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Abstract—In this paper we endeavour to evaluate and model
switching noise in resistive random access memory devices
(RRAM). Although noise is always present in physical systems,
the sources of which can be attributed to many different effects,
in this study we are focusing our attention on a specific type —
switching noise. Using alternating pulse programming and read
trains across different voltages we acquire a large dataset below
and above the switching threshold and construct what we define
as increment plots, AR vs. R. Then, through a detailed statistical
analysis, we quantify the localised uncertainty among consecutive
points using a sliding window of up to N points accounting
for any statistical artefacts that arise. By separating the data
accumulated from programming and read-out and analysing
them individually we can subtract a baseline noise floor from the
overall switching uncertainty. In this way we effectively decouple
it from other noise sources that affect the device at rest. In the
end an F'(R, V) surface can be extracted that closely follows the
behaviour of uncertainty of the device during programming. This
modelled surface can be used as an approximation of the noise
behaviour of the device or it can be readily incorporated as an
additional component to existing switching models.

Index Terms—memristor, RRAM, switching noise

I. INTRODUCTION

HE correlation of the memristor, the theorised fourth

passive circuit element [1], with resistive memories as
realised by Strukov et al. [2], has received remarkable attention
due to the broad range of potential applications that have been
put forward some of which include, but are not limited to, non-
volatile multi-bit memories [3], neuromorphic systems [4] and
reconfigurable circuits [5]. Resistive memories, however, are
not immune to the effects of noise [6] which is present in all
physical systems whether it is internal or external to them [7].
In certain cases [8] memristive response can be enhanced by
the presence of noise.

Manifestations of noise attributed to telegraph noise (RTN)
and random walk have indeed been researched before in the
context of resistive memories [9-11]. In [12] the authors
present a way to model RTN in RRAM devices with highly
quantised resistive states as well translate its implications to
circuit design. Noise effects were also taken into consideration
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as part of more holistic bottoms-up physical/chemical RRAM
models dealing with specific technologies [13, 14]. Indicative
sources of uncertainty in memristive systems can be due to
cycle-to-cycle variability, switching rate uncertainty or instru-
mentation noise. This, of course, is not an exhaustive list as
additional factors such as drift due to device ageing, Johnson-
Nyquist noise, 1/ f noise and possibly others can affect the de-
vice at rest. In Figure 1 a memristive device is under repeated
pulsed programming bias. The overall trend of the resistance
is increasing, so the device is indeed switching to a different
resistive level; there is, however, a degree of uncertainty in-
between consecutive data points. This uncertainty is expressed
in a form of noise during the progress of the measurement.
Since the uncertainty introduced is an aggregate of many
different sources there cannot readily be a distinction between
the uncertainty due to random effects and noise associated
with purely switching the devices to different resistive levels,
which is in effect what we call the switching noise. RTN-
like effects are considered as an uncertainty during read-out
or in general when the resistance of the device is assessed.
Switching noise is, instead, the manifestation of uncertainty
atop a specific phenomenon and occurs during programming.

This is a key parameter to optimise when constructing
behavioural models for memristive devices, especially with de-
vices exhibiting gradual switching between close neighbouring
states, and allows for noise components to be added to existing
models closely matching the behaviour of real devices within
the constraints of the operational resistive range. This point
is especially pertinent in the case of engineering neuromor-
phic computing systems as every plasticity event can change
the synaptic weights. That weight dispersion will affect the
trustworthiness and reliability of the system [15].

Towards that end, this work aims to address this issue by
providing a characterisation methodology and an accompa-
nying statistical analysis to model the switching noise while
decoupling it from underlying non-switching components, as
those that arise during read-out when the device is at rest.
Instead of treating noise a global source of variability we en-
deavour to isolate its effect during the programming phase. Our
proposed model can be then readily incorporated to existing
behavioural switching models without further modification of
the original.

This paper is organised as follows. In section II we present
the methodological background to the paper in order to prop-
erly estimate switching noise. Section III deals with the actual
experimental translation of the methodology. In section IV we
present and discuss upon the experimental results. Concluding
remarks follow in section V.
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Fig. 1. Resistive response of a device under constant pulsed bias. Although
resistance is generally trending upwards there is some degree of uncertainty
regarding the relative change between consecutive data points. This is mani-
fested as switching noise which is distinct from other forms of noise. Units
are arbitrary.

