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Classical Multidimensional Scaling: A Subspace
Perspective, Over-Denoising and Outlier Detection

Lingchen Kong, Chuanqi Qi and Hou-Duo Qi

Abstract—The classical Multi-Dimensional Scaling (cMDS) has
become a cornerstone for analyzing metric dissimilarity data due
to its simplicity in derivation, low computational complexity and
its nice interpretation via the principle component analysis. This
paper focuses on its capability of denoising and outlier detection.
Our new interpretation shows that cMDS always overly denoises
a sparsely perturbed data by subtracting a fully dense denoising
matrix in a subspace from the given data matrix. This leads us
to consider two types of sparsity-driven models: Subspace sparse
MDS and Full-space sparse MDS, which respectively uses the
`1 and `1−2 regularization to induce sparsity. We then develop
fast majorization algorithms for both models and establish their
convergence. In particular, we are able to control the sparsity
level at every iterate provided that the sparsity control parameter
is above a computable threshold. This is a desirable property that
has not been enjoyed by any of existing sparse MDS methods.
Our numerical experiments on both artificial and real data
demonstrates that cMDS with appropriate regularization can
perform the tasks of denoising and outlier detection, and inherits
the efficiency of cMDS in comparison with several state-of-the-art
sparsity-driven MDS methods.

Index Terms—Classical multidimensional scaling, Euclidean
distance matrix, sparse optimisation, `1 and `1−2 regularization,
majorization.

I. INTRODUCTION

THE classical Multi-Dimensional (cMDS) has become a
cornerstone for analysing metric data commonly known

as (metric) dissimilarity data. cMDS and its variants (metric
MDS) have been well documented in the two books [1],
[2]. It was initially studied by Schoenberg [3] and Young
and Householder [4] when the dissimilarities are Euclidean
distances. And for this case, it is later discovered by Gower
[5] to be equivalent to Principle Component Analysis (PCA)
provided that the covariance matrix used by PCA is calculated
from the same data for the Euclidean distances. Thus, Gower
named cMDS Principle Co-ordinates Analysis. cMDS also
became an essential element in the nonlinear dimensionality
reduction method ISOMAP [6]. The purpose of this paper is
to study the capability of cMDS in detecting outliers under
the framework of denoising. Our major observation is a new
optimization interpretation of cMDS having a tendency of
over-denoising. To overcome this drawback we propose two
sparse variants of cMDS, namely the subspace sparse MDS
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and the full-space sparse MDS, which will greatly enhance
the capability of cMDS in outlier detection.

Suppose there are n items and their pairwise Euclidean dis-
tances dij can be measured through the pairwise dissimilarities
δij , i.e., δij ≈ dij . cMDS is a simple computational procedure
to generate a set of n points yi ∈ <r such that

d2
ij := ‖yi − yj‖2 ≈ δ2

ij , i, j = 1, . . . , n, (1)

where ‖ · ‖ is the Euclidean norm and “:=” means “define”.
In practice, the embedding dimension r is small (e.g., r = 2
or 3 for visualization).

When each δij is a true Euclidean distance from a set of n
points, cMDS will recover a set of embedding point yi such
that ‖yi − yj‖ = δij , i, j = 1, . . . , n. If some δij contains
noise, e.g., δij = dij + εij with εij being the corresponding
noise, then cMDS works well when the noise is small. A
theoretical justification for using cMDS in such a situation
can be found in Sibson [7] based on a perturbation analysis.
However, when some δij takes the form: δij = dij + εij + ηij
with ηij being large measurement error (such δij is deemed
to be of outlier), the quality of cMDS alarmingly degrades
because it would spread the large error (εij + ηij) to all
other δij . This phenomenon has been highlighted in [8] and
motivated Forero and Giannakis [9] to propose a sparsity-
exploiting robust MDS (RMDS) for outlier removal. It makes
use of the Kruskal stress function [10] as MDS criterion with
`1-based regularizations, a sparsity-induced technique used
in machine learning and compressed sensing. To improve
the robustness of RMDS, Mandanas and Kotropoulos [11]
replaced the least-square solution of the residual equation at
each step of RMDS by a M -estimator, resulting in several
robust algorithms depending on the M -estimator being used.
We refer to [12] for further development along this line, in
particular on using `21 regularization. We note that the models
behind those methods are non-convex optimization.
`1 regularized methods also appeared in the field of sensor

network localization with non-light-of-sight (NLOS) distance
measurements, see e.g., [13]–[15]. NLOS measurements occur
when the LOS (line-of-sight) path is blocked due to environ-
mental limitations such as the indoor environment depicted
in the example of locating Motorola facilities [16]. We refer
to the papers [13], [17] and references therein for diverse
models in handling different scenarios involving NLOS links.
A typical feature among NLOS links is that the measured
(metric) dissimilarities δij is significantly larger than the true
distances dij and their locations are usually unknown. Hence,
such links can be treated as outliers. A dominating approach is
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the convex relaxation/optimization, which often involves semi-
definite programming (SDP) with `1 regularization, see [13]–
[15] and [17].

In this paper, we develop an entirely different approach
for outlier detection and removal. We begin with asking an
important question why cMDS fails to accomplish those tasks.
We provide a mathematically precise explanation for this
known phenomenon [8]. The culprit is that cMDS always
subtracts a dense matrix from the squared dissimilarity matrix
∆ := (δ2

ij) before computing a set of embedding points (see
Thm. 3.1). This result reveals the true mechanism behind
the computational formula of cMDS [1], [2]. This detour
to the desired purpose in (1) is bad because cMDS would
punish every δij even there is only one of them being outlier.
Moreover, the dense matrix belongs to a subspace of rank-
2 matrices. This motivates us to enforce sparsity within this
subspace, leading to what we call a subspace sparse MDS
model (SSMDS). We will show that SSMDS is particularly
useful for the problem of single source localization [14], [18],
[19]. When the outliers do not have any structural pattern,
it is reasonable to extend the sparsity from the subspace to
the whole space and this consideration leads to a full-space
sparse MDS model (FSMDS). For both models, we use `1-
based regularization to induce the sparsity.

In addition to the new interpretation of cMDS discussed
above, its implications to denoising and the two sparse models
(SSMDS and FSMDS), we highlight the other major contri-
butions below.

(i) We develop fast algorithms for the two models by making
use of the majorization-minimization technique and the
elegant properties of Euclidean distance matrices (EDM).
We establish the global convergence of the proposed
methods, see Thm. 5.1.

(ii) We are able to control the sparsity level in every step
of our calculation, thanks to the `1-based regularization
coupled with the nice objective function of cMDS, see
Thm. 5.2. This is in contrast to the `1-regularized methods
in [9], [11], [12] where it still remains unknown how to
control the sparsity level.

(iii) Numerically, we demonstrate the capability and effi-
ciency of the proposed methods in denoising and outlier
detection in comparison with the state-of-the-art MDS
methods, using both artificial and real test data.

The powerful framework of our study is through the
Euclidean distance matrix optimization, which is drastically
different from the studies in [9], [11], [12], where the co-
ordinates descent optimization was employed. However, they
share a same feature that both approaches are of non-convex
optimization. The paper is organized as follows. In next
section, we describe the necessary background on EDMs for
proving our new reformulation of cMDS (Thm. 3.1) in Sect. III.
The SSMDS and FSMDS model are respectively treated in
Sect. IV and Sect. V, which also include a complete set
of convergence analysis (Thm. 5.1) and the sparsity-control
theorem (Thm. 5.2). Numerical experiments are reported in
Sect. VI. The paper concludes in Sect. VII.

II. BACKGROUND, EDM AND CMDS

This section includes the necessary background for proving
our main theorems and for developing the fast algorithms later
on. The key concept is the Euclidean Distance matrix (EDM).
Due to the space limitation, we are only able to give a brief
introduction of EDM. We refer to [19], [21], [22] for a more
detailed account. We set up common notation first.

A. Notation

Throughout, we use boldfaced letters to denote (column)
vectors (e.g., x ∈ <n is a column vector, its ith element is xi,
and its transpose xT is a row vector). In particular, 1 is the
vector of all ones in <n. ‖·‖ is the Euclidean norm in <n and
the `1-norm is ‖x‖1 = |x1| + · · · + |xn|. Let Sn denote the
space of n×n symmetric matrices, endowed with the standard
trace inner product. The induced norm is the Frobenius norm
‖ · ‖. For a matrix A ∈ Sn, we often use Aij to denote its
(i, j)th element, with the exception of the dissimilarity matrix
∆ consisting of δij (to follow the tradition in MDS [2]).

We let Sn+ denote the cone of all positive semidefinite
matrices in Sn. For a closed and convex set C in Sn, ΠC(A)
denotes the orthogonal projection of a given matrix A ∈ Sn
onto C:

ΠC(A) := arg min {‖A−X‖ : X ∈ C} .

In our algorithmic development, the soft-thresholding operator
is important to us. Consider the one-dimensional quadratic
problem:

min
x∈<

1

2
(x− t)2 + β|x|,

where t ∈ < and β > 0 are given. Its optimal solution is given
by the thresholding operator [23]

Sβ(t) := max{|t| − β, 0}sgn(t), (2)

where sgn is the sign function.

