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Abstract—Continuity to the Medium Resolution Imaging 

Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) 

will be provided by the Ocean and Land Colour Instrument 

(OLCI) on-board the Sentinel-3 missions.  To ensure its utility in 

a wide range of operational applications, validation efforts are 

required.  In the past, direct validation has been constrained by 

the need for costly airborne hyperspectral data acquisition, due to 

the lack of freely available high spatial resolution imagery 

incorporating appropriate spectral bands.  The Multispectral 

Instrument (MSI) on-board the Sentinel-2 missions now offers a 

promising alternative.  We explored the synergetic use of MSI data 

for validation of the OLCI Terrestrial Chlorophyll Index (OTCI) 

over the Valencia Anchor Station, a large agricultural site in the 

Valencian Community, Spain.  Using empirical and machine 

learning techniques applied to MSI data, in-situ measurements 

were upscaled to the moderate spatial resolution of the OTCI.  An 

RMSECV of 0.09 g m-2 (NRMSECV = 20.93%) was achieved, 

highlighting the valuable information MSI data can provide when 

used in synergy with OLCI data for land product validation.  Good 

agreement between the OTCI and upscaled in-situ measurements 

was observed (r = 0.77, p < 0.01), providing increased confidence 

to users of the product over vineyard dominated Mediterranean 

environments. 

 
Index Terms—Vegetation biophysical variables, canopy 

chlorophyll content, Sentinel-2, Sentinel-3, validation 

 

I. INTRODUCTION 

S the key photosynthetic pigment in plants, the amount of 

chlorophyll plays an important role in determining 

vegetation physiological status.  Therefore, canopy chlorophyll 

content (CCC) is a sensitive indicator of plant health and a key 

input to models of carbon exchange, and, in turn, terrestrial 

productivity.  In the visible region of the electromagnetic 
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spectrum, the presence of chlorophyll in leaves causes strong 

absorption, whereas in the near-infrared, strong reflection 

occurs due to scattering within the internal structure of the leaf.  

The transition between these two zones (i.e. the point of 

maximum slope) is known as the red-edge, and is a unique 

feature of the vegetation reflectance spectrum.  As CCC 

increases, the absorption feature broadens, shifting the red-edge 

towards longer wavelengths.  Thus, the position of the red-edge 

is strongly related to CCC [1], and has been used to estimate 

CCC from various different sources of remote sensing data [2], 

[3]. 

 Traditional methods to estimate the position of the red-edge 

were designed for use with continuous spectra as opposed to the 

discrete bands provided by the optical instruments on-board 

earth observation satellites [4], [5].  The Medium Resolution 

Imaging Spectrometer (MERIS) on-board ENVISAT was the 

first operational satellite instrument to collect data in the red-

edge region.  The MERIS Terrestrial Chlorophyll Index 

(MTCI) was developed to utilize this red-edge spectral 

information and provide the first global surrogate of CCC at a 

spatial resolution of 300 m [6].  Unlike other spectral vegetation 

indices, which suffer from asymptotic saturation, the MTCI 

remains sensitive to high CCC.  Since its release as a standard 

MERIS level 2 (L2) land product, the MTCI has been used in a 

wide range of applications, including land surface phenology 

monitoring [7]–[9], land cover mapping [10], [11], vegetation 

status assessment [12], terrestrial primary productivity 

estimation [13]–[15], and crop yield prediction [16]. 

 As one of the L2 land products from the Ocean and Land 

Colour Instrument (OLCI) on-board Sentinel-3, the OLCI 

Terrestrial Chlorophyll Index (OTCI) is designed to provide 

continuity to the MTCI.  The OTCI is calculated as 
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𝑂𝑇𝐶𝐼 =
𝑅𝑏𝑎𝑛𝑑 12−𝑅𝑏𝑎𝑛𝑑 11

𝑅𝑏𝑎𝑛𝑑 11−𝑅𝑏𝑎𝑛𝑑 10
  (1) 

 

where 𝑅𝑏𝑎𝑛𝑑 12, 𝑅𝑏𝑎𝑛𝑑 11, and 𝑅𝑏𝑎𝑛𝑑 10 are the reflectance 

values (corrected for gaseous absorption and Rayleigh 

scattering) in OLCI bands centered at 753.75 nm, 708.75 nm, 

and 681.25 nm respectively. 

