Title page

Title:

Intake of alpha-linolenic acid is not consistently associated with a lower risk of peripheral artery disease: results from a Danish cohort study

Authors:

Christian S. Bork^{1,2} Anne N. Lasota^{3,4} Søren Lundbye-Christensen⁵ Marianne U. Jakobsen⁶ Anne Tjønneland^{7,8} Philip C. Calder^{2,9} Erik B. Schmidt^{1,4} Kim Overvad^{1,10}

Affiliations:

¹ Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark
 ² Human Development & Health, Faculty of Medicine, University of Southampton, MP887
 Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom

³ Department of Vascular Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark

⁴ Department of Clinical Medicine, Aalborg University, Soendre Skovvej 15, 9000 Aalborg, Denmark

⁵ Unit of Clinical Biostatistics, Aalborg University Hospital, Soendre Skovvej 15, Aalborg, Denmark

⁶ Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark

⁷ Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark

⁸ Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen

⁹ NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom

¹⁰ Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark

Corresponding author:

Christian S. Bork Soendre Skovvej 15, 9000 Aalborg, Denmark E-mail: <u>c.bork@rn.dk</u> Phone: +45 53 58 26 11

Brief title:

Alpha-linolenic acid and PAD

Key words:

Alpha-linolenic acid Omega-3 fatty acids Peripheral artery disease Cohort study

1 Abstract

2 Intake of the plant-derived omega-3 fatty acid alpha-linolenic acid (ALA) has been associated with 3 anti-atherosclerotic properties. However, information on the association between ALA intake and development of peripheral artery disease (PAD) is lacking. In this follow-up study, we investigated 4 5 the association between dietary intake of ALA and the rate of PAD among middle-aged Danish men 6 and women enrolled into the Danish Diet, Cancer and Health cohort between 1993 and 1997. 7 Incident PAD cases were identified through the Danish National Patient Register. Intake of ALA 8 was assessed using a validated food frequency questionnaire. Statistical analyses were performed 9 using Cox proportional hazard regression allowing for separate baseline hazards among sexes and 10 adjusted for established risk factors for PAD. During a median of 13.6 years of follow-up, we 11 identified 950 valid cases of PAD with complete information on covariates. The median energy-12 adjusted ALA intake within the cohort was 1.76 g/d (95% central range: 0.94-3.28). In 13 multivariable analyses, we found no statistically significant association between intake of ALA and 14 the rate of PAD (P = 0.339). Also, no statistically significant associations were observed in analyses 15 including additional adjustment for co-morbidities and in sex-specific analyses. In supplemental 16 analyses with additional adjustment for potential dietary risk factors, we found a weak inverse 17 association to PAD with ALA intake above the median, but the association was not statistically 18 significant (P = 0.314). In conclusion, dietary intake of ALA was not consistently associated with 19 decreased risk of PAD.

20 Introduction

21 Peripheral artery disease (PAD) in the lower extremities is a chronic atherosclerotic disease

22 characterised by stenosis and occlusion of the arteries, covering a clinical spectrum from no

23 symptoms to effort-induced ischemic muscle discomfort and/or pain and critical ischemia with

24 tissue loss¹⁻³. Symptomatic PAD is associated with functional limitations, diminished quality of life

and a high risk for major cardiovascular events and death^{4,5}. The global burden of PAD is expected

to increase markedly in the near future and identification of factors that may lower disease risk is $urged^{6}$.

28 The plant-derived n-3 fatty acid alpha-linolenic acid (ALA) is a precursor of long-chain n-3
29 polyunsaturated fatty acids (LC n-3 PUFAs), which may influence inflammatory processes that may

30 be involved in development and progression of atherosclerosis⁷⁻⁹. However, the conversion capacity

of ALA into LC n-3 may be limited in humans¹⁰. ALA may possibly exert health benefits

32 independent of its precursor role¹¹ and has been suggested to be an important nutrient in the

33 Mediterranean diet¹², which has been ascribed many health benefits including lowering risk of

34 PAD^{13} and major cardiovascular events¹⁴.

35 The majority of previous follow-up studies investigating the association between ALA intake

36 and the risk of atherosclerotic cardiovascular disease have focused on coronary heart disease

37 (CHD). Some cohort studies have reported inverse associations between ALA intake and CHD

 $risk^{15-20}$, but the results have not been consistent^{18,21-27}. Few studies have investigated associations

39 between ALA intake and the risk of ischemic stroke^{22,23,28–30}, but to our knowledge no previous

- 40 follow-up studies have investigated the association between ALA intake and the risk of PAD.
- 41 The objective of this study was to investigate the association between intake of ALA and the risk

42 of PAD. We hypothesized that intake of ALA would be inversely associated with the risk of43 incident PAD.