II. METHODOLOGY

We can define switching as a change in resistive state (RS),
measured under a fixed read-out voltage, before and after
the application of a stimulus of a specific combination of
amplitude and pulse width [16]. In an ideal voltage controlled
memristive system as described in [17], if any other factors
are ignored, the degree of switching should in principle only
depend on initial RS (R) and applied stimulus waveform (in
this case, voltage amplitude of square wave stimulation V).
However a number of uncertainty factors mean that change in
resistance, AR, will typically differ for each trial. We call this
phenomenon switching uncertainty or switching noise.

The overall flow of the switching noise estimation process
is as follows: In order to assess the degree of switching
noise we must sample the degree of resistive switching from
multiple initial resistive states, for multiple voltage stimulation
magnitudes. To that end we employ an automated stimulus
generation protocol for data collection. Next, we note that
the AR depends on the last measured resistance, R, given
an underlying ground truth value of Ry and compensate for
that effect. Then, we estimate the switching uncertainty locally
at each point on the R—V plane (our input space consisting of
the resistive state of the device and applied voltage amplitude).
Finally, all locally gathered data is aggregated into a surface
describing switching uncertainty as a function of R and V.

A. Data acquisition and preparation

In this work the basic unit of device stimulation consists
of a pair of square wave voltage pulses. First a programming
pulse is applied. This may have a varying amplitude but fixed
duration as shown in Figure 2a. Next, a low amplitude (below
the threshold that causes the memristor to switch) read-out
pulse is used to measure the resistive state of the device under
standard voltage conditions. Of course the selection of the read
voltage is technology dependent as, in principle, long enough
biasing even at low voltages can eventually lead to a switching
event.
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Fig. 2. Stimulus protocol as described in paragraph II-A. A series of
alternating polarity pulse trains (cycle) is applied a predefined number of
times forming a block of stimulus at a specified voltage (a & b). The voltage
of the block is increased to cover a large area in the R-V plane (¢). The
switching rate of the device as a function of R and V' can be estimated (d).
Read-out trains (in green in Fig. a) are applied in-between the programming
trains as a means to extract the baseline noise of the device.

Our stimulation protocol is a variation of that demonstrated
in [18]. Pulsed voltage trains of alternating polarities and
progressively increasing voltage are used to induce switching
in a test memristor. Each pulse train causes the device to
saturate at a specific voltage-dependent RS (Figure 2b). Each
pair of bipolar pulse trains acts as a switching cycle, jogging
the resistive state of the device towards higher (or lower)
resistances and back. Many cycles using the same voltage
amplitudes can be chained together to form a block. The
block voltage amplitudes are progressively increased up to a
maximum value thus covering an increasingly larger area in
the R-V plane (Figure 2c). The end result is an extracted
model which describes the normalised switching rate of the
device (dR/dt) as a function of initial resistance and bias
voltage as in Figure 2d. After each programming pulse a series
of successive read-outs is carried out in order to assess the
baseline noise of the device when at rest at a specific resistive
level.

After the above stimulation protocol has been applied the
resistances that have been accumulated are differentiated, sepa-
rately for programming and read-out pulses, and the increment
plots, AR vs. R, are generated. Increment plot data (R, AR)
corresponding to equal voltages within each block is pooled
together for the purposes of the analysis carried out in the
following sections.

B. Correlation compensation

Increment plots are useful for illustrating the dependence of
resistive state change on the running value of resistance. At
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this point it is important to introduce the concept of underlying
resistance. In a system without any noise the resistance of
the device would either be stable (under read-out) or change
monotonically (under programming). This ground truth is what
we define as underlying resistance for the purposes of this
paper. Due to the effect of noise measured resistance includes
a perturbation around the underlying one which, as a result,
is never directly known during the course of an experiment.

Calculating the uncertainty from a increment plot is straight-
forward when the underlying resistive state does not change,
as in during read-out of a device. An illustrative example with
generated data can be seen in Figure 3a. The corresponding
increment plot for this particular case is shown in Figure 3c. In
order to extract a histogram of the A R values corresponding to
our specific underlying Ry from the increment plot we merely
need to ignore the absolute R values and extract the histogram
of the AR values. We may do this because it is clear that all
data points in the increment plot correspond to the underlying
value Ry.