 To ensure the utility of the OTCI in a wide range of 

operational applications, validation efforts are required to 

quantify its accuracy and uncertainty.  The moderate spatial 

resolution of the product and the heterogeneity of the terrestrial 

landscape represent a challenge to direct validation, as in-situ 

measurements of biophysical variables are typically point-

based.  To overcome this challenge, the ‘two-stage’ or ‘bottom-

up’ approach was proposed by the Land Product Validation 

(LPV) sub-group of the Committee on Earth Observation 

Satellites (CEOS) Working Group on Calibration and 

Validation (WGCV) [17].  In this approach, individual in-situ 

measurements are performed within elementary sampling units 

(ESUs) that approximate the extent of a pixel of high spatial 

resolution imagery, which is used in upscaling.  By relating the 

spectral information in the high spatial resolution imagery with 

the in-situ measurements, a high spatial resolution map of the 

biophysical variable of interest can be produced.  This high 

spatial resolution map can then be aggregated to the moderate 

spatial resolution of the product in question to facilitate 

comparison. 

Prior to the launch of the Sentinel-2 missions, application of 

the ‘two-stage’ or ‘bottom-up’ approach for the direct 

validation of moderate spatial resolution CCC products was 

constrained by a lack of freely available high spatial resolution 

imagery incorporating appropriate spectral bands.  Validation 

efforts necessitated costly airborne hyperspectral acquisition, 

making them a relatively infrequent and logistically challenging 

activity.  As a result, products such as the MTCI and OTCI have 

reached only the first stage of the CEOS WGCV LPV 

hierarchy, which states that product accuracy is assessed over a 

small set of locations and time periods [18].  With a spatial 

resolution of 20 m in multiple red-edge bands, the Multispectral 

Instrument (MSI) on-board the Sentinel-2 missions offers a 

promising alternative in this respect.  As such, in this paper, we 

explore the synergetic use of MSI data for validation of the 

OTCI, and provide an initial performance assessment of the 

product over a vineyard dominated Mediterranean 

environment. 

II. MATERIALS AND METHODS 

A. In-situ data collection 

An in-situ data collection campaign was carried out between 

14th and 18th June 2017, covering a 10 km x 10 km area of the 

Valencia Anchor Station, a large agricultural site in the 

Valencia Community, Spain (Fig. 1).  Located approximately 

80 km west of Valencia in the Utiel-Requena Plateau, the site 

is dominated by vineyards, which account for approximately 

75% of its land cover.   Other important species include almond 

and olive, whilst smaller areas of shrubland and Aleppo pine 

forest are also present.  Temperatures range from -15 º C in 

winter to 45 º C in summer, with a mean annual temperature of 

14 º C, whilst mean annual precipitation is approximately 450 

mm [19].  In addition to its vineyard dominated Mediterranean 

environment, which has been poorly represented in previous 

validation efforts, the site was selected as a result of its flat 

topography, which minimizes terrain effects, good 

accessibility, which simplifies campaign logistics, and 

homogeneity at the moderate spatial resolution of the OTCI. 

 

 
 

Fig. 1.  Sentinel-2A MSI true colour composite of the Valencia Anchor 

Station acquired on 15th June 2017.  The red box and circles indicate the 10 

km x 10 km area and ESUs over which in-situ data collection took place. 
 