44

45 Methods

46

47 Study population and design

48 This follow-up study was based on data from the Diet, Cancer and Health cohort that was

49 established to investigate the role of diet and lifestyle in relation to cancer and other chronic

50 diseases³¹. The recruitment procedures, sample size considerations and collection of data have been

51 described in detail elsewhere³¹. Briefly, native citizens aged 50-64 years who were living in and

around Copenhagen and Aarhus in Denmark without a previous diagnosis of cancer were invited

53 between 1993 and 1997 to participate in the study. Potential eligible participants were identified

54 through the Danish Civil Registration System in which every citizen living in Denmark is provided

55 with a unique identification number 31 .

56 The Diet, Cancer and Health cohort study was conducted according to the guidelines laid down 57 in the Declaration of Helsinki and approved by the Health Research Ethics, Capital Region of 58 Denmark, and the Danish Data Protection Agency. All participants gave written informed consent 59 at inclusion³¹.

In the present follow-up study, participants registered with a diagnosis of cancer not registered in
the Danish Cancer Registry at the time of invitation due to processing delay as well as participants
registered with a diagnosis of PAD or chronic kidney disease before enrolment were excluded.
Also, participants for whom information on exposure and/or covariates was missing were excluded.
The current study has been approved by the Danish Data Protection Agency (2008-58-0028-2016229).

66

67 Exposure assessment

Information on habitual diet over the past 12 months was assessed at baseline using a 192-item 68 semi-quantitative food frequency questionnaire $(FFO)^{32}$. The average consumption of foods and 69 beverages was reported within 12 categories ranging from never to eight or more times per day. The 70 71 reported intakes were used to estimate daily intake of ALA and total energy based on Danish food 72 composition tables (version 1.3.2) with the use of the software program FoodCalc (Center for 73 Applied Computer Science, University of Copenhagen; www.ibt.ku.dk/jesper/foodcalc). The FFQ 74 used has previously been validated against two 7-day diet weighed records and found useful for categorizing individuals according to their intake of energy intake and polyunsaturated fat³³. The 75 76 intake of ALA was expressed as energy-adjusted intake in g/d using the residual method³⁴.

77

78 Covariates

Detailed information on social, lifestyle and health aspects such as length of schooling, smoking habits, physical activity, history of hypercholesterolemia, hypertension and diabetes, and use of lipid-lowering or anti-hypertensive agents and insulin was collected at baseline using a selfadministered questionnaire. The questionnaire was processed by optical scanning and checked for reading errors and omissions at the two study centres where also anthropometric measurements 84 including height, weight and waist circumference were obtained at enrolment. Information on

- 85 alcohol consumption, total energy intake and intake of other nutrients was obtained from the FFQ.
- 86

87 **Outcome assessment**

Incident cases of PAD were identified through record linkage with the Danish National Patient
 Register, which includes information on outpatient visits and discharge diagnoses from all hospitals
 in Denmark^{35,36}.

- 91 Potential cases of PAD included participants registered with either a primary or secondary 92 discharge diagnosis of PAD according to the International Classification of Diseases (ICD) codes 93 (ICD-8: 44390; 44500; 44509; 44590; 44599; 44020 and 44030, and ICD-10: I70.2, I70.2A and I73.9A-C). Subsequently, all potential cases of PAD were validated by review of medical records³⁷. 94 95 A registered diagnosis of PAD was considered valid in patients with an ankle brachial index (ABI) 96 < 0.9 and/or a toe brachial index (TBI) < 0.7 and/or demonstration of radiologically significant 97 stenosis or calcifications in relevant arteries in the lower extremities. Patients with an ABI > 1.4 98 together with a history of diabetes mellitus or treatment by chronic renal dialysis were also 99 considered valid PAD cases. Furthermore, patients that experienced a blood pressure drop in the 100 lower extremities of more than 30mmHg or a 20% drop of the resting ABI immediately after a 101 treadmill test and patients who underwent relevant vascular surgery for atherosclerosis were 102 included as cases. Finally, patients who qualified for vascular surgery for atherosclerosis although not performed due to severe comorbidity were included as cases as well³⁷. 103 104 Participants were followed from baseline until first registration of PAD, death, emigration or end
- 105 of follow-up in December 2009.
- 106

107 Statistics

Hazard ratios (HRs) were used to describe associations between energy-adjusted ALA intake and
the rate of PAD. HRs with 95% confidence intervals (CIs) were calculated using Cox proportional
hazard regression with age as underlying timescale allowing for separate baseline hazards among
men and women.

