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A Parametric Study of an ABH on a Beam

Acoustic black holes (ABHs) are geometric structural features that provide a poten-1

tial lightweight damping solution for flexural vibrations. In this article, a parametric2

study of an ABH on a beam has been carried out to assess how practical design3

constraints affect its behaviour, thus providing detailed insight into design trade-offs.4

The reflection coefficient of the ABH has been calculated for each taper profile, pa-5

rameterised via the tip-height, taper-length and power-law and it has been shown to6

exhibit spectral bands of low reflection. These bands have been related to the modes7

of the ABH cell and become more closely spaced in frequency as the ABH parame-8

ters are suitably varied. This suggests that ABH design should maximise the modal9

density to minimise the broadband reflection coefficient, however, the minimum level10

of reflection is also dependent on the power-law and tip-height. Consequently, broad-11

band reflection values have been used to show that optimum power-law and tip-height12

settings exist that achieve a balance between maximum modal density and minimum13

level of reflection. Additionally, at discrete frequencies, in cases where tip-height and14

taper-length are practically constrained, the power law can be tuned to maximise15

performance. Finally, an experimental study is used to validate the results.16
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I. INTRODUCTION17

There is a requirement for lightweight vibration control solutions in a variety of appli-18

cation areas. One such solution is the so-called ‘acoustic black hole’ (ABH), which relies19

on introducing modifications to the design of the structure that reduce the structural wave20

speed and thus allow their control. The desired design modifications are generally achieved21

via a change in the geometry of the structure1. Specifically, when the edge of a beam or22

plate is tapered, over a distance comparable to or larger than the flexural wavelength2, the23

flexural wave speed decreases as the beam or plate thickness decreases. This phenomenon24

was described by Mironov in 19883 and later termed the ‘acoustic black hole’ effect by Krylov25

and Tilman1. Figure 1 shows a simple example of an ABH, where a beam has been tapered26

to a point via a power law curve. As flexural waves propagate towards the tip, the wave27

speed is reduced following the relationship28

cf (x) =

󰀣
Eh2(x)

12ρs

󰀤 1
4

ω
1
2 , (1)

where E is the Young’s modulus of the beam material, ρs is the volume density of the beam29

material and h(x) is the height function. Equation 1 shows that the wave speed in a tapered30

beam is proportional to the square root of the beam height and, therefore, the wave speed31

will decrease along the length of a taper with a decreasing height.3233

From equation 1 it can be deduced that, theoretically, if the taper reduces to zero thick-34

ness, then the velocity of the propagating wave will converge to zero. In this idealised case,35

the propagating wave will never reach the tip of the taper and will, therefore, not be reflected36

from the end of the tapered beam; hence the analogy to a black hole. In reality, the tapered37
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x = 0 labh

htip

h(x)
b

FIG. 1. A diagram of an ABH taper with characteristic features indicated as: width, b; tip height,

htip; taper length, labh and height function, h(x).

section will have a finite length and the tip height will be limited by both manufacturing38

and structural integrity limitations4–6. As a result of these practical limits, it has previously39

been shown that the ABH effect is negligible for practical tip heights, but that significant40

vibration reduction can be achieved through the addition of a thin layer of passive damping41

material1.42

The significant effect of a thin damping layer on the vibration control provided by a43

practical ABH can be understood by considering the change in the flexural wavelength, λf ,44

along the length of the taper, which can be expressed as45

λf (x) =

󰀣
Eh2(x)

12ρs

󰀤 1
4
󰀣
2π

f0

󰀤 1
2

, (2)

where f0 is the frequency of the wave. Equation 2 shows that as a wave travels down the46

taper, its wavelength decreases. It is well known that shorter wavelength vibrations are47

more easily attenuated using traditional passive damping treatments and this, therefore,48

explains why adding a thin damping layer to a practical ABH provides a significant level of49

performance. This effect has been practically demonstrated for thin viscoelastic damping50

layers added to either one or both sides of the taper1,7,8 and composite plates9. Additionally,51

4



A Parametric Study of an ABH on a Beam

it has previously been shown that the whole taper need not be covered by the damping layer1052

and that the thickness of the damping layer can be up to six times the thickness of the base53

layer before the increase in loss factor diminishes11–13.54

In addition to practical ABHs requiring an additional damping layer to be applied to the55

taper, previous research has also investigated how the geometrical properties of the taper56

should be defined for optimal performance. In particular, it has been shown that the taper57

profile, tip height and taper length influence the performance of the ABH1. Although the58

literature has broadly shown that maximising the taper length and minimising the tip height59

will maximise the performance, it has more recently been demonstrated that the selection60

of the power law profile requires a tradeoff14. That is, a high power law is predicted from61

the original theoretical analysis1,3 to maximise the reduction in the wave speed within the62

taper and thus minimise the reflection coefficient, however, a high power law simultaneously63

violates the smoothness criterion inherent in the analysis utilised in the original modelling64

approach14. As a result, Shepherd et al proposed a method of selecting the power law profile65

