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ABSTRACT 

 

We review recent work on the role of natural illumination in human vision.  We discuss research 

showing that visual perception depends on stable statistical properties of natural light in order to 

solve the under-constrained problem of estimating the shape, colour, and material properties of 

surfaces and objects.  We focus on assumptions about the distribution of luminous flux over 3D 

directions and spatial locations.  We also review work showing that implicit assumptions about 

lighting colour may explain the remarkable individual differences in percepts of #thedress.  We 

conclude by discussing the unsolved problem of how the human visual system represents 

lighting, and outlining promising directions for future work that have been made possible by 

recent advances in physically based rendering and light measurement. 

 

 

HIGHLIGHTS 

- Human vision relies on statistical regularities in natural lighting 

- We use assumptions about lighting direction, diffuseness, and more complex properties 

- Individual differences in #thedress reflect assumptions about lighting colour 

- Progress in this area is supported by advances in rendering and light measurement 
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VISUAL PERCEPTION AND NATURAL ILLUMINATION  

 

Introduction 

Illumination in the natural environment has shaped the evolution of the human visual 

system (Cronin, Johnsen, Marshall, & Warrant, 2014), and it plays a key role in circadian 

rhythms (Duffy & Czeisler, 2009), affect and mental health (Magnusson & Boivin, 2003), social 

organization (Brox, 2011), and aesthetics (Cuttle, 2015).  Less obvious but equally important is 

how human vision relies on stable properties of lighting in order to perceive fundamental object 

properties such as shape and colour.  Visual perception is a highly under-constrained problem, 

in that a typical retinal image can be produced by many different combinations of lighting, 

shape, and materials (e.g., Belhumeur, Kriegman, & Yuille, 1999).  As a result, the visual 

system must use statistical knowledge (usually implicit) about typical scene properties to infer 

the external world that a retinal image is most likely to be depicting.  It has long been 

understood that ecological statistics play a central role in human vision (e.g., Brunswik & 

Kamiya, 1953; Gibson, 1979), and recent advances in measuring devices and computational 

modelling have made it possible to investigate this role quantitatively (Geisler, 2008).  

Discovering how vision relies on illumination statistics has been an important part of this story. 

 Here we review recent work on key properties of illumination, mostly focusing on the 

distribution of light over directions and spatial locations, as well as illumination colour.  We 

examine how human vision exploits these regularities to estimate the shape and material 

composition of objects.  We conclude by noting some unsolved problems and outlining 

promising directions for future work. 
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Perceptually important properties of illumination 

Illumination direction 

Objects are illuminated by both primary light sources and light reflected from nearby 

surfaces, so the complete lighting conditions at a point in space are usually complex.  We can 

describe the lighting at a given point with an illumination map, a real-valued function of spherical 

coordinates 𝑓(𝜃, 𝜙) that reports the luminance in each direction (𝜃, 𝜙) at that point (Gershun, 

1939; Debevec, 1998).  Just as a 2D image can represented as a sum of sinusoids via Fourier 

analysis, an illumination map can be represented as a sum of spherical harmonics (Figure 1), 

and this representation is useful for quantifying several basic properties of lighting. 

One of the simplest and most important properties of lighting is its direction, the 3D 

orientation at which a 2D surface patch receives the greatest luminous flux.  This is also the 3D 

orientation of the first-order spherical harmonic representation (Figure 1).  In natural scenes 

there is a strong tendency for light to come from above, and classic ambiguous figures show 

that people tend to see shaded stimuli as if they are illuminated from overhead (Metzger, 

1936/2006; Ramachandran, 1988a; see Figure 2).  In Bayesian terms, people have a “light-

from-above prior” (Adams, Graf, & Ernst, 2004) that modulates the perception of shape, 

reflectance, and visual search for shaded targets (Adams, 2007). 

