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Abstract—A novel framework is proposed for the trajectory
design of multiple unmanned aerial vehicles (UAVs) based on the
prediction of users’ mobility information. The problem of joint
trajectory design and power control is formulated for maximizing
the instantaneous sum transmit rate while satisfying the rate
requirement of users. In an effort to solve this pertinent problem,
a three-step approach is proposed which is based on machine
learning techniques to obtain both the position information of
users and the trajectory design of UAVs. Firstly, a multi-agent Q-
learning based placement algorithm is proposed for determining
the optimal positions of the UAVs based on the initial location
of the users. Secondly, in an effort to determine the mobility
information of users based on a real dataset, their position
data is collected from Twitter to describe the anonymous user-
trajectories in the physical world. In the meantime, an echo
state network (ESN) based prediction algorithm is proposed for
predicting the future positions of users based on the real dataset.
Thirdly, a multi-agent Q-learning based algorithm is conceived
for predicting the position of UAVs in each time slot based on the
movement of users. In this algorithm, multiple UAVs act as agents
to find optimal actions by interacting with their environment
and learn from their mistakes. Additionally, we also prove that
the proposed multi-agent Q-learning based trajectory design and
power control algorithm can converge under mild conditions.
Numerical results are provided to demonstrate that as the size
of the reservoir increases, the proposed ESN approach improves
the prediction accuracy. Finally, we demonstrate that throughput
gains of about 17% are achieved.

Index Terms—Multi-agent Q-learning, power control, trajec-
tory design, Twitter, unmanned aerial vehicle (UAV)

I. INTRODUCTION

A. Motivation

As a benefit of their agility, as well as line-of-sight (LoS)
propagation, unmanned aerial vehicles (UAVs) have received
significant research interests as a means of mitigating a wide
range of challenges in commercial and civilian applications [2,
3]. The future wireless communication systems are expected
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to meet unprecedented demands for high quality wireless ser-
vices, which imposes challenges on the conventional terrestrial
communication networks, especially in traffic hotspots such
as in a football stadium or rock concert [4–6]. UAVs may be
relied upon as aerial base stations to complement and/or sup-
port the existing terrestrial communication infrastructure [5, 7,
8] since they can be flexibly redeployed in temporary traffic
hotspots or after natural disasters. Secondly, UAVs have also
been deployed as relays between ground-based terminals and
as aerial base stations for enhancing the link performance [9].
Thirdly, UAVs can also be used as aerial base stations to
collect data from Internet of Things (IoT) devices on the
ground, where building a complete cellular infrastructure is
unaffordable [7, 10]. Fourthly, combined terrestrial anad UAV
communication networks are capable of substantially improv-
ing the reliability, security, coverage and throughput of the
existing point-to-point UAV-to-ground communications [11].

Key examples of recent advance include the Google Loon
project [12], Facebook’s Internet-delivery drone [13], and the
AT&T project of [14]. The drone manufacturing industry
faces both opportunities and challenges in the design of
UAV-assisted wireless networks. Before fully reaping all the
aforementioned benefits, several technical challenges have to
be tackled, including the optimal three dimensional (3D)
deployment of UAVs, their interference management [15, 16],
energy supply [9, 17], trajectory design [18], the channel mod-
el between the UAV and users [19, 20], resource allocation [7],
as well as the compatibility with the existing infrastructure.

The wide use of online social networks over smartphones
has accumulated a rich set of geographical data that de-
scribes the anonymous users’ mobility information in the
physical world [21]. Many social networking applications
like Facebook, Twitter, Wechat, Weibo, etc allow users to
’check-in’ and explicitly share their locations, while some
other applications have implicitly recorded the users’ GPS
coordinates [22], which holds the promise of estimating the
geographic user distribution for improving the performance
of the system. Reinforcement learning has seen increasing
applications in next-generation wireless networks [23]. More
expectantly, reinforcement learning models may be trained
by interacting with an environment (states), and they can be
expected to find the optimal behaviors (actions) of agents
by exploring the environment in an iterative manner and
by learning from their mistakes. The model is capable of
monitoring the reward resulting form its actions and is chosen
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for solving problems in UAV-assisted wireless networks.

B. Related Works

1) Deployment of UAVs: Among all these challenges, the
geographic UAV deployment problems are fundamental. Early
research contributions have studied the deployment of a sin-
gle UAV either to provide maximum radio coverage on the
ground [24, 25] or to maximize the number of users by using
the minimum transmit power [26]. As the research evolves
further, UAV-assisted systems have received significant atten-
tion and been combined with other promising technologies.
Specifically, the authors of [27–29] employed non-orthogonal
multiple access (NOMA) for improving the performance of
UAV-enabled communication systems, which is capable of
outperforming orthogonal multiple access (OMA). In [30],
UAV-aided D2D communications was investigated and the
tradeoff between the coverage area and the time required
for covering the entire target area (delay) by UAV-aided data
acquisition was also analyzed. The authors of [13] proposed
a framework using multiple static UAVs for maximizing the
average data rate provided for users, while considering fairness
amongst the users. The authors of [31] used sphere packing
theory for determining the most appropriate 3D position of the
UAVs while jointly maximizing both the total coverage area
and the battery operating period of the UAVs.

2) Trajectory design of UAVs: It is intuitive that moving
UAVs are capable of improving the coverage provided by
static UAVs, yet the existing research has mainly considered
the scenario that users are static [10, 32]. Having said that,
authors of [33] jointly considered the UAV trajectory and
transmit power optimization problem for maintaining fairness
among users. An iterative algorithm was invoked for solving
the resultant non-convex problem by applying the classic
block coordinate descent and successive convex optimization
techniques. In [17], the new design paradigm of jointly opti-
mizing the communication throughput and the UAV’s energy
consumption was conceived for the determining trajectory of
UAV, including its initial/final locations and velocities, as well
as its minimum/maximum speed and acceleration. In [10], a
pair of practical UAV trajectories, namely the circular flight
and straight flight were pursued for collecting a given amount
of data from a ground terminal (GT) at a fixed location,
while considering the associated energy dissipation tradeoff.
By contrast, a novel cyclical trajectory was considered in [32]
to serve each user via TDMA. As shown in [32], a significant
throughput gain was achieved over a static UAV. In [34], a
simple circular trajectory was used along with maximizing
the minimum average throughput of all users. In addition
to designing the UAV’s trajectory for its action as an aerial
base station, the authors of [35] studied a cellular-enabled
UAV communication system, in which the UAV flew from an
initial location to a final location, while maintaining reliable
wireless connection with the cellular network by associating
the UAV with one of the ground base stations (GBSs) at each
time instant. The design-objective was to minimize the UAV’s
mission completion time by optimizing its trajectory.