Investigating Figure 3c in more detail we notice that the
data points of the increment plot are forming an elongated
cluster centred around AR = 0 and R = Ry. The cluster is
noticeably rotated by 45°. The reasoning is as follows: If we
sample a random variable, x, drawn from a normal distribution
with mean p and standard deviation o then the expected value
for each sample would be, by definition, u. Therefore if we
draw a value with offset &k from the mean, S(t) = p + k, the
expected difference, (AS), will then be:

(AS) = (S(t+1) = SW) = p— (u+hk) =k (1)

It follows that in the case of Figures 3a and c for the resistive
values of a device:

(AR) = (R(t +1)) — R(t) = Ro — R(t) 2

the slope, 0AR/OR, will on average be —1 i.e. lying on a
line 45° against the y-axis as shown in Figure 3c.

In the case of a time variant underlying resistive state
(Figure 3b) uncertainty extraction from the increment plot
becomes more involved. For a device that changes its resis-
tance under bias (as in during programming), the data points
shown in Figure 3d will, in general, correspond to different
values of underlying resistance. However, isolating a number
of time-consecutive data points in the increment plot 3d we can
observe that the same pattern as in 3c emerges as each cluster
of arbitrary consecutive points (highlighted in Figure 3d) lies
on a 45° orientation. In other words, the time-varying case
can be understood as (approximately) producing a succession
of time-invariant clusters around different underlying (mean)
resistances.

In order to compensate for this 45° rotation effect we may
apply a standard —45° rotation matrix across all data, both in
the high and low resistive states. The results of this rotation
process are shown in Figures 3(e,f) for the time-invariant and
time-varying case respectively. Now data points corresponding
to the same underlying value of R are vertically aligned to
the best approximation as it is evident from the highlighted
subcluster. This simplifies the execution of the next steps in
the process.
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Fig. 3. Increment plot construction and rotation for a set of randomly

generated (i.e. not measured) data around an invariant value (a) or a time-
variant value (b). The underlying unperturbed resistance Rq is indicated for
both cases. During the course of an experiment Rg is typically unknown.
For the invariant value plotting the increment plot AR vs R leads to the
data points being arranged randomly around an axis lying 45° with respect
to the y-axis (c). For the case of the time-variant value the same observation
approximately holds for each subcluster of arbitrary but time-consecutive data
points. Values are arbitrary; scales for all axes in each row are identical; aspect
ratio for all subfigures is 1:1; labels indicate the number of units per division
per axis. Applying a —45° rotation transformation matrix leads to the data
points being aligned vertically (e, f). A subcluster of data (in purple) is isolated
to illustrate the effect of the transformation on the dataset.

C. Uncertainty estimation and statistical correction

Having vertically aligned data points estimated to corre-
spond to the same underlying RS we may proceed to calculate
the level of uncertainty as a function of RS. To that end we
employ a sliding window of N data points in the rotated
AR’ — R’ plane. In our case we chose N = 3. Each of these
triplets of points is consecutive along the R’ axis (the z-axis
in the rotated data shown in Figure 3). A highly localised,
even if rough, estimate of uncertainty can the be extracted for
each triplet.

An indicative triplet based on the randomly generated data
of Figure 3 can be seen in Figure 4a. We notice that the
points are distributed both along the y-axis and the z-axis.
Performing an N-point Gaussian fit along the y-axis yields:
a) a mean value, p,, linked to the estimated “true” relative
switching difference and b) a variance, oy, linked to the
magnitude of switching noise. The average of the x-axis
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Fig. 4. Uncertainty estimation and statistical correction. (a) Localised
calculation of average uncertainty among a triplet (N = 3) of consecutive
points on the AR'—R’ plane. (b) Distribution of os calculated triplet-wise
from normally sampled data. The most probable value (dashed line) of the
resulting distribution lies away from the true mean of the original data (solid
line). The quadratic error function, E(o), is applied on the distribution which
is then additionally masked by the window function M (z) resulting in the
final masked function (in red). (c) Integral of the f(ko)M (ko)E(o) error
function for various values of k and N. As N increases the value of k that
minimises the error function trends asymptotically to 1, i.e. the most probable
value of the distribution lies on the “true” mean of the original dataset.

coordinate, on the other hand, ,, yields an estimate of the
location along the R’ axis to which the data from the y-axis
fit corresponds.