to reach an optimal tradeoff15. Since then, further physical insight into this tradeoff has been66

gained through more complete models, which include both the uniform and tapered sections67

of the structure12,16–20. Within this body of work it has been shown that high power laws,68

which were penalised in15 due to violation of the smoothness criterion, physically result in69

significant reflection from the junction between the uniform section of the beam and the70

taper due to the rapid impedance change at this point18,21.71

Although significant physical insight has already been demonstrated through various72

studies of ABHs, these previous investigations have generally focused on a specific design73
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parameter12,19, or considered only a small number of design cases over frequency or a pa-74

rameter sweep at a specific frequency1,8,16,17,20. Therefore, to provide more detailed insight75

in to the effect that the geometrical design parameters have on the performance of an ABH76

terminating a beam, this paper presents a full parametric design study, which considers the77

influence of the tip height, taper length and power law on the overall reflection coefficient78

over a broad frequency range. This study provides new physical insight into the design79

of an ABH and is complemented by a corresponding modal analysis. This modal analysis80

builds on previous work that demonstrates the link between the ABH performance and the81

modal density17 and the link between the bands of low reflection and the local modes of the82

ABH cell22, by highlighting in detail how the local modes of the ABH are influenced by the83

geometrical design parameters. Furthermore, using the data from the full parametric design84

sweep, an investigation is also presented here into how the geometrical parameters should85

be selected for optimal broadband performance, which is particularly useful when selecting86

the optimum power law for an ABH design with practical constraints on the taper length87

and tip height, but also shows new insight into the selection of the tip-height.88

The presented investigation is laid out in the following structure. In section II, a numerical89

model of a lightly damped ABH taper on a beam is presented. This is followed, in Section90

III, by the full parametric study, which investigates the effect that varying each geometrical91

parameter has on the reflection coefficient of the ABH on a beam over frequency and how92

this can be related to the modes of the ABH. An investigation into the optimal broadband93

performance is then presented in Section IIID. In section IV, an experimental case study is94

presented, which serves to validate how the characteristics of the reflection coefficient can95
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be related to the modes of the ABH cell as indicated by the numerical study. Finally, in96

Section V, the conclusions of this investigation are presented.97

II. NUMERICAL MODELLING98

In order to carry out the parametric study, a numerical model of an ABH on the end99

of a beam has been developed. The numerical model was implemented using the finite100

element modelling software COMSOL Multiphysics, with the beam physics module using101

Timoshenko beam theory. This allows the beam and taper to be defined as a 2D cross-102

section, before being assigned a finite width. Although this 1-dimensional model neglects103

torsional modes and flexural modes across the width of the beam, it allows a comprehensive104

parametric study to be carried out within practical computational limitations. The use of105

1-dimensional models in the study of ABHs is common and has previously been successfully106

utilised in a number of studies such as21,22. This section will describe the geometry and107

physical properties of the modelled beam, discuss the meshing procedure and outline how108

the generated data will be processed to obtain the reflection coefficient.109

A. Model Geometry110

A diagram of the model geometry is shown in Figure 2 and the range of parameters111

used in the following parametric study are detailed in Table I. In the following parametric112

study, the uniform beam geometry is kept constant, with the beam height, width and length113

as defined in Table I. The ABH geometrical properties (excluding its width) are, however,114

varied over practical ranges, as also defined in Table I. Although a variety of taper profiles115
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have been investigated in the literature1,18, the differences in performance are relatively116

small. Therefore, in this study, the widely used power law profile has been assumed and the117

height function in this case can be defined as118

h(x) = εxµ + htip, (3)

where ε = h(0)− htip is a scaling factor, x is the position along the taper, µ is the power119

law of the taper that defines the gradient and htip is the tip height at the end of the taper.120

TABLE I. The parameters used in the model geometry.

Parameter Symbol Value / Range of Values

Beam height h(0) 10 mm

Beam length lbeam 300 mm

Beam/ABH width b 40 mm

ABH tip height htip 0.01 mm – 3 mm

ABH taper length labh 10 mm – 300 mm

ABH power law µ 1 – 10

Excitation force F 1N

121

122123

Figure 2 also shows the position of two sensors on the beam and a point force excitation,124

which was symetrically located so as to only excite longitudinal flexural motion. The sensors125

were positioned midway along the beam section, separated by∆x = 2 cm, to allow extraction126
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FIG. 2. A diagram of the modelled beam and ABH (not to scale). The locations of the force

excitation and sensing locations are also indicated.

of the reflection coefficient, as described in Section IIC. The length of the uniform beam was127

chosen to be sufficient such that evanescent components could be neglected in the analysis, as128

also discussed in Section IIC. The beam and ABH were both assumed to be constructed from129

aluminium alloy 6082-T6 and some inherent damping has been implemented as an isotropic130

loss with a factor of ηBeam = 0.0001, which is consistent with other studies11,16,23. To model131

the additional damping required in the practical ABH, further damping was included in132

the tapered section of the beam by applying an isotropic loss factor of ηABH = 0.2 and the133

additional mass of this damping layer was modelled by an evenly distributed mass of 11.9 g134

along the length of the taper. This level of damping and additional mass were calculated to135

match the damping layer used in the experimental implementation discussed in Section IV.136