C. Our New Contributions

The aforementioned research contributions considered the
deployment and trajectory design of UAVs in the scenario that
users are static or studied the movement of UAVs based on the
current user location information, where only the user location
information of the current time slot is known. Studying the
pre-deployment of UAVs based on the full user location
information implicitly assumes that the position and mobility
information of users is known or it can be predicted. With
this proviso the flight trajectory of UAVs may be designed
in advance for maintaining a high service quality and hence
reduce the response time. Meanwhile, no interaction is needed
between the UAVs and ground control center after the pre-
deployment of UAVs. To the best of our knowledge, this
important problem is still unsolved.

Again, deploying UAVs as aerial BSs is able to provide
reliable services for the users [35]. However, there is a
paucity of research on the problem of 3D trajectory design of
multiple UAVs based on the prediction of the users’ mobility
information, which motivates this treatise. More particularly,
i) most existing research contributions mainly focus on the
2D placement of multiple UAVs or on the movement of a
single UAV in the scenario, where the users are static. ii) the
prediction of the users’ position and their mobility information
based on a real dataset has never been considered, which helps
us to design the trajectory of UAVs in advance, thus reducing
both the response time and the interaction between the UAVs
as well as control center. the transmit power of UAVs is
controlled for obtaining a tradeoff between the received signal
power and the interference power, which in turn increases the
received signal-interference-noise-rate (SINR). Therefore, we
formulate the problem of joint trajectory design and power
control of UAVs to improve the users’ throughput, while
satisfying the rate requirement of users. Against the above
background, the primary contributions of this paper are as
follows:

• We propose a novel framework for the trajectory design
of multiple UAVs, in which the UAVs move around in
a 3D space to offer down-link service to users. Based
on the proposed model, we formulate on throughput
maximization problem by designing the trajectory and
power control of multiple UAVs.

• We develop a three-step approach for solving the pro-
posed problem. More particularly, i) we propose a multi-
agent Q-learning based placement algorithm for deter-
mining the initial deployment of UAVs; ii) we propose
an echo state network based prediction algorithm for
predicting the mobility of users; iii) we conceive a multi-
agent Q-learning based trajectory-acquisition and power-
control algorithm for UAVs.

• We invoke the ESN algorithm for acquiring the mobility
information of users relying on a real dataset of users
collected from Twitter, which consists of the GPS coor-
dinates and recorded time stamps of Twitter.

• We conceive a multi-agent Q-learning based solution for
the joint trajectory design and power control problem of
UAVs. In contrast to a single-agent Q-learning algorithm,
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the multi-agent Q-learning algorithm is capable of sup-
porting the deployment of cooperative UAVs. We also
demonstrate that the proposed algorithms is capable of
converging to an optimal state.

D. Organization and Notations

The rest of the paper is organized as follows. In Section II,
the problem formulation of joint trajectory design and power
control of UAVs is presented. In Section III, the prediction
of the users’ mobility information is proposed, relying on
the ESN algorithm. In Section IV, our multi-agent Q-learning
based deployment algorithm is proposed for designing the tra-
jectory and power control of UAVs. Our numerical results are
presented in Section V, which is followed by our conclusions
in Section VI. The list of notations is illustrated in Table I.

II. SYSTEM MODEL

We consider the downlink of UAV-assisted wireless commu-
nication networks. Multiple UAVs are deployed as aerial BSs
to support the users in a particular area, where the terrestrial
infrastructure was destroyed or had not been installed. The
users are partitioned into N clusters and each user belongs
to a single cluster. Users in this particular area are denoted
as K = {K1, · · ·KN}, where Kn is the set of users that
belong to the n-th cluster, n ∈ N = {1, 2, · · ·N}. Then, we
have Kn ∩ Kn′ = ϕ, n′ ̸= n, ∀n′, n ∈ N, while Kn = |Kn|
denotes the number of users in the n-th cluster. For any cluster
n, n ∈ N, we consider a UAV-enabled FDMA system [36],
where the UAVs are connected to the core network by satellite.
At any time during the UAVs’ working period of Tn, each
UAV communicates simultaneously with multiple users by
employing FDMA.

We assume that the energy of UAVs is supplied by laser
charging as detailed in [37]. A compact distributed laser
charging (DLC) receiver can be mounted on a battery-powered
off-the-shelf UAV for charging the UAV’s battery. A DLC
transmitter (termed as a power base station) on the ground
is assumed to provide a laser based power supply for the
UAVs. Since the DLC is capable of self-alignment and a
LOS propagation is usually available because of the high
altitude of UAVs, the UAVs can be charged as long as they
are flying within the DLC’s coverage range. Thus, these DLC-
equipped UAVs can operate for a long time without landing
until maintenance is needed. The scenario that the energy of
UAVs is limited will be discussed in our future work, in which
DLC will also be utilized.

A. Mobility Model

Since the users are able to move continuously during the
flying period of UAVs, the UAVs have to travel based on the
tele-traffic of users. Datasets can be collected to model the
mobility of users. Again, in this work, the real-time position
information of users is collected from Twitter by the Twitter
API, where the data consists of the GPS coordinates and
recorded time stamps. When users post tweets, their GPS
coordinates are recorded, provided that they give their consent,
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Fig. 1: Deployment of multiple UAVs in wireless communi-
cations based on the mobility information of users.

for example in exchange for calling credits. The detailed
discussion of the data collection process is in Section III. The
mobility pattern of each user will then be used to determine
the optimal location of each UAV, which will naturally impact
the service quality of users. The coordinate of each user can
be expressed as wkn = [xkn(t), ykn(t)]

T ∈ R2×1, kn ∈ Kn,
where RM×1 denotes the M -dimensional real-valued vector
space, while xkn(t) and ykn(t) are the X-coordinate and Y-
coordinate of user kn at time t, respectively.

