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Abstract

Abstract: Statistical matching deals with the problem of how to combine information

collected in different samples taken from the same target population, but on partly

different survey variables. The purpose of this paper is to analyze the statistical

matching problem under informative sampling designs, when applying the sample likelihood

approach. First, a conditional independence assumption is made, which allows to define an

identifiable population model under which the conditions guaranteeing the identifiability and

estimability of the sample likelihood are investigated. Next, the uncertainty in statistical

matching under informative sampling designs is discussed, with particular attention to the

three-variate normal case. A simulation experiment illustrating the theoretical results is

performed.

Key words: conditional independence, informative sampling, matching uncertainty, sample

distribution, sample likelihood.

1. Introduction

The statistical matching problem consists of combining information collected from

different samples drawn from the same population, with only partial overlap between

the two samples. Formally, the problem can be described as follows. Let A and B be

two independent samples of sizes nA and nB respectively, selected from a population of
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independent records {(xi, yi, zi)}, generated from some joint density f(x, y, z; θ), governed

by a vector parameter θ. The problem of statistical matching is that (X, Y, Z) are not

jointly observed in the two samples. Specifically, suppose that only (X, Y ) are observed

for the units in sample A, and only (X,Z) are observed for the units in sample B. See,

e.g., [17] and [6]. We assume that the samples A and B have no units in common,

which will generally be the case if the population is sufficiently large and the selection

probabilities are small.

The goal of statistical matching is to reconstruct a matched (fused) data set in which

each record includes measurements on (X, Y, Z), which users may treat as a “completely”

observed data set from a single source. Due to the absence of joint observations of Z

and Y for given X, the distribution f(x, y, z; θ) is generally not identifiable. In order to

overcome this problem, two approaches have been considered in the literature. The first

approach assumes conditional independence between Y and Z given X (hereafter CIA);

see, e.g., [11]. The CIA has a very important role in statistical matching, the reason being

that under the CIA, the distribution of (X, Y, Z) is identifiable and directly estimable from

the information provided by the two samples. Appropriateness of the CIA is discussed in

several papers. We cite, among others, [22] and [19]. The second approach assumes the

existence of external auxiliary information regarding the statistical relationship between

Y and Z; see, e.g., [23]. However, commonly, neither approach is applicable. The CIA is

rarely met in practice and relevant external auxiliary information is not often available.

The lack of joint observations on the variables of interest implies uncertainty about the

model holding for (X, Y, Z). In other words, the sample information provided by A and

B is not sufficient to enable to distinguish among plausible models for (X, Y, Z), resulting

in identification problems. In a parametric setting, the consequence of the identification

problem is that only ranges of plausible values of the missing records, obtained from

models fitted to the available sample information can be defined. Intervals defined by



these ranges are known in the literature as uncertainty intervals. References tackling the

problem of assessing the statistical matching uncertainty in the context of independent

and identically observations (i.i.d) are [8], [20], [10] and [17]. Uncertainty in statistical

matching in a nonparametric setting under the i.i.d assumption is considered in [1], [2]

and [3].

In practice, the i.i.d assumption is itself questionable, particularly when dealing with

sample survey data. The sample selection in survey sampling involves complex sampling

designs based on different levels of clustering and differential inclusion probabilities,

which could be correlated with the survey variables of interest. This can violate the

independence assumption and result in different distributions of the observed data from

the distribution holding in the population from which the samples are drawn. See Section

3. Statistical matching in complex sample surveys is studied in [20], [18] and [4]. [20]

proposes to compute new sampling weights for all the units in A ∪ B. However, this

approach is seldom applied since it requires to assess the inclusion probabilities of the

units in one sample under the sampling design of the other sample. [18] proposes to

calibrate the sampling weights in A and B such that the new weights, when applied to

the measured x-values in the two samples, reproduce the known (estimated) population

totals of X. Next, the author estimates the joint distribution of categorical variables

Y and Z under the CIA. [4] deals with the statistical matching problem for complex

sample surveys non-parametrically. The authors propose to estimate the distribution

function of variables which are not jointly observed based on an iterative proportional

fitting algorithm, and show how to evaluate its reliability.