34 ESUs were established over the site, of which 29 

corresponded to vineyards and 5 to almond/olive groves.  The 

extent of each ESU was 40 m x 40 m, to accommodate known 

positional uncertainties in the 20 m MSI data utilized for 

upscaling [20].  The central location of each ESU was 

determined using a Garmin eTrex 10 global positioning system 

(GPS) receiver, with an uncertainty of less than 10 m.  Within 

each ESU, measurements of leaf area index (LAI) were 

performed at 20 sampling locations (both within and between 

rows), whilst measurements of leaf chlorophyll concentration 

(LCC) were performed at 10 sampling locations (within rows 

only).  Measurements were performed over transects positioned 

diagonally with respect to planting direction, enabling the row 

structure of the canopy to be characterized [21] (Fig. 2).  The 

CCC of each ESU was determined as the product of LAI and 

LCC. 

 
Fig. 2.  Sampling locations within an ESU (not to scale). 

 

LAI was determined using digital hemispherical 

photography (DHP), making use of a Nikon Coolpix 4500 

equipped with an FC-E8 fisheye lens, which was calibrated 

according to the procedures of [22].  DHP data were classified 

and processed to yield estimates of LAI according to [23], 
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accounting for the effects of foliage clumping using the method 

of [24].  Each image was divided into 6 zenith rings of 10º, and 

each ring was further divided into 36 azimuth cells of 10º.  LAI 

was then calculated as 

 

𝐿𝐴𝐼 = 2 ∑ − ln 𝑃(𝜃𝑖) cos 𝜃𝑖 sin 𝜃𝑖 d 𝜃𝑖
6
𝑖=1  (2) 

 

where 𝑃(𝜃𝑖) is the gap fraction in ring 𝑖, and 𝜃𝑖 is its central 

zenith angle. 

LCC was determined using a Konica Minolta SPAD-502 

chlorophyll meter.  By measuring leaf transmittance at 650 nm 

and 940 nm, the instrument calculates a relative value that is 

proportional to LCC as 

 

𝑀 = 𝑘 log
𝐼0650𝐼940

𝐼650𝐼0940

+ 𝐶 (3) 

 

where 𝐼650, 𝐼940, 𝐼0650
, and 𝐼0940

 are the incident and transmitted 

electromagnetic radiation at 650 nm and 940 nm respectively, 

whilst 𝑘 and 𝐶 are confidential slope and offset coefficients 

undisclosed by the manufacturer [25].  At each sampling 

location, 3 leaves were measured from the top, middle, and 

bottom of the canopy, enabling vertical variations in LCC to be 

characterized.  6 replicates were performed per leaf, yielding a 

total of 18 measurements per sampling location, and 180 

measurements per ESU.  Relative values were converted to 

absolute units using calibration functions specific to each 

vegetation type.  For vineyards, a calibration function was 

derived from data collected at the Valencia Anchor Station in 

2016, when SPAD-502 measurements were performed on 103 

leaves whose LCC was then determined 

spectrophotometrically, following pigment extraction 

according to [26].  For almond/olive groves, the calibration 

function presented by [27] for fruit trees was adopted. 

B. Generation of a high spatial resolution CCC reference 

map 

Two approaches were investigated to generate a high spatial 

resolution CCC reference map from Sentinel-2A MSI L2A data 

acquired on 15th June 2017.  The first involved machine 

learning techniques, and consisted of training an artificial 

neural network (ANN) for the retrieval of CCC using radiative 

transfer model (RTM) simulations.  Modelling radiation 

transfer in row-structured canopies is challenging due to their 

heavily clumped nature and the strong dependency of the 

reflectance signal on viewing and illumination geometry.  

Therefore, in the Crop Reflectance Operational Models for 

Agriculture (CROMA) project, the Markov Chain Canopy 

Reflectance Model (MCRM) was modified to provide an 

improved description of row-structured canopies, resulting in 

the so-called ‘rowMCRM’ model [28], [29].  We applied the 

same modifications to another widely used canopy RTM, 

Scattering by Arbitrarily Inclined Leaves (4SAIL) [30], [31].  