Hy 1s an estimator of the “true” relative switching difference
calculated to accommodate the available data points in the
triplet i.e. minimises the estimate for o,. As a result triplet-
wise calculations of switching noise o, underestimate the true
magnitude of the noise. An example is illustrated in Figure 4b
where we see the distribution of os as extracted triplet-wise
from a series of normally-generated data with fixed underlying
value. We notice that the maximum probability density point
(highlighted as a dashed vertical line in Figure 4b) is substan-
tially different from the actual variance of the original data
(highlighted as a solid vertical line in Figure 4b). This in itself
is not problematic however it hints towards the possibility that
using the values for o, as extracted might be sub-optimal.

In order to obtain more useful estimates of o, we may
stretch the distribution of o,s along the x-axis by a factor
of k i.e. perform the transformation f : f(o) — f(ko). Next
we need an error function, E(c), to quantify the discrepancy
between the distribution of s, f(o), and the true underlying
value, o,.. The choice of error function is free but in this work
we use the standard square error function E(o) = (0 — 0,.)%
Finally we may choose to further apply a masking function,
M (o), upon the distribution if we wish to exclude the outlying
tails from the error calculation. In this work we choose M (o)
such as to exclude the top and bottom 10th percentiles of
the data. The masking function allows us to calculate our
correction factors so that larger number of the estimated o lie
closer to the true value. Naturally, any transformation applied

TABLE I
STEPS TO EXTRACT MODELLED NOISE SURFACE N (R, V)

Step #  Description Input Output
For each voltage

1 (I-A)  Data acquisition — R

2 (II-A)  Data differentiation R (R, AR)
3 (II-B)  Transform R — R’(45°) (R, AR) (R, AR')
4 (II-C)  N-wise uncertainty calc. (R, AR) a(R')

5 (II-C)  Statistical correction o(R) k, ocor(R)
6 (II-C)  Transform R’ — R (—45°) ocor(R') ocor(R)
After all voltages have been processed

7 (II-D)  Surface fittings ocor(R, V) F, B

8 (II-D)  Background removal F,B N(R,V)

to f(o) must be matched by an equivalent transformation on
M (o). As a result our error metric, ¢, becomes

e(k):/f(ka)M(kU)E(cr)dcr 3)

The function f(ko)M (ko) is highlighted in red in Figure 4b.
The next step is to find the value of k that minimises ¢(k). The
optimal value of k will depend on the value of N so it will be
different for triplets, quintuplets, etc. and tends asymptotically
towards 1 for increasing N. In Figure 4c error metrics, €(k)
are plotted for different values of N. When N is equal to the
total sample size the original and corrected distributions will
be identical. For the case illustrated in this paper (N = 3) we
get that the error metric is minimised for £ = 0.86.

At this point we apply the k - 1/1/2 factor correction on
our triplet-wise values of o to obtain an adjusted estimate
of switching noise, o, corresponding to the value of R’
indicated by s, (in the R'~AR’ space). The 1//2 factor is
necessary because oo is an estimate of uncertainty based on
the distance metric running in the —45° rotated direction as
can be observed in Figure 3c. In the same Figure we notice
that only the uncertainty in AR (parallel to the AR axis) is
relevant. Finally, rotating back the points ¢ (R') by 45° we
obtain the function o (R), i.e. localised levels of switching
noise vs. running resistance, R.

It should be noted that the choice of N is ultimately
grounded in the fundamental problem of estimating a variable
that is simultaneously the time derivative of one of the
influencing parameters. In a sense the /NV-wise calculation acts
a “smoothing filter” on top of the existing data. Opting for
larger N would of course provide a better estimation for the
Gaussian but would otherwise dilute the locality of the data. In
the end this is a trade-off that must be taken into consideration
when modelling a specific device technology.

D. Switching surface and model construction

Performing the analysis outlined in sections II-B and II-C
across the different voltages present throughout all blocks in
the test (also see Figure 2c) yields an overview of oeo(R)
across a range of bias voltages oo (R, V). This can then be
fitted to an appropriate surface, F'(R,V') consisting of mwo
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component surfaces; one for each voltage polarity, F. (R, V)
and F_(R, V). The plane fit can be performed with different
methods although in this paper we are using multi-variable
least squares.

Furthermore, we may now process the read-out data as
shown in Figure 3(a, ¢ and e) which yields an estimate
of residual (non-switching noise-related) uncertainty at the
various resistance levels, IR, where we have performed the
reading operations. Because we always perform the read-out
at a fixed voltage residual uncertainty under the read operation
is assumed independent of programming pulse voltage. This
can still be described as a plane in the R-V space, B(R, V).