The aim of the present paper is to analyze the statistical matching problem for the

case where the sampling processes used to select the samples A and B are informative

for the target variables of interest. As already mentioned, official survey data are usually

collected from samples drawn by probability sampling. When the inclusion probabilities



are related to the value of the target outcome variable even after conditioning on the

model covariates, the observed outcomes are no longer representative of the population

outcomes and the model holding for the sample data is then different from the model

holding in the population. This, quite common phenomenon, is known in the survey

sampling literature as informative sampling. In this case, conventional analysis, which

ignores the informative sampling effects may yield large bias and erroneous inference, as

illustrated, for example, in the book edited by [24]. See [14] for discussion of the notion

of informative sampling and review of methods to deal with this problem. Returning to

statistical matching, knowledge of the sampling designs underlying the selection of the

samples A and B and accounting for them, is crucial for successful matching. This is

true even under the simplified CIA framework.

The paper is organized as follows. In Section 2 we summarize briefly the parametric

solution to the matching problem under the CIA, for the case where the sampling process

is noninformative. Section 3 considers the case of informative sampling under the CIA and

defines the corresponding sample likelihood for the statistical matching problem. The use

of the sample likelihood enables estimating the corresponding population distributions

and to impute the missing values. The conditions under which the sample models

are identifiable and estimable from the information provided by the samples A and B

are investigated in Section 4. Section 5 analyses the case of a three-variate normal

distribution, investigating the effects of different informative sampling designs on the

population model. In Section 6 the CIA assumption is relaxed, and the uncertainty

in statistical matching under informative sampling is restudied, illustrated in Section

7, where we again restrict to the three-variate normal case. Section 8 contains results

of simulation experiments used to illustrate the theoretical results. We conclude with a

brief summary and suggestions for further research in Section 9. All proofs and additional

results are deferred to the Supplementary Material.



2. Statistical matching under CIA and noninformative sampling

Suppose that the population values Dp = {(x1, y1, z1), . . . , (xN , yN , zN)} are

independent realizations from some joint probability density function (pdf ) f(x, y, z; θ),

indexed by a vector parameter θ. When the CIA holds, the population model fp(x, y, z; θ)

can be factorized as

fp(xi, yi, zi; θ) = fp(xi; θX)fp(yi|xi; θY |X)fp(zi|xi; θZ|X), (2.1)

where the (vector) parameters θX , θY |X and θZ|X governing the corresponding three

distributions, are assumed to be distinct. Under noninformative sampling, such that

the population model holds also for the sample data, the model (2.1) is identifiable

and directly estimable from the two distinct samples A and B. Furthermore, when

the distributions in (2.1) are parametric and the parameters θX , θY |X , θZ|X are distinct,

it is possible to resort to maximum likelihood estimation (MLE), the MLE of θ =

(θX , θY |X , θZ|X) can be obtained by considering separately the corresponding three

likelihoods. Once the parametric models have been estimated, a matched data set can be

obtained by imputing the missing values in the combined file A∪B from the distributions

of the corresponding missing target variables, given the observed variables.

3. The sample likelihood under CIA and informative sampling

Let V A
p , V

B
p be sets of population values of design variables used for selecting the

samples A and B, respectively. The design variables often contain strata and cluster

indicators, and/or variables of measures of size, used for probability proportional to size

sampling. The design values V A
p , V

B
p are known to the persons selecting the samples,

but generally not to analysts analysing the data. Some or all of the variables (X, Y, Z)

may be included among the design variables, but at least Y and Z are only known to

the analyst of the sample data. We assume that the population data, Dp and the values

of V A
p , V

B
p are realizations of random processes, implying that the first order sample



inclusion probabilities πAi = Pr(i ∈ A), πBi = Pr(i ∈ B) may be viewed as random

as well. The sample inclusion probabilities contain invaluable information about the

relationship between the distribution of the sample data and the distribution in the

population from which the samples are taken. Denote by wAi = 1/πAi , wBi = 1/πBi

the (basic) sampling weights for the two samples. The sample data may be viewed

therefore as the outcome of two random processes: the first process generates the values

for the N population units, while the second process selects a sample from the finite

population according to the underlying sampling design. As it is often the case in a

secondary analysis, the data available to the analyst consist of only the two samples

A = {(xa, ya, wAa )} and B = {(xb, zb, wBb )} of sizes nA and nB, respectively. Let IAa be

the sample A indicator; IAa = 1 if population unit a ∈ A, IAa = 0 otherwise. If Z was

observed in A, then following [12], the marginal sample pdf of (xa, ya, za) for a ∈ A is

defined as

fA(xa, ya, za) =
P (IAa = 1|xa, ya, za)