Since the users are moving continuously, the location of
the UAVs must be adjusted accordingly so as to efficiently
serve them. The aim of the model is to design the tra-
jectory of UAVs in advance according to the prediction of
the users’ movement. At any time slot during the UAVs’
flight period, both the vertical trajectory (altitude) and the
horizontal trajectory of the UAV can be adjusted to offer a
high quality of service. The vertical trajectory is denoted by
hn(t) ∈ [hmin, hmax], 0 ≤ t ≤ Tn, while the horizontal one
by qn(t) = [xn(t), yn(t)]

T ∈ R2×1,with 0 ≤ t ≤ Tn. The
UAVs’ operating period is discretized into NT equal-length
time slots.

B. Transmission Model

In our model, the downlink between the UAVs and users
can be regarded as air-to-ground communications. The LoS
condition and Non-Line-of-Sight (NLoS) condition are as-
sumed to be encountered randomly. The LoS probability can
be expressed as [13]

PLoS(θkn) = b1(
180

π
θkn − ζ)b2 , (1)

where θkn(t) = sin−1( hn(t)
dkn (t) ) is the elevation angle between

the UAV and the user kn. Furthermore, b1 and b2 are constant
values reflecting the environmental impact, while ζ is also a
constant value which is determined both by the antenna and
the environment. Naturally, the NLoS probability is given by
PNLoS = 1− PLoS.

Following the free-space path loss model, the channel’s
power gain between the UAV and user kn at instant time t
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TABLE I: List of Notations

Notations Description Notations Description
Nu Number of users N Number of clusters and UAVs
xkn , ykn Coordinate of users xn, yn Coordinate of UAVs
fc Carrier frequency hn Altitude of UAVs
Pmax UAV transmit power gkn channel power gain
N0 Noise power spectral B Bandwidth
µLoS , µNLoS Additional path loss for LoS and NLoS PLoS , PNLoS LoS and NLoS probability
r0 Minimum rate requirement Ikn Receives interference of users
rkn Instantaneous achievable rate Rsum Overall achievable sum rate
b1,b2 Environmental parameters (dense urban) α Path loss exponent
Nx Size of neuron reservoir at State in Q-learning algorithm
at Action in Q-learning algorithm rt Reward in Q-learning algorithm

is given by

gkn(t) = K0
−1d−α

kn
(t)[PLoSµLoS + PNLoSµNLoS]

−1, (2)

where K0 =
(

4πfc
c

)2
, α is the path loss exponent, µLoS and

µNLoS are the attenuation factors of the LoS and NLoS links,
fc is the carrier frequency, and finally c is the speed of light.

The distance from UAV n to user kn at time t is assumed
to be a constant that can be expressed as

dkn(t) =

√
hn

2(t) + [xn(t)− xkn(t)]
2
+ [yn(t)− ykn(t)]

2
.

(3)

The transmit power of UAV n has to obey

0 ≤ Pn(t) ≤ Pmax, (4)

where Pmax is the maximum allowed transmit power of the
UAV. Then the transmit power allocated to user kn at time t
is pkn(t) = Pn(t)/|Kn|.

Lemma 1. In order to ensure that every user is capable of
connecting to the UAV-assisted network, the lower bound for
the transmit power of UAVs has to satisfy

Pmax ≥ |Kn|µNLoSσ
2K0

(
2|Kn|r0/B − 1

)
·max {h1, h2, · · ·hn}

. (5)

Proof: See Appendix A .

Lemma 1 sets out the lower bound of the UAV’s transmit
power for each users’ rate requirement to be satisfied.

Remark 1. Since the users tend to roam continuously, the op-
timal position of UAVs is changed during each time slot. In this
case, the UAVs may also move to offer a better service. When
a particular user supported by UAV A moves closer to UAV B
while leaving UAV A, the interference may be increased, hence
reducing the received SINR, which emphasizes the importance
of accurate power control.

Accordingly, the received SINR Γkn(t) of user kn connect-
ed to UAV i at time t can be expressed as

Γkn(t) =
pkn(t)gkn(t)

Ikn + σ2
, (6)

where σ2 = BknN0 with N0 denoting the power spectral
density of the additive white Gaussian noise (AWGN) at the
receivers. Furthermore, Ikn(t) =

∑
n′ ̸=n

pkn′ (t)gkn′ (t) is the

interference imposed on user kn at time t by the UAVs, except
for UAV n.

Then the instantaneous achievable rate of user kn at time t,
denoted by rkn(t) and expressed in bps/Hz becomes

rkn(t) = Bkn log2(1 +
pkn(t)gkn(t)

Ikn(t) + σ2
). (7)

The overall achievable sum rate at time t can be expressed
as

Rsum =
N∑

n=1

Kn∑
kn=1

rkn
(t). (8)

C. Problem Formulation

Let P = {pkn
(t), kn ∈ Cn, 0 ≤ t ≤ Tn}, Q =

{qn(t), 0 ≤ t ≤ Tn} and H = {hn(t), 0 ≤ t ≤ Tn}. Again,
we aim for determining both the UAV trajectory and transmit
power control at each time slot, i.e., {P1(t), P2(t), · · · , Pn(t)}
and {xn(t), yn(t), hn(t)} , n = 1, 2, · · ·N, t = 0, 1, · · ·Tn,
for maximizing the total transmit rate, while satisfying the
rate requirement of each user.

Let us assume that each user’s minimum rate requirement
r0 is satisfied. This means that all users must have a capacity
higher than a rate r0. Our optimization problem is then
formulated as

max
C,P ,Q,H

Rsum =
N∑

n=1

Kn∑
kn=1

rkn(t) (9a)

s.t. Kn ∩Kn′ = ϕ, n′ ̸= n,∀n′, n ∈ N, (9b)
hmin ≤ hn(t) ≤ hmax, 0 ≤ t ≤ Tn, (9c)

rkn(t) ≥ r0,∀kn, t, (9d)
0 ≤ Pn(t) ≤ Pmax,∀kn, t. (9e)

where K(n) is the set of users that belong to the cluster n,
hn(t) is the altitude of UAV n at time slot t, while Pn(t)
is the total transmit power of UAV n assigned to all users
supported by it at time slot t. Furthermore, (9b) indicates that
each user belongs to a specific cluster which is covered by a
single UAV; 9c) formulates the altitude bound of UAVs; (9d)
qualifies the rate requirement of each user; (9e) represents
the power control constraint of UAVs. Here we note that
designing the trajectory of UAVs will ensure that they are
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Fig. 2: The procedure and algorithms used for solving the joint
problem of trajectory plan and power control of UAVs.

in the optimal position at each time slot. This, in turn, will
lead to improving the instantaneous transmit rate. Meanwhile,
designing the trajectory of UAVs in advance based on the
prediction of the users’ mobility will also reduce the response
time of UAVs, despite reducing the interactions among the
UAVs and the ground control center. Fig.2 summarizes the
framework proposed for solving the problem considered. Giv-
en this framework, we utilize the ESN-based predictions of
the users’ movement.