By describing the canopy as a series of geometric objects filled 

with turbid media, the resulting hybrid RTM enabled the 

fractions of visible canopy, sunlit soil, and shaded soil to be 

accounted for, providing a more realistic representation of row-

structured canopies than simpler one-dimensional RTMs.   

The modified version of 4SAIL was coupled with leaf 

reflectance and transmittance spectra simulated by Leaf Optical 

Properties Spectra (PROSPECT-4) [32], [33], and a total of 

50,000 simulations were carried out by randomly drawing input 

parameters from a series of predefined uniform and truncated 

Gaussian distributions (Table I).  The soil background was 

selected randomly from 10 possible spectra chosen from a 

spectral library [34] to reflect the sandy loam soils of the region 

(Fig. 3).  Simulated spectra were convolved with the MSI 

spectral response functions to represent reflectance values in 

each MSI band [35].  They were then contaminated with 

wavelength dependent and independent Gaussian white noise 

consisting of both additive (0.01) and multiplicative (2%) 

components according to [36], such that 

 

𝑅𝑐𝑜𝑛𝑡(λ) = 𝑅𝑠𝑖𝑚(λ)[1 + 𝜀(0, 𝜎𝑚𝑢𝑙𝑡𝑖(λ)) +

𝜀(0, 𝜎𝑚𝑢𝑙𝑡𝑖(𝑎𝑙𝑙))] + 𝜀(0, 𝜎𝑎𝑑𝑑(λ)) + 𝜀(0, 𝜎𝑎𝑑𝑑(𝑎𝑙𝑙)) (4) 

 

where 𝑅𝑐𝑜𝑛𝑡(λ) and 𝑅𝑠𝑖𝑚(λ) are the contaminated and 

simulated reflectance values in the band centered at λ, 𝜀(0, 𝜎) 

is a Gaussian distribution with a mean of 0, whilst 𝜎𝑎𝑑𝑑(λ), 

𝜎𝑚𝑢𝑙𝑡𝑖(λ), 𝜎𝑎𝑑𝑑(𝑎𝑙𝑙), and 𝜎𝑚𝑢𝑙𝑡𝑖(𝑎𝑙𝑙) are the additive and 

multiplicative components of wavelength dependent and 

independent Gaussian white noise respectively. 

TABLE I 

DISTRIBUTIONS FROM WHICH RTM INPUT PARAMETERS WERE RANDOMLY 

DRAWN 

Parameter Value 

range 

Mean Standard 

deviation 

Reference 

Structural parameter (N) 1.62 - - [9], [10] 
Chlorophyll a+b 

(μg cm-2) 

27.4 to 

43.7 

34.2 3.6 This 

study 

Water thickness (cm) 0.025 - - [9], [10] 
Dry matter (g cm-2) 0.0035 - - [9], [10] 

Leaf area index 0.7 to 

3.0 

1.4 0.5 This 

study 

Average leaf angle (°) 45 - - [9], [10] 

Hotspot parameter 0.083 - - [9], [10] 
Row height (m) 1.2 to 

1.8 

- - This 

study 

Row width (m) 0.6 to 
1.3 

- - This 
study 

Visible soil strip (m) 1.5 to 

3.0 

2.4 0.3 This 

study 
Difference between solar 

azimuth angle and row 

direction (°) 

0.3 to 

125.7 

- - This 

study 

Observer zenith angle (°) 5.5 to 

6.8 

- - This 

study 

Solar azimuth angle (°) 21.3 to 
21.5 

- - This 
study 

Relative azimuth angle 

(°) 

18.9 to 

44.1 

- - This 

study 
Fraction of diffuse 

radiation 

0.15 - - This 

study 

 