P (IAa = 1)
fp(xa, ya, za)

= fA(xa)fA(ya|xa)fA(za|xa, ya), (3.1)

and under independence between observations corresponding to different sampling units,

(see Remark 1 below), the corresponding sample likelihood based on the sample A

(without parameter notation, see below) is,

LA =

nA∏
a=1

fA(xa, ya, za) =

nA∏
a=1

fA(xa, ya)fA(za|xa, ya). (3.2)

However, since the variable Z is not observed in A, the sample likelihood of θ based on

the observed data in A is obtained by integrating the missing data out of the complete



sample likelihood (3.2). The observed sample likelihood of A is thus given by,

LAObs(θX , θY |X , γ
A) =

∫ nA∏
a=1

fA(xa, ya, za)dza =

nA∏
a=1

fA(xa, ya; θX , θY |X , γ
A) (3.3)

where γA represents any additional parameters defining the sample distribution, resulting

from the sample process. See Equations (3.6) and (3.7) below.

Remark 1. [12] establish general conditions under which for independent observations

under the population model, the sample measurements are asymptotically independent

under the sample model, when increasing the population size but holding the sample size

fixed. This permits approximating the sample likelihood by the product of the sample pdfs

over the corresponding sample observations. In Section 4 we discuss the identifiability

and estimability of the sample pdf.

Similarly, the observed sample likelihood of B is,

LBObs(θX , θZ|X , γ
B) =

∫ nB∏
b=1

fB(xb, yb, zb)dyb =

nB∏
b=1

fB(xb, zb; θX , θZ|X , γ
B). (3.4)

Hence, the sample likelihood of the sample A ∪B is,

LA∪BObs (θ, γA, γB) =

nA∏
a=1

fA(xa, ya; θX , θY |X , γ
A)

nB∏
b=1

fB(xb, zb; θX , θZ|X , γ
B)

=

nA∏
a=1

fA(ya|xa; θY |X , γA)

nB∏
b=1

fB(zb|xb; θZ|X , γB)

nA∏
a=1

fA(xa; θX , γ
A)

nB∏
b=1

fB(xb; θX , γ
B), (3.5)

where the parameters θX , θY |X , θZ|X , governing the population pdf s, are orthogonal

because of the conditional independence of Y and Z given X. Notice that (3.5) has

a similar structure to the observed data likelihood under noninformative sampling, as

defined in [17], the big difference being that the population models fp(xa, ya), fp(xb, zb)



are replaced in (3.5) by the sample models fA(xa, ya), fB(xb, zb). The maximum

likelihood estimates are obtained by maximizing separately the corresponding three

sample likelihoods in the right hand side of (3.5), where the estimator of θX is obtained by

maximizing
∏nA

a=1 fA(xa)
∏nB

b=1 fB(xb), thus utilizing the data in both samples. Following

[12] and [13], the sample pdf s featuring in (3.5) can be expressed alternatively as,

fA(xa; θX , γ
A) =

P (IAa = 1|xa; γA)

P (IAa = 1; θX , γA)
fp(xa; θX) =

Ep(π
A
a |xa; γA)

Ep(πAa ; θX , γA)
fp(xa; θX)

=
EA(wAa ; θX , γ

A)

EA(wAa |xa; γA)
fp(xa; θX) (3.6)

where fp(xa; θX) represents the corresponding population pdf. Equation (3.6) uses the

relationship between the population pdf and the sample pdf. Notice that the expectations

in the left- and right hand side of this relationship refer to different distributions. The

relationship Ep(π
A
a |xa; γa) = 1/EA(wAa |xa; γA) has been established in [13], where Ep, EA

denote expectations under the population and sample distributions, respectively. When

P (IAa = 1|xa; γA) = P (IAa = 1; θX , γ
A) for each xa, the population and sample models are

the same and the sampling design may be ignored for inference on the parameters θX .