The initial conditions of the ABH were set to stationary and the boundary conditions of all137

the edges were set to free.138

B. Meshing139

Typically, a minimum of 6 elements should be used per wavelength when constructing140

a finite element model24. However, as noted in the introduction, the wavelength varies in141

the tapered section and, therefore, some care must be paid to the meshing of the ABH. To142
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validate the meshing requirement for the ABH, a convergence study was performed with143

the number of (edge) elements per wavelength ranging from n = 1 to n = 20. To ensure144

a sufficiently fine mesh within the ABH, the reference wavelength was taken from the tip145

of the ABH, where the wavelength is the shortest, ensuring that there is a minimum of n146

elements per wavelength at all points along the taper. Although the resolution of the mesh147

could be varied over the length of the taper to improve efficiency, this is not straightforward148

because the details of the variation in the wavelength depend on the specific properties149

of the ABH, which will be investigated in Section III. Therefore, although reducing the150

computational efficiency, selecting the mesh according to the minimum wavelength ensures151

sufficient accuracy at all points. To ensure that the meshing procedure is sufficient for152

the full parameter sweep, a mesh convergence study has been conducted for the longest153

taper (30 cm), smallest tip height (0.01 mm) and a power law of µ = 10, which gives the154

largest variation in the wavelength along the taper. To assess the convergence, the mean of155

the magnitude of the displacements measured at each element was calculated at the upper156

frequency of interest (10 kHz), using an increasing number of elements per wavelength and157

the results are shown in Figure 3. From these results it can be seen that the mean of the158

magnitude of the displacement per element has converged to a constant value when there159

are approximately 10 or more elements per wavelength and, therefore, this value has been160

used in the following parametric study.161162

Based on the results of the convergence study, Figure 4 shows how the total number of163

elements required to model the taper section varies with the tip height at the maximum164

frequency of interest in the following study, which is 10 kHz. From this plot it can be165
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FIG. 3. The mean of the magnitude of the displacement per element plotted against the number

of elements per wavelength at 10 kHz.

seen that the number of elements required rapidly decreases as the tip height increases. A166

convergence study was also carried out to ensure that a sufficient number of elements were167

used to model the uniform beam section, which is constant over the various parameterisations168

and a total of 10 elements per wavelength were used, giving a total of 32 elements in the169

beam section at the upper frequency of interest. The change in the size of the mesh elements170

between the ABH and the beam section, which is related to the difference in the minimum171

wavelength in each section, is depicted in Figure 5.172173174

C. Wave decomposition in a beam175

Wave decomposition is the separation of a measured disturbance into the individual176

wave components. For example, wave decomposition has previously been used to calculate177

the wave components in both acoustic systems25 and in structures such as beams26,27 and178

ABHs28. To investigate the performance of the ABH, a wave decomposition, based on28, will179
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FIG. 4. The number of elements required to model a 7 cm taper with a power law of 6 for each tip

height increasing from 0.01 mm to 3 mm with 10 elements per wavelength at a 10 kHz excitation

frequency.

FIG. 5. The meshing difference between the beam, on the left, and the ABH, on the right.

be used in this investigation to obtain the reflection coefficient and facilitate the following180

comparison of the various ABH configurations.181

To decompose the waves in a beam, the number of sensors required is dependant on the182

number of waves that make up the disturbance. For example, in the case where there are both183

positive and negative evanescent (near-field) waves and propagating (far-field) waves, four184

sensors are required to form four simultaneous equations that can be used to calculate the185

amplitude and phase of the individual waves. However, when the sensor array is sufficiently186

far from any impedance changes or excitation source, the contribution from the near-field187

waves can be neglected and thus only two sensors are required.188
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It has been assumed in the following that the near-field contribution can be neglected189

once it has decayed to 10% of its original magnitude, i.e.190

e−kf l = 0.1, (4)

where l is the distance from the sensor array to any features, such as impedance changes191

that introduce near-field components, and kf is the flexural wavenumber; this is consistent192

with28. To address the limits that this assumption imposes on the system geometry, it is193

necessary to express the flexural wavenumber in the beam as29194

kf =

󰀣
ρsS

EI

󰀤 1
4

ω
1
2 . (5)

Substituting equation 5 into equation 4 and rearranging gives the low frequency limit as195

fmin =
1

l2

󰀕
EI(ln(0.1))4

4π2ρsS

󰀖 1
2

. (6)

In addition, an upper frequency limit due to aliasing can be calculated based on the require-196

ment that the distance between the two sensors must be less than half a wavelength, which197

from Equation 2 gives198

fmax =
1

∆2
x

󰀕
π2EI

4ρsS

󰀖 1
2

. (7)

In the presented study, the sensor array was located at 14 cm from the excitation force199

and 14 cm from the ABH boundary, so that l = 14 cm and the sensor spacing was set to200