Remark 2. The instantaneous transmit rate depends on the
transmit power, on the number of UAVs, and on the location
of UAVs (horizonal position and altitude).

Problem (9a) is challenging since the objective function
is non-convex as a function of xn(t), yn(t) and hn(t) [7,
17]. Indeed it has been shown that problem (9a) is NP-hard
even if we only consider the users’ clustering [38]. Exhaustive
search exhibits an excessive complexity. In order to solve
this problem at a low complexity, a multi-agent Q-learning
algorithm will be invoked in Section IV for finding the optimal
solution with a high probability, despite searching through only
small fraction of the entire design-space.

III. ECHO STATE NETWORK ALGORITHM FOR
PREDICTION OF USERS’ MOVEMENT

In this section, we formulate our ESN algorithm for predict-
ing the movement of users. A variety of mobility models have
been utilized in [39, 40]. However, in these mobility models,
the direction of each user’s movement tends to be uniformly
distributed among left, right, forward and backward, which
does not fully reflect the real movement of users. In this
section, we tackle this problem by predicting the mobility of
users based on a real dataset collected from Twitter.

A. Data collection of users

In order to obtain real mobility information, the relevant
position data has to be collected. Serendipitously, the wide
use of online social network (OSN) APPs over smartphones
has accumulated a rich set of geographical data that describes
anonymous user trajectories in the physical world, which holds

Fig. 3: The initial positions of the users derived from Twitter.

the promise of providing a lightweight means of studying
the mobility of users. For example, many social networking
applications like Facebook and Weibo allow users to ’check-
in’ and explicitly show their locations. Some other applications
implicitly record the users’ GPS coordinates [22].

The users’ locations can be predicted by mining data from
social networks, given that the observed movement is associat-
ed with certain reference locations. One of the most effective
method of collecting position information relies on the Twitter
API. When Twitter users tweet, their GPS-related position
information is recorded by the Twitter API and it becomes
available to the general public. We relied on 12000 twitter
collected near Oxford Street, in London on the 14th, March
20181. Among these twitter users, 50 users who tweeted more
than 3 times were encountered. In this case, the movement of
these 50 users is recorded. Fig. 3 illustrates the distribution
of these 50 users at the initial time of collecting data. In an
effort to obtain more information about a user to characterise
the movement more specifically, classic interpolation methods
was used to make sure that the position information of each
users were recorded every 200 seconds. In this case, the
trajectory of each user during this period was obtained. The
position of users during the nth time slot can be expressed
as u(n) = [u1(n), u2(n), · · ·uNu(n)]

T , where Nu is the total
number of users.

B. Echo State Network Algorithm for the Prediction of Users’
Movement

The ESN model’s input is the position vector
of users collected from Twitter, namely u(n) =
[u1(n), u2(n), · · ·uNu(n)]

T , while its output vector is
the position information of users predicted by the ESN
algorithm, namely y(n) = [y1(n), y2(n), · · · yNu(n)]

T . For
each different user, the ESN model is initialized before it
imports in the new inputs. As illustrated in Fig.4, the ESN
model essentially consists of three layers: input layer, neuron
reservoir and output layer [40]. The Win and Wout represent
the connections between these three layers, represented
as matrices. The W is another matrix that presents the

1The dataset has been shared by authors in Github. It is shown on
the websit: https://github.com/pswf/Twitter-Dataset/blob/master/Dataset. Our
approach can accommodate other datasets without loss of generality.



6

connections between the neurons in neuron reservoir. Every
segment is fixed once the whole network is established,
except Wout, which is the only trainable part in the network.

The classic mean square error (MSE) metric is invoked for
evaluating the prediction accuracy [40]

MSE
(
y, ytarget) = 1

Nu

Nu∑
n=1

√√√√ 1

T

T∑
i=1

[yi(n)− yitarget(n)]
2
.

(10)

where y and ytarget are the predicted and the real position of
the users, respectively.

Remark 3. The aim of the ESN algorithm is to train a model
with the aid of its input and out put to minimizes the MSE.

The neuron reservoir is a sparse network, which consists of
sparsely connected neurons, having a short-term memory of
the previous states encountered. In the neuron reservoir, the
typical update equations are given by

x̃(n) = tanh
(
Win[0 : u(n)] +W · x(n− 1)

)
, (11)

x(n) = (1− α)x(n− 1) + αx̃(n), (12)

where x(n) ∈ RNx is the updated version of the variable
x̃(n), Nx is the size of the neuron reservoir, α is the leakage
rate, while tanh(·) is the activation function of neurons in the
reservoir. Additionally, Win ∈ RNx·(1+Nu) and W ∈ RNx·Nx

are the input and the recurrent weight matrices, respectively.
The input matrix W in and the recurrent connection matrices
W are randomly generated, while the leakage rate α is from
the interval of [0, 1).

After data echoes in the pool, it flows to the output layer,
which is characterized as

y(n) = Wout[0;x(n)], (13)

where y(n) ∈ RNy represents the network outputs, while
Wout ∈ RNy·(1+Nu+Nx) the weight matrix of outputs.

The neuron reservoir is determined by four parameters: the
size of the pool, its sparsity, the distribution of its nonzero
elements and spectral radius of W .

• Size of Neuron Reservoir Nx: represents the number
of neurons in the reservoir, which is the most crucial
parameter of the ESN algorithm. The larger Nx, the
more precise prediction becomes, but at the same time
it increases the probability of causing overfitting.

• Sparsity: Sparsity characterizes the density of the con-
nections between neurons in the reservoir. When the
density is reduced, the non-linear closing capability is
increased, whilst the operation becomes more complex.