The conditional marginal sample pdf fA(ya|xa; θY |X , γA) is defined as the conditional pdf

of ya|xa given that unit a is in the sample A. Similarly to (3.6),

fA(ya|xa; θY |X , γA) =
EA(wAa |xa; θY |X , γA)fp(ya|xa; θY |X)

EA(wAa |xa, ya; γA)
. (3.7)

Similar expressions to (3.6) and (3.7) are obtained for the sample pdf s fB(xb)

and fB(zb|xb) operating in the sample B. The sample distributions are functions of

the corresponding population pdf s and the respective conditional expectations of the

sampling weights. The parameters θX , θY |X , θZ|X governing the three population models

can be estimated from the corresponding sample data, by MLE. Furthermore, the

expectations displayed in the sample pdf s can be estimated from the observed data,



using classical model fitting procedures. Fixing the unknown parameters featuring in

these expectations at their estimated values allows to maximize the resulting likelihoods

only with respect to the parameters indexing the population pdf s, thus simplifying and

stabilizing the maximization process. For example, the expectation EA(wAa |xa, ya; γA)

in (3.7) can be estimated by regressing wAa against (xa, ya), using the observations

{(xa, ya, wAa ), a ∈ A}. See, e.g., [14] and [15] for examples of regression models that

can be used for this purpose, depending on the problem at hand. Alternatively, the

expectation EA(wAa |xa, ya; γA) can be estimated non-parametrically, as in [7]. Once

the parameters governing the population model have been estimated, a fused dataset

Df = {(x̃i, ỹi, z̃i), i = 1, . . . , ñ}, where ñ is the desired sample size, (possibly ñ = N ,

the population size), can be constructed, such that each record includes measurements

of (X, Y, Z), which users may treat as a “completely” observed dataset, with a similar

distribution to the population distribution. Formally, one may employ the following

procedure: (i) Generate ñ observations x̃i from fp(xi; θ̂X); (ii) For each i = 1, . . . , ñ draw

at random a value ỹi from fp(yi|xi; θ̂Y |X) (iii) For each i = 1, . . . , ñ draw at random a

value z̃i from fp(zi|xi; θ̂Z|X).

Under general likelihood theory, the population model parameter estimators are

consistent, guaranteeing that for sufficiently large samples A and B, the synthetic dataset

Df defines a genuine sample from the population pdf fp(xi, yi, zi; θ).

Remark 2. Unlike in the case of noninformative sampling, it is generally not correct

to only impute the missing z-values for the sample A, and the missing y-values for the

sample B, and consider the union of the two samples as the final matched data set of

size nA + nB. The reason for this is that the sample A ∪ B is informative and does

not represent the population distribution adequately. Thus, although the z-values can be

generated from the population model fp(zi|xi; θ̂Z|X), the observed x- and y-values may not

represent the corresponding population x- and y-values adequately.



4. Identifiability and estimability of the sample model

As outlined in Section 3, we base the inference on the unknown model parameters

on the sample likelihood, which requires that the corresponding sample pdf s fA(xa, ya)

and fB(xb, zb) are identifiable and estimable from the available sample information. The

sample model fA(xa, ya) is identifiable, if no different pairs [f 1
p (xa, ya), P

1(IAa = 1|xa, ya)],

[f 2
p (xa, ya), P

2(IAa = 1|xa, ya)] exist, which induce the same sample pdf fA(xa, ya). See [16]

and references therein for conditions guaranteeing the identifiability of the sample model.

Similar conditions are required for the identifiability of the sample model fB(xb, zb). By

estimability we mean that the population and sampling parameters appearing in the

sample models can be estimated from the available data when using the sample likelihood

for estimation. As stated in Proposition 1 below, the estimability of the vector parameter

θ = (θX , θY |X , θZ|X) based on the likelihood (3.5) depends on both the fulfillment of the

CIA at the sample level and the properties of the sampling process.

Remark 3. Even if the CIA holds in the population, it does not necessarily hold in the

sample because even conditionally on X, the sampling process could induce dependence

between the not jointly observed variables Y and Z. See Example 3 in Section 5.

Proposition 1. If the CIA holds for the population values and P (IAa = 1|xa, ya, za) =

P (IAa = 1|xa, ya) for all za then,

1. The CIA holds in sample A .

2. The sample model fA(xa, ya) is estimable from the sample information in A.

Proof of Proposition 1 is in the Supplementary Material, Section S1.

Remark 4. Under the conditions of Proposition 1, it is possibile to impute the missing Z

values in sample A and obtain complete observations from the sample model fA(xa, ya, za),

by estimating fp(z|x) from sample B. However, as already noted in Remark 2, the



extended sample may be informative and not represent the population distribution

adequately.

