The University of Southampton
University of Southampton Institutional Repository

The memristive effect as a novelty in drug monitoring

The memristive effect as a novelty in drug monitoring
The memristive effect as a novelty in drug monitoring

Nanoscale devices exhibiting memristive properties show great potential in a plethora of applications. In this work, memristive nanowires are presented for the first time as ideal candidates for absolutely novel, ultrasensitive, highly specific and selective drug-biosensors, also paving the way for real-time monitoring applications, in coupling with the restoration properties of DNA-aptamers. The hysteretic properties exhibited by the hereby-presented special nanodevices, modified via surface treatments, are leveraged along the complete cycle consisting of DNA-aptamer immobilization, target binding, and DNA-aptamer regeneration for successful and effective detection of Tenofovir, an antiviral drug for HIV treatment, in buffer as well as in non-diluted human serum. This results in ultrasensitive, label-free monitoring of the therapeutic compound with a limit of detection of 3.09 pM in buffer and 1.38 nM in full serum. These LODs demonstrate 10 times higher sensitivity for the in-buffer drug detection, and twice better performance for drug sensing in full human serum, ever obtained. The selectivity of the memristive biosensor for Tenofovir detection was verified through both positive and negative controls in full human serum. In addition, the DNA-aptamer regeneration character is portrayed for the first time through a memristive effect, and scanning electron microscopy throws more light on the binding mechanism efficiency through the variation of the nanodevice surface properties at the nanoscale.The results presented in this work demonstrate that the coupling of the memristive effect and aptamer regeneration provides the best ever realized nano-biosensor for drug detection also in full human serum.

2040-3364
9676-9684
Tzouvadaki, Ioulia
a1025ec1-7606-453d-bc71-1f732a4c1f78
Aliakbarinodehi, Nima
026ccbe6-5e6d-4eff-99f4-78b718e60b19
De Micheli, Giovanni
23af8e38-a795-4edf-b551-9094fdb781e0
Carrara, Sandro
0001b4c5-1f62-4789-b0e9-5a187f58b893
Tzouvadaki, Ioulia
a1025ec1-7606-453d-bc71-1f732a4c1f78
Aliakbarinodehi, Nima
026ccbe6-5e6d-4eff-99f4-78b718e60b19
De Micheli, Giovanni
23af8e38-a795-4edf-b551-9094fdb781e0
Carrara, Sandro
0001b4c5-1f62-4789-b0e9-5a187f58b893

Tzouvadaki, Ioulia, Aliakbarinodehi, Nima, De Micheli, Giovanni and Carrara, Sandro (2017) The memristive effect as a novelty in drug monitoring. Nanoscale, 9 (27), 9676-9684. (doi:10.1039/c7nr01297g).

Record type: Article

Abstract

Nanoscale devices exhibiting memristive properties show great potential in a plethora of applications. In this work, memristive nanowires are presented for the first time as ideal candidates for absolutely novel, ultrasensitive, highly specific and selective drug-biosensors, also paving the way for real-time monitoring applications, in coupling with the restoration properties of DNA-aptamers. The hysteretic properties exhibited by the hereby-presented special nanodevices, modified via surface treatments, are leveraged along the complete cycle consisting of DNA-aptamer immobilization, target binding, and DNA-aptamer regeneration for successful and effective detection of Tenofovir, an antiviral drug for HIV treatment, in buffer as well as in non-diluted human serum. This results in ultrasensitive, label-free monitoring of the therapeutic compound with a limit of detection of 3.09 pM in buffer and 1.38 nM in full serum. These LODs demonstrate 10 times higher sensitivity for the in-buffer drug detection, and twice better performance for drug sensing in full human serum, ever obtained. The selectivity of the memristive biosensor for Tenofovir detection was verified through both positive and negative controls in full human serum. In addition, the DNA-aptamer regeneration character is portrayed for the first time through a memristive effect, and scanning electron microscopy throws more light on the binding mechanism efficiency through the variation of the nanodevice surface properties at the nanoscale.The results presented in this work demonstrate that the coupling of the memristive effect and aptamer regeneration provides the best ever realized nano-biosensor for drug detection also in full human serum.

This record has no associated files available for download.

More information

Accepted/In Press date: 6 June 2017
e-pub ahead of print date: 6 June 2017
Published date: 21 July 2017

Identifiers

Local EPrints ID: 431539
URI: http://eprints.soton.ac.uk/id/eprint/431539
ISSN: 2040-3364
PURE UUID: 4d6da806-0a1a-4882-9c94-6837062bb43a

Catalogue record

Date deposited: 07 Jun 2019 16:30
Last modified: 17 Mar 2024 12:27

Export record

Altmetrics

Contributors

Author: Ioulia Tzouvadaki
Author: Nima Aliakbarinodehi
Author: Giovanni De Micheli
Author: Sandro Carrara

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×