B. Euclidean Distance Matrix

We say that a matrix D ∈ Sn is an Euclidean Distance
Matrix (EDM) if there exist a set of points {x1, . . . ,xn} with
xi ∈ <p from some positive integer p such that the (i, j)th
element of D is given by the squared Euclidean distance
between xi and xj :

Dij = ‖xi − xj‖2, i, j = 1, . . . , n. (3)

The set of all n×n EDMs forms a closed convex cone, denoted
by Dn. For a given EDM D ∈ Dn, the smallest dimension
p such that (3) holds is known as the embedding dimension
of D and it is r = rank(JDJ), where J is the centralizing
matrix: J := I − 1

n11T with I being the identity matrix in
Sn. One characterization of EDM is due to [3]:

D ∈ Dn if and only if diag(D) = 0, −D ∈ Kn+, (4)

where Kn+ is the conditionally positive semidefinite cone:

Kn+ :=
{
A ∈ Sn | vTAv ≥ 0, ∀ v ∈ <n, v1 + · · ·+ vn = 0

}
.
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By using the centralizing matrix J , we have

Kn+ =
{
A ∈ Sn | JAJ ∈ Sn+

}
. (5)

The projection onto Kn+ can be calculated by the formula of
[24, Eq.(29)]:

ΠKn
+

(A) = A+ ΠSn
+

(−JAJ), ∀ A ∈ Sn. (6)

We are also able to compute how “close” a given EDM D
has an required embedding dimension. Let Kn+(r) denote the
set of all matrices in Kn+ with the embedding dimension not
greater than r:

Kn+(r) :=
{
D ∈ Kn+ | rank(JDJ) ≤ r

}
. (7)

We call it the rank-r cut of the conditionally positive semidef-
inite cone. It is extensively studied in [20], [22]. Let A ∈ Sn
be given, define the distance from A to Kn+(r):

dist(A, Kn+(r)) := min{‖A−D‖ : D ∈ Kn+(r)},

and define the squared distance function

gr(A) :=
1

2
dist2(−A, Kn+(r)). (8)

Obviously, −A ∈ Kn+(r) if and only if gr(A) = 0. The
following characterization will be used when we come to
designing our algorithm:

D ∈ Dn, rank(JDJ) ≤ r
(4)⇐⇒ diag(D) = 0, −D ∈ Kn+, rank(JDJ) ≤ r
(7)⇐⇒ diag(D) = 0, −D ∈ Kn+(r)

(8)⇐⇒ diag(D) = 0, gr(D) = 0. (9)

Moreover, [22, Lemmas 2.1, 2.2] implies that the function

h(A) :=
1

2
‖A‖2 − gr(−A) (10)

is convex and we can calculate one of its subgradients by

ΠKn
+(r)(A) ∈ ∂h(A), (11)

where ΠKn
+(r)(A) denotes a projection of A onto Kn+(r). We

will address how to compute ΠKn
+(r)(A) in the numerical part.

It follows from (10), the convexity of h(·) and (11) that

gr(D) =
1

2
‖D‖2 − h(−D)

≤ 1

2
‖D‖2 − h(−A) + 〈ΠKn

+(r)(−A), D −A〉

=: gmr (D,A), ∀ D,A ∈ Sn. (12)

We call gmr (D,A) a majorization of gr(D).

C. cMDS and Noise Spreading

We describe how cMDS computes a set of embedding
points yi trying to satisfy the approximation in (1) under
certain optimal criterion. Let ∆ ∈ Sn consist of ∆ij = δ2

ij

(the squared dissimilarities). Compute the B-matrix and its
orthogonal projection onto Sn+:

B := −1

2
J∆J, B+ := ΠSn

+
(B). (13)

Note that J is the centering matrix. The double-centering
in B was introduced to cMDS by Torgerson [25]. It further
decomposes B+ as a Gram matrix

B+ = Y TY with Y := [y1, . . . ,yn], (14)

and the embedding points are yi ∈ <r, r = rank(B+). The
resulting EDM is

Dmds =
(
‖yi − yj‖2

)n
i,j=1

.

Due to its simplicity, low-computational complexity and its
nice mathematical interpretation via PCA, cMDS has become
a popular method [2].

The main drawback that cMDS suffers is its noise spreading,
which was highlighted in [8]. For example, if there is just
one δij containing noise ε and a measurement error η (i.e.,
δij = dij + ε+ η) (all other δij are true Euclidean distances),
the double-centering operation in B (13) spreads the error (ε+
η to every entry. This would result in poor approximation,
particularly when η is caused by an outlier (η is large). In
other words, if ∆ is sparsely perturbed, cMDS will spread the
sparse noise everywhere. This raises the issue how to remove
the sparse noise. Our new result on cMDS will show that cMDS
alone is incapable of doing so.

An alternative way to derive cMDS is through the fact that
Dmds is the solution of the optimization problem [26]:

Dmds = arg min ‖J(D −∆)J‖2, s.t. D ∈ Dn. (15)

We can obtain the matrix B+ by

B+ = −1

2
JDmdsJ (also r = rank(JDmdsJ). (16)

Decomposing B+ as in (14) to get the embedding points yi.
As done in [27], if we define the semi-norm ‖A‖J := ‖JAJ‖,
then

Dmds = arg min ‖D −∆‖2J , s.t. D ∈ Dn.

However, this semi-norm does not directly measure the
distance between D and ∆. A more natural matrix nearness
problem is the so-called the nearest EDM problem (under the
Frobenius norm ‖ · ‖):

Dedm = arg min ‖D −∆‖2, s.t. D ∈ Dn. (17)

We refer to [24], [28], [29] for more reading on this problem
and its applications. We will see that the problems (15) and
(17) sit at the each end of a class of optimization problems
over a subspace.

III. NEW INTERPRETATION: OVER-DENOISING AND
SPARSE REMEDY

In this section, we will cast cMDS as an EDM optimization
problem, which will yield our first major result on a new
interpretation. A direct consequence is that cMDS has a
tendency of over-denoising even when the dissimilarity data
has sparse outliers. This confirms the widely accepted fact that
cMDS is not capable of detecting and removing outliers. Our
result also motivates us to propose its sparse variants.
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A. Subspace Perspective of cMDS and over-denoising

We have already seen that Dmds is the optimal solution
under the semi-norm ‖ · ‖J in (15). In this part, we will show
that it is also an optimal solution under the Frobenius norm
‖ · ‖. We let Sn2 be the subspace of rank-2 matrices in Sn:

Sn2 :=
{
Z ∈ Sn | Z = 1zT + z1T , ∀ z ∈ <n

}
, (18)

and consider the optimization problem:

min
D, Z

‖(D + Z)−∆‖2 s.t. D ∈ Dn, Z ∈ Sn2 . (19)

Our new interpretation of cMDS in terms of ‖ · ‖ is stated as
follows, whose proof is in Appendix A.

Theorem 3.1: The optimization problem (19) has a unique
solution (D̂, Ẑ) and D̂ = Dmds. Moreover

Ẑ = ẑ1T + 1ẑT ,

where, ẑ := c− 1
2 c̄1, and

C := ∆−Dmds, c :=
1

n
C1, c̄ :=

1

n2
1TC1.

Thm. 3.1 reveals what the cMDS is trying to achieve and
provides an iterative interpretation of its simple computational
steps in (13)-(14), as we explain below. For noisy ∆, cMDS
tries to find a correction (or denoising) matrix Z and then
compute the best EDM from (∆ − Z) (i.e., replace ∆ by
(∆−Z) in (17)). It then updates Z and repeats the process. The
optimal objective in (19) is reached when Z = Ẑ. Thm. 3.1
also explains why cMDS often fails to correctly identify the
noisy sources when ∆ only contains a small number of
contaminated entries, for instance, caused by some outliers.
The matrix C = ∆−Dmds 6= 0 unless ∆ is already an EDM.
Furthermore, the resulting matrix Ẑ is fully dense (because ẑ is
so) unless some stringent conditions are enforced. This means
that cMDS punishes every entry even only a small number of
the entries in ∆ are contaminated. Therefore, cMDS is blind
to the sparse situation and it punishes every entry in order
to remove sparse noise. We call it over-denoising. We use a
simple example to illustrate this behaviour.

Example 3.2: This is a single source localization example.
Suppose there are one (unknown) sensor x1 ∈ <2 and three
anchors a2 = (−1, 0), a3 = (1, 0) and a4 = (0, 1). The
true location of the sensor is (0, 0). However, its Euclidean
distances to the three anchors are contaminated and are given
as (2, 2, 2) (i.e., 100% error). This is the first type of outlier
considered in [9] and caused by a faulty node. Therefore, ∆ is
sparsely contaminated, and the matrix S = ∆ −D is sparse,
where D is the true EDM of the four nodes (one sensor and
three anchors). As expected, cMDS used a fully dense matrix
Ẑ to approximate this sparse matrix S. The corresponding ẑ
is [0.0090, 0.1250, 0.1250, 0.3750] (a dense vector). In con-
trast, our SSMDS model below will generate a sparse vector
ẑ = [2.7965, 0, 0, 0], which not only correctly detected the
faulty node, but also removed a good approximation of the
true contamination in magnitude (δ2

ij − d2
ij = 22 − 1 = 3).

B. Sparse remedy with practical considerations

Example 3.2 raises the question how to properly denoise
when ∆ is only sparsely contaminated. This topic has been
addressed by Forero and Giannakis [9] in a different context.
Our answer to this question comes from Thm. 3.1 in the
sense that we can enforce sparsity on the matrix Z via `1
regularization, naturally leading to the following problem:

minD,z
1
2‖(D + 1zT + z1T )−∆‖2 + µR1(z)

s.t. D ∈ Dn, z ∈ <n,
(20)

where µ > 0 is a parameter controlling the sparsity in z.
A particular choice is the `1 regularization: R1(z) := ‖z‖1.
If µ = 0, then (20) becomes cMDS (19), and if µ = +∞,
we have z = 0 and (20) becomes the EDM problem (17).
Therefore, cMDS and EDM (17) stand at the two extremes
of (20) with cMDS tending to over-denoise and EDM (17)
making no attempt at all to denoise.