It is not correct to conclude from Proposition 1 that if the sampling process in

A depends on the z-values, the sampling and the population parameters featuring

in fA(xa, ya) can not be estimated. The sampling probabilities πAa may depend on

many unobserved design variables including Z and yet, by definition of the sample pdf

fA(xa, ya), one only needs to model the probability P (IAa = 1|xa, ya). As discussed in

Section 3, the latter probability can be estimated from the sample data by regressing

the sampling weights against (xa, ya). Moreover, the resulting sample model (3.7) can be

tested, as discussed and illustrated in [15] and [7]. A similar proposition to Proposition

1 applies to the sample B.

Remark 5. In the case of noninformative sampling, it is sufficient to assume the CIA for

proper inference on the population parameters. However, under informative sampling, one

needs also to verify that the sample pdfs featuring in the likelihood (3.5) can be estimated

and tested on the basis of the available information for the samples A and B.

5. Informative sampling from a trivariate normal population satisfying the

CIA

In this section we consider the case where the population distribution is trivariate

normal that satisfies the CIA. In particular, we study the effect of alternative informative

sampling designs on the inference process. Suppose that (X, Y, Z) is normal with mean

µ = (µX , µY , µZ) and variance-covariance (V-C) matrix Σ, such that σY Z = σY XσZX/σ
2
X .

Under the CIA, the population distribution can be factorized as in (2.1), where the

marginal distribution of X is N(µX , σ
2
X) and the conditional distribution of Y given

X = x is N(µY |x, σ
2
Y |X), with µY |x = β0 + β1x, β0 = µY − β1µX , β1 = σXY /σ

2
X ,

σ2
Y |X = σ2

Y − β2
1σ

2
X . Similar expressions hold for the conditional distribution of Z given

X = x with parameters (α0, α1, σ
2
Z|X). In Examples 1, 2 and 4 below, (but not in Example



3), the CIA is preserved by the sampling process. Furthermore, the sample model and the

population model are in the same family and only differ in some or all the parameters.

Yet, since the units in A have missing Z values while the units in B have missing Y

values, the reference sample model is the sample pdf f smA∪B(xi, yi, zi),

f smA∪B(xi, yi, zi) = fA∪B(xi)fA(yi|xi)fB(zi|xi). (5.1)

Additionally, in Examples 1, 2 the samples A and B are selected with the same sampling

probabilities. Clearly, in real situations the sampling designs giving rise to the two

samples might be different as considered in Example 4.

Example 1. Following [12], suppose that the sample inclusion probabilities in A and B

have expectations,

Ep(πi|xi, yi, zi) = κ exp{γXxi + γY yi + γZzi}, (5.2)

where κ guarantees that the expectation is less or equal to one. With regard to Equation

(5.2), under probability proportional to size sampling

Ep(πi|xi, yi, zi) = NnA
exp{γXxi + γY yi + γZzi}

N
∑N

j=1 exp{γXxj + γY yj + γZzj}
. (5.3)

For large N (the common case),
∑N

j=1 exp{γXxj + γY yj + γZzj}/N can be considered

as a constant and so is κ, in which case it cancels out in the derivation of the sample

distribution. See [12] and [13] for discussion and many other examples.

Under (5.2), the joint sample pdf can be factorized as,

fS(xi, yi, zi) = fS(xi)fS(yi|xi)fS(zi|xi), (5.4)

where S = A,B denotes the sample and



(a) fS(xi) is N(µX + (γX + β1γY + α1γZ)σ2
X , σ

2
X);

(b) fS(yi|xi) is N(µY |xi + γY σ
2
Y |X , σ

2
Y |X);

(c) fS(zi|xi) is N(µZ|xi + γZσ
2
Z|X , σ

2
Z|X);

(d) the sample pdf f smA∪B(xi, yi, zi) (5.1), is N(µA∪B,ΣA∪B), where the sample V-C

matrix ΣA∪B is the same as for the population distribution, ΣA∪B = Σ,

thus showing that the CIA holds for the sample. See Supplementary Material, Section

S2.