∆x = 2 cm. These parameters give a low frequency limit of approximately 600 Hz and an201

upper frequency limit of approximately 57 kHz. However, this analysis assumes that the202

structure behaves as a beam with one-dimensional wave propagation, which will break down203

when the wavelength becomes comparable to either the width or height of the beam28. In204
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the following study, this limit first occurs where the wavelength becomes comparable to the205

width of the beam, which is 4 cm, and gives a practical upper frequency limit of ∼ 14 kHz.206

Therefore, in the following investigation the analysis has been limited to a maximum fre-207

quency of 10 kHz.208

Φ"Φ#

$̇('() $̇('*)

∆,

FIG. 6. Two sensors placed at x1 and x2 that are used to measure the velocity, ẇ, at each point.

The velocity measured at each sensor is then used to calculate Φ− and Φ+, the positive and negative

travelling propagating waves along the beam.

A diagram of the beam section of the model is shown in Figure 6 indicating the sensing209

points and the two propagating waves. Each sensor measures the velocity, which is the210

superposition of the two propagating waves at each point, such that211

ẇ(x) = iω(Φ+e−ikfx + Φ−eikfx), (8)

where ẇ is the transverse velocity measured at a point, x, along the beam and Φ+ and Φ−

are the complex amplitudes of the positive and negative propagating waves respectively29.

The positive and negative propagating wave amplitudes can then be calculated in terms of
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the velocity at the n-th sensor, ẇ(xn), as
29

Φ+ =
−1

2ω sin(kf∆x)
[ẇ(x1)e

ikf∆x

2 − ẇ(x2)e
−ikf∆x

2 ] (9)

Φ− =
−1

2ω sin(kf∆x)
[ẇ(x2)e

ikf∆x

2 − ẇ(x1)e
−ikf∆x

2 ]. (10)

The magnitude of the reflection coefficient can then be calculated as212

󰀏󰀏R
󰀏󰀏 =

󰀏󰀏󰀏󰀏
Φ−

Φ+

󰀏󰀏󰀏󰀏. (11)

This will be used in the following parametric study to investigate the tradeoffs in the design213

of an ABH terminating a beam.214

III. PARAMETRIC STUDY AND MODAL ANALYSIS215

In this section, the results from the parametric study of an ABH on a beam are presented.216

In particular, the effects over frequency of varying the tip height, taper length and power law217

are investigated, before the broadband design is considered. A parametric study was chosen218

for this investigation rather than a direct optimisation procedure as highlighted in16, to219

enable the intricate effects that each design parameter has on the reflection coefficient of the220

ABH over a broad frequency and parameter range to be examined. Although this parametric221

study can ultimately be used to assess optimal design parameters, it is not restricted to a222

specific optimisation cost function and, therefore, is able to provide broader insight. That223

said, it would be more appropriate to perform a direct optimisation process if an ABH was224

to be designed for a specific application and thus utilise such methods as outlined in16.225

The reflection coefficient for each parameterisation has been calculated using the method226

defined in Section IIC over a frequency range of 100 Hz to 10 kHz, which is well within227
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the upper and lower limits of validity, as discussed in Section IIC. In addition, for each228

parameterisation, the modes of the ABH cell have been calculated by modelling the cell229

in isolation and assuming a no-rotation boundary condition at the junction between the230

beam and the ABH. The no-rotation boundary condition was found to approximate the231

modal behaviour of the ABH coupled to the beam section well, because, in the fully-coupled232

system, the rotational stiffness of the beam at the ABH junction is much greater than the233

bending stiffness.234

A. The effect of the tip height235

Figure 7(a) shows a contour plot of the reflection coefficient plotted as a function of236

frequency for a range of tip heights from 0.01 mm to 3 mm, which has been chosen to cover237

practically realisable tip heights. The taper length has been fixed at 70 mm and the power238

law set to µ = 4. The resolution of the change in the tip height was decreased iteratively239

until the results shown in Figure 7(a) converged. The tip height was ultimately varied in240

steps of 6.67 µm, which corresponds to 1/5 of the minimum flexural wavelength.241242

The results in Figure 7(a) show that as frequency increases from 100 Hz to 10 kHz, there243

are varying bands of high and low reflection coefficient. At larger tip heights, the spectral244

bands become wider in both bandwidth and spacing and, resultantly, there are fewer bands245

of low reflection within the presented frequency range. Interestingly, it is also clear that246

the minima in the spectral bands are lower in the mid-range of tip heights presented and,247

therefore, if the ABH was being tuned for a narrowband control problem, there may be a248

benefit to selecting a tip height that is greater than the minimum manufacturable limit; this249
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(a) (b)

FIG. 7. (color online) (a) The reflection coefficient, shown on a colour scale of 0 to 1, plotted as a

function of frequency and tip height for an ABH with a taper length of 70 mm and a power law of

4. The modal frequencies are indicated by the white dotted lines and the first five mode shapes are

shown. (b) The change in modal density averaged across the considered bandwidth as a function

of the tip height.