Dietary intake of ALA was analysed as a continuous exposure variable using restricted cubic splines with 3 knots with the median intake as reference in order to visualize the shape of the observed associations. The knots were placed at the 10th, 50th and 90th percentile as recommended by Harrell³⁸. The spline curves were formally tested against a horizontal line using Wald tests. The spline plots were restricted to the 95% central range and presented with 95% CIs. Also, analyses

117 with ALA intake divided into quintiles were conducted using the lowest quintile as reference.

118 We investigated the association between ALA intake and rate of PAD in three different models

119 specified prior to data analysis. In model 1A, we included baseline age (continuous, years) in order

120 to ensure comparison of participants for whom reported exposure information was of the same age.

121 In model 1B, we additionally included information on established risk factors for PAD including:

length of schooling (\leq 7, 8-10, or >10 years), smoking (never, former, current 1-14, 15-24, or >24

123 g/d), physical activity (inactive, moderately inactive, moderately active, or active), waist-

124 circumference (continuous, cm), body mass index (continuous, kg/m²) and alcohol intake

125 (continuous, g/d). In model 2, we included the following co-morbidities, which may be considered

126 potential intermediate variables: self-reported history of hypercholesterolemia and/or use of lipid-

127 lowering medication (yes, no, or unknown), hypertension and/or use of anti-hypertensive

128 medication (yes, no, or unknown) and diabetes mellitus and/or use of insulin.

129 The proportional hazard assumption was evaluated by plotting the scaled Schoenfeld residuals130 against age at event.

In sensitivity analyses, we plotted the whole exposure range and examined whether the spline curves were robust when the number and location of the knots were modified. Also, additional adjustment for a history of myocardial infarction, ischemic stroke or both prior to enrolment was undertaken as sensitivity analyses.

135 In supplemental analyses, we investigated the association between ALA intake and the rate of 136 PAD in sex-specific analyses. Also, analyses including adjustment for established risk factors (model 1B) and hormone substitution were undertaken. In further supplemental analyses, potential 137 138 dietary risk factors were added to model 1B including total energy intake without contribution from 139 alcohol intake (continuous, kJ/d), intake of fiber (continuous, g/d), glycemic load (continuous, unit-140 less), and intakes of saturated fatty acids, monounsaturated fatty acids, linoleic acid and marine LC 141 n-3 PUFAs (continuous, g/d) (model 3). All continuous covariates were entered into the models 142 using restricted cubic splines with 5 knots.

- 143Data were analyzed using Stata statistical software (version 15; StataCorp LP, US), and a p-144value <0.05 was considered statistically significant.</td>
- 145
- 146
- 147

148 **Results**

- 149 A total of 160,725 men and women were invited to participate in the Diet Cancer and Health cohort
- 150 study and 57,053 accepted. We excluded 1,805 participants because they had a diagnosis of cancer
- 151 (n = 569), PAD (n = 330) or chronic kidney disease (n = 31) before enrolment, or for whom
- 152 information on exposure or other covariates was missing (n = 960) (Figure 1). Among the
- remaining 55,248 participants, we identified 950 participants that developed PAD during a median
- of 13.6 (95% central range: 4.3-15.3) years of follow-up. The incidence rate of PAD was 1.32 per
- 155 1000 person years.
- Baseline characteristics of the participants with complete information on covariates in the cohort and participants that developed PAD during follow-up are shown in Table 1.
- The median energy-adjusted dietary ALA intake in the cohort was 1.76 g/d (95% central range:
 0.94-3.28).
- 160 In spline analyses including adjustment for sex and age (model 1A), we found a positive
- association between ALA intake and the rate of PAD (Supplemental Figure 1). However, in
- 162 multivariable analyses including additional adjustment for established risk factors for PAD (model
- 163 1B) a weak statistically non-significant inverse U-shaped association between ALA intake and the
- rate of PAD was observed (P-value = 0.339) (Figure 2). Additional adjustment for co-morbidities
- 165 (model 2) also showed a weak inverse U-shaped association between ALA intake and the rate of
- 166 PAD that was not statistically significant (P = 0.338) (Supplemental Figure 2). In supplemental
- 167 analyses, with additional adjustment for dietary risk factors (model 3), we found a weak inverse
- 168 association to PAD above the median ALA intake, but the overall association was not statistically
- significant different from a horizontal line (P-value = 0.314) (Supplemental Figure 3).
- 170 Sensitivity analyses indicated that models with ALA intake modelled as restricted cubic
- splines were robust when the location and number of knots for the exposure of interest weremodified.
- Categorical analyses of the association between ALA intake in quintiles and the rate of PAD are shown in Table 2. We found similar patterns of associations in analyses of ALA intake in quintiles and the rate of PAD as in the spline analyses. The individual hazards in the second to fifth quintile were not statistically significant different from the reference in the first quintile in either of the multivariable adjusted models. In supplemental analyses, additional adjustment for myocardial infarction and/or ischemic stroke before enrolment did not influence the observed associations.