• Distribution of Nonzero Elements: The matrix W is
typically a sparse one, representing a network, which
has normally distributed elements centered around ze-
ro. In this paper, we use a continuous-valued bounded
uniform distribution, which provides an excellent perfor-
mance [41], outperforming many other distributions.

Nx

Input Layer
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Reservoir Pool Output Layer

(Predicted coordiante of users)
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Fig. 4: The structure of Echo State Network for predicting the
mobility of the users.

Algorithm 1 ESN algorithm for Predicting Users’ Movement

Input: 75% of the dataset for training process, 25% of the
dataset for testing process.

1: Initialize: W a,in
j ,W a

j ,W
a,out
j , yi = 0.

2: Training stage:
3: for i from 0 to Nu do
4: for n from 0 to Nx do
5: Computer the update equations according to Eq.

(12).
6: Update the network outputs according to Eq. (13).
7: end for
8: end for
9: Prediction stage:

10: Get the prediction of users’ mobility information based on
the output weight matrix Wout.

Return: Predicted coordinate of users.

• Spectral Radius of W : Spectral Radius of W scales the
matrix W and hence also the variance of its nonzero ele-
ments. This parameter is fixed, once the neuron reservoir
is established.

Remark 4. The size of neuron reservoir has to be carefully
chosen to satisfy the memory constraint, but Nx should also
be at least equal to the estimate of independent real values
the reservoir has to remember from the input in order to solve
the task.

A larger memory capacity implies that the ESN model is
capable of storing more locations that the users have visited,
which tends to improve the prediction accuracy of the users’
movements. In the ESN model, typically 75% of the dataset
is used for training and 25% for the testing process.

Remark 5. For challenging tasks, as large a neuron reservoir
has to be used as one can computationally afford.

IV. JOINT TRAJECTORY DESIGN AND TRANSMIT POWER
CONTROL OF UAVS

In this section, we assume that in any cluster n, the UAV
is serving the users relying on an adaptively controlled flight
trajectory and transmit power. With the goal of maximizing the
sum transmit rate in each time slot by determining the flight
trajectory and transmit power of the UAVs. User clustering
constitutes the first step of achieving the association between
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the UAVs and the users. The users are partitioned into different
clusters, and each cluster is served by a single UAV. The
process of cell partitioning has been discussed in our previous
work [38], which has demonstrated that the genetic K-means
(GAK-means) algorithm is capable of obtaining globally opti-
mal clustering results. The process of clustering is also detailed
in [38], hence it will not be elaborated on here.

A. Signal-Agent Q-learning Algorithm

In this section, a multi-agent Q-learning algorithm is in-
voked for obtaining the movement of the UAVs. Before
introducing multi-agent Q-learning algorithm, the single agent
Q-learning algorithm is introduced as the theoretical basis.
In the single agent model, each UAV acts as an agent,
moving without cooperating with other UAVs. In this case,
the geographic positioning of each UAV is not affected by the
movement of other UAVs. The single agent Q-learning model
relies on four core elements: the states, actions, rewards and
Q-values. The aim of this algorithm is that of conceiving a
policy (a set of actions will be carried out by the agent) that
maximizes the rewards observed during the interaction time
of the agent. During the iterations, the agent observes a state
st, in each time slot t from the state space S. Accordingly,
the agent carries out an action at, from the action space A,
selecting its specific flying directions and transmit power based
on policy J . The decision policy J is determined by a Q-table
Q(st, at). The policy promote choosing specific actions, which
enable the model to attain the maximum Q-values. Following
each action, the state of the agent traverses to a new state st+1,
while the agent receives a reward, rt, which is determined by
the instantaneous sum rate of users.

B. State-Action Construction of the Multi-agent Q-learning
Algorithm

In the multi-agent Q-learning model, each agent has to keep
a Q-table that includes data both about its own states as well
as of the other agents’ states and actions. More explicitly, it
takes account of the other agents’ actions with the goal of
promoting cooperative actions among agents so as to glean
the highest possible rewards.

In the multi-agent Q-learning model, the individu-
al agents are represented by a four-tuple state: ξn =

(x
(n)
UAV, y

(n)
UAV, h

(n)
UAV, P

(n)
UAV), where (x

(n)
UAV, y

(n)
UAV) is the horizonal

position of UAV n, while h
(n)
UAV and P

(n)
UAV are the altitude and

the transmit power of UAV n, respectively. Since the UAVs
operate across a particular area, the corresponding state space
is donated as: x

(n)
UAV : {0, 1, · · ·Xd}, y

(n)
UAV : {0, 1, · · ·Yd},

h
(n)
UAV : {hmin, · · ·hmax}, P

(n)
UAV = {0, · · ·Pmax}, where Xd

and Yd represent the maximum coordinate of this particular
area. while hmin and hmax are the lower and upper altitude
bound of UAVs, respectively. Finally, Pmax is the maximum
transmit power derived from Lemma 1.

We assume that the initial state of UAVs is determined ran-
domly. Then the convergence of the algorithm is determined
by the number of users and UAVs, as well as by the initial
position of UAVs. A faster convergence is attained when the
UAVs are placed closer to the respective optimal positions.

Agent 1

(UAV 1)

Action a1

Reward

(reward or punishment) 

Observe state

Enironment

Agent 2 

(UAV 2)

Agent n

(UAV n)

.

.

.

Action a2

Action an
(choosing power 

level and moving 

direction)

t
s

t
rr

Fig. 5: The structure of multi-agent Q-learning for the trajec-
tory design and power control of the UAVs.

Algorithm 2 The proposed multi-agent Q-learning algorithm
for deployment of multiple UAVs

1: Let t = 0, Q0
n(sn, an) = 0 for all sn and an

2: Initialize: the starting state st
3: Loop:
4: send Qt

n(s
t
n, :) to all other cooperating agents j

5: receive Qt
j(s

t
j , :) from all other cooperating agents j

6: if random < ε then
7: select action randomly
8: else
9: choose action: atn = argmaxa

(∑
16j6N Qt

j

(
stj , a

))
10: receive reward rtn
11: observe next state st+1

n

12: update Q-table as Qn (sn, an)← (1−α)Qn (sn, an)+

α

(
rn (sn,

−→a ) + βmaxQn (s
′
n, b)

b∈An

)
13: stn = st+1

n

14: end loop

At each step, each UAV carries out an action at ∈ A, which
includes choosing a specific direction and transmit power
level, depending on its current state, st ∈ S, based on the
decision policy J . The UAVs may fly in arbitrary directions
(with different angles), which makes the problem non-trivial
to solve. However, by assuming the UAVs fly at a constant
velocity, and obey coordinated turns, the model may be sim-
plified to as few as 7 directions (left, right, forward, backward,
upward, downward and maintaining static). The number of the
directions has to be appropriately chosen in practice to strike
a tradeoff between the accuracy and algorithmic complexity.
Additionally, we assume that the transmit power of the UAVs
only has 3 values, namely 0.08W, 0.09W and 0.1W2.