is distinct from the general ABH design approach. For example, the performance at 7 kHz250

can be maximised by using a tip height of 0.7 mm. Despite this potential for narrowband251

tuning, by decreasing the tip height the bands of low reflection begin to overlap and the252

broadband performance tends to increase; this broadband performance will be explored in253

more detail below.254

In addition to the narrowband and broadband performance of the ABHs, it is interesting255

to consider the low frequency performance limit. From the results presented in Figure 7(a),256

it can be seen that at frequencies below ∼2 kHz, the bands of low reflection become narrow257

and the performance of the ABH is poor for the range of tip heights examined. This low258

frequency performance can be related to the length of the ABH taper because, as noted259

in the introduction, an ABH is known to become effective when the length of the taper is260
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comparable to or longer than the flexural wavelength2. Although this is somewhat difficult261

to measure because of the change in the wavelength over the length of the taper, an estimate262

can still be made by considering the wavelength halfway along the taper. For example, for a263

power law of µ = 4, a taper length of 7 cm and a tip height of 0.6 mm), the taper becomes264

comparable to the wavelength at approximately 2 kHz, which generally aligns well with the265

results presented in Figure 7(a). However, it is clear that there is appreciable performance266

at lower frequencies, and that a more robust explanation for the low frequency limit can be267

achieved through evaluating the modes of the ABH.268

To provide further insight into the physical behaviour of the ABH, the modes of the ABH269

cell have been calculated as described in the introduction to Section III. The variation in the270

frequency of the first 5 modes of the ABH cell over tip height are shown by the white dotted271

lines in Figure 7(a) and the corresponding mode shapes are shown for the first 5 modes.272

From these results it can be seen that the frequencies at which the modes occur align well273

with the bands of low reflection and that at low frequencies the ABH only achieves a low274

reflection coefficient at frequencies very close to the first mode. It can also be seen from275

these results that that the modal density increases with a decrease in the tip height, which276

is consistent with17 and Figure 7(b) shows the change in the modal density averaged across277

the considered bandwidth as a function of the tip height. From this plot it can be seen278

that the modal density increases exponentially for a decreasing tip height. The increase in279

the modal density for smaller tip heights is due to higher order modes occurring at lower280

frequencies and this can, in turn, be related to the increased reduction in the wavelength281

over the length of the taper.282
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B. The effect of the taper length283

Figure 8(a) shows a contour plot of the reflection coefficient plotted as a function of284

frequency for a range of taper lengths from 10 mm to 300 mm, which has been chosen to285

represent practically realisable taper lengths. The tip height has been fixed at 0.6 mm and286

the power law set to µ = 4. As in the previous section, the resolution of the change in287

the taper length was decreased iteratively until the results shown in Figure 8(a) converged.288

The taper length was ultimately varied in steps of 2 mm, which corresponds to 1/10 of the289

minimum flexural wavelength. The results in Figure 8(a) show that, as frequency increases,290

the reflection coefficient of the ABH varies in bands, similarly to Figure 7(a). For longer291

tapers, there are more bands of high and low reflection than for shorter tapers over the same292

bandwidth. As discussed in Section IIIA, the low frequency limit of the ABH is dependent293

on the length of the taper and it can be seen from the results in Figure 8(a) that the low294

frequency limit decreases as the taper length is increased. For the considered power law (µ295

= 4) and tip height (htip = 0.6 mm), when the taper is shorter than 2.6 cm, the broadband296

performance of the ABH is limited over the presented frequency range. As in Section IIIA,297

this can be related to the length of the ABH and a 2.6 cm taper becomes comparable to the298

flexural wavelength at a frequency of 10 kHz. At taper lengths below 2.6 cm it can be seen299

from Figure 8(a) that a dip in the reflection coefficient only occurs over a narrow bandwidth300

around the first ABH mode, as discussed in the previous section. That said, considering301

the relatively small amount of damping assumed in the presented results, it can be seen302

that ABHs with longer tapers are very effective, especially at higher frequencies, where303
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the reflection coefficient is between around 0 and 0.2 over a large portion of the presented304

bandwidth.305

(a) (b)

FIG. 8. (color online) (a) The reflection coefficient, shown on a colour scale of 0 to 1, plotted as a

function of frequency and taper length for an ABH with a tip height of 0.6 mm and a power law of

4. The modal frequencies are indicated by the white dotted lines and the first five mode shapes are

shown. (b) The change in modal density averaged across the considered bandwidth as a function

of the taper length.