The light-from-above prior appears to be at least partially learned, with a surprisingly 

long time course.  It emerges by seven months (Granrud, Yonas, & Opland, 1985) and 

continues to develop at least until ten years of age (Thomas, Nardini, & Mareschal, 2010).  Even 

for adults, robust lighting direction cues from shading and shadows can have a stronger 

influence on shape-from-shading judgements than the light-from-above prior, reflecting how 

Bayesian priors are combined with information from sensory cues (Morgenstern, Murray, and 

Harris, 2011; see Figure 2).  Furthermore, the light-from-above prior reflects recent experience 

with the environment:  when an observer is immersed in a visual-haptic environment where the 

illumination direction differs from their prior, they update their prior accordingly (Adams et al., 
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2004).  Such learning may be context-specific, as people can learn at least two distinct lighting 

direction priors for use in different visual environments (Kerrigan & Adams, 2013). 

 

Illumination diffuseness 

Another important property of lighting is diffuseness, the degree to which luminous flux is 

distributed across the full range of 3D directions, e.g., diffuse light on a cloudy day vs. more 

directed light on a sunny day.  In a spherical harmonic expansion (Figure 1), diffuseness is 

shown by the magnitude of the zero-order component -- which is constant in every direction -- 

relative to the higher-order components.  There are several ways of making this definition more 

precise, and measures of diffuseness are a topic of ongoing research (Xia, Pont, & 

Heynderickx, 2017a, 2017b). 

Lighting diffuseness plays a key role in lightness constancy, the ability to perceive 

greyscale surface reflectance correctly under a wide range of lighting conditions.  Diffuseness 

affects the relationship between surface reflectance, surface orientation, and image luminance:  

under directional light, the luminance of a surface depends on its orientation relative to the 

dominant light source, whereas under highly diffuse light, luminance is approximately the same 

at all orientations.  Thus mis-estimating diffuseness should result in errors in perceived 

reflectance.  In fact, human observers do show deviations from lightness constancy that are 

consistent with an overestimation of diffuseness (Boyaci, Maloney, & Hersh, 2003; Bloj et al., 

2004).  Furthermore, illumination in natural environments is typically more diffuse than in the 

experiments where these partial failures of lightness constancy were observed (Morgenstern, 

Geisler, & Murray, 2014).  This suggests that people may learn a prior for high diffuseness in 

natural environments, and that this prior influences lightness judgements in artificial 

environments even when diffuseness cues such as shadow penumbra provide information 

about the atypical lighting conditions. 
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In addition to making the probably implicit judgements of diffuseness that guide lightness 

perception, people can, to some extent, make explicit judgements of diffuseness.  These 

judgements are often inaccurate, but they are monotonically related to the true diffuseness level 

in the scene (Pont & Koenderink, 2007; Xia, Pont, & Heynderickx, 2017c).  People tend to 

overestimate diffuseness, especially in scenes with relatively directional light, which is 

consistent with the evidence cited above that people have a prior for diffuse light (Koenderink et 

al., 2007; Xia et al., 2017c).  People also tend to overestimate diffuseness when light comes 

from the viewer's direction (the "diffuseness-direction ambiguity"; Pont & Koenderink, 2007; Xia 

et al., 2017c) but this bias seems to have a different origin:  in images that are illuminated either 

diffusely or from the direction of the viewer, light is distributed more evenly over a wide range of 

surface orientations, and so these two lighting conditions produce images that are physically 

quite similar, and hence confusable. 

 

Higher order features of illumination 

Natural illumination tends to be complex, but it follows certain regularities. For example, 

in addition to luminance increasing with elevation (i.e., light from above), the luminance 

distribution tends to be highly skewed (with a few very bright small regions) and follows a 1/𝑓2 

power distribution (Dror, Willsky & Adelson, 2004; Adams, Kucukoglu, Landy & Mantiuk, 2018). 

