	118.49	18.22
15	20010.01	102486.12	82476.10	2151.48	207177	128.76	16.71
16	83.89	90180.71	90096.83	2562.56	229203	128.86	19.89
17	0.83	81153.78	81152.95	2287.03	195607	135.04	16.94
18	11.28	78015.56	78004.28	2079.02	208014	120.59	17.24
19	94.62	59097.93	59003.31	1869.27	163978	109.73	17.04
20	61.10	62964.27	62903.17	1846.33	166816	98.35	18.77
21	9495.96	48100.71	38604.75	1110.60	99550	61.86	17.95
22	16054.80	51223.99	35169.19	1184.17	102366	65.86	17.98
Totals/Chromosome mean	-	-	2791109.60	63427.68	7162973	3435.71	18.36

2 *Table includes all heterochromatic and centromeric regions except acrocentric p-arms which were not sequenced.
3 Genome reference sequence hg19 was used throughout.

1 **Table 2 Extent of LD in Kb (Kb/LDU) in different genome regions**

Chromosome	*Whole chromosomes	Genic regions	Gene Exons	Gene Introns	Non-coding RNAs	**Intergenic regions	Centromeric regions	Gene exons + Non-coding RNAs
1	49.06	48.15	50.85	47.74	52.20	41.92	3772.89	51.96
2	50.63	59.96	63.60	60.02	57.00	44.34	262.41	57.79
3	47.80	49.39	50.65	49.15	52.80	45.19	413.50	52.51
4	48.52	51.26	53.97	51.43	48.65	46.11	1687.53	49.35
5	47.74	50.95	59.08	50.85	52.01	44.67	1331.94	52.78
6	47.37	50.05	47.72	49.96	52.53	44.01	445.44	52.83
7	45.98	48.38	45.15	48.42	54.39	41.63	383.35	52.83
8	47.12	48.42	54.20	48.48	53.04	44.20	377.97	53.16
9	47.76	43.88	42.31	43.79	48.19	38.89	1198.94	47.04
10	43.11	46.68	51.49	46.28	48.76	38.16	740.88	49.15
11	45.78	45.78	48.13	45.63	46.40	44.32	626.28	46.75
12	44.73	48.13	44.01	48.34	51.95	40.05	632.59	49.98
13	41.54	44.36	48.42	44.22	47.10	40.38	-	47.23
14	40.88	49.18	37.91	50.40	50.54	36.45	-	47.8
15	38.33	46.47	52.12	46.88	46.03	32.71	-	46.83
16	35.16	32.47	46.79	31.43	34.04	28.54	664.07	36.4
17	35.48	39.69	39.22	39.45	35.78	29.22	654.01	36.68
18	37.52	36.62	32.07	37.00	48.13	35.65	278.98	45.11
19	31.56	31.42	33.69	31.09	33.77	27.24	139.52	33.74
20	34.07	36.73	32.49	36.47	38.74	28.79	980.69	37.18
21	34.76	32.69	44.70	32.19	29.58	35.06	-	30.63
22	29.70	39.24	41.95	39.62	41.75	23.60	-	41.79
Chromosome means / SD	42.03 / 6.40	44.54 / 7.23	46.39 / 8.20	44.49 / 7.42	46.52 / 7.61	37.78 / 6.81	858.29	46.34 / 7.27

2 *Includes centromeric regions; ** Excludes centromeric regions

1 **Table 3. Comparisons of the extent of linkage disequilibrium in kilobases.**

Variable1 (V1)	Variable 2 (V2)	*Chromosome mean V1 (Kb)	*Chromosome mean V2 (Kb)	Difference in extent of LD (Kb)/ % difference	**P-value
Genic regions	Intergenic regions	44.54	37.78	6.76 / 16.4	<0.001
Exons	Introns	46.39	44.49	1.89 / 4.2	0.078
Exons	Non-coding RNAs	46.39	46.52	0.13 / 0.3	0.469
Exons	Intergenic regions	46.39	37.78	8.61 / 20.5	<0.001
Introns	Non-coding RNAs	44.49	46.52	2.02 / 4.5	0.005
Introns	Intergenic regions	44.49	37.78	6.71 / 16.3	<0.001
Non-coding RNAs	Intergenic regions	46.52	37.78	8.74 / 20.7	<0.001

2 * Pairwise comparison of extent of LD in different genome regions in kilobases.

3 ** P-value for differences in extent of LD across all autosomal chromosomes, paired T-test (21 degrees of freedom:22 autosomes).