Also, additional adjustment for use of hormone substitution did not influence the observedassociations (data not shown).

181 Similar patterns of associations between ALA intake and the rate of PAD were observed when
182 the analyses were conducted separately among men and women (Supplemental Table 2).

183 No evidence of a departure from the proportionality assumption was observed in either of the184 models (data not shown).

185

186 **Discussion**

187 In this large follow-up study, we found indications of a weak inverse U-shaped association between

188 ALA intake and the rate of PAD in analyses including adjustment for established risk factors and

189 indications of a weak inverse association between ALA intake and the rate of PAD above the

190 median intake in analyses including adjustment for established risk factors and dietary risk factors.

191 However, none of these associations were statistically significant. Given the relatively weak and

192 statistically non-significant associations observed, this study suggests that dietary intake of ALA is

193 not appreciably associated with the risk of PAD within this population of middle-aged Danish men

and women. It should be stressed that this study did not investigate the potential effect of a

Mediterranean diet on PAD risk, but the results may indicate that the possible protective effect
provided by the Mediterranean dietary pattern on PAD and major cardiovascular events is unlikely
to be ascribed to ALA intake.

198 This study had some limitations that should be mentioned. Participants were followed by linkage 199 with nationwide registries with very limited loss to follow-up, which limits the potential of selection 200 bias. Information on ALA intake was obtained using a self-administered FFQ and measurement 201 error is inevitable, but because of the temporality in a follow-up study, exposure measurement error 202 probably occurred at random, which generally leads to an underestimation of the true association 203 and loss of statistical power. The FFQ used in this study was not specifically developed to assess ALA intake. Further, information on diet was only available at baseline and changes in dietary 204 205 habits during follow-up may have occurred. Thus, repeated dietary measurements would have been 206 preferable to limit random measurement error and to capture potential changes in dietary habits 207 over time. However, diets of individuals tend to be relatively consistent over intervals of several years³⁹. Information bias is unlikely to have influenced the observed associations significantly 208 209 because diagnoses of PAD were established and validated independently of the dietary assessment. 210 Identification of PAD cases in this study relied on registered discharge diagnosis of PAD and the

211 vast majority of identified cases were symptomatic patients. PAD may be underdiagnosed in the general population⁴⁰ and cases either asymptomatic or not referred to hospitals were not included in 212 this study. However, random misclassification of a diagnosis of PAD may bias associations towards 213 214 no association, but because PAD risk in general was relatively low, such potential bias was 215 probably minor. We included detailed information on established risk factors for PAD in the 216 analyses, but residual confounding from known or unknown PAD risk factors may still be of 217 importance for the observed associations. The observed association between ALA intake and the 218 rate of PAD (model 1A) was weakened after adjustment for established risk factors for PAD (model 219 1B). However, additional adjustment for history of hypercholesterolemia, hypertension and diabetes 220 (model 2) showed a similar pattern of association compared to model 1B, which may indicate that 221 potential residual confounding from these co-morbidities was not of major importance. Notably, 222 these co-morbidities may also be considered intermediates and conditioning for these covariates could potentially introduce collider stratification bias³⁹, which may bias associations in either 223 224 direction. In analyses including adjustment for established PAD risk factors and dietary factors 225 (model 3) that may influence PAD risk, the observed association between ALA intake and the rate 226 of PAD was slightly lower compared to model 1B at higher ALA intakes and residual confounding 227 from dietary factors cannot be excluded. However, adjustment for dietary factors may introduce 228 restrictions in the underlying dietary pattern that are not comparable with the ordinary dietary 229 pattern and analyses with and without dietary covariates should not be directly compared. 230 Therefore, given the interpretational challenges of model 2 and 3, we consider model 1B the most 231 appropriate for interpretation.