The ANN, which was comprised of a single hidden layer with 

5 tangent sigmoid neurons, was trained using the Levenberg-

Marquardt minimization algorithm.  Inputs consisted of the 

simulated bottom-of-atmosphere (BOA) reflectance values in 

MSI bands 3, 4, 5, 6, 7, 8a, 11 and 12, in addition to the cosine 

of the observer zenith angle, solar zenith angle and relative 

azimuth angle.  50% of simulations were used for training, and 

the remaining 50% were used for validation and testing.  The 

validation set was used to prevent overfitting by early stopping 

(i.e. training of the ANN was halted when the error assessed 
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using the validation set stopped decreasing).  Once trained, the 

ANN was applied to the L2A MSI scene.  Following [37], a bias 

correction based on the in-situ data was derived through 

ordinary least squares (OLS) regression analysis, and was then 

applied to the raw ANN retrievals. 

 

 
Fig. 3.  Sandy loam soil spectra from which the soil background was 

randomly selected [34]. 

 

In the second approach, an empirical transfer function was 

established in order to generate a high spatial resolution CCC 

reference map from the MSI data.  The transfer function was 

based on a modified version of the OTCI presented by [38], 

hereafter referred to as the Sentinel-2 Terrestrial Chlorophyll 

Index (S2TCI), which was calculated as 

 

𝑆2𝑇𝐶𝐼 =
𝑅𝑏𝑎𝑛𝑑 6−𝑅𝑏𝑎𝑛𝑑 5

𝑅𝑏𝑎𝑛𝑑 5−𝑅𝑏𝑎𝑛𝑑 4
 (5) 

 

where 𝑅𝑏𝑎𝑛𝑑 6, 𝑅𝑏𝑎𝑛𝑑 5, and 𝑅𝑏𝑎𝑛𝑑 4 are the BOA reflectance 

values in MSI bands centered at 740 nm, 705 nm and 665 nm 

respectively.  The transfer function was derived using OLS 

regression analysis, enabling a relationship between the S2TCI 

and in-situ data to be established (using all in-situ 

observations). 

For both retrieval approaches, agreement was assessed using 

the Pearson product-moment correlation coefficient, whilst 

retrieval accuracy was assessed in terms of the root mean square 

error (RMSE), calculated through leave-one-out cross 

validation as 

  

𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑖−𝑜𝑖)2𝑛

𝑖=1

𝑛
 (6) 

 

where 𝑝𝑖  is the predicted value, 𝑜𝑖  is the observed value, and 𝑛 

is the number of observations.  A normalized RMSE (NRMSE) 

was also calculated by dividing the RMSE by the mean of 

observed values. 

C. Aggregation of the high spatial resolution CCC reference 

map and validation of the OTCI 

Sentinel-3A OLCI L2 data were acquired on 18th June 2017.  

To facilitate validation of the OTCI, areas of the 20 m CCC 

reference map not covered by the considered land cover types 

(i.e. vineyards and almond/olive groves) were masked to avoid 

extrapolation.  Masking was achieved using the environmental 

units classification presented by [19], which was derived from 

the Coordination of Information on the Environment 

(CORINE) land cover product.  Once masked, the 20 m CCC 

reference map was aggregated to the 300 m spatial resolution 

of the OTCI.  Two aggregation approaches were investigated.  

The first involved mean value downsampling (the standard 

aggregation approach adopted in most current validation 

studies), whilst in the second, weighted mean value 

downsampling was carried out to better account for OLCI’s 

point spread function (PSF).  A grid of weights was generated 

based on an assumed two-dimensional Gaussian PSF, with a 

full width at half maximum (FWHM) of a single OLCI pixel 

(i.e. 300 m) [39].  After aggregation, the two datasets were 

collocated.  Once again, agreement was assessed using the 

Pearson product-moment correlation coefficient.  An empirical 

relationship between the OTCI and CCC was established using 

OLS regression analysis, and the associated retrieval accuracy 

was again assessed using the RMSE and NRMSE, calculated 

through leave-one-out cross validation. 