Figure 1 shows matte and glossy objects rendered in an illumination environment that 

has been approximated with various orders of spherical harmonics. High frequency variations in 

illumination (beyond 2nd order) have little effect on the image of a matte, convex object (Basri & 

Jacobs 2001; Ramamoorthi & Hanrahan, 2001). However, cast shadows become sharper when 

high frequencies are included, and thus even in a Lambertian world, higher-order illumination 

structure has implications for image segmentation:  cast shadow boundaries must be 

distinguished from other types of image edges, such as object boundaries (Khan, Bennamoun, 

Sohel & Togneri, 2016; Ehinger, Adams, Graf, & Elder, 2017).  Glossy objects change 



 7 

dramatically in appearance as higher-order components are introduced, which modify the 

pattern of specular highlights.  

The influence of illumination on gloss perception is illustrated by failures of gloss 

constancy when the illumination changes (Olkkonen & Brainard, 2010; Pont & te Pas, 2006; 

Motoyoshi & Matoba, 2012).  To understand which features of illumination are important for 

gloss perception, we can probe the perceptual effects of different illumination manipulations.  

For example, changing the luminance skew, or luminance contrast of the illumination 

environment modulates the apparent gloss of the illuminated object (Adams et al., 2018).  A 

glossy sphere rendered under phase scrambled illumination (or 1/f noise) appears to be a 2D 

matte object, highlighting the importance of illumination structure (Fleming, Dror, & Adelson, 

2003). 

When the illumination is modified, the effects on gloss perception can be understood in 

terms of resultant changes to specular highlights:  perceived gloss increases with the 

brightness, sharpness, and coverage of highlights (Hunter, 1937; Marlow & Anderson, 2013; 

Marlow, Kim, & Anderson, 2012). However, Bayesian theories of perception suggest that 

observers should infer an object’s gloss from its specular highlights (in line with how these are 

generated under natural illumination), but also take account of sensory evidence about the 

current illumination. When provided with contextual information about the illumination 

conditions, observers do not become not fully gloss constant, but their gloss judgements are 

modulated by some statistics of the visible illumination environment (Adams et al., 2018).   

 

Illumination distribution over space 

Mury, Pont, and Koenderink (2007, 2009a, 2009b) measured spatial variations in 

illumination within natural scenes, and found that lower order illumination components (which 

typically encompass more energy) are relatively stable across spatial locations, and reflect 

coarse scene geometry.  Scene geometry causes greater spatial variation in illumination under 
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sunny conditions, via cast shadows and inter-reflections.  Low-order illumination structure can 

change abruptly, however, such as in a forest on a sunny day, when spatially intermittent 

overhead foliage modulates both low and high order components. 

 To probe our ability to estimate spatially varying illumination, observers have been asked 

to directly adjust the illumination of a planar patch or spherical ‘probe’, or to estimate the 

reflectance or shape of objects.  Observers can adjust the intensity, direction and diffuseness of 

illumination on spherical probes at different locations with reasonable accuracy within a simple 

photographed scene (Koenderink et al., 2007) or in real scenes (Xia, Pont, & Heynderickx, 

2014, 2017c).  Light field estimates are somewhat simplified compared to ground truth structure, 

and biased toward diverging light fields (i.e., light radiating from a source; Kartashova, 

Sekulovski, de Ridder, te Pas, & Pont, 2016) but do represent different ‘light zones’ 

(Kartashova, de Ridder, te Pas, & Pont, 2018).  

Gilchrist (1977) demonstrated that observers’ reflectance judgements can change 

dramatically depending on the perceived location, and therefore the perceived local illumination 

of a surface patch.  Although he emphasised discrete zones, or ‘frameworks’ for reflectance 

estimation (Gilchrist et al., 1999), subsequent studies have shown that observers can 

compensate for smooth changes in illumination (e.g., Ikeda et al., 1998; Snyder et al., 2005), 

using cast shadows, shading and specular highlights to infer and interpolate illumination 

conditions (Boyaci, Doerschner, & Maloney, 2006). 