232 The Diet, Cancer and Health cohort only included native Danish participants from selected areas 233 in Denmark who had survived until enrolment into the study without a previous diagnosis of cancer, 234 chronic kidney disease or PAD, which may limit the generalizability of the study results. 235 We decided to conduct the main analyses as sex-stratified analyses by allowing baseline hazards among men and women to differ^{5,6}. Thus, the HRs from these analyses should be interpreted as a 236 weighted average of the association in men and women. Previous studies have suggested that the 237 endogenous conversion efficiency of ALA into LC n-3 PUFAs may be stimulated by sex hormones 238 and is greater in women¹⁰. However, in sex-specific analyses we found similar patterns of 239 association between ALA intake and the risk of PAD among men and women. Almost 60% of the 240 female participants were post-menopausal at baseline²¹ and a potential higher conversion efficiency 241 242 of ALA mediated by female sex hormones may therefore not be of major importance in this cohort.

In supplemental analyses, additional adjustment for hormone substitution at baseline also did notinfluence the observed associations.

A previous cross-sectional study including 422 cases reported that ALA intake was associated 245 with a lower odds of PAD⁴¹. Another cross-sectional study including 199 cases reported that the 246 content of ALA in red blood cells was associated with lower odds of lower limb disease⁴², whereas 247 two case-control studies did not find any appreciably nor statistically significant differences 248 between circulating levels of ALA between cases and controls^{43,44}. However, none of these studies 249 250 included detailed adjustment for risk factors of PAD and the results should be interpreted with 251 caution due to the risk of residual confounding and reverse causation (cross-sectional studies). 252 We used restricted cubic splines to evaluate the shape of the association between ALA intake 253 and the rate of PAD. ALA can be further metabolized into LC n-3 PUFAs and lipid signaling 254 molecules, which occurs in a complex biological pathway by enzymes that may be influenced by a combination of several factors including sex, genetics and background diet⁴⁵ that potentially could 255 256 influence disease risk in a non-linear manner.

257 Previous studies have suggested that high intakes of the major n-6 PUFA linoleic acid and LC n-258 3 PUFAs may lower the conversion efficiency of ALA into LC n-3 PUFAs due to inhibition on 259 shared enzymes. The median intake of LC n-3 PUFAs in this cohort was 0.7 g/d, which was higher than in cohort studies reporting inverse associations between ALA intake and CHD^{15,16,18-20} and 260 261 this may be of importance for our study findings because a large study has suggested that ALA may reduce CHD risk in particular when intake of LC n-3 is low¹⁷. However, further well-powered 262 263 studies investigating the role of genetics and intake of LC n-3 and n-6 PUFAs on the association 264 between ALA and the risk of atherosclerotic cardiovascular disease are warranted. 265 In conclusion, dietary intake of ALA was not consistently associated with the risk of incident

266 PAD among Danish middle-aged men and women.

267

Financial support: The Danish Cancer Society funded the Diet, Cancer and Health study. The
current study has been financially supported by The Danish Heart Foundation (CSB, 17-R115A7415-22060), Helene and Georg Jensens and Ethel Merethe and Christian Pontoppidan's Fund.
The funding agencies had no role in the design, analysis or writing of this manuscript.

- 272
- 273 **Conflicts of interest:** None
- 274
- 275

276 Authorship:

- 277 All authors contributed to the conceptualization of the present study. CSB conducted the statistical
- analyses, prepared the tables and figures, and wrote the first draft of the manuscript. CSB, ANL,
- 279 SLC, MUJ, PCC, EBS and KO contributed to the planning of the statistical analyses, interpretation
- of the data and writing of the manuscript. SLC supervised the conduct of the statistical analyses. AT
- 281 contributed to the interpretation of the data and writing of the manuscript. All authors have read and
- approved the final manuscript.

Figure text:

Figure 1. Flowchart of participants in the Diet, Cancer and Health cohort and incident cases of PAD identified during follow-up.