III. RESULTS AND DISCUSSION 

A. Accuracy of the 20 m CCC reference maps 

Of the two investigated approaches for the retrieval of CCC, 

the empirical transfer function based on the S2TCI provided the 

best performance when assessed against the in-situ data, 

demonstrating a moderate but significant correlation (r = 0.56, 

p < 0.01) and RMSECV of 0.09 g m-2 (NRMSECV = 20.93%) 

(Fig. 4).  The associated 20 m CCC reference map demonstrated 

good spatial consistency with observed patterns of vegetation 

cover over the Valencia Anchor Station (Fig. 5). The raw ANN 

retrievals were characterized by a weaker correlation (r = 0.48, 

p < 0.01) and substantially lower retrieval accuracy (RMSE = 

0.14 g m-2, NRMSE = 32.56%), although retrieval accuracy 

post bias-correction was comparable (RMSECV = 0.09 g m-2, 

NRMSECV = 20.93%) (Fig. 4).   

 

 
Fig. 4.  Comparison between in-situ and retrieved CCC using the empirical 

transfer function (a) and bias-corrected ANN (b).  The dashed line represents 

a 1:1 relationship. 
 

Our results compare favorably to those of [40], who applied 

similar techniques to 6.5 m RapidEye data, achieving an RMSE 

of 0.39 to 0.43 g m-2.  Given the retrieval accuracies obtained in 

our study, we suggest that the moderate correlations observed 

are primarily the result of a limited range of in-situ CCC values 

experienced over the Valencia Anchor Station (0.20 to 0.59 g 

m-2) (Table II and Fig. 6).  This is primarily driven by the low 

range in LAI values over the site, and is particularly apparent 
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when compared to previous validation efforts, which have 

incorporated in-situ CCC values of up to 3.5 g m-2 [27]. 

 

 

 
 

Fig. 5.  20 m CCC reference map derived using the empirical transfer function 

(areas not covered by considered land cover types masked). 
 

TABLE II 

DESCRIPTIVE STATISTICS ASSOCIATED WITH IN-SITU LAI, LCC AND CCC 

VALUES OBSERVED AT THE VALENCIA ANCHOR STATION 

Statistic LAI LCC (g m-2) CCC (g m-2) 

Minimum 0.66 0.21 0.20 
Maximum 2.26 0.44 0.59 

Mean 1.37 0.32 0.43 
Standard deviation 0.33 0.05 0.10 

 

 
 

Fig. 6.  Frequency distribution of in-situ CCC values observed at the Valencia 

Anchor Station. 
 

B. Performance of the OTCI 

Good spatial consistency was observed between the 300 m 

CCC reference map and OTCI when the mean value 

downsampling aggregation strategy was adopted (Fig. 7).  All 

major spatial structures apparent in the 300 m CCC reference 

map were resolved by the OTCI, reflected by the strong and 

significant correlation observed between the two datasets (r = 

0.77, p < 0.01) (Fig. 8).  The empirical relationship established 

between the OTCI and CCC was 

 

𝑦 = 0.1452𝑥 + 0.1191 (7) 

 

where 𝑦 is CCC in g m-2 and 𝑥 is the OTCI, yielding an 

RMSECV of 0.02 g m-2 (NRMSECV = 5.00%). 

It is important to note that these results are with respect to the 

300 m CCC reference map derived from MSI data (see Section 

II B and C), which also has associated errors.  In the worst case 

scenario, the errors in the 300 m CCC reference map could be 

assumed equal to those in the 20 m CCC reference map.  In this 

case, and assuming no correlation between errors, a combined 

RMSE could be derived by adding the individual RMSE values 

in quadrature (yielding an RMSECV of 0.09 g m-2 and 

NRMSECV of 21.52%).  In reality, however, the random 

component of the errors in the 20 m CCC reference map will be 

reduced by mean value downsampling as a function of the 

number of pixels used in aggregation.  Therefore, when applied 

over similar vineyard dominated Mediterranean environments, 

this combined value may underestimate the accuracy of CCC 

retrievals derived using the presented empirical relationship. 