306

307

Once again, the first 5 modes of the ABH cell have been calculated over the range of308

taper lengths and their frequencies are indicated by the white dotted lines in Figure 8(a).309

From these results, it can again be seen that the modal frequencies correspond to the bands310

of low reflection. In addition, it can be seen that the modal density increases as the taper311

length increases and this is clearly shown by Figure 8(b), which shows the average modal312

density as a function of the taper length. From this plot it can be seen that the average313

modal density increases linearly with the taper length, resulting in improved performance314

for longer tapers.315
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C. The effect of the power law316

The final geometrical parameter that can be tuned when designing an ABH for a beam317

application is the power law. In fact, in many applications this may be the main design318

parameter due to restrictions on tip height, due to manufacturing and structural integrity319

requirements, and taper length, due to the space available for the ABH. Figure 9(a) shows320

a contour plot of the reflection coefficient plotted as a function of frequency for a range of321

power laws from 1 to 10. The taper length has been fixed at 70 mm and the tip height has322

been set to 0.6 mm. In this case, the power law has been varied in steps of 0.1, which has323

been determined iteratively, as in the previous sections.324

(a) (b)

FIG. 9. (color online) (a) The reflection coefficient, shown on a colour scale of 0 to 1, plotted as a

function of frequency and power law for an ABH with a tip height of 0.6 mm and a taper length

of 70 mm. The modal frequencies are indicated by the white dotted lines and the first five mode

shapes are shown. (b) The change in modal density averaged across the considered bandwidth as

a function of the power law.

325

326
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From the results presented in Figure 9(a) it can be seen that the spectral bands of high and327

low reflection, observed previously, also vary with the taper power law. At higher frequencies,328

on average, the reflection coefficient is lower for all power laws and this is consistent with329

the previous results and literature. Figure 9(a) once again shows the alignment between330

the modal frequencies of the ABH and the bands of low reflection for the range of power331

laws examined. A higher power law changes the mass distribution of the taper and can be332

seen to lower the modal frequencies and thus increase the modal density over the presented333

frequency range. This is also shown by the average modal density versus power law, which334

is shown in Figure 9(b). From this plot it can be seen that the modal density increases335

exponentially with the power law. In addition to the changes in the modal frequencies, it336

can be seen from the results shown in Figure 9(a) that for power laws less than around 5,337

the minima in the spectral bands are lower than for higher power laws. For example, in the338

band corresponding to the third mode, the reflection coefficient is lowest for a power law339

between 3 and 5. There thus exists an optimal power law, which reaches a tradeoff between340

the large impedance change between the beam and the taper at higher power laws, and the341

limited length of the taper over which the wave speed is relatively slow at lower power laws.342

That is, the reflection at higher power laws becomes dominated by the component reflected343

from the junction to the ABH rather than from the ABH itself, as demonstrated in18, and344

it can be seen from the results in Figure 9(a) that this is a frequency dependent effect.345

Based on the above discussion and the results in Figure 9(a), it is evident that there is an346

optimum power law that can be used to attenuate a particular frequency. For example, if347

attenuation is required at 7 kHz and the ABH has been constrained to a length of 7 cm and348
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a tip height of 0.6 mm, the optimum power law would be 3.3. This introduces the idea that349

the power law can be used to tune the behaviour of an ABH when the other key geometrical350

parameters, namely the length and tip height, are constrained due to practical restrictions.351

D. Parameter selection for optimal design352

It has been shown in the previous sections that the geometrical parameters of an ABH353

can be tuned to achieve a change in its performance characteristics. In particular, it has354

been discussed how the parameters can be tuned to optimise the ABH for performance at355

a single frequency or over a narrowband. However, the ABH design parameters could also356

be tuned to minimise the reflection over a broadband frequency range and in this case the357

optimal parameters will depend on both the bandwidth of interest and the constraints due358

to the application. In this section, the potential design tradeoffs will be considered for the359

case when the maximum broadband performance of the ABH is required and the optimal360

design parameters will be evaluated. In this investigation, the broadband performance will361

be assessed over a frequency range of 100Hz – 10kHz by calculating the average reflection362

coefficient, and the minimum broadband reflection coefficient over the parameter space will363

be evaluated.364

In the first instance, Figure 10 shows how the broadband average reflection coefficient365

varies with both taper length and tip height for an ABH with a power law of 4. From these366

results it can be seen that increasing the length of the taper lowers the broadband average367

reflection coefficient for this power law. The optimal configuration is thus relatively trivial368

in this case, essentially requiring the longest taper length achievable. That said, for each369
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taper length there is an optimum tip height and it is, therefore, insightful to discuss the370

behaviour further.371

FIG. 10. (color online) The variation in the broadband average reflection coefficient with both the

tip height and taper length of an ABH with a power law of 4. The reflection coefficient has been

averaged over a broadband frequency range (100 Hz – 10 kHz) and is shown on a colour scale of 0

to 1. The optimum tip height is shown by the dotted white line.