However, there are three practical and important issues that
have been left out so far. The first issue is the embedding
dimension. The regularization term R1(z) tends to force the
EDM variable D to have higher embedding dimension so as to
decrease the overall objective. Therefore, we should include
the embedding dimension constraint (16): rank(JDJ) ≤ r.
It follows from (9) that we can represent this constraint and
D ∈ Dn by g(D) = 0 and diag(D) = 0. The second issue is
about the missing values in δij . A common practice is to apply
positive weights on available δij and 0 weights on missing
δij . For example, a weight matrix W ∈ Sn can be defined as
follows: Wij = 1 for available δij and Wij = 0 otherwise.
The third issue is the bound constraints on certain distances
and they can be generally represented by

Lij ≤ Dij ≤ Uij for some (i, j), (21)

where Lij and Uij are lower and upper bounds for the distance
Dij . In Example 3.2, the distances among the three anchors are
known and hence they should be fixed through Lij = Uij =
‖ai−aj‖2. Moreover, Lii = Uii = 0 represents diag(D) = 0.

Consideration of those three issues leads to the Subspace
Sparse MDS (SSMDS) model below:

minD,z
1
2‖W ◦ [(D + Z)−∆]‖2 + µR1(z)

s.t. D ∈ B, gr(D) = 0, Z ∈ Sn2 ,
(22)

where B := {D ∈ Sn | L ≤ D ≤ U} and ◦ is the Hadamard
product (elementwise multiplication: A ◦B := (AijBij)). We
will show that the model (22) works very well when the sparse
noises caused by few faulty nodes (outliers) such as in the
single source localization [19] have a structural pattern.

When the sparse noise does not have any structural pattern,
it is more reasonable to allow Z change freely in the whole
space Sn instead of being restricted in Sn2 . This leads to what
we call the Full-space Sparse MDS (FSMDS) model:

minD,Z
1
2‖W ◦ [(D + Z)−∆]‖2 + µR2(Z)

s.t. D ∈ B, gr(D) = 0, Z ∈ Sn,
(23)

where R2(Z) is a sparsity-induced regularization such as
‖Z‖1. Another choice is the `1−2 regularization: R2(Z) :=
‖Z‖1 − ‖Z‖, also used in compressed sensing [30].
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The FSMDS model (23) is also relevant to the sparsity-
exploiting robust MDS method [9], where Kruskal’s stress
function [10] (with `1 based regularizations) was used to mea-
sure the distance between the embedding distance ‖yi − yj‖
and δij . Due to the nondifferentiablity and nonconvexity of
the stress function, a SMACOF-style [31] majorization method
was developed to solve the regularized problem. In contrast,
we have a differentiable objective function (not including the
regularization part, whose non-differentiability is easy to deal
with) and we will be able to obtain significantly more due
to the simplicity of cMDS objective. The rest of the paper is
devoted to solving the two models.

In our algorithmic development, we will make use of two
important techniques. One is the majorization technique (see,
e.g., [32]), which aims to approximate a difficult function θ(·) :
<n 7→ < by rather a simpler function (majorization function)
θm(·, ·) : <n ×<n 7→ < satisfying

θm(x,y) ≥ θ(x) and θm(y,y) = θ(y), ∀ x,y ∈ <n. (24)

Thus the function gmr (·, ·) in (12) is a majorization of gr(·).
The other is the penalty technique. We will penalize the
constraint gr(D) = 0 in both (22) and (23) to their re-
spective objective function. This penalty approach has been
recently proposed in [22] to deal with the rank constraint
rank(JDJ) ≤ r and it has been proved very effective. We
also note that penalizing the squared distance function (note
our gr(D) is so) is often used in statistical learning problems
[34]. We will use the two techniques in the next two sections
to solve the model (22) and (23) respectively.

IV. SUBSPACE SPARSE MDS

In this section, we describe an efficient alternating majoriza-
tion and minimization method for (22). For ease of description,
let us define

f(D, z) :=
1

2
‖W ◦ [(D + 1zT + z1T )−∆]‖2,

fµ(D, z) := f(D, z) + µR1(z),

fρ,µ(D, z) := fµ(D, z) + ρgr(D),

where ρ > 0 is a penalty parameter. We chooseR1(z) = ‖z‖1.

A. The Penalty Approach and Its Majorization

As mentioned before, we penalize the nonlinear equation
g(D) = 0 in (22) to the objective to obtain

min
D,z

fρ,µ(D, z), s.t. D ∈ B, z ∈ <n. (25)

Below, we construct a majorization function for fρ,µ(D, z).
Define

φ(z) :=
1

2
‖W ◦ (1zT + z1T )‖2.

We also define a few quantities. Let tj := ‖W·j‖ (the
Euclidean norm of the jth column of W ), tmax := max{tj},

t := (t1, . . . , tn)T , and sj :=
√
t2j + t2max, j = 1, . . . , n.

Since φ(z) is quadratic, the Taylor expansion at y yields

φ(z)

= φ(y) + 〈∇φ(y), z− y〉+
1

2
〈z− y, ∇2φ(y)(z− y)〉

= φ(y) + 〈∇φ(y), z− y〉
+〈z− y, (W ◦W )(z− y)〉+ ‖t ◦ (z− y)‖2

≤ φ(y) + 〈∇φ(y), z− y〉
+t2max‖z− y‖2 + ‖t ◦ (z− y)‖2

= φ(y) + 〈∇φ(y), z− y〉+ 〈z− y, S(z− y)〉
=: φm(z,y),

where S := diag(s2
1, . . . , s

2
n). The inequality above used [33,

Thm. 5.5.3], which implies

〈x, (W ◦W )x〉 ≤ t2max‖x‖2, ∀ x ∈ <n.

We can verify the conditions in (24) that φm(z,y) is a
majorization function of φ(z). Thus, a majorization function
(denoted as fmρ,µ) of fρ,µ(D, z) can be constructed as follows.

fρ,µ(D, z) =
1

2
‖W ◦ (D −∆)‖2 + φ(z) + ρg(D) + µ‖z‖1

+ 〈W ◦ (1zT + z1T ), W ◦ (D −∆)〉

≤ 1

2
‖W ◦ (D −∆)‖2 + φm(z,y) + ρgmr (D,A)

+ 〈W ◦ (1zT + z1T ), W ◦ (D −∆)〉+ µ‖z‖1
=: fmρ,µ(D, z, A,y), ∀ D,A ∈ Sn, z,y ∈ <n.

B. Algorithm: SSMDS

Our algorithm now minimizes the majorization function
fmρ,µ instead of fρ,µ. Given Dk and zk (k is the index of
iteration), we update{

Dk+1 = arg minD∈B fmρ,µ(D, zk, Dk, zk)

zk+1 = arg minz∈<n fmρ,µ(Dk+1, z, Dk, zk).
(26)

We show that (26) has a close-form solution.
(i) Computing Dk+1. For simplicity, define

Zk := 1(zk)T+zk1T , Dk
+ := ΠKn

+(r)(−Dk), Z
k

:= ∆−Zk.

With some simple linear algebra, we obtain

Dk+1

= arg min
D∈B

1

2
‖W ◦ (D − Zk)‖2 +

ρ

2
‖D‖2 + ρ〈Dk

+, D〉

= arg min
D∈B

∑
i,j

(
1

2
D2
ij −∆k

ijDij

)
= arg min

D∈B

1

2
‖D −∆k‖2

= ΠB(∆k), (27)

where the matrix ∆k is defined by

∆k
ij :=

(
W 2
ijZ

k

ij−ρ(Dk
+)ij

)
/(W 2

ij+ρ), i, j = 1, . . . , n (28)

and

Dk+1
ij =

(
ΠB(∆k)

)
ij

:= min
{

max{∆k
ij , Lij}, Uij

}
. (29)
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(ii) Computing zk+1. We show that zk+1 can be computed
through the soft-thresholding operator (2). Define

Rk+1 := W ◦W ◦ (∆−Dk+1), yk := Rk+11− 1

2
∇φ(zk).

With some simple linear algebra, we have

zk+1 = arg min fmρ,µ(Dk+1, z, Dk, zk)

= arg min 〈z− zk, S(z− zk)〉+ 〈∇φ(zk), z− zk〉
−〈Rk+1, 1zT + z1T 〉+ µ‖z‖1

= arg min 〈z− zk, S(z− zk)〉 − 2〈yk, z− zk〉+ µ‖z‖1

= arg min
∑
i,j


sizi − (siz

k
i + yki /si)︸ ︷︷ ︸

:=tki


2

+ µ|zi|

 .
Each element of zk+1 can be computed through the soft-
thresholding operator in (2):

zk+1
i = Sµ/(2s2i )(t

k
i /si), i = 1, . . . , n. (30)

We summarize the algorithm below.

Algorithm 1 SSMDS

1: Input data: Dissimilarity matrix ∆, weight matrix W ,
penalty parameter ρ > 0, sparsity parameter µ > 0, lower-
bound matrix L, upper-bound matrix U and the initial D0,
z0. Set k := 0.

2: Update Dk+1: Compute Dk+1 = ΠB(∆k) by (28) and
(29)

3: Update zk+1: Compute zk+1 through (30).
4: Convergence check: Set k := k + 1 and go to Step 2

until convergence.

The convergence analysis of SSMDS can be similarly
patterned as for the algorithm FSMDS in the next section.
We omit its detail to save space.

V. FULL-SPACE SPARSE MDS

Similar to the previous section, this section develops an
efficient algorithm for the full-space sparse MDS (23) with
complete convergence analysis. Define

F (D,Z) :=
1

2
‖W ◦ [(D + Z)−∆]‖2,

Fµ(D,Z) := F (D,Z) + µR2(Z),

Fρ,µ(D,Z) := Fµ(D,Z) + ρgr(D).

We choose R2(Z) = ‖Z‖1 − ‖Z‖. The penalized problem is

min Fρ,µ(D,Z), s.t. D ∈ B, Z ∈ Sn. (31)

A natural majorization function, denoted as Fmρ,µ, for
Fρ,µ(D,Z) at a given point (Dk, Zk) is

Fmρ,µ(D,Z,Dk, Zk) :=
1

2
‖W ◦ [(D + Z)−∆]‖2

+ ρgmr (D,Dk) + µ‖Z‖1 − µ
(
‖Zk‖+ 〈T k, Z − Zk〉︸ ︷︷ ︸

=:ψm(Z,Zk)

)
,

where T k is a subgradient in ∂‖Zk‖:

∂‖Zk‖ =

{ {
Zk/‖Zk‖

}
if Zk 6= 0

{T ∈ Sn | ‖T‖ ≤ 1} otherwise.