Remark 6. In the real application of UAVs as aerial base
stations, they can fly in arbitrary directions, but we constrain

2In this paper, the proposed algorithm can accommodate any arbitrary
number of power level without loss of generality. We choose three power
levels to strike a tradeoff between the performance and complexity of the
system.
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rn(t) =


Kn∑

kn=1

Bkn
log2

(
1 +

pkn (t)gkn (t)
Ikn (t)+σ2

)
, Sumratenew ≥ Sumrateold,

0 Sumratenew < Sumrateold.
(14)

their mobility to as few as 7 directions.

We choose the 3D position of the UAVs (horizontal coor-
dinates and altitudes) and the transmit power to define their
states. The actions of each agent are determined by a set
of coordinates for specifying their travel directions and the
candidate transmit power of the UAVs3. Explicitly, (1,0,0)
means that the UAV turns right; (-1,0,0) indicates that the
UAV turns left; (0,1,0) represents that the UAV flies forward;
(0,-1,0) means that the UAV flies backward; (0,0,1) implies
that the UAV rises; (0,0,-1) means that the UAV descends;
(0,0,0) indicates that the UAV stays static. In terms of power,
we assume 0.08W, 0.09W and 0.1W. Again, we set the initial
transmit power to 0.08W, and each UAV carries out an action
from the set increase, decrease and maintain at each time slot.
Then, the entire action space has as few as 3×7 =21 elements.

C. Reward Function of Multi-agent Q-learning Algorithm

One of the main limitations of reinforcement learning is
its slow convergence. The beneficial design of the reward
function requires a sophisticated methodology for accelerating
the convergence to the optimal solution [42]. In the multi-
agent Q-learning model, each agent has the same reward or
punishment. The reward function is directly related to the
instantaneous sum rate of the users. When the UAV carries
out an action at time instant t, and this action improves the
sum rate, then the UAV receives a reward, and vice versa. The
global reward function is formulated as (17) at the top of next
page.

Remark 7. Altering the value of reward does not change the
final result of the algorithm, but its convergence rate is indeed
influenced. Using a continuous reward function is capable of
faster convergence than a binary reward function [42].

D. Transition of Multi-agent Q-learning Algorithm

In this part, we extend the model from single-agent Q-
learning to multi-agent Q-learning. First, we redefine the Q-
values for the the multi-agent model, and then present the
algorithm conceived for learning the Q-values.

To adapt the single-agent model to the multi-agent context,
the first step is that of recognizing the joint actions, rather than
merely carrying out individual actions. For an N -agent system,
the Q-function for any individual agent is Q(s, a1, · · · aN ),
rather than the single-agent Q-function, Q(s, a). Given the
extended notion of the Q-function, we define the Q-value
as the expected sum of discounted rewards when all agents

3In our future work, we will consider the online design of UAVs’ trajec-
tories, and the mobility of UAVs will be constrained to 360 degree of angles
instead of 7 directions. Given that, the state-action space is huge, a deep
multi-agent Q-network based algorithm will be proposed in our future work.

follow specific strategies from the next period. This definition
differs from the single-agent model, where the future rewards
are simply based on the agent’s own optimal strategy. More
precisely, we refer to Qn

∗ as the Q-function for agent n.

Remark 8. The difference of multi-agent model compared to
the single-agent model is that the reward function of multi-
agent model is dependent on the joint action of all agents −→a .

Sparked by Remark 8, the update rule has to obey

Qn (sn, an)← (1− α)Qn (sn, an)

+ α

(
rn (sn,

−→a ) + βmaxQn (s
′
n, b)

b∈An

)
. (15)

The nth agent shares the row of its Q-table that corresponds
to its current state with all other cooperating agents j, j =
1, · · · , N . Then the nth agent selects its action according to

atn = argmax
a

(∑
1≤j≤N

Qt
j

(
stj , a

))
. (16)

In order to carry out multi-agent training, we train one agent
at a time, and keep the policies of all the other agents fixed
during this period.

The main idea behind this strategy depends on the global
Q-value Q(s, a), which represents the Q-value of the whole
model. This global Q-value can be decomposed into a linear
combination of local agent-dependent Q-values as follows:
Q(s, a) =

∑
1≤j≤N Qj (sj , aj). Thus, if each agent j maxi-

mizes its own Q-value, the global Q-value will be maximized.
The transition from the current state st to the state of the

next time slot st+1 with reward rt when action at is taken
can be characterized by the conditional transition probability
p(st+1, rt|st, at). The goal of learning is that of maximizing
the gain defined as the expected cumulative discounted rewards

Gt = E[
∞∑

n=0

βnrt+n], (17)

where β is the discount factor. The model relies on the learning
rate α, discount factor β and a greedy policy J associated
with the probability ε to increase the exploration actions. The
learning process is divided into episodes, and the UAVs’ state
will be re-initialized at the beginning of each episode. At each
time slot, each UAV needs to figure out the optimal action for
the objective function.

Theorem 1. Multi-agent Q-learning MQk+1 converges to an
optimal state MQ∗ [k + 1], where k is the episode time.

Proof: See Appendix A .

E. Complexity of the Algorithm

The complexity of the algorithm has two main contributors,
namely the complexity of the GAK-means based cluster-
ing algorithm and that of the multi-agent Q-learning based
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(b) Comparison of tracks.

Fig. 6: Comparison of real tracks and predicted tracks for different neuron reservoir size.

trajectory-acquisition as well as power control algorithm. In
terms of the first one, the proposed scheme involves three
steps during each iteration. The first stage calculates the
Euclidean distance between each user and cluster centers. For
Nu users and N clusters, calculating all Euclidean distances
requires on the order of O (6KNu) floating-point operations.
The second stage allocates each user to the specific cluster
having the closest center, which requires O [Nu (N − 1])
comparisons.Furthermore, the complexity of recalculating the
cluster center is O (4NNu). Therefore, the total computational
complexity of GAK-means clustering is on the order of
O [6NNu +Nu (N + 1) + 4NNu] ≈ O (NNu).