The final step is to now remove this residual uncertainty
from the estimation of switching noise. Since F(R,V) is
constructed from data where switching noise is the dominant
factor, i.e. much higher than B(R, V') (the read-out “floor”).
Plane F(R, V) is then fitted to that points and extrapolated. As
long as F(R,V) is not parallel to B(R, V) the extrapolated
noise level is guaranteed to fall below the baseline read-out
level. Continuing to extrapolate past that point has clearly no
physical meaning. We also assume Gaussian distributions for
both switching noise and residual uncertainty. Therefore, under
these assumptions, the switching noise surface, N(R, V'), can
be given by the equation.

\/FQ(R,V)—BQ(R,V) F>B
N(R,V) = )
0 otherwise

Our proposed noise surface estimation methodology is sum-
marised in Table I.

N(R,V) is the final switching noise model of the device.
This can be readily introduced as an additional module to the
model described in equation 5 of [17]. The core model func-
tions by approximating arbitrary input waveforms as sequences
of suitable short fixed voltage pulses and estimating 0 R after
each pulse. Therefore, in order to incorporate the noise model
we must be able to estimate N (R, V') for pulses of arbitrary
duration based on data extracted using some chosen fixed pulse
duration. To that end, assuming noise behaviour under many
short pulses versus few long pulses of fixed aggregate duration
is the same we may use the Bienaymé formula to calculate
expected switching for any duration of pulse. An important
point to be made here is that V' in the N(R, V') expression is
the voltage bias used to induce the respective resistive change
rather the voltage used for read-out.

For example, if we want to estimate N(R,V) for pulsed
duration 7 and we know N (R, V) for pulse duration T" we
may express 7 = aq and T' = bgq where ¢ is a suitably small
time duration quantum. By Bienaymé

o2 =ao? and J% = bag (®)]

and therefore it is easy to prove that

o, = \/EUT ©)

Therefore if N(R, V) is stored into the model for some known
T then every time the model needs to calculate a 0 R we may
draw a random variable out of Gaussian distribution centred

at the predicted noiseless d R with standard deviation derived
based on time-corrected N(R, V).

One particular advantage that our approach presents is
the versatility of the modelled surface. In any model that
accounts for uncertainty the noisy factor should be developed
and introduced into the parameters of the system. This can
be either a perturbation on an existing parameter or the
introduction of a new factor that does not directly translate
to an existing one. Ultimately, if the uncertainty captured by
one model needs to be transferred to another then it must be
translated into the terms of the new one. However, because
of our data-driven approach we can simply implant a new
uncertainty factor without interacting, in principle, with any
pre-existing parameter of the “importing” model.

III. IMPLEMENTATION AND DEVICES

Algorithm 1 Pseudocode for the characterisation protocol in
this paper (as described in section III)

1: Globals Vyin, Vs, Vinax, C, Np, N, > as defined in Table II

2: V +— Viin > initial voltage
3: while |V| < [Viux| do

4: 10 > cycle counter
5: while ¢ < C' do

6: PROGRAMTRAIN(|V|, Np)

7: READTRAIN(N,.)

8: PROGRAMTRAIN(—|V|,N,) > inverse polarity
9: READTRAIN(N,.)

10: 1141

11: end while

12: V—V+V; > increase voltage
13: end while

The methodology outlined in this paper has been imple-
mented on top of our in-house characterisation platform as
in [19] using the protocol outlined in Figures 2(a,b) and
described in section II-A. The elementary stimulus unit, which
we call a cycle, is a pair of alternating polarity programming
trains of a predefined amplitude, (starting with Vi,,), pulse
width (7,) and interpulse interval (7). A fixed number (IV,)
of read-out pulses are applied between each polarity reversal.
This process is repeated C' times until the current block is

TABLE I
PARAMETERS USED IN THE CHARACTERISATION ROUTINE

Parameter Description Value Unit
Vi Read-out voltage 0.2 A\
Vinin Initial programming voltage Variable \%
Vs Programming voltage step 0.1 \
Vinax Max programming voltage Variable v
Tp Programming pulse width 1.0 us
ot Interpulse interval (prog. and read) 1.0 ms
Np Number of programming pulses 500 N/A
Ny Number of read-out pulses 150 N/A
C Cycles per block 3 N/A
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completed. Then the voltage is increased using a fixed voltage
step, Vs, until the maximum voltage, V.« is reached. Initial
and maximum voltages are device-dependent while the rest of
the parameters have been fixed to the values shown in Table II.
The pseudocode outlining the stimulus protocol can be found
in listing Algorithm 1.