Fmρ,µ is a majorization of Fρ,µ because gmr in (12) is a
majorization of g and −ψm is a majorization of −‖Z‖ by
the convexity of ‖Z‖. The next iterate is thus computed as
follows:{

Dk+1 = arg minD∈B Fmρ,µ(D,Zk, Dk, Zk)

Zk+1 = arg minZ∈Sn Fmρ,µ(Dk+1, Z,Dk, Zk).
(32)

A. Algorithm: FSMDS

For easy reference, we call the algorithm (32) FSMDS.
We first calculate Dk+1. Let Z

k
:= ∆ − Zk and Dk

+ :=
ΠKn

+(r)(−Dk). With simple linear algebra, we have

Dk+1 = arg min
D∈B

Fmρ,µ(D,Zk, Dk, Zk)

= arg min
D∈B

1

2
‖W ◦ (D − Zk)‖2 +

ρ

2
‖D‖2 + ρ〈Dk

+, D〉,

which is exactly what we have obtained in (27). Hence, Dk+1

can be computed by (28) and (29).
We now obtain the formula for computing Zk+1. Let

D
k+1

:= ∆−Dk+1. With some linear algebra, we have

Zk+1 = arg minFmρ,µ(Dk+1, Z,Dk, Zk)

= arg min
1

2
‖W ◦ (Z −Dk+1

)‖2 + µ
(
‖Z‖1 − 〈T k, Z〉

)
= arg min

∑
Wij 6=0

{
1

2

(
Zij − (D

k+1
+ µT kij/W

2
ij)
)2

+ (µ/W 2
ij)|Zij |

}
.

Note that when Wij = 0, the corresponding optimal Zk+1
ij =

0. Once again, each element of Zk+1 can be computed by the
soft-thresholding operator (2).

Zk+1
ij =

{
Sµ/W 2

ij
(T̂ kij) if Wij 6= 0

0 if Wij = 0,
(33)

with

T̂ kij := D
k+1

ij + µT kij/W
2
ij when Wij 6= 0. (34)

We summarize FSMDS below.

Algorithm 2 FSMDS

1: Input data: Dissimilarity matrix ∆, weight matrix W ,
penalty parameter ρ > 0, sparsity parameter µ > 0, lower-
bound matrix L, upper-bound matrix U , and the initial D0,
Z0. Set k := 0.

2: Update Dk+1. Compute Z
k

= ∆ − Zk, Dk
+ =

ΠKn
+(r)(−Dk), and Dk+1 = ΠB(∆k) by (28) and (29).

3: Update Zk+1. Compute Zk+1 through (33) and (34).
4: Convergence check: Set k := k + 1 and go to Step 2

until convergence.
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B. Convergence Analysis

Since FSMDS is an alternating majorization-minimization
method, it shares the basic property that all majorization meth-
ods enjoy. That is, the functional sequence {Fρ,µ(Dk, Zk)} is
nonincreasing:

Fρ,µ(Dk, Zk) = Fmρ,µ(Dk, Zk, Dk, Zk) (by (24))

≥ Fmρ,µ(Dk+1, Zk, Dk, Zk) (by (32))

≥ Fmρ,µ(Dk+1, Zk+1, Dk, Zk) (by (32))

≥ Fmρ,µ(Dk+1, Zk+1, Dk+1, Zk+1) (by (24))

≥ Fρ,µ(Dk+1, Zk+1). (by (24))

As a matter of fact, we can prove that {Fρ,µ(Dk, Zk)} is
strictly decreasing unless Dk+1 = Dk and Zk+1 = Zk for
some k. Moreover, any limit (D∗, Z∗) of the iterates sequence
{Dk, Zk} is a stationary point of (31), which satisfies the
following first-order optimality condition:{
〈∇DF (D∗, Z∗) + ρ(D∗ + ΠΠKn

+
(r)

(−D∗)), D −D∗〉 ≥ 0,

∀ D ∈ B and ∇ZF (D∗, Z∗) + µ(Γ∗ − T ∗) = 0,
(35)

for some Γ∗ ∈ ∂‖Z∗‖1 and T ∗ ∈ ∂‖Z∗‖. Furthermore, we
shall prove that the limit (D∗, Z∗) also satisfies gr(D∗) ≤ ε
for a given ε > 0 provided that ρ is above certain threshold
ρε (to be defined below). With the condition (35), this makes
(D∗, Z∗) an ε-approximate stationary point of (23).

We summarize those properties in the following result,
whose proof is in Appendix B.

Theorem 5.1: We assume that B is bounded and let
{Dk, Zk} be the sequence generated by Alg. 2. Then the
following hold.
(i) {Dk, Zk} is bounded.

(ii) We have

Fρ,µ(Dk, Zk)− Fρ,µ(Dk+1, Zk+1)

≥ ρ

2
‖Dk+1 −Dk‖2

+
1

2
〈W ◦ (Zk+1 − Zk), W ◦ (Zk+1 − Zk)〉.

Hence ‖Dk+1 −Dk‖ → 0 and ‖Zk+1 − Zk‖ → 0.
(iii) Any limit of {Dk, Zk} is a stationary point of (31).

Moreover, for a given ε > 0, if D0 ∈ (−Kn+(r)) ∩ B,
Z0 = 0, and

ρ ≥ ρε := ‖W ◦ (D0 −∆)‖2/(2ε),

then (D∗, Z∗) is an ε-approximate stationary point of the
original (regularized) problem (23).

Remark 1. Thm. 5.1 not only guarantees that any limit must
satisfy the optimality condition of the problem (31), it also
provides a practical stopping criterion for Alg. 2: When both
‖Dk+1 − Dk‖ and ‖Zk+1 − Zk‖ are small enough or the
decrease in the objective Fρ,µ is stagnant, we may terminate.
Moreover, the limit is also an ε-approximate stationary point
of the original problem under reasonable conditions. Since
the penalty is not exact, producing an approximate stationary
point of the original problem is probably the best result that

can be expected from the algorithm.

Remark 2. We note that both SSMDS and FSMDS can be cast
into the general framework of block Successive Upper-bound
Minimization (SUM) proposed in [42]. It is worth noting the
two important assumptions used in SUM. One is that the
approximation function in SUM needs to satisfy a tighter
bound [42, Condition A3] involving the directional derivative
of the objective function. The second assumption is that the
objective function needs to be regular in order to establish the
main convergence result of SUM [42, Thm. 2]. It is therefore
an interesting question whether our objective function satisfies
the regularity condition or not. If so, similar convergence
results could be established under the coerciveness of the
objective function (instead of the boundedness assumption of
B used in this paper).

Now we turn our attention to the benefit of using `1−2

regularization. The next result shows that we can control the
sparsity in the generated iterates by setting the sparsity control
parameter µ above certain computable threshold (µs below).
This is particularly useful if we know priori the level of outliers
in the data matrix. We are not aware whether the sparsity-
driven method in [9] or [11], [12] (or any of its variants) has
such a useful property. As seen in Appendix C, the proof of
Theorem 5.2 makes use of the differentiability of F (D,Z),
which is a direct consequence of cMDS objective. In contrast,
the objectives in [9], [11], [12] are not differentiable.

Theorem 5.2: Suppose the initial point Z0 = 0. Let
{Dk, Zk} be the sequence generated by Alg. 2. For a given
positive integer s, there exists µs > 0 such that for any µ ≥ µs,
the number of nonzeros in Zk is not greater than 2s, i.e.,

‖Zk‖0 ≤ 2s, k = 1, 2, . . . .

Moreover, µs can be estimated as

µs =

√
2wmax

√
F (D0, 0) + ρg(D0)√

2s− 1

where wmax := maxi,j{Wij}.
We note that both Thm. 5.1 and Thm. 5.2 are also valid

when R2(Z) = ‖Z‖1. Therefore, Alg. 1 also enjoys the
properties stated in the two theorems.

VI. NUMERICAL EXPERIMENTS

This part is organized as follows. In Sect. VI-A, we describe
the implementation issues about SSMDS, FSMDS, and three
benchmark methods. We then test two types of problems
modelled by multiple/single source localization respectively in
Sect. VI-B and Sect. VI-C. Sect. VI-D reports the numerical
performance of all methods on a real test data of Motorola
facility localization [16].

A. Benchmark methods and implementations

(a): Benchmark methods and computational complexity.
We will compare SSMDS and FSMDS with three other
methods RMDS [9], HQMMDS [11] and TMDS [39]. They
are all the latest methods for detecting outliers and both
RMDS and HQMMDS also employ `1-type sparsity-driven
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regularizations to induce sparsity. TMDS detects violations of
triangle inequalities when ∆ is viewed as a weighted graph
and aims to correct those violations so that the modified ∆ is
close to being Euclidean.

In particular, SSMDS and FSMDS are similar to RMDS and
HQMMDS in the sense that they all employ the least squares
to the dissimilarity data with `1-type sparse regularizers. In
fact, the least square part used in SSMDS and FSMDS is
known to be the S-stress function and the corresponding part in
RMDS and HQMMDS is the raw stress. For more comments
on both stress functions, please refer to [2, Sect. 11.2] and [2,
Sect. 3.2] respectively. However, we would like to emphasize
two key differences between the two settings.

(i) The objective in SSMDS and FSMDS is in terms of
Euclidean distance matrix, while the objective in RMDS
and HQMMDS is in terms of embedding coordinates.
Therefore, the former belongs to matrix optimization
involving spectral properties whereas the latter belongs
to the classical multivariate optimization.