For the parameter ranges examined, it is clear that the optimum tip height, which min-372

imises the broadband reflection coefficient for a specific taper length, varies with taper length.373

This is shown by the dotted white line in Figure 10 and is generally lower for longer taper374

lengths. This is somewhat distinct from current ABH design strategies, which specify that375

reducing the tip height improves the performance of the ABH. This is because, as shown376

in Section IIIA for a power law of 4, that although a small tip height gives a higher modal377

density, the minima in the bands of low reflection are low enough to shift the minimum in378

the broadband average up to the mid-range tip heights. This may explain the lower opti-379

mum tip height at longer taper lengths because, as shown in Section III B, increasing the380

taper length reduces the reflection coefficient at all frequencies and would therefore reduce381
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the difference between the minima in the bands of low reflection in Section IIIA and the382

reflection coefficient when the modal density is high. It should be noted then that the opti-383

mum tip height for minimising the broadband reflection coefficient may not be suitable for384

all broadband vibrational problems as there may be cases where the problematic frequencies385

do not align with the bands of low reflection.386

Figure 11 shows how the broadband average reflection coefficient varies with both the387

power law of the ABH and the length of the taper. For a fixed power law, the results show388

that increasing the length of the taper decreases the broadband average reflection coefficient.389

As shown in Section III B, increasing the length of the taper increases the modal density and,390

therefore, increases the attenuation provided by the ABH. A more interesting observation391

from the results presented in Figure 11 is, however, that at each taper length there is an392

optimum power law that can be used to achieve the lowest broadband reflection and this393

power law has been indicated by the dotted white line.394395

From the indicated optimal results shown in Figure 11, it can be seen that the optimum396

power law varies with taper length. In section III C, it was shown that increasing the397

power law results in an increase in the modal density, but also increases the reflection398

from the junction between the beam and the ABH. This trade-off differs for each taper399

length, due to the corresponding variation in the modal density as discussed in Section400

III B. Specifically, for a long taper with a high modal density, a lower power law is used to401

limit the impedance change and, therefore, reflection at the junction. Whereas for a shorter402

taper, with a relatively low modal density, a higher power law provides the optimal trade-off403

between reflection from the junction and modal density. This trend can be seen from the404
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FIG. 11. (color online) The variation in the broadband average reflection coefficient with both

the power law of the taper and the taper length for an ABH with a tip height of 0.6 mm. The

broadband reflection coefficient is shown on a colour scale from 0 to 1. The optimum power law is

shown by the dotted white line.

results presented in Figure 11. It is also interesting to note that for taper lengths greater405

than about 10 cm, the optimum power law is relatively constant with a value between 2406

and 3. In summary, the results in Figure 11 show that the power law of an ABH can be407

optimised for a specific taper length to achieve the minimum broadband reflection coefficient.408

For example, if the length of the ABH taper was constrained by the intended application,409

the power law of the ABH could be optimally tuned according to the data shown in Figure410

11.411

In addition to considering how the broadband performance varies with both power law412

and taper length, it is interesting to consider the variation with power law and tip height413

and this is shown in Figure 12. The optimum power law, which minimises the broadband414

reflection coefficient for each tip height, is shown by the dotted white line. From these results415

it can be seen that the optimum power law is greater for larger tip heights and this can be416
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related to a shift in the trade-off between modal density and reflection from the junction.417

That is, when the modal density is limited by the tip height, the benefit of increasing the418

modal density by using a higher power law outweighs the relative change in the reflection419

from the junction to the ABH. For smaller tip heights, this balance between the reflection420

from the junction and the modal density occurs at a lower power law.421

FIG. 12. (color online) The variation in the broadband average reflection coefficient with both the

power law of the taper and the tip height of an ABH with a taper length of 70 mm. The broadband

reflection coefficient is shown on a colour scale from 0 to 1. The optimum power law is shown by

a dotted white line.

422

423

IV. EXPERIMENTAL VALIDATION424

In this section, the reflection coefficient of a practical ABH will be presented and the425

experimentally identified modes will be assessed to validate the physical insights provided426

by the simulation-based study. This experimental study will demonstrate that the practical427

ABH behaves with the characteristics that were predicted in the simulation study.428
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A. Experimental setup429

An ABH on a beam was cut from an aluminium plate, alloy 8082-T6, using a water jet and430

the dimensions are shown in Table II. The manufactured beam with the ABH termination431

is shown in Figure 13, with and without the additional damping applied to the taper. The432

damping that was used in this experiment was ‘yellow plastic compound’, manufactured by433

WT Henley30. The compound is easy to mould and was stuck to the aluminium surface434

without requiring additional adhesive. The structure was then mounted, via a force gauge,435

onto a large shaker as shown in Figure 14. The shaker was driven with white noise, using a436

sample time of 41.7 µs (corresponding to a Nyquist frequency of 12 kHz).437438

FIG. 13. (color online) A picture of the ABH that was used in the experimental study, with and

without damping.

439

440441

The resulting vibration of the structure was measured at intervals of 5 mm along the442

length of the beam and the taper sections using a Polytec PDV–100 laser vibrometer443

mounted on a tripod 210 mm above the ABH. Each measurement was taken for a duration444

of 60 s to allow significant averaging to achieve good coherence. The reflection coefficient445

was then calculated using the wave decomposition method, described in section IIC. A446

good signal to noise ratio was observed by using a sensor separation of 2 cm. Based on the447
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TABLE II. The dimensions of the manufactured ABH on a beam.