As a specific case study, we applied the methodol-
ogy and analysis expounded in this paper upon a set of
Pt/TiO,/Al,03/Pt devices (layers are from bottom to top)
fabricated on 6-inch oxidised silicon wafer. The SiO, was
grown thermally with dry oxidation and is 300 nm thick. The
top and bottom platinum electrodes are 10 nm thick fabricated
using e-gun evaporation. The active layers TiO, and Al,O; are
25 nm and 4 nm thick respectively and are deposited using
the reactive magnetron sputtering technique. Devices with such
configuration have been shown to retain a multitude of stable
resistive states [3] and are therefore well-suited for our testing
purposes. Over 30 devices have been measured and for the
purposes of this paper eight representative test cases have been
isolated covering resistive range from the low-k(2 to low-M¢2
range (DUT 1 to DUT 8).

Before testing, devices have been electroformed from their
pristine state using negative polarity voltage ramps of 10 us
pulse width and amplitudes increasing from 7 up to 11 V
with a 0.25 V step. This procedure brings the resistance of
the devices to the ~500 k{2 range and is similar to what we
have used in previous papers [3]. At this point devices exhibit
varying degrees of volatility. In order to properly assess noise
we require our devices to be devoid of additional volatility
effects. So a further electroforming step with both varying
pulse width of 0.1 up to 10 us and varying amplitude (2-7 V)
brings the device to their working non-volatile range. For the
purposes of this demonstration the read-out voltage was set
to 0.2 V (up to 50 ms pulse width) while the programming
voltage was varied with pulse width set at 1 ps. Short pulses
are used to limit current overshoot without current compliance.
Pre-determined waveforms are applied on the device and the
overall energy is limited by the short time-scales involved.

IV. RESULTS AND DISCUSSION

Once the devices have been electroformed to their initial
resistances the characterisation routine outlined in this section
is applied. Initial and maximum voltages for each of the
devices tested as well fitted parameters are summarised in
Table III. Noise model extraction is done separately for each
of the positive and negative branches of the accumulated data
as a device is not necessarily symmetrical with respect to the
applied voltage polarity.

Figure 5a illustrates a block of three testing cycles with
500 programming and 150 read pulses at 1.9 V and -1.9 V
programming voltage for DUT 2. The programming pulses
alternate the device between two neighbouring resistive states
(~7.3 and ~8.1 k). Read pulses are applied between any
bias polarity change and are used to assess the baseline noise
(i.e. not attributed purely to switching). From the acquired data
the increment plots 5(b,c) are constructed as per sections II-A
and II-B separately for the programming and read pulse trains.
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Fig. 5. Switching noise extraction for one of the tested devices (DUT 2).
(a) Response of the device during one block of three switching cycles at
+1.9 V. In-between each programming train of 500 pulses a series of 150 read
pulses is applied; increment plots extracted from the programming (b) and
read-out (c¢) phases directly after; (d) Switching uncertainty planes for read-
out, B(R,V), and programming, Fy (R, V). Planes are fitted across all
distributions of os for each voltage for V> 0, V' < 0 read-out data (first-
order approximation). The black points at the read-out voltage (0.2 V) are used
to extrapolate the baseline plane B(R, V') (e) Switching uncertainty surface,
N(R,V) = /F2(R,V) — B2(R,V), in a first-order approximation after
extracting background uncertainty as per eq. 4. In the highlighted area
calculated noise is below the read-out noise threshold (F' < B) and cannot
be attributed purely to switching (and is therefore clipped to 0). Trend-lines
in (b) are to guide the eye only.
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TABLE III
RESULTS FOR TESTED DEVICES ACROSS DIFFERENT RESISTIVE RANGES

DUT 1 DUT 2 DUT 3 DUT 4 DUT 5 DUT 6 DUT 7 DUT 8
Bias polarity >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0
Rinit 3.9 kQ 7.7 kQ 20.2 kQ 38.6 kQ 122 kQ 243 kQ 322 kQ 1.1 MQ
Vinin 15 -16| 15 —-15| 22 -18| 1.1 -11 | 1.1 -11| 1.6 —1.6| 14 -1.3 0.9 -0.9
Vinax 1.7 -18| 19 -19| 25 -21| 1.5 —-15]| 14 —14| 20 -20 ]| 1.8 —1.7 1.2 -1.2
Co(x1072) 1.6 5.1 41 —1.0 | 421 23 6.1 12 1.5 5.1 1.3 —1.1| 3.2 -1.2 | —0.87 —0.25
C1 51 -38 | 24 —12 25 —41 19 —12 | 85  —54 | 796 475 | 4590 —1180 | 13422 —18704
C2(x102) -12 -24| -34 076 | =59 —14 | —43 —59 | —25 33 | -38 —29 | —147 -39 123 247
a(x1073) 4.0 1.8 3.1 4.3 8.1 7.1 3.1 3.9
B —11 —-5.6 —2.2 -7.7 —-12.8 -91 —221 —871