Figure 2. Intake of ALA and the risk of incident PAD. The multivariable analyses were conducted using Cox proportional hazard regression including adjustment for established PAD risk factors (model 1B) with the median intake of ALA as reference. The 20th, 40th, 60th and 80th percentiles of ALA intake are shown with dotted lines. The shaded grey area indicates the 95% CIs of hazard ratios of PAD (solid black line). The spline plot is shown for the 2.5-97.5 percentiles of ALA intake.

	Cohort	PAD cases
	(n = 55,248)	(n = 950)
Sex, %		
Males	47.7	62.1
Females	52.3	37.9
Age at enrolment (years)*	56.1 (50.5; 64.7)	58.6 (50.7; 64.9)
Length of schooling (%)		
\leq 7 years	32.7	48.0
8-10 years	46.2	40.2
>10 years	21.1	11.8
Smoking (%)		
Never	35.4	4.8
Former	28.9	18.0
Current <15 g/d	13.0	19.0
Current 15-25 g/d	16.0	40.4
Current >25 g/d	6.8	17.7
Physical activity (%)		
Inactive	10.8	16.3
Moderately inactive	30.4	32.0
Moderately active	24.2	21.2
Active	34.7	30.5
Waist circumference (cm)*	89.0 (67.0; 115.0)	91.3 (68.8; 117.0)
Body mass index (kg/m ²)*	25.5 (19.6; 35.7)	25.5 (19.3; 34.7)
Alcohol intake (g/d)*	12.9 (0.2; 81.0)	16.5 (0.0; 104.7)
Co-morbidities (%)		
Hypercholesterolemia	7.4	13.8
Hypertension	16.1	27.8
Diabetes mellitus	2.0	10.7
Dietary factors		
Total energy intake (kJ)*	8895.2 (4937.2; 15142.9)	8749.6 (4730.1; 15537.0
Intake of fiber* [†]	20.6 (12.3; 31.9)	19.3 (11.1; 29.9)
Glycemic load*	189.8 (98.8; 333.3)	182.7 (93.5; 335.9)
Saturated fatty acids* [†]	28.7 (16.4; 42.4)	31.4 (18.5; 44.2)
Monounsaturated fatty acids* [†]	28.1 (16.3; 43.3)	31.3 (18.3; 46.0)
Linoleic acid* [†]	11.0 (5.7; 20.1)	11.4 (6.2; 20.0)
LC n-3 PUFAs* [†]	0.7 (0.1; 1.7)	0.7 (0.2; 1.8)
Alpha-linolenic acid* [†]	1.8 (0.9; 3.3)	1.9 (1.0; 3.4)
*Median (2.5th; 97.5th percentile)		

Table 1. Baseline characteristics

*Median (2.5th; 97.5th percentile) † Energy-adjusted intake

Quintiles of	Cases	Model 1A*	Model 1B †	Model 2‡	Model 3§
ALA intake	(n)	HR (95% CI)	HR (95% CI)	HR (95% CI)	HR (95% CI)
< 1.36 g/d	116	1 (reference)	1 (reference)	1 (reference)	1 (reference)
1.36-1.62 g/d	154	1.24 (0.98; 1.58)	1.08 (0.85; 1.38)	1.10 (0.86; 1.40)	0.98 (0.75; 1.27)
1.62-1.90 g/d	199	1.44 (1.14; 1.83)	1.14 (0.91; 1.45)	1.18 (0.93; 1.49)	0.99 (0.76; 1.30)
1.90-2.27 g/d	228	1.50 (1.18; 1.90)	1.10 (0.87; 1.40)	1.14 (0.90; 1.45)	0.92 (0.69; 1.23)
> 2.27 g/d	253	1.62 (1.27; 2.05)	1.05 (0.83; 1.34)	1.11 (0.87; 1.41)	0.88 (0.65; 1.20)

Table 2. Quintiles of energy-adjusted ALA intake and hazard ratios for peripheral artery disease

Abbreviations: ALA, alpha-linolenic acid; HR, hazard ratio

Statistical analyses were conducted using Cox proportional hazard regression. All models were adjusted for gender by allowing baseline hazards among men and women to differ.

* Model 1A included baseline age

[†]Model 1B included the variables of model 1A and the following risk factors for PAD: length of schooling, smoking, physical activity, waist circumference, body mass index and alcohol intake.

‡ Model 2 included the variables of model 1B and the following potential intermediate variables: self-reported history of hypercholesterolemia and/or use of lipid-lowering medication, hypertension and/or use of antihypertensive medication and diabetes mellitus and/or use of insulin.