Parameter Value

Beam height 10 mm

Beam length 300 mm

Beam width 40 mm

ABH tip height 0.5 mm

ABH taper length 70 mm

ABH width 40 mm

ABH power law 4

Damping layer thickness ∼0.5 – 1 mm

Shaker

Acoustic black 
hole on a beam

Force gauge

Laser
Vibrometer

a

b

FIG. 14. (color online) A diagram (a) and picture (b) of the experimental setup used.
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experimental dimensions, the lower frequency measurement limit was ∼ 600 Hz (based on448

the distance between the sensor and any near field components) and the upper frequency449

measurement limit was ∼ 14 kHz (based on the assumption that there are no flexural modes450

across the width or height of the beam).451

B. Results452

Figure 15 shows the measured reflection coefficient over frequency along with the mea-453

sured mode shapes of the ABH cell and their frequencies. The small peaks in the data,454

such as at approximately 4.3 kHz, occur at frequencies where the coherence of the measured455

signal was limited due to the location of the measurements with respect to nodal points on456

the beam. Minima in the reflection coefficient occur at 1.3 kHz, 3.35 kHz, 6.01 kHz and457

9.45 kHz. The modes of the ABH cell were extracted by examining the amplitude of the458

displacement along the taper and have been numbered in Figure 15. The first five modal459

frequencies match the frequencies of the bands of low reflection, with the first mode occur-460

ring at approximately 315 Hz. The first mode falls outside of the valid frequency range of461

the wave decomposition and therefore the reflection coefficient measured at this frequency462

is not valid, but is still included for reference. Figure 15 also shows finite element results463

for the same ABH design parameters, where the mass and loss factor of the yellow damping464

material have been matched in the model as discussed in Section IIA. Although there are465

slight deviations, the finite element results match the experimental results well and validate466

the insight gained from the model based investigation.467468
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FIG. 15. The reflection coefficient calculated using the experimentally measured velocities from an

ABH on a 300 mm beam. The dimensions of the beam and ABH are specified in Table II and the

measured mode shapes at each minima have been plotted. The grey shaded area is the frequency

range that the wave decomposition is invalid for. In addition, the reflection coefficient calculated

using the FE model is shown.

V. CONCLUSIONS469

This article has presented an extended study of how the controllable geometrical param-470

eters of an ABH influence the reflection coefficient and the broadband average reflection471

coefficient of a beam. A finite element model has been developed and utilised to carry out a472

parametric design study. In the first instance, the variation in the reflection coefficient over473

frequency has been investigated as either the tip height, taper length or power law of the474

ABH are modified. These results have shown that the reflection coefficient exhibits bands of475

low reflection and, through a modal analysis, these bands have been linked to the modes of476

the ABH cell. As a result of this insight, it has been shown how the ABH can be tuned for477

optimal performance at either a single frequency or in a broadband sense. In the case of the478
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tip height, it has been shown that although a smaller tip height increases the modal density,479

greater levels of narrowband attenuation can be achieved with an increased tip height. An480

optimal tip height is, therefore, shown to exist. It has also been shown that the modal481

density and the performance of the ABH is increased by increasing the taper length. In482

terms of the power law, it has been shown that a higher power increases the modal density,483

but this does not necessarily minimise the reflection coefficient. It is shown that there is484

an optimal setting for the power law that must reach a trade-off between maximising the485

modal density and limiting the reflection from the junction between the uniform beam and486

the taper, which becomes significant at higher power laws.487

Although the presented narrowband results are consistent with individual parameterisa-488

tions already presented in the literature, the presented parameter sweep over a broadband489

frequency range provides clear insight into the tuning of an ABH under particular design490

constraints. It has also provided new physical insight into the trade-off that must be con-491

sidered when selecting the power law, as previously discussed in15, but not directly linked to492

the underlying physical behaviour and the tip height. That is, it is highlighted through the493

presented study that the trade-off is between maximising the modal density, which occurs494

for higher power laws and smaller tip heights, and limiting the reflection from the junction495

to the ABH.496

The broadband parameter sweep has also fed into an investigation into the variation in497

the broadband averaged reflection coefficient with the three geometrical design parameters.498

This has initially shown that the broadband average reflection coefficient is minimised by499

maximising the taper length as expected. However, contrary to current ABH design strate-500
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gies, the tip height was shown to have an optimum value for a specific ABH parameterisation.501

In practical applications, the tip height and taper length are likely to be constrained and,502

therefore, a series of results have also been presented that demonstrate how the power law503

should be optimally tuned depending on other design constraints. In overview, it has been504

shown that the optimal power law decreases with the taper length and increases with the505

tip height and this observation has been linked to reaching a trade-off between maximising506

the modal density and limiting the reflection from the junction between the beam and the507

taper.508

Finally, an experimental case study has been presented that validates the ABH be-509

havioural trends predicted by the parametric numerical study. That is, the bands of low510

reflection were shown to align with the experimentally identified ABH modes, thus support-511

ing the presented numerical analysis.512
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