Example 2. Following [12], suppose that the sample inclusion probabilities in A and B

have expectations,

Ep(πi|xi, yi, zi) = κ exp{γXxi + γY yi + γ2Y y
2
i }, (5.5)

with γ2Y < 0. The joint sample pdf can be factorized in this case as in (5.4) where

(a) fS(xi) is N(µX + (γX + β1γY )σ2
X , σ

2
X);

(b) fS(yi|xi) is N

(
µY |xi+γY σ

2
Y |X

1−2γ2Y σ2
Y |X

,
σ2
Y |X

1−2γ2Y σ2
Y |X

)
;

(c) fS(zi|xi) is N(µZ|xi , σ
2
Z|X);

(d) the joint sample pdf f smA∪B(xi, yi, zi) (5.1) is N(µA∪B,ΣA∪B);

(e) for γ2Y < 0, the sample correlation matrix ΦA∪B is positive semidefinite.

thus showing that the CIA holds for the sample. Note that by Proposition 1, fS(zi|xi) =

fp(zi|xi) with S = A,B. See Supplementary Material, Section S3.

Example 3. Suppose that the sample inclusion probabilities in A and B have

expectations,

Ep(πi|xi, yi, zi) = κ exp{γXxi + γY Zyizi}. (5.6)



In this case, the CIA does not hold for the sample, and the sample pdf is no longer

trivariate normal. See Supplementary Material, Section S4.

Example 4. Suppose that the sampling inclusion probabilities in A and B have

expectation given by (5.2) and (5.5), respectively;

Ep(π
A
i |xi, yi, zi) = κA exp{γAXxi + γAY yi + γAZ zi},

Ep(π
B
i |xi, yi, zi) = κB exp{γBXxi + γBY yi + γB2Y y

2
i } (5.7)

(different expectations in the two samples). The joint sample pdf f smA∪B(xi, yi, zi) (5.1) is

N(µA∪B,Σ). See Supplementary Material, Section S5.

6. Uncertainty analysis under informative sampling

So far, we assumed that the joint population distribution satisfies the CIA. However,

the CIA may not hold in practice and the lack of joint measurements on the variables

(X, Y, Z) disallows to distinguish between different plausible distributions that possibly

hold for them. Let Hp be the set of population pdf s fp(x, y, z; θ) having bivariate

marginal pdf s fp(x, y; θXY ) and fp(x, z; θXZ), which we assume to be known except for

their underlying parameters.

Hp[fp(x, y), fp(x, z)] =

{
fp(x, y, z) :

∫
fp(x, y, z)dz = fp(x, y),∫

fp(x, y, z)dy = fp(x, z)

}
. (6.1)

Each distribution in Hp is viewed as a plausible joint distribution of the variables

(X, Y, Z). Following [4], we refer to each such distribution as a matching distribution.

The larger the class Hp, the more uncertain is the model for (X, Y, Z). At the sample

level, the matching distribution should be chosen from the class defined by (6.1), but with

bivariate pdf s estimated on the basis of the sample data. Yet, the parameters θY Z (part



of the vector θ indexing the pdf fp(x, y, z; θ)) cannot be estimated from the samples A

and B, implying that instead of point estimates, one can only construct a set of plausible

values for θY Z , which are consistent with the estimates of θXY and θXZ . Each plausible

estimate of θY Z defines a plausible model in the class Hp. Note, however, that it is not

possible to prioritize one model over another, given the available sample data. As noted

before, we assume that the form of the population distribution fp(x, y, z; θ) is known so

that the uncertainty is with regard to the parameters θY Z . Suppose that a value θ∗Y Z

is chosen from the set of plausible values of θY Z and fp(x, y, z; θ∗Y Z) = f ∗p (x, y, z) ∈ Hp

is chosen as the matching distribution of (X, Y, Z), whereas the true population pdf is

fp(x, y, z) ∈ Hp. The discrepancy between f ∗p (x, y, z) and fp(x, y, z) is the matching error.

The smaller the matching error, the closer is the pdf f ∗p (x, y, z) to the true population pdf

fp(x, y, z). Let f̂ ∗p (x, y, z) be an estimate of f ∗p (x, y, z) for a chosen θ∗Y Z . By [4], setting

t = (x, y, z) and dt = dxdydz, the total estimation error can be decomposed as,

∫
IRk

|f̂ ∗p (t)− fp(t)|dt 6
∫
IRk

|f̂ ∗p (t)− f ∗p (t)|dt

+

∫
IRk

|f ∗p (t)− fp(t)|dt (6.2)

where k = dim(x, y, z). The first term in the right hand side of (6.2) is the sampling error

due to estimation of the other parameters in θ, which can be estimated consistently from

the samples A and B. For given θ∗Y Z , the consistency of f̂ ∗p (x, y, z) guarantees that this

term becomes negligible for large sample sizes nA and nB. The second term represents

the population model uncertainty or identification uncertainty, see in [9]. Obviously, the

most favorable case, which occurs for instance if the CIA holds, is when the class Hp

consists of a single pdf. In this case, the population model for (X, Y, Z) is identifiable

and directly estimable from the available sample information.