 

 

 
 

Fig. 7.  300 m CCC reference map, aggregated using mean value 

downsampling (a) and OTCI (b) (areas not covered by considered land cover 

types masked). 
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 When the weighted mean value downsampling strategy was 

adopted, a substantially weaker correlation between the OTCI 

and 300 m CCC reference map was observed (r = 0.52, p < 

0.01).  This result indicates that a) the influence of OLCI’s PSF 

may be less than that of the PSF assumed in this study, and that 

b) such a simple model of the PSF may be unable to accurately 

represent the observational characteristics of the instrument, 

which are also affected by factors such as viewing geometry.  

As such, if the PSF is to be accounted for in aggregation, further 

work is required to better describe these effects. 

 

 
Fig. 8.  Comparison between upscaled CCC and the OTCI (a) and OTCI-

based CCC retrievals (b).  The solid line (a) represents the established 

empirical relationship (7) whilst the dashed line (b) represents a 1:1 
relationship. 

 

C. Synergetic potential of the Sentinel-2 missions for 

validation of moderate spatial resolution CCC products 

Row-structured canopies such as the vineyards and 

almond/olive groves of the Valencia Anchor Station represent 

a challenging environment for biophysical variable retrieval, as 

a result of high foliage clumping, the substantial influence of 

the soil background, and strong bidirectional reflectance 

distribution function (BRDF) effects.  Nevertheless, we 

established and successfully applied a framework for the direct 

validation of moderate spatial resolution CCC products making 

synergetic use of MSI data.  The results of this study indicate 

that MSI data are well suited to the retrieval of CCC, and thus 

provide valuable information that can be used in synergy with 

OLCI data for the purposes of L2 land product validation.  

Overall, good agreement between the OTCI and upscaled CCC 

was observed, providing increased confidence to users of the 

product over vineyard dominated Mediterranean environments.  

Having tested the framework over the Valencia Anchor Station, 

there is now a need for future work to apply it over additional 

sites, covering a wide range of globally representative 

vegetation types. 

When compared to infrequent airborne hyperspectral 

acquisition, the Sentinel-2 missions represent a major advance 

towards the routine validation of moderate spatial resolution 

CCC products such as the OTCI.  This is an important 

development that will enable progress towards the second stage 

of the CEOS WGCV LPV hierarchy, which states that product 

accuracy should be estimated over a significant set of locations 

and time periods [18].  In addition to their utility for upscaling 

in-situ measurements using the ‘two-stage’ or ‘bottom-up’ 

approach, the red-edge bands provided by MSI open up 

opportunities for deriving spectral vegetation indices similar to 

the OTCI at a higher spatial resolution than previously possible.  

With appropriate consideration of differences in spectral 

response [41] and other observational characteristics such as 

viewing and illumination geometry, this capability could be 

further exploited for indirect validation (i.e. inter-mission 

comparison) on an operational basis. 

IV. CONCLUSIONS 

In this paper, we explored the synergetic use of MSI data for 

validation of the OTCI over a large agricultural site in the 

Valencian Community, Spain.  We established and successfully 

applied a framework for the direct validation of moderate 

spatial resolution CCC products making synergetic use of MSI 

data.  Good agreement between the OTCI and upscaled CCC 

was observed, providing increased confidence to users of the 

product over vineyard dominated Mediterranean environments.  

Importantly, the retrieval accuracies achieved by applying 

empirical and machine learning techniques to MSI data 

highlight the valuable information it can provide when used in 

synergy with OLCI data for L2 land product validation.  The 

Sentinel-2 missions are thus a key facilitator of operational 

validation activities, and should enable moderate spatial 

resolution CCC products such as the OTCI to progress towards 

the second stage of the CEOS WGCV LPV hierarchy.  To 

achieve this objective, future work is required to apply the 

proposed framework over additional sites, covering a wide 

range of globally representative vegetation types. 
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