When perceived illumination is inferred from the perceived shape of simple shaded disks 

(similar to Figure 2), a prior for spatially invariant illumination is apparent:  although the 

perceived shape (convex vs. concave) of an array of such disks can be perceptually bistable, all 

are perceived in accordance with the same illumination direction at any one time 

(Ramachandran, 1988b). This prior can be overruled by additional information (e.g., shape 

information from stereopsis or touch; Adams, Kerrigan, & Graf, 2010), or even the presence of 

specular highlights, which promote a convex interpretation (Adams & Elder, 2014).   
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van Doorn and colleagues (van Doorn, Koenderink, & Wagemans, 2011; van Doorn, 

Koenderink, Todd, & Wagemans, 2012) presented annuli of shaded disks, arranged to 

approximate complex light fields, including diverging (from an invisible central illuminant), 

converging (as though objects are surrounded by a ring of illumination) or rotational (simulated 

illumination follows a circular path). Observers’ shape perception did not follow the simulated 

converging or rotational illumination patterns, but the use of simple disks with linear luminance 

gradients (rather than more realistic rendering) may have affected observers’ ability to perceive 

these more unusual illumination configurations. 

Wilder, Adams, and Murray (2019) demonstrated that observers can estimate shape 

from shading for an undulating surface when illumination direction varies rapidly from place to 

place. This work highlights a striking disconnect between implicit and explicit representations of 

illumination:  observers were able to accommodate large changes in illumination when judging 

shape, but they were unable to explicitly detect these changes.  Similarly, Ostrovsky, Cavanagh, 

and Sinha (2005) showed that observers are surprisingly insensitive to large inconsistencies in 

illumination across different objects in a scene.  In addition, observers’ explicit estimates of 

illumination can differ substantially from the implicit illumination estimates that would account for 

their reflectance judgements (Rutherford & Brainard, 2002).  Although accounting for 

illumination is critical for accurate perception of shape and reflectance, we rarely need to 

explicitly estimate or report it. 

 

Illumination colour:  #thedress 

The image known as #thedress gives a striking illustration of the fact that visual 

perception is a subjective inference based on deeply ambiguous stimuli.  People disagree 

strongly about the colour of the depicted dress:  some see a white dress with gold trim, while 

others see a deep blue dress with black trim.  Low-level factors may contribute to these large 

individual differences, including differences in pre-retinal filtering and spectral sensitivities 
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(Brainard & Hurlbert, 2015; Rabin, Houser, Talbert, & Patel, 2016; Vemuri, Srivastava, Agrawal, 

& Anand, 2018), although a twin study indicates individual differences in perceived dress colour 

are mostly due to environmental rather than genetic factors (Mahroo et al., 2017).  The 

explanation supported by most research is that people make different estimates of the lighting 

conditions in this picture, and so when colour constancy mechanisms discount the lighting, very 

different estimates are produced of the material colour of the dress (Brainard & Hurlbert, 2015).  

(We have not reproduced the dress image here due to copyright restrictions, but for the original 

image and the chromatic variants of it discussed below, see Gegenfurtner, Bloj, and Toscani 

(2015).) 

A key property of the dress image seems to be that its chromaticities fall on the same 

axis in colour space as natural daylight (Figure 3).  If the image is rotated in colour space, it is 

much less ambiguous (Gegenfurtner et al., 2015).  Even if inverted in colour space, it is less 

ambiguous:  this transformation preserves chromaticities, but changes the correlation between 

chromaticity and luminance so that it no longer matches that of natural daylight, where deeper 

blues tend to be darker (Gegenfurtner et al., 2015; Winkler, Spillmann, Werner, & Webster, 

2015).  This is intriguing, but a complete understanding of how the daylight axis contributes to 

individual differences in the illusion will require a more thorough computational analysis 

(Brainard & Hurlbert, 2015). 