Ignoring the informativness of the sampling designs introduces an implicit assumption



that the population model holds for the sample data, in which case the class (6.1)

is defined as the set of plausible distributions for (X, Y, Z) having bivariate marginal

pdf s fA(x, y), fB(x, z), that is, the class Hp[fA(x, y), fB(x, z)]. Let f ∗AB(x, y, z) be the

population pdf chosen from such a class and f̂ ∗AB(x, y, z) be an estimate of f ∗AB(x, y, z).

Similarly to (6.2), the total estimation error can be decomposed now as,

∫
IRk

|f̂ ∗AB(t)− fp(t)|dt 6
∫
IRk

|f̂ ∗AB(t)− f ∗AB(t)|dt+

∫
IRk

|f ∗AB(t)− f ∗p (t)|dt

+

∫
IRk

|f ∗p (t)− fp(t)|dt. (6.3)

Analogously to (6.2), the first term in the right hand side of (6.3) is the sampling error

due to estimation. The second term represents now the matching error due to the

informativness of sampling designs in A and B. The last term is the population model

uncertainty as defined in (6.2).

Remark 6. In [4] the notion of total estimation error is dealt in terms of cumulative

distribution functions. In section 6 the total estimation error is defined in terms of density

functions, so as to be consistent with what is done in previous sections where the effect of

informative sampling on the sample pdf has been evaluated. Clearly, the use of density

functions does not affect the interpretation of the results.

7. Informative sampling from a trivariate normal population not satisfying

the CIA

In this section we analyze the effect of ignoring informative sampling designs for

the case of a trivariate normal population distribution, but without imposing the CIA.

Consider first the case of noninformative sampling. For this case, [8] shows that the only

non-estimable unrestricted parameter is ρY Z|X , the correlation between Y and Z given

X. On the other hand, the unconditional correlation ρY Z is not unrestricted, because

of the presence of the common variable X. Assuming that the V-C matrix Σ is positive



semidefinite, the correlation ρY Z must be in the interval,

[τp, νp] = [ρY XρZX − A(ρY X , ρZX), ρY XρZX + A(ρY X , ρZX)] (7.1)

where A(ρY X , ρZX) =
√

(1− ρ2Y X)(1− ρ2ZX). All the values in the interval (7.1) are

equally plausible for ρY Z . Under the CIA, the parameter ρY Z is located at the midpoint

of the interval (7.1), see [10]. The class Hp of plausible population pdf s for (X, Y, Z)

given by (6.1) is the set of three-variate normal distributions fp(x, y, z), with ρY Z in the

interval (7.1). All the distributions in Hp have the same mean vector µ, and the V-C

matrices only differ in the entry of σY Z (or ρY Z in the correlation matrix). Each value

of ρY Z in the interval (7.1) is associated with one, and only one, plausible population pdf

for (X, Y, Z). Consequently, choosing a distribution from the class Hp as a candidate for

the actual joint pdf, is equivalent to choosing a value for ρY Z in the interval (7.1). The

larger the class Hp, the more uncertain is the model for (X, Y, Z). A simple and natural

measure of the population model uncertainty, under complete marginal knowledge, is

therefore (νp − τp), (Eq. 7.1). The wider the interval, the more uncertain is ρY Z and

hence, the greater is the uncertainty regarding fp(x, y, z). For further details on the

uncertainty measures in parametric settings, see [17] and [6].

Next, consider the case of informative sampling. In this case, a set of maximum

likelihood estimates for ρY Z , (the likelihood ridge, as defined in [6]), can be evaluated.

After computing the ML estimates of ρY X and ρZX as described in Section 3 (ρ̂Y X , ρ̂ZX),

the likelihood ridge for ρY Z in the informative case can be evaluated by substituting

(ρ̂Y X , ρ̂ZX) in the interval (7.1).

Remark 7. When information regarