READ ME File For 'Constant-Envelope Space-Time Shift Keying' IEEE Journal of Selected Topics in Signal Processing (Accepted on 6 June 2019) Authors: C. Xu, T. Bai, J. Zhang, R.G. Maunder, S. Sugiura, Z. Wang and L. Hanzo C. Xu, J. Zhang, R. G. Maunder and L. Hanzo are with the School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK (e-mail: \{cx1g08,jz09v,rm,lh\}@soton.ac.uk). T. Bai is with the School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK (email: t.bai@qmul.ac.uk). S. Sugiura is with the Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan (e-mail: sugiura@ieee.org). Z. Wang is with Tsinghua University, Beijing, China (e-mail: zcwang@tsinghua.edu.cn). Acknowledgement: L. Hanzo would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council projects EP/Noo4558/1, EP/PO34284/1, COALESCE, of the Royal Society’s Global Challenges Research Fund Grant, of the Royal Society Grant IF170002 as well as of the European Research Council’s Advanced Fellow Grant QuantCom. The work of S. Sugiura was supported in part by the Japan Society for the Promotion of Science KAKENHI under Grants 26709028 and 16KK0120. Abstract: From the power amplifier's perspective, the Peak-to-Average Power Ratio (PAPR) is of essential importance, especially for both single-RF and reduced-RF Multiple-Input Multiple-Output (MIMO) single-carrier schemes. In this context, many of the diversity-oriented index modulation schemes - including the full-RF Space-Time Shift Keying (STSK) and the single-RF Asynchronous STSK (ASTSK) that invoke randomized signals - exhibit eroded energy-efficiency. To circumvent this problem, we propose a holistic signal construction approach for single-RF, reduced-RF and full-RF MIMO setups, which always achieve both perfect 0~dB PAPR transmission and Inter-Channel Interference (ICI) free signal detection. More explicitly, first of all, we conceive a new family of single-RF Constant-Envelope ASTSK (CE-ASTSK), which is capable of substantially outperforming conventional Spatial Modulation (SM) in both Rayleigh fading and Ricean fading associated with increasing Line-of-Sight (LoS) power. Secondly, we propose the new full-RF CE-STSK concept, which is capable of outperforming the orthogonal Space-Time Block Codes (STBCs) without either increasing PAPR or imposing ICI. This is particularly beneficial because the conventional Linear Dispersion Code (LDC) approaches always compromise the orthogonality of STBC and hence impose ICI. Thirdly, we also conceive the reduced-RF versions of CE-STSK, which outperform both Generalized Spatial Modulation (GSM) and Space-Time Block Coded Spatial Modulation (STBC-SM). Finally, the proposed schemes are intrinsically amalgamated with turbo detection assisted channel coding, which further confirms the superiority of CE-ASTSK and CE-STSK over SM and STBC in the single-RF and full-RF modes, respectively. Fig.~1: Schematic_PA_Tradeoff.eps Fig.~2: Schematic_RF_Tradeoff.eps Fig.~3: Drone_Shadowing.eps Airplane_Maneuver.eps Fig.~4: Hard_M_2_N_1_Ricean_K_10.eps Hard_M_2_N_1_Ricean_K_mean_10_var_10.eps Fig.~5: Hard_CE_STSK03_M_2_T_2_TL_2_R_25_Compare1.eps Hard_CE_STSK03_M_2_T_2_TL_2_R_25_Compare2.eps Fig.~6: CCMC_Capacity_BLAST_SM_N_2_Ricean_K_0.eps CCMC_Capacity_STBC_CE_STSK07_N_2_Ricean_K_0.eps Fig.~7: DCMC_Capacity_Ricean_K_0_Single_RF.eps DCMC_Capacity_Ricean_K_6_Single_RF.eps DCMC_Capacity_Ricean_K_0_Full_RF.eps Fig.~8: Complexity_LDC_STSK_STBC.eps Fig.~9: Hard_CE_STSK03_M_2_T_2_TL_2_R_20.eps Hard_CE_STSK05_M_2_T_2_TL_2_R_20.eps Hard_CE_STSK05_M_2_T_2_TL_2_R_30.eps Fig.~10: Hard_CE_STSK07_M_2_T_2_TL_2_R_20_K_0.eps Hard_CE_STSK07_M_2_T_2_TL_2_R_30_K_0.eps Hard_CE_STSK07_M_2_T_2_TL_2_R_30_K_6.eps Fig.~11: Hard_CE_STSK22_M_4_T_4_R_20.eps Hard_CE_STSK23_M_4_T_2_R_30.eps Fig.~12: Hard_CE_STSK32_M_4_T_4_R_20.eps Hard_CE_STSK33_M_4_T_2_R_30.eps Fig.~13: Hard_CE_STSK26_M_4_T_2_R_20.eps Hard_CE_STSK25_M_4_T_2_R_40.eps Hard_CE_STSK25_M_4_T_2_R_50.eps Hard_CE_STSK25_M_4_T_2_R_60.eps Fig.~14: Schematic_LDPC_MIMO.eps Fig.~15: Trajectory_LDPC_Rc_050_CE_STSK07_M_2_T_2_Q_base_4_L_2_LDM_8_u_1_3_Lr_8_v_0_1_K_0_N_2.eps Trajectory_LDPC_Rc_080_CE_STSK07_M_2_T_2_Q_base_4_L_2_LDM_8_u_1_3_Lr_8_v_0_1_K_0_N_2.eps Trajectory_LDPC_Rc_080_CE_STSK07_M_2_T_2_Q_base_4_L_2_LDM_8_u_1_3_Lr_8_v_0_1_K_6_N_2.eps Fig.~16: BER_LDPC_SM_M_2_N_2_2PSK_K_0_Rx_2.eps BER_LDPC_SM_M_2_N_2_2PSK_K_6_Rx_2.eps Fig.~17: BER_LDPC_AO_G2_STBC_8PSK_Rx_4.eps BER_LDPC_AO_G4_STBC_16PSK_Rx_4.eps