(ii) Our EDM optimization is constrained. It can include
lower and upper bound constraints in (21). In contrast,
The coordinate minimization formulation in RMDS and
HQMMDS is unconstrained because any constraints such
as (21) would render their majorization subproblem to
lose its closed-form solution at each iteration. And the
closed-form solution is essential for both methods.

In terms of the computational complexity, as remarked in
[9, Remark 5], RMDS has an overall complexity O(n3) due
to computing all pairwise distances each iteration and the
generalized inverse of a Laplacian matrix. It is noted that when
the weight matrix W is the all one matrix (i.e., Wij = 1
for all (i, j)), the inverse can be computed just once, which
significantly reduces the overall computational burden per
step. However, the current implementation of RMDS (available
from the Matlab file exchange centre) can only handle the case
Wij = 1. HQMMDS shares similar computational complexity
as RMDS due to matrix multiplications and computing a
generalized inverse of a matrix each iteration. TMDS relies
on the number of broken triangles tested. While testing all
the triangles to identify the broken ones amounts to the
complexity of O(n3), it is suggested in [39] that sampling
twice as many triangles as the expected number of outliers is
adequate. For our methods, a major computation is computing
Dk

+ = ΠKn
+(r)(−Dk), which requires O(rn2), see ([22,

Eq.(15)-(16)]). The computational complexity for ∆k in (28)
is about 5n2; for Dk in (29) is about 2n2; and for Zk in (33)
is about 8n2. The overall complexity for FSMDS is about
O((r + 15)n2) each iteration.

(b) Stopping criterion. For the benchmark methods, we used
their default stopping criterion. For FSMDS, we used

Fprogk :=
Fρ,µ(Dk−1)− Fρ,µ(Dk)

1 + Fρ,µ(Dk−1)
≤ 10−4,

and

Kprogk :=
2gr(D

k)

‖JDkJ‖2
≤ 10−3.

By the identity in [20, Prop. 3.3], we can obtain that

2gr(D
k)

‖JDkJ‖2
=
‖Dk + ΠKn

+(r)(−Dk)‖2

‖JDkJ‖2

= 1−
∑r
i=1[λ2

i −max(λi, 0)2)]

λ2
1 + · · ·+ λ2

n

≥
λ2
r+1 + · · ·+ λ2

n

λ2
1 + · · ·+ λ2

n

,

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of (−JDkJ).
This inequality means that the proportion of the eigenvalues
we cut away at the final Dk is very small. In other words,
Dk is very close to a true rank-r EDM when Kprogk is
small. Since the sequence {Fρ,µ(Dk)} is nonincreasing
and bounded from below by 0, the condition on Fprogk is
well defined. For SSMDS, Fρ,µ(Dk) should be replaced by
fρ,µ(Dk).

(c) Parameter selections. All of those methods have some
important parameters to set before use. In particular, RMDS
has one (sparsity control parameter λ). HQMMDS has two
(sparsity control parameter λ1 and the smoothness regular-
ization parameter λ2). TMDS has one (number of estimated
outliers). SSMDS and FSMDS have two (ρ and µ). It has
always been a challenging task on choosing the best values
for the parameters involved. [9, Remark 4] offered several
heuristic guidelines that are also useful here. For example, a
grid search could be used when test data is available (see Fig. 4
for our experiment). Based on our extensive experiments, we
found that the following heuristic criteria are very effective. To
choose (ρ, µ) such that (i) the number of iterations are between
20 and 60 and (ii) the values of the error Kprogk remains
steady at the level between 10−3 to 10−4. Furthermore, also as
suggested in [9], if an expected number s of outliers is known,
we can choose (ρ, µ) so that the the number of nonzeros in
Z is about 2s.

The initial point is set at D0 = ∆, Z = 0 (for FSMDS)
and z = 0 for SSMDS. The lower bound matrix L = 0 and
the upper bound matrix Uij = (n × max{δij})2. That is,
each distance is bounded above by the longest path in the
weighted graph defined by ∆. The starting embedding points
for RMDS and HQMMDS are obtained by cMDS. We note that
HQMMDS represents a family of robust methods depending
on which robust M -estimator to be used. In our test, we chose
the Welsch estimator and the kernel size used is a2 = 1010

as suggested by one referee. The inputs for other parameters
were set at their default values.

Our main conclusion is that SSMDS and FSMDS are
very competitive and outperform all other 3 solvers in many
test instances. In particular, they are able to handle the
box constraints (21), which is an effective way to improve
localization accuracy. However, the box constraints may create
big challenges for other methods.

B. Multiple source localization

We test a problem of the “plus” (+) sign data that was first
tested in [9]. It was generated as follows
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Example 6.1: (Plus sign data) We sample n = 25 points
with equal space from the “plus” (+) symbol of size 12. That
is, xi = (i − 1, 6)T , i = 1, . . . , 13, xi = (6, i − 14)T , i =
14, . . . , 19, and xi−1 = (6, i − 14)T , i = 21, . . . , 26. The
outlier-free, yet noisy distance is generated by

δij = ‖xi − xj‖+ εij , i < j = 2, . . . , n,

where εij follows the normal distribution with 0 mean and
the variance σ2. The indexes (i, j) of s outliers were uni-
formly drawn and their values were independently uniformly
drawn over [0, 20]. These values were then added to the
corresponding δij . Finally, we set the four end-points as
anchors (fixed): a1 = x1 = (0, 6)T , a2 = x13 = (12, 6)T ,
a3 = x14 = (6, 12)T , and a4 = x25 = (6, 0)T .

The original tested data in [9] is without the four anchors
being fixed. We tested the original data and then used the
Procrustes (procustes.m Matlab built-in function) to map
the output points to the true locations. Although the output of
4 methods (except SSMDS) are different, their localizations
after applying the Procrustes method are surprisingly accurate
with the Root-Mean-Squared-Error (RMSE):

RMSE =
√∑

‖x̂i − xi‖2/n

at an order of 10−14, where x̂i are the final localizations.
Therefore, the original data would not be able to differentiate
the methods. Therefore, we add the 4 anchors as the fixed
points to increase the difficulty of localizing the true posi-
tions. For this case, we cannot use Procustes method to the
whole set of points. Instead, we have to map the four output
points, denoted as x̃i, i = 1, 13, 14, 25 to their anchors ai,
i = 1, . . . , 4 to obtain the linear mapping T . We then map the
rest points by x̂i = T (x̃i). Finally, RMSE is computed for
those x̂i. We refer to [35] and [36, Sect. IV] for the ways to
derive such mapping T .

(a) General performance when n is small. The following
instances of Example 6.1 were tested: σ2 ∈ {0.1, 0.2} and the
number of outliers s ∈ {15, 30, 45, 60, 75}, corresponding to
about 5%, 10%, 15%, 20% and 25% of the total number of
distances deducting the 6 fixed distances due to the 4 anchors.
For SSMDS and FSMDS, we set ρ = 1 and µ = 6. For
RMDS, we used λ = 1 and for HQMMDS we used λ1 = 1
and λ2 = 35 for its overall best performance. For TMDS,
the correct value of the outliers was used. Fig. 1 plots the
embedding (σ2 = 0.1 and s = 60) by the three methods:
FSMDS, RMDS, and HQMMDS. We omitted the other two
methods because of their poor performance and also for better
visualization (there would be too many points on one graph for
5 methods). For this case, we set the random number generator
rng(’default’) so that the results can be reproduced.

It can be visibly observed from Fig. 1 that FSMDS produced
the best matching to the true positions of the data, with the
lowest RMSE. To better understand the estimated distances,
we also plotted the Shepard graph for the three methods. It is
interesting to see that the estimated distances by FSMDS and
RMDS are scattered almost evenly around the true diagonal
line, with FSMDS having a narrow spreading region. There
are quite a few points by RMDS that are far away from the

Fig. 1: Embedding for Example 6.1 (σ2 = 0.1 and s = 60)
by FSMDS, RMDS and HQMMDS, all linked to the corre-
sponding true locations. The percentage of the outliers is about
60/(300−6) ≈ 20%. The corresponding RMSE is 0.5496 for
FSMDS, 2.6517 for RMDS, and 0.7245 for HQMMDS.

Fig. 2: Shepard graph for the embeddings in Fig. 1.

diagonal line. Those few large errors resulted in a few long
links in Fig. 1 and other links are very close to their true
locations. In contrast, the distances by HQMMDS stay quite
close to the diagonal line, but many of them are below the
line, suggesting that HQMMDS tends to under-estimate the
true distances.

We further tested 15 instances of Example 6.1 and the
corresponding average RMSE over 1000 simulations for each
instance is reported in Table I. We observed that on aver-
age, FSMDS outperforms all other methods in all cases and
HQMMDS works also very satisfactorily. It is worth pointing
out that HQMMDS performs significantly better than RMDS
despite they are closely related (see [11] for more details). The
poor results by TMDS demonstrate that detecting all violated
triangle inequalities in the data matrix ∆ is not adequate to
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TABLE I: RMSE for Example 6.1 by the five methods
and RMSE is the average of 1000 simulations of each test
instance where the random number generator in Matlab is
set as rng(’shuffle’). The numbers in brackets are the
standard deviations. The parameters used were λ = 1 for
RMDS, (λ1, λ2) = (1, 35) for HQMMDS, s for TMDS and
(ρ, µ) = (1, 6) for both SSMDS and FSMDS.

Methods
σ2 s SSMDS FSMDS RMDS TMDS HQMMDS

0

15 4.53 0.21 0.47 0.87 0.25
(1.41) (0.38) (1.00) (1.01) (0.32)

30 5.76 0.39 0.99 2.25 0.55
(1.04) (0.61) (1.47) (1.00) (0.78)

45 6.33 0.66 1.63 2.91 0.87
(0.94) (0.87) (1.76) (1.05) (0.99)

60 6.62 1.00 2.09 3.44 1.20
(0.85) (1.07) (1.78) (1.06) (1.10)

75 6.89 1.49 2.68 4.01 1.56
(0.78) (1.25) (1.78) (1.05) (1.14)

0.1

15 4.49 0.31 0.54 1.00 0.39
(1.39) (0.30) (0.84) (1.04) (0.30)

30 5.72 0.45 0.85 2.31 0.57
(1.04) (0.57) (1.21) (1.02) (0.56)

45 6.32 0.70 1.68 2.92 0.96
(0.90) (0.83) (1.66) (1.06) (0.95)

60 6.65 1.08 2.09 3.47 1.29
(0.87) (1.06) (1.75) (1.09) (1.06)

75 6.90 1.63 2.68 4.03 1.72
(0.80) (1.30) (1.76) (1.04) (1.19)

0.2

15 4.58 0.37 0.55 1.13 0.49
(1.39) (0.26) (0.79) (1.13) (0.34)

30 5.76 0.51 1.04 2.26 0.68
(1.04) (0.52) (1.28) (0.98) (0.58)

45 6.32 0.80 1.60 2.89 1.00
(0.91) (0.85) (1.58) (1.02) (0.85)

60 6.63 1.12 2.18 3.55 1.35
(0.85) (1.01) (1.72) (1.13) (1.04)

75 6.95 1.69 2.83 4.08 1.74
(0.80) (1.26) (1.72) (1.07) (1.12)

Fig. 3: RMSE performance of three method: HQMMDS,
FSMDS and RMDS on Example 6.1 when the number of
sampled points n gets big.

locate the true locations of the data points for most instances.
We note that SSMDS completely fails for Example 6.1. This
is expected because, as our theoretical result suggested, it is
more suitable to single source localization problems.

(b) General performance when n gets bigger. It is
interesting to see how those methods would perform when
more sample points were drawn from the plus symbol. To
this purpose, consider the size of the symbol of 2N with
N ≥ 2 being an integer and its center at (N,N). We sample
n = 4N + 1 points with equal space on the symbol. Example
6.1 corresponds to N = 6. We again set the four corner
points (0, N)T , (2N,N)T , (N, 2N)T and (N, 0)T as anchors.
The variance of the normal noise added is σ2 = 0.2 and
we choose 15% of the total number of distances n(n − 1)/2
being outliers. Their values were generated in the same way
as in Example 6.1. We tested 500 instances and their average
RMSE against the number of points n (i.e., N ranges from
5 to 25) were plotted in Fig. 3. We only included the three
methods FSMDS, HQMMDS, and RMDS because the other
two completely failed for most of the tested instances.

Two interesting observations can be made. One is that the
improvement in terms of RMSE for all three methods gets
better as n increases. This is reasonable and expected because
there were more numbers of distances which were not outliers.
The other is that the improvement becomes marginal after n is
bigger enough (e.g., n ≥ 50). The amount of improvement is
significant when n is small (e.g., n ≤ 30). In particular, RMDS
improved the most over this range. Fig. 3 also suggests that
one of the most challenging scenario in localization is when
the network is small and is contaminated by a good number
of outliers (say 15% of them).

(c) Sensitivity of FSMDS on (ρ, µ). Finally, we address
another issue concerning the sensitivity of FSMDS on its two
parameters ρ (penalty parameter) and µ (sparsity parameter).
We tested FSMDS on a grid [1, 40] × [1, 40] for (ρ, µ) with
unit step and plotted the corresponding RMSE in Fig. 4. It
is interesting to see that RMSE in terms of (ρ, µ) behaves
likes a step function, meaning that it performs similarly within
a region and jumps to another region of similarities as the
parameters vary. In other words, FSMDS is locally stable. The
lowest RMSE took place when (ρ, µ) = (1, 6). We have also
done this test for HQMMDS for its two parameters λ1 and
λ2. Its lowest RMSE occurred at (λ1, λ2) = (1, 35). We used
those values in our extensive tests in Table I.

C. Single source localization

This is the hard test problem proposed in [17] with negative
and positive measurement errors that lead to outliers.

Example 6.2: Suppose there are N (known) sensors that are
uniformly placed on a circle with center (0, 0) and radius 10:

xi = 10[cos(2π(i−1)/N), sin(2π(i−1)/N)]T , i = 1, . . . , N.

The unknown source xn (n = N + 1) is chosen uniformly
at random from a disk centered at (0, 0) with radius 15. The
measurements from xn to xi, i = 1, . . . , N are contaminated
via δin = ‖xi − xn‖ + εi + ηi, where εi ∼ N(0,Σ) with
Σ = 0.5σ2(IN + 1N1TN ), and ηi = Ui − U0 with Ui being
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Fig. 4: RMSE of FSMDS on Example 6.1 with σ2 = 0.1
and s = 60, rng(’default’). The parameters (ρ, µ) vary
on the grid of [1, 40] × [1, 40]. The lowest RMSE is when
(ρ, µ) = (1, 6).

uniformly distributed between 0 and ωi, i = 0, 1, . . . , N . Here,
ωi can be treated as error upper bounds. We tested the first
three scenarios in [17]. Case 1: ω0 = 5α and ωi = 0.5 for
i = 1, . . . , N . Case 2: ω0 = 3 and ωi = 5α for i = 1, . . . , N .
Case 3: ω0 = 0.5α and ωi = 5α for i = 1, . . . , N . In all three
cases, α varies from 0.1 to 1 and σ = 0.3.

This problem is designed to model distance measurements
obtained by measuring the time of arrival of signals emitted
from the sensors. Therefore, the large errors in ηi may be
negative or positive, creating realistically diverse measurement
errors. Another difficult feature of this problem is that the
source has about 56% chance of lying outside of the convex
hull of the known sensors. Table II reports the average
localization error ‖x̂n − xn‖ over 1000 simulations, where
x̂n is the estimated location and xn is the true location. It can
be seen that SSMDS yields the best performance in almost
all cases except α = 0.6 in Case 2, for which HQMMDS
works better. We also plotted the results in Fig. 5 for Case 2
with α varying from 0.1 to 1. It is obvious that the line by
SSMDS is the lowest except at α = 0.6, where HQMMDS
works slightly better. This verifies our theoretical result that
SSMDS is particularly suitable to SSL problems. We also note
that FSMDS, RMDS and TMDS all perform reasonably well.

D. Real data: Motorola facility localization

The real data was obtained by the channel measurement
experiment conducted at the Motorola facility in Plantation,
which is reported in [16]. The experiment environment is an
office area which is partitioned by cubicle walls. 44 device
locations are identified within a 14m × 13m area. Four of
the devices labelled as 3, 11, 35, 44 are chosen to be anchors
and remaining locations are unknown. In this experiment,
each node can communicate with all other nodes. We use the
original time-of-arrival (TOA) to obtain the pairwise range
measurements: δij = c × T−TOAij , where c is the speed

TABLE II: Average error for Example 6.1 (N = 4) by the five
methods over 1000 random simulations of each test instance.
The numbers in brackets are the standard deviations. The
parameters used were λ = 1 for RMDS, (λ1, λ2) = (5, 0.001)
for HQMMDS, s = 4 for TMDS and (ρ, µ) = (5, 1) for both
SSMDS and FSMDS.

Methods
Cases α SSMDS FSMDS RMDS TMDS HQMMDS

Case 1

0.3 0.59 0.77 0.72 0.85 0.69
(0.30) (0.37) (0.38) (0.30) (0.37)

0.6 1.20 1.68 1.66 1.70 1.52
(0.63) (0.81) (0.84) (0.63) (0.83)

0.9 1.78 2.56 2.51 2.47 2.25
(0.94) (1.25) (1.25) (0.94) (1.21)

Case 2

0.3 0.78 1.05 1.01 1.10 0.96
(0.41) (0.50) (0.52) (0.41) (0.52)

0.6 0.36 0.40 0.33 0.56 0.33
(0.18) (0.19) (0.17) (0.18) (0.16)

0.9 0.79 1.04 1.06 1.15 1.05
(0.42) (0.51) (0.56) (0.42) (0.58)

Case 3

0.3 0.59 0.76 0.75 0.82 0.73
(0.31) (0.36) (0.39) (0.31) (0.39)

0.6 1.22 1.65 1.74 1.88 1.77
(0.65) (0.81) (0.90) (0.65) (0.95)

0.9 1.93 2.63 2.79 3.07 2.92
(1.05) (1.29) (1.40) (1.05) (1.54)

Fig. 5: Average error (RMSE) vs α varying from 0.1 to 1 for
Case 2 in Example 6.2 over 1000 simulations of test data.

of light in terms of meters and T−TOAij is the measured
TOA between device i and j after removing the mean time
delay error (details see [16]). This implies that all of the
measurements have large errors (positive or negative). In
particular, there are 37 negative pairwise distances in ∆ (In
our test, we replace them by |δij |). This data has been studied
in [15], where a few latest state-of-art methods based on Semi-
Definite Programming (SDP) were tested. The reported results
there indicates that it would be challenging to achieve RMSE
less than 1 meter for the unknown facilities.

We use this example to demonstrate two important strategies
that are able to drive RMSE below 1m and that have not
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Fig. 6: Visualization difference between RMSE less than 1m (left graph by FSMDS) and RMSE above 1m (right graph
HQMMDS): There appears bigger localization errors among the points near boundary for the right graph than the left.

been explored in the two previous examples. One is using
the weights Wij to distinguish importance of individual δij to
the objective. The other is enforcing tighter lower and upper
bounds in (21).

(a) Sammon weighting scheme. It was proposed by Sam-
mon [37], see also [2, P.255]. Each weight Wij is inversely
proportional to δij . In our test, we used Wij = α/δij with
α = 3 for δij 6= 0 and 0 otherwise. Here α > 0 is balancing
parameter, which actually can be factorized into the penalty
and smoothing parameter ρ and µ. A generalized choice is
Wij = δqij with q ∈ < being properly chosen and is proposed
in [38]. We note that the standard choice Wij = 1 when
δij 6= 0 and 0 otherwise simply indicates that for the point pair
(i, j) a dissimilarity δij is available. The results are reported in
Table III for both types of weights. It can be clearly seen that
Sammon weights effectively drove RMSE below 1m for both
SSMDS and FSMDS. All other methods are not affected by
the different weighting choices. It is worth noting that RMDS
and HQMMDS can also be adapted to include weights. But
the implementations we obtained do not have such flexibility.
The visualization of the obtained localization for the data by
FSMDS and HQMMDS was plotted in Fig. 6. For TMDS, we
used the half of the points for s.

TABLE III: Effect of Sammon weights on RMSE for Motorola
data with α = 3, and ρ = 20, µ = 90 for SSMDS and FSMDS,
λ = 1 for RMDS, s = 20 for TMDS, and λ1 = 20, λ2 = 100
for HQMMDS.

Methods
Weights SSMDS FSMDS RMDS TMDS HQMMDS
Standard 1.24 1.17 1.09 1.22 1.04
Sammon 0.96 0.94 1.09 1.22 1.04

(b) Adding tighter lower and upper bounds. In the
previous tests, we simply set the lower bound Lij = 0 and the
upper bounds Uij big numbers. If we were able to increase the
lower bounds and decrease the upper bounds toward their true
values dtrue

ij = ‖xi − xj‖, then we expect that the resulting

localization will become more accurate. For example, let

`ij := βdtrue
ij and uij := (2− β)dtrue

ij .

As β varies from 0 to 1, the bounds in (21) with Lij = `2ij
and Uij = u2

ij become tighter. In the extreme case, β = 1, the
bounds are true and should result in the true location. This is
demonstrated in Fig. 7, where we considered three scenarios
with FSMDS: (i) only increase the lower bounds (FSMDS-
lb); (ii) only decrease the upper bounds (FSMDS-ub); and
(iii) increase the lower bounds and decrease the upper bounds
simultaneously.

We note that all three scenarios result in improvement in
terms of RMSE accuracy and they all get better and better
as the bounds get tighter. However, there were limits for
both FSMDS-lb and FSMDS-ub. At the extreme β = 1 (the
lower bounds or the upper bounds are true), the corresponding
RMSE is between 0.4 and 0.5 and they cannot get smaller.
In contrast, the best improvement occurred when the both
bounds are enforced simultaneously. At the extreme, FSMDS-
lu recover the true positions of the facilities. We also like to
note that in practice, there would incur extra cost for obtaining
tighter bounds. Fortunately there are many applications where
such tighter bounds (known as interval distance geometry) are
available, see a recent survey [41]. It is also important to note
that while SSMDS and FSMDS have the capability of handling
the lower and upper bounds without any extra cost, it is not
known how other methods such as RMDS and HQMMDS can
handle such constraints.

VII. CONCLUSION

cMDS has been a classical method for analyzing dissimi-
larity data and it is widely known that it spreads errors among
all dissimilarities causing undesirable embeddings. This paper
provides a new interpretation of cMDS and casts it as a joint
optimization problem with one variable residing in the almost
positive semidefinite cone Kn+ and the other in the subspace
Sn2 . This new reformulation also reveals why cMDS tends to
overly denoise even there is just one erroneous dissimilarity
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Fig. 7: Power of adding lower and upper bounds: as the bounds
get tighter as β increases, FSMDS yields better localization.
FSMDS-lb: adding lower bounds only; FSMDS-ub: adding
upper bounds only; FSMDS-lu: adding both lower and upper
bounds simultaneously.

and naturally leads us to consider a subspace MDS and its
full-space variant FSMDS. We established their convergence
results and compared them with several sate-of-the-art meth-
ods for outlier removal. Our numerical results on synthetic
and real data demonstrate their capability of recovering high-
quality embedding. In particular, we are able to handle the
lower and upper bounds constraints, which could create huge
challenging for other methods. For some applications such as
the Motorola facility localization, enforcing quality lower and
upper bounds is an effective (maybe the only way) to improve
localization accuracy. This important capability of ours is
due to the Euclidean distance matrix (EDM) optimization we
employed.

In terms of the objectives, ours is based on the cMDS
and both RMDS and HQMMDS are based on the stress
function in MDS. One advantage of cMDS objective is its
continuous differentiability when put in EDM optimization,
which subsequently simplifies our proof analysis. It will be
our next research topic to see if the proposed framework can
be extended to the stress function.
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APPENDIX A
PROOF OF THEOREM 3.1

We need the following result, which is a restatement of a
result in [40].

Lemma A.1: [40, Cor. 2.1(a)] Let Kn+ be the conditionally
positive semidefinite cone, Dn be the EDM cone and Sn2 be
the subspace defined in (18). Then it holds

Kn− = Dn + Sn2 , (36)

where Kn− := −Kn+. Moreover, the decomposition in (36) is
unique in the sense that for any given matrix A ∈ Kn−, there
exist unique D ∈ Dn and Z ∈ Sn2 such that A = D+Z with

D = A− Z and Z := a1T + 1aT , a :=
1

2
diag(A).

Proof: (Thm. 3.1) The proof is in three parts: (i) We prove
the optimization problem has a unique solution (D̂, Ẑ); (ii) we
prove D̂ = Dmds; and (iii) we prove Ẑ takes the form given
in the theorem.

(i) Lemma A.1 implies that the joint optimization problem
(19) is equivalent to

min ‖∆−A‖2, s.t. A ∈ Kn−.

This is the projection problem onto the convex cone Kn−. Its
unique optimal solution is Â := ΠKn

−
(∆), and the correspond-

ing unique (D̂, Ẑ) are

D̂ = Â− Ẑ, Ẑ = â1T + 1âT , â :=
1

2
diag(Â).

(ii) It follows from (6) that

Â = ΠKn
−

(∆) = −ΠKn
+

(−∆) = ∆̂−ΠSn
+

(J∆̂J). (37)

We note (by direct verification) that

J = Q

[
In−1 0

0 0

]
Q, with Q := I − 1

n+
√
n
vvT (38)

and vT := (1, . . . , 1,
√
n+1) ∈ <n. Here, In−1 is the identity

matrix in Sn−1 and Q is known as a Householder matrix
satisfying Q2 = I . Therefore,

J∆J = Q

[
In−1 0

0 0

]
Q∆Q

[
In−1 0

0 0

]
Q

= Q

[
∆1 0
0 0

]
Q,

where ∆1 is the leading (n−1)× (n−1) block of the matrix
Q∆Q. Since Q is orthogonal, we have

ΠSn
+

(J∆J) = Q

[
ΠSn−1

+
(∆1) 0

0 0

]
Q (39)

and

QΠSn
+

(J∆J)Q =

[
ΠSn−1

+
(∆1) 0

0 0

]
. (40)
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Furthermore,

JΠSn
+

(J∆J)J

(38)
= Q

[
In−1 0

0 0

]
QΠSn

+
(J∆J)Q

[
In−1 0

0 0

]
Q

(40)
= Q

[
In−1 0

0 0

][
ΠSn−1

+
(∆1) 0

0 0

] [
In−1 0

0 0

]
Q

= Q

[
ΠSn−1

+
(∆1) 0

0 0

]
Q

(39)
= ΠSn

+
(J∆J). (41)

Since J1 = 0, we have JẐJ = 0. Putting those facts together,
we have

JD̂J = J(Â− Ẑ)J = JÂJ
(37)
= J∆̂J − JΠSn

+
(J∆̂J)J

(41)
= J∆̂J −ΠSn

+
(J∆̂J)

= −ΠSn
+

(−J∆̂J),

where the last equation used the fact

X = ΠSn
+

(X)−ΠSn
+

(−X), ∀ X ∈ Sn.

Consequently, we have

−1

2
JD̂J =

1

2
ΠSn

+
(−J∆̂J)

(13)
= B+.

Since D̂ ∈ Dn, it follows from (16) that D̂ can be generated
by the decomposition of B+ in (14): D̂ij = ‖yi−yj‖2. Hence,
we must have D̂ = Dmds.

(iii) Since we have established D̂ = Dmds, the optimal Ẑ
must be the optimal solution of the following problem:

min
Z∈Sn

2

f(Z) =
1

2
‖(Dmds + Z)−∆‖2F

=
1

2
‖(Dmds + z1T + 1zT )−∆‖2F ,

with z ∈ <n. Recall C := ∆−Dmds, we have

f(z) =
1

2
‖C‖2F − 2〈C1, z〉+ n‖z‖2 + (1T z)2.

Since f(z) is convex, its gradient must vanish at its optimal
solution ẑ:

0 = ∇f(ẑ) = −2C1 + 2nẑ + 2(1T ẑ)1.

Computing the inner product with 1 on both sides of the above
equation yields

1T ẑ =
1

2n
1TC1,

which in turn gives rise to

ẑ = − 1

n
C1− 1

2n2
1TC1 = c− 1

2
c̄1.

The optimal solution Ẑ = ẑ1T +1ẑT , which is what we stated
in the theorem.

APPENDIX B
PROOF OF THEOREM 5.1

Please refer to Sect. II and Sect. V for the definition of
the functions g(D), h(D), gmr (D,A) and F (D,Z), Fµ(D,Z),
Fρ,µ(D,Z) and its majorization function Fmρ,µ(D,Z,Dk, Zk).
We further let ϕ(Z) := ‖Z‖1 − ‖Z‖. We will need the
following inequalities.

h(−Dk+1)− h(−Dk) ≥ 〈ΠKn
+(r)(−Dk), Dk −Dk+1〉 (42)

due to the convexity of h(·) and ΠKn
+(r)(−Dk) ∈ ∂h(−Dk)

by (11).
Since Dk+1 = arg minF (D,Zk) + ρgmr (D,Dk), the opti-

mality condition holds at Dk+1:

〈Ωk+1, D −Dk+1〉 ≥ 0, ∀ D ∈ B, (43)

where Ωk+1 := ∇DF (Dk+1, Zk)+ρ(Dk+1+ΠKn
+(r)(−Dk)).

Since Zk+1 = arg minF (Dk+1, Z) + µ(‖Z‖1 − 〈T k, Z〉),
the optimality condition holds at Zk+1: There exists Γk+1 ∈
∂‖Zk+1‖1 such that

∇ZF (Dk+1, Zk+1) + µ(Γk+1 − T k) = 0. (44)

Define the quantity

τk := 〈∇ZF (Dk+1, Zk+1), Zk−Zk+1〉+µ(ϕ(Zk)−ϕ(Zk+1).

We claim
Lemma B.1: τk ≥ 0.

Proof: It is known that for the one-dimensional absolute
value function |x|, its subdifferential is defined as

∂|x| =

 1 if x > 0
[−1, 1] if x = 0
−1 if x < 0.

One consequence is that ξx = |x| and and |ξ| ≤ 1 for any
ξ ∈ ∂|x|. Applying this fact to Γk+1 ∈ ∂‖Zk+1‖1 yields

〈Γk+1, Zk+1〉 = ‖Zk+1‖1, 〈Γk+1, Z〉 ≤ ‖Z‖1,∀ Z. (45)

Now computing the inner product with (Zk −Zk+1) on both
sides of (44) leads to

〈∇ZF (Dk+1, Zk+1), Zk − Zk+1〉
= µ〈Γk+1 − T k, Zk+1 − Zk〉
= µ〈Γk+1, Zk+1〉 − µ〈Γk+1, Zk〉 − µ〈T k, Zk+1 − Zk〉

(45)
= µ‖Zk+1‖1 − µ〈Γk+1, Zk〉 − µ〈T k, Zk+1 − Zk〉.

Substituting the above into τk and simplifying to get

τk = µ
(
‖Zk‖1 − 〈Zk,Γk+1〉︸ ︷︷ ︸
≥0 due to (45)

)
+µ
(
‖Zk+1‖ − ‖Zk‖ − 〈T k, Zk+1 − Zk〉︸ ︷︷ ︸
≥0 due to the convexity of ‖Z‖

)

This completes the proof.



15

The following two identities can be verified directly.

‖Dk+1‖2 − ‖Dk‖2

= 2〈Dk+1 −Dk, Dk+1〉 − ‖Dk+1 −Dk‖2. (46)

∇DF (Dk+1, Zk+1)−∇DF (Dk+1, Zk)

= (W ◦W ) ◦ (Zk+1 − Zk). (47)

Proof: (Thm. 5.1) (i) Since B is bounded, {Dk} is so
because Dk ∈ B. Now suppose {Zk} is not bounded. There
must exists a subsequence indexed by {ki} such that |Zki`j | →
∞ for some fixed (`, j). According to the update rule (33),
we must have W`j > 0 (otherwise Zk`,j = 0 for all k). The
nonincreasing property of {Fρ,µ(Dk, Zk)} yields

Fρ,µ(D0, Z0) ≥ Fρ,µ(Dki , Zki) ≥ F (Dki , Zki)

≥ 1

2
W 2
`j

(
∆`j −Dki

`j − Z
ki
`j

)2

→∞

due to the boundedness of {Dk}. This contradiction estab-
lishes the boundedness of {Zk}.

(ii) This part of the proof involves a considerable amount
of calculation, but most of them are simple. The first fact we
used (the second equality below) is the exact Taylor expansion
of F (D,Z) at (Dk+1, Zk+1) since F (D,Z) is quadratic.

Fρ,µ(Dk, Zk)− Fρ,µ(Dk+1, Zk+1)

= F (Dk, Zk)− F (Dk+1, Zk+1)

+ ρ(gr(D
k)− gr(Dk+1) + µ(ϕ(Zk)− ϕ(Zk+1))

= 〈∇DF (Dk+1, Zk+1)︸ ︷︷ ︸
apply (47)

, Dk −Dk+1〉

+ 〈∇ZF (Dk+1, Zk+1), Zk − Zk+1〉

+
1

2
〈W ◦ (Dk −Dk+1), W ◦ (Dk −Dk+1)〉︸ ︷︷ ︸

≥0

+
1

2
〈W ◦ (Zk − Zk+1), W ◦ (Zk − Zk+1)〉

+ 〈W ◦ (Zk − Zk+1), W ◦ (Dk −Dk+1)〉
+

ρ

2

(
‖Dk‖2 − ‖Dk+1‖2︸ ︷︷ ︸

apply (46)

)
+ ρ
(
h(−Dk+1)− h(−Dk)︸ ︷︷ ︸

apply (42)

)
+ µ(ϕ(Zk)− ϕ(Zk+1))

≥ 〈Ωk+1, D
k −Dk+1〉︸ ︷︷ ︸

≥0 by (43)

+
ρ

2
‖Dk −Dk+1‖2

+ 〈∇Zf(Dk+1, Zk+1), Zk − Zk+1〉

+
1

2
〈W ◦ (Zk − Zk+1), W ◦ (Zk − Zk+1)〉

+ µ(ϕ(Zk)− ϕ(Zk+1))

≥ ρ

2
‖Dk −Dk+1‖2 + τk

+
1

2
〈W ◦ (Zk − Zk+1), W ◦ (Zk − Zk+1)〉.

Lemma B.1 (τk ≥ 0) establishes the first claim in (ii).
Since {Fρ,µ(Dk, Zk)} is bounded below by 0, we must have

limFρ,µ(Dk, Zk) − Fρ,µ(Dk+1, Zk+1) → 0, which forces
(Dk+1 − Dk) → 0 and Zk+1

`j − Zk`j → 0 when W`j > 0.

However, Zk`j = 0 for all k when W`j = 0. Hence, we also
have (Zk − Zk+1)→ 0.

(iii) Suppose (D∗, Z∗) is the limit of a subsequence
{Dk, Zk}k∈K . It follows from (ii) that Dk+1 → D∗ and
Zk+1 → Z∗ for k ∈ K. Since the subgradient sequence
{Γk+1}k∈K and {Zk+1}k∈K are bounded, without loss of
generality we may assume Γk+1 → Γ∗ and T k → T ∗.

By the upper semicontinuity of the subdifferentials of con-
vex functions, we have

Γ∗ ∈ ∂‖Z∗‖1 and T ∗ ∈ ∂‖Z∗‖.

Taking the limits on both sides of (44) for k ∈ K to obtain

∇ZF (D∗, Z∗) + µ(Γ∗ − T ∗) = 0.

And taking the limits on both sides of (43) for k ∈ K to
obtain

〈∇DF (D∗, Z∗) + ρ(D∗ + ΠKn
+(r)(−D∗)), D −D∗〉 ≥ 0

for all D ∈ B. These two conditions are the optimality
conditions in (35).

Now suppose D0 ∈ (−Kn+(r)) ∩ B and Z0 = 0. We have
the following chain of inequalities.

1

2
‖W ◦ (D0 −∆)‖2

=
1

2
‖W ◦ (D0 + Z0 −∆)‖2 + ρgr(D

0) + µR2(Z0)

≥ Fµ(D1, Z0) + ρgmr (D1, D0)

= Fmρ,µ(D1, Z0, D0, Z0)

≥ Fmρ,µ(D1, Z1, D0, Z0)

≥ Fρ,µ(D1, Z1) ≥ · · ·
≥ Fρ,µ(Dk, Zk)

=
1

2
‖W ◦ (Dk + Zk −∆)‖2 + ρgr(D

k) + µR2(Zk)

≥ ρgr(Dk).

The first equation in the chain used the fact gr(D0) = 0 and
Z0 = 0. The first inequality was due to the definition of gmr (·).
The second equation was because of the definition of Fmρ,µ. The
second inequality was because of (32). The third inequality
was due to the properties of the majorization function Fmρ,µ.
The rest was obtained by repeatedly using the above facts.
Taking the limit on k ∈ K, we have

ρgr(D
∗) ≤ 1

2
‖‖W ◦ (D0 −∆)‖2.

Therefore, we have

gr(D
∗) ≤ ‖W ◦ (D0 −∆)‖2

2ρ
≤ ‖W ◦ (D0 −∆)‖2

2ρε
= ε.

This, together with the established condition (35), has proved
that (D∗, Z∗) is an ε-approximate stationary point of (23).
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APPENDIX C
PROOF OF THEOREM 5.2

Proof: The proof technique is taken from [30]. It follows
from (44) that

∇ZF (Dk, Zk) + µ(Γk − T k−1) = 0,

where Γk ∈ ∂‖Zk‖1 and T k−1 ∈ ∂‖Zk−1‖. Therefore,
‖T k−1‖ ≤ 1 and ‖Γk‖ ≥

√
‖Zk‖0, which imply

‖∇ZF (Dk, Zk)‖ = µ‖Γk − T k−1‖

≥ µ
(
‖Γk‖ − ‖T k−1‖

)
≥ µ

(√
‖Zk‖0 − 1

)
.

On the other hand, using

∇ZF (Dk, Zk) = W ◦W ◦ (Dk + Zk −∆),

we obtain

‖∇ZF (Dk, Zk)‖ ≤ wmax‖W ◦ (Dk + Zk −∆)‖,

where wmax := max{Wij}. We further note that

1

2
‖W ◦ (Dk + Zk −∆)‖2 ≤ Fρ,µ(Dk, Zk) ≤ Fρ,µ(D0, 0)

Putting the two bounds on ‖W ◦ (Dk + Zk − ∆)‖ together
yields √

‖Zk‖0 − 1 ≤
wmax

√
2Fρ,µ(D0, 0)

µ
,

which means that µs > 0 can be selected as in the theorem.
We note that Fρ,µ(D0, 0) does not depend on µ.
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