In the multi-agent Q-learning model, the learning agent has
to handle N Q-functions, one for each agent in the model.
These Q-functions are handled internally by the learning
agent, assuming that it can observe other agents’ actions and
rewards. The learning agent updates

(
Q1, ..., QN

)
, where each

Qn, n = 1, ..., N , is constructed of Qn
(
s, a1, ..., aN

)
for all

s, a1, ..., aN . Assuming
∣∣A1
∣∣ = · · · = ∣∣AN

∣∣ = |A|, where |S|
is the number of states, and |An| is the size of agent n’s action
space An. Then, the total number of entries in Qn is |S|·|A|n.
Finally, the total storage space requirement is N |S| · |A|N .
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0 500 1000 1500 2000 2500 3000

Times (s)

3.4

3.6

3.8

4

4.2

4.4

4.6

T
h
ro

u
g
h
p
u
t 

(b
it
s
/s

/H
z
)

Movement based on RL (with power control)

Movement based on RL (without power control)

Movement based on GAK-means

Static

Fig. 8: Comparison between movement and static scenario
over throughput.

Therefore the space size of the model is increased linearly
with the number of states, polynomially with the number of
actions, but exponentially with the number of agents.

V. NUMERICAL RESULTS

Our simulation parameters are given in Table II. The initial
locations of the UAVs are randomized. The maximum transmit
power of each UAV is the same, and transmit power is
uniformly allocated to users. On this basis, we analyze the
instantaneous transmit rate of users, position prediction of the
users, the 3D trajectory design and power control of the UAVs.

TABLE II: Simulation parameters

Parameter Description Value
fc Carrier frequency 2GHz
N0 Noise power spectral -170dBm/Hz
Nx Size of neuron reservoir 2000
N Number of UAVs 4
B Bandwidth 1MHz
b1,b2 Environmental parameters 0.36,0.21 [13]
α Path loss exponent 2
µLoS Additional path loss for LoS 3dB [13]
µNLoS Additional path loss for NLoS 23dB [13]
αl Learning rate 0.01
β Discount factor 0.7
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Fig. 9: Positions of the users and the UAVs as well as the trajectory design of UAVs both with and with out power control.

A. Predicted Users’ Positions

Fig. 6 characterizes the prediction accuracy of a user’s
position parameterized by the reservoir size. It can be observed
that increasing the reservoir size of the ESN algorithm leads to
a reduced error between the real tracks and predicated tracks.
Again, the larger the neuron reservoir size, the more precise the
prediction becomes, but the probability of causing overfitting
is also increased. This is due to the fact that the size of the
ESN reservoir directly affects the ESN’s memory requirement
which in turn directly affects the number of user positions that
the ESN algorithm is capable of recording. When the neuron
reservoir size is 1000, a high accuracy is attained.

TABLE III: Performance Comparison Between ESN algorithm
and benchmarks

Metric HA ESN500 ESN1000 LSTM
MSE 41.78 25.17 19.36 24.82
Computing time 116ms 161ms 737ms 2103ms

Table III characterizes the performance of the proposed ESN
model. The so-called historical average (HA) model and the
long short term memory (LSTM) model are also used as our
benchmarks. It can be observed that the ESN having a neuron
reservoir size of 1000 attains a lower MSE than the HA model
and the LSTM model, even though the complexity of the ESN
model is far lower than that of the LSTM model. Overall, the
proposed ESN algorithm outperforms the benchmarks.

B. Trajectory Design and Power Control of UAVs

Fig. 7 characterizes the throughput vs the number of training
episodes. It can be observed that the UAVs are capable of
carrying out their actions in an iterative manner and learn from
their mistakes for improving the throughput. When three UAVs
are employed, convergence is achieved after about 45000
episodes, whilst 30000 more training episodes are required for
convergence when the number of UAV is four. Additionally,
the learning rate of 0.80 used for the multi-agent Q-learning

model outperforms that of 0.60 and 0.70 in terms of the
throughput. Although the model relying on a learning rate of
0.90 converges faster than other models, this model is more
likely to converge to a sub-optimal Q∗ value, which leads to
a lower throughput.

Fig. 8 characterizes the throughput with the movement
derived from multi-agent Q-learning. The throughput in the
scenario that users remain static and the throughput with the
movement derived by the GAK-means are also illustrated as
benchmarks. It can be observed that the instantaneous transmit
rate decreases as time elapses. This is because the users are
roaming during each time slot. At the initial time slot, the
users (namely the people who tweet) are flocking together
around Oxford Street in London, but after a few hundred
seconds, some of the users move away from Oxford Street.
In this case, the density of users is reduced, which affects
the instantaneous sum of the transmit rate. It can also be
observed that re-deploying UAVs based on the movement
of users is an effective method of mitigating the downward
trend compared the static scenario. Fig. 8 also illustrates that
the movement of UAVs relying on power control is more
capable of maintaining a high-quality service than the mobility
scenario operating without power control. Additionally, it also
demonstrates that the proposed multi-agent Q-learning based
trajectory-acquiring and power control algorithm outperforms
GAK-means algorithm also used as a benchmark.

Fig. 9 characterizes the designed 3D trajectory for one of the
UAVs both in the scenario of moving with power control and
in its counterpart operating without power control. Compared
to only consider the trajectory design of UAVs, jointly consider
both the trajectory design and the power control results in
different trajectories for the UAVs. However, the main flying
direction of the UAVs remains the same. This is because the
interference is also considered in our model and power control
of UAVs is capable of striking a tradeoff between increasing
the received signal power and the interference power, which
in turn increases the received SINR.
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Fig. 10: Trajectory design of one of the UAVs on Google Map.

Fig. 10 characterizes the trajectory designed for one of the
UAVs on Google map. The trajectory consists of 16 hevering
points, where each UAV will stop for about 200 seconds.
The number of the hovering points has to be appropriately
chosen based on the specific requirements in the real scenario.
Meanwhile, the trajectory of the UAVs may be designed in
advance on the map with the aid of predicting the users’
movements. In this case, the UAVs are capable of obeying a
beneficial trajectory for maintaining a high quality of service
without extra interaction from the ground control center.

VI. CONCLUSIONS

The trajectory design and power control of multiple UAVs
was jointly designed for maintaining a high quality of service.
Three steps were provided for tackling the formulated prob-
lem. More particularly, firstly, multi-agent Q-learning based
placement algorithm was proposed to deploy the UAVs at
the initial time slot. Secondly, A real dataset was collected
from Twitter for representing the users’ position informa-
tion and an ESN based prediction algorithm was proposed
for predicting the future positions of the users. Thirdly, a
multi-agent Q-learning based trajectory-acquisition and power-
control algorithm was conceived for determining both the
position and transmit power of the UAVs at each time slot.
It was demonstrated that the proposed ESN algorithm was
capable of predicting the movement of the users at a high
accuracy. Additionally, re-deploying (trajectory design) and
power control of the UAVs based on the movement of the
users was an effective method of maintaining a high quality
of downlink service.

APPENDIX A: PROOF OF LEMMA 1

The rate requirement of each user is given by rkn (t) ≥ r0,
then, we have

r0 ≤ Bkn log 2

(
1 +

pkn (t) gkn (t)

Ikn (t) + σ2

)
. (A.1)

Rewrite equation (A.2) as

pkn (t) ≥
(
Ikn (t) + σ2

) (
2r0/Bkn − 1

)
gkn (t)

. (A.2)

Then we have

Pmax ≥ |Kn|K0d
a
kn

(t) (PLoSµLoS + PNLoSµNLoS)

·
(
Ikn (t) + σ2

) (
2|Kn|r0/B − 1

) (A.3)

It can be proved that (PLoSµLoS + PNLoSµNLoS) ≤
µNLoS , and the condition for equality is the probability of
NLoS connection is 1. Following from the condition for
equality, the maximize transmit rate of each UAV has to obey

Pmax ≥ |Kn|µNLoSσ
2K0

(
2|Kn|r0/B − 1

)
·max {h1, h2, · · ·hn}

(A.4)

The proof is completed.

APPENDIX B: PROOF OF THEOREM 1

Two steps are taken for proving the convergence of multi-
agent Q-learning algorithm. Firstly, the convergence of single-
agent model is proved. Secondly, we improve the results from
the single-agent domain to the multi-agent domain.

The update rule of Q-learning algorithm is given by

Qt+1(st, at) = (1− αt)Qt (st, at)

+ αt [rt + βmaxQt (st+1, at)] .
(B.1)

Subtracting the quantity Q∗(st, at) from both side of the
equation, we have

∆t(st, at) = Qt(st, at)−Q∗(st, at)

= (1− αt)∆t(st, at)

+ αt [rt + βmaxQt (st+1, at+1)−Q∗(st, at)]

.

(B.2)
We write Ft(st, at) = rt + βmaxQt (st+1, at+1) −

Q∗(st, at), then we have

E [Ft(st, at) |Ft ] =
∑
st∈S

Pat(st, st+1)

× [rt + βmaxQt (st+1, at+1)−Q∗(st, at)]

= (HQt) (st, at)−Q∗(st, at)

. (B.3)

Using the fact that HQ∗ = Q∗, then, E [Ft(st, at) |Ft ] =
(HQt) (st, at) − (HQ∗) (st, at). It has been proved that
∥HQ1 −HQ2∥∞ ≤ β ∥Q1 −Q2∥ [43]. In this case, we have
∥E [Ft(st, at) |Ft ]∥∞ ≤ β∥Qt −Q∗∥∞ = β∥∆t∥∞. Finally,

VAR [Ft(st, at) |Ft ]

= E
[
(rt + βmaxQt (st+1, at+1)− (HQt) (st, at))

2
]

= VAR [rt + βmaxQt (st+1, at+1) |Ft ]

.

(B.4)
Due to the fact that r is bounded, clearly verifies

VAR [Ft(st, at) |Ft ] ≤ C
(
1 + ∥∆t∥2

)
for some constant C.

Then, as ∆t converges to zero under the assumptions
in [44], the single model converges to the optimal Q-function
as long as 0 ≤ αt ≤ 1,

∑
t
αt =∞ and

∑
t
α2
t <∞ .

Then, we improve the results to multi-agent domain. We
assume that, there is an initial card which contains an initial
value MQn∗ (⟨sn, 0⟩ , an) at the bottom of the multi deck. The
Q value for episode 0 in multi-agent algorithm has the same as
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an initial value, which is expressed as MQn∗ (⟨sn, 0⟩ , an) =
MQn

0 (sn, an).
For episode k, an optimal value is equivalent to the Q value,

MQn∗ (⟨sn, k⟩ , an) = MQn
k (sn, an). Next, we consider

a value function which selects optimal action by using an
equilibrium strategy. At the k level, an optimal value function
is the same as the Q value function.

V n∗ (⟨sn+1, k⟩) = V n
k (sn+1)

= EQn
k

 n∏
j=1

βj ×maxMQn
k (sn+1, an+1)

. (B.5)

One of the agents maintains the previous Q value for
episode k + 1. Then, we have

MQn
k+1 (sn, an) = MQn

k (sn, an) = MQn∗
k (⟨sn, k⟩ , an)

= MQn∗
k (⟨sn, k + 1⟩ , an)

.

(B.6)
Otherwise, the Q value holds the previous multi-agent Q

value with probability of 1 − αn
k+1 and takes two types of

rewards with probability of αn
k+1. Then we have

MQn∗ (⟨sn, k + 1⟩ , an)
= (1− αn

k+1)MQn∗
k (⟨sn, k⟩ , an)

+αn
k+1

rnk+1 + β
∑
sn+1

Pn
sn→sn+1

[an]V
n
k (sn+1)


= (1− αn

k+1)MQn
k (sn, an)

+αn
k+1

rnk+1 + β
∑
sn+1

Pn
sn→sn+1

[an]V
n
k (sn+1)


= MQn

k+1 (sn, an)

. (B.7)

In this case, if MQn
k+1 (sn, an) converge to an optimal

valve MQn∗ (⟨sn, k + 1⟩ , an), then a state equation of multi-
agent Q-learning MQk+1 converges to an optimal state equa-
tion MQ∗ [k + 1].

The proof is completed.
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