§ Model 3 included the variables of model 1B and the following potential dietary risk factors: total energy intake, intake of fiber, glycemic load, and intake of saturated fatty acids, monounsaturated fatty acids, linoleic acid and LC n-3 PUFAs.

References:

- Hiatt WR, Goldstone J, Smith SJ Jr *et al.* (2008) Atherosclerotic Peripheral Vascular Disease Symposium II: nomenclature for vascular diseases. *Circulation* 118, 2826–2829.
- Aboyans V, Ricco JB, Bartelink MEL *et al.* (2018) 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). *Eur Heart J* 39, 763–821.
- 3. Patel MR, Conte MS, Cutlip DE *et al.* (2015) Evaluation and treatment of patients with lower extremity peripheral artery disease: Consensus definitions from peripheral academic research consortium (PARC). *J Am Coll Cardiol* **65**, 931–941.
- Steg PG, Bhatt DL, Wilson PW *et al.* (2007) One-Year Cardiovascular Event Rates in Outpatients With Atherothrombosis. *JAMA* 297, 1197–1206.
- 5. Fowkes FG, Aboyans V, Fowkes FJ *et al.* (2017) Peripheral artery disease: epidemiology and global perspectives. *Nat Rev Cardiol* **14**, 156–170.
- Fowkes FG, Rudan D, Rudan I *et al.* (2013) Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. *Lancet* 382, 1329–1340.
- Calder PC (2015) Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. *Biochim Biophys Acta* 1851, 469–484.
- De Caterina R (2011). N-3 Fatty Acids in Cardiovascular Disease. N Engl J Med 364, 2439– 2450.
- 9. Chang CL, Deckelbaum RJ. (2013) Omega-3 fatty acids: Mechanisms underlying "protective effects" in atherosclerosis. *Curr Opin Lipidol* **24**, 345–350.
- 10. Baker EJ, Miles EA, Burdge GC *et al.* (2016) Metabolism and functional effects of plantderived omega-3 fatty acids in humans. *Prog Lipid Res* **64**, 30–56.
- Rajaram S. (2014) Health benefits of plant-derived alpha-linolenic acid. *Am J Clin Nutr* 100, 443–448.
- 12. de Lorgeril M, Salen P (2007) Mediterranean diet and n-3 fatty acids in the prevention and treatment of cardiovascular disease. *J Cardiovasc Med* **8**, Suppl. 1 38–41.
- Estruch R, Ros E, Salas-Salvadó J *et al.* (2018) Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. *N Engl J Med* 378, e34.
- 14. Ruiz-Canela M, Estruch R, Corella D et al. (2014) Association of Mediterranean diet with

peripheral artery disease: The PREDIMED randomized trial. JAMA 311, 415-417.

- 15. Hu FB, Stampfer MJ, Manson JE *et al.* (1999) Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. *Am J Clin Nutr* **69**, 890–897.
- 16. Ascherio A, Rimm EB, Giovannucci EL *et al.* (1996) Dietary fat and risk of coronary heart disease in men: cohort follow up study in the United States. *BMJ* **313**, 84–90.
- 17. Mozaffarian D, Ascherio A, Hu FB *et al.* (2005) Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. *Circulation* **111**, 157–164.
- Vedtofte M, Jakobsen M, Lauritzen L *et al.* (2014) Association between the intake of alphalinolenic acid and the risk of CHD. *Br J Nutr* **112**, 735–743.
- Dolecek TA. (1992) Epidemiological evidence of relationships between dietary polyunsaturated fatty acids and mortality in the multiple risk factor intervention trial. *Proc Soc Exp Biol Med* 200, 177–182.
- Koh AS, Pan A, Wang R *et al.* (2015) The association between dietary omega-3 fatty acids and cardiovascular death: the Singapore Chinese Health Study. *Eur J Prev Cardiol* 22, 364–372.
- Bork CS, Jakobsen MU, Lundbye-Christensen S *et al.* (2016) Dietary intake and adipose tissue content of alpha-linolenic acid and risk of myocardial infarction: a Danish cohort study. *Am J Clin Nutr* 104, 41–48.
- de Goede J, Verschuren WM, Boer JM *et al.* (2011) Alpha-linolenic acid intake and 10-year incidence of coronary heart disease and stroke in 20,000 middle-aged men and women in the Netherlands. *PLoS One* 6, e17967.
- Fretts AM, Mozaffarian D, Siscovick DS *et al.* (2014) Plasma phospholipid and dietary αlinolenic acid, mortality, CHD and stroke: the Cardiovascular Health Study. *Br J Nutr* 112, 1206–2013.
- 24. Albert CM, Oh K, Whang W *et al.* (2005) Dietary alpha-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. *Circulation* **112**, 3232–3238.
- Oomen CM, Ocké M, Feskens EJ *et al.* (2001) Alpha-Linolenic acid intake is not beneficially associated with 10-y risk of coronary artery disease incidence: the Zutphen Elderly Study. *Am J Clin Nutr* 74, 457–463.
- Pietinen P, Ascherio A, Korhonen P *et al.* (1997) Intake of fatty acids and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study 145, 876–887.