F(R,V) = CoR+ C1V + Cy, B(R,V) = aR+

Following the procedure described in sections I1I-B and II-D
yields the corresponding surfaces for each of the programming
(positive and negative) and read-out phases. The read-out data
(all taken at 0.2 V but at different resistive levels) are used
to extrapolate the baseline plane B(R, V). The 0.2 V voltage
was deemed to be non-invasive within the time frame of the
experiment as has also been shown in the retention testing
of [3] which uses the exact same stack. The baseline plane
can now be calculated by extending a linear fit with slope «
and intercept S among these points along the V' axis

B(R,V)=aR+f 7)

As explained in section II we assume baseline to be indepen-
dent from the applied voltage. Similarly, by fitting the plane

F(R,V)=CyR+C,V +Cy (8)

across all programming voltages will give us the aggregate
uncertainty during programming. By subtracting this base-
line from the fitted planes for positive and negative bias as
per the equation (4) we can get the final switching surface
N(R,V). Surface N(R,V) represents device noise that is
purely attributed to switching rather than other external or
internal factors. The same procedure has been followed for
devices DUT 1 to DUT 8 that has been used in this paper
to illustrate our modelling methodology. As the resistive is
increasing from DUT 1 to DUT 8 it is apparent from the
results of Table III that the overall noise floor is increasing
as well (parameter ) which is consistent with the resistance
broadening effect [10]. However switching noise is much less
dependent on the resistive level itself once that noise floor
has been removed (parameter Cy) which indicates that voltage
(parameter C) is what primarily drives the uncertainty during
programming for the particular technology used in the test
case.

While the above analysis is a first estimate of switching
noise for a memristive system it is important to mention
some caveats. The described method does not deal with any
hidden factors that can affect the switching of the device as
is, for example, the curvature of the response of the device.
Additionally our approach assumes that all distributions of
data around a resistive state are Gaussian. Although for the
devices used in this paper this is indeed the case, it is not

possible to say whether this is a universal behaviour among
resistive devices or even if the resultant Gaussian distribution
is a result of a series of variance propagations. An additional
issue is that we are only using first-order approximation for the
switching surfaces (i.e. planes). This might hide any additional
structure present in the o (R, V') distribution. Additionally, we
should mention that, our model does not deal with devices
that are switching too rapidly as, for example, when the effect
of bias vastly exceeds that of noise. In this particular case the
consecutive data points of Figure 4a will lie on the vertical axis
and the assumption of Gaussian distribution per triplet will no
longer hold. This issue would also be the case for devices that
exhibit strong bipolar behaviour expressed by abrupt switching
between high and low resistive states as those, for example,
shown in [20]. Finally, the overall philosophy behind our
data-driven approach is that every individual device needs
to be modelled. A full and more complete analysis of a
specific technology, however, would require this procedure to
be implemented on large numbers of devices and then followed
by clustering and variation analysis on the parameters.

V. CONCLUSION

To summarise, in this paper we presented a way to model
the switching noise of a memristive device while decoupling
it from any underlying non-switching related forms of noise.
Our approach starts by constructing the increment plots of each
device AR vs. R and estimating the localised uncertainty on
triplets of consecutive data points. Although this methodol-
ogy exposes fine uncertainty patterns it does underestimate
the actual switching noise. To counter this we introduced a
statistical correction that is only dependent on the amount
of neighbouring data points used for this estimation. By
repeating the process separately for programming and read-out
across many different programming voltages we can extract a
F(R,V) surface that models the uncertainty introduced during
the switching procedure. The resulting surface is consisted is
consisted of two separate planes, one for read-out and one for
programming and provides a map of os that can be used to
establish localised uncertainty distributions around a specific
resistive state. By drawing a point from this distribution one
can have a realistic noise approximation as an additional
component existing switching behavioural models.
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