The most direct evidence that lighting estimates play an important role in the illusion is 

that the dress image is much less ambiguous when shown with strong lighting cues (Lafer-

Sousa, Hermann, & Conway, 2015; Witzel, Racey, & O’Regan, 2017; but see Dixon & Shapiro, 

2017).  Furthermore, people who perceive the dress colour differently also perceive different 

lighting chromaticities in the image (Toscani, Gegenfurtner, & Doerschner, 2017; Uchikawa, 

Morimoto, & Tomohisa, 2017).  Interestingly, after naive observers see the dress image in a 

context that biases them towards one colour interpretation, they mostly retain that interpretation 

when subsequently viewing the original, more ambiguous image, suggesting a role for one-shot 
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learning (Daoudi, Doerig, Parkosadze, Kunchulia, & Herzog, 2017).  However, perceived dress 

colour is not strongly correlated with the location of first fixation (Daoudi et al., 2017) or 

chronotype (Aston & Hurlbert, 2017), so there is still much to learn about the sources of these 

remarkable individual differences. 

 

Future directions 

The work reviewed here shows that human vision relies heavily on priors and cues to 

lighting conditions.  Nevertheless, there is no standard model of how the visual system 

represents lighting, and our understanding of how lighting conditions are estimated and used to 

infer important visual features is tentative and incomplete.  Some current models suggest that 

human vision represents lighting direction and diffuseness (Boyaci et al., 2003; Bloj et al., 

2004), and possibly illuminance as well (Logvinenko & Maloney, 2006), while others claim that 

we do not represent lighting at all for some purposes (Fleming, Holtmann-Rice, & Bülthoff, 2011; 

Gilchrist, 2018).  Thus there is a strong need for more general and robust theories of perceptual 

models of lighting.  In recent years it has become easier to carry out experiments to test such 

theories, as advances in physically based rendering, including models of materials with complex 

reflectance functions and subsurface scattering, have made it possible to create and manipulate 

lighting cues in highly realistic stimuli (e.g., Pharr, Jakob, & Humphreys, 2016).  It has also 

become easier to measure and characterize natural lighting, as devices for measuring 

illumination maps have advanced from custom-built tools (Debevec, 1998; Mury et al., 2009a; 

Morgenstern et al., 2014) to off-the-shelf, high-resolution, high dynamic range omnidirectional 

cameras (e.g., Adams et al., 2016). 

A better understanding of perceptual models of lighting would have many applications.  

Virtual reality (VR) systems are becoming more widely used in many practical settings, but 

perceptual judgements can be quite different in real and virtual environments (e.g., Morgenstern 

et al., 2014; but see Radonjić et al., 2016).  Fully realistic, physically based rendering is too 
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demanding for typical VR systems to perform in real time, so virtual environments must provide 

viewers with an adequate and more easily computable subset of task-relevant information.  

Improved models of how human vision represents and estimates lighting conditions would be 

useful for understanding how computational resources should be allocated to maximize human 

performance in rendered environments. 

A more general theory of perceptual models of lighting would also improve our 

understanding of several related topics, including lightness and colour constancy, shape from 

shading, and material perception, in addition to perception of the light field itself (Schirillo, 2013).  

Lighting perception has received much less attention than other core topics in vision (Gilchrist, 

2006, pp. 213-223), which is surprising as it is intrinsically bound up with many of them.  

Technical developments in experimental methods, new applications, and its central theoretical 

role make this topic a promising area for advancing our understanding of human vision. 
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Figure 1.  (A) Real-valued spherical harmonics up to order 2, shown in Mollweide projection. 

(B) Approximations to an illumination map that include all spherical harmonics up to orders 0, 1, 

and 2, as well as the full illumination map.  (C) A matte object and (D) a glossy object rendered 

with the illumination maps in column (B). 
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Figure 2.   Simple objects rendered under natural illumination. To most observers, objects on 

the left appear convex, and those on the right as concave. However, in the lower row the light-

from-above prior competes with information from cast shadows (caused by illumination from 

below) making perceived shape more ambiguous:  the lower right object might appear convex.  
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Figure 3.  Pixelwise chromaticity of #thedress in DKL colour space.  The red line shows the 

daylight locus.  (From Gegenfurtner et al., 2015) 

 