- 27. Vedtofte MS, Jakobsen MU, Lauritzen L *et al.* (2011) Dietary a-linolenic acid, linoleic acid, and n-3 long-chain PUFA and risk of ischemic heart disease. *Am J Clin Nutr* **94**, 1097–1103.
- Rhee JJ, Kim E, Buring JE *et al.* (2017) Fish Consumption, Omega-3 Fatty Acids, and Risk of Cardiovascular Disease. *Am J Prev Med* 52, 10–19.
- 29. Larsson S, Virtamo J, Wolk A. (2012) Dietary fats and dietary cholesterol and risk of stroke in women. *Atherosclerosis* **221**, 282–286.
- Bork CS, Venø SK, Lundbye-christensen S *et al.* (2018) Dietary Intake of α-Linolenic Acid Is Not Appreciably Associated with Risk of Ischemic Stroke among Middle-Aged Danish Men and Women. *J Nutr* 148, 952–958.
- Tjønneland A, Olsen A, Boll K *et al.* (2007) Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053 men and women in Denmark. *Scand J Public Health* 35, 432–441.
- Overvad K, Tjønneland A, Haraldsdóttir J *et al.* (1991) Development of a semiquantitative food frequency questionnaire to assess food, energy and nutrient intake in Denmark. *Int J Epidemiol* 20, 900–905.
- Tjønneland A, Overvad K, Haraldsdóttir J *et al.* (1991) Validations of a semiquantative food frequency questionnaire developed in Denmark. *Int J Epidemiol* 20, 906–912.
- 34. Willett W, Stampfer MJ. (1986) Total energy intake: implications for epidemiologic analyses. *Am J Epidemiol* **124**, 17–27.
- Andersen TF, Madsen M, Jørgensen J *et al.* (1996) The Danish National Hospital Register. A valuable source of data for modern health sciences. *Dan Med Bull* 46, 263–268.
- Lynge E, Sandegaard JL, Rebolj M. (2011) The Danish National Patient Register. Scand J Public Health 39, 30–33.
- Lasota AN, Overvad K, Eriksen HH *et al.* (2017) Validity of Peripheral Arterial Disease
 Diagnoses in the Danish National Patient Registry. *Eur J Vasc Endovasc Surg* 53, 679–685.
- Harrell FE. Regression Modeling Strategies (2015) With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. 2nd ed. New York: Springer.
- Rothman K, Greenland S, Lash T. (2012) Modern Epidemiology. 3rd ed. Lippincott Williams And Wilkins.
- 40. Hirsch AT, Criqui MH, Treat-Jacobson D *et al.* (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. *JAMA* **286**, 1317–1324.

- 41. Lane JS, Magno CP, Lane KT *et al.* (2008) Nutrition impacts the prevalence of peripheral arterial disease in the United States. *J Vasc Surg* **48**, 897–904.
- 42. Leng GC, Taylor GS, Lee AJ *et al.* (1999) Essential fatty acids and cardiovascular disease: the Edinburgh Artery Study. *Vasc Med* **4**, 219–226.
- Leng GC, Horrobin DF, Fowkes FG *et al.* (1994). Plasma essential fatty acids, cigarette smoking, and dietary antioxidants in peripheral arterial disease. A population-based casecontrol study. *Arterioscler Thromb.* 14, 471–478.
- 44. Gautam M, Izawa A, Shiba Y, *et al.* (2014) Importance of fatty acid compositions in patients with peripheral arterial disease. *PLoS One* **9**, e107003.
- 45. Hodson L, Skeaff CM, Fielding BA. (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. *Prog Lipid Res* **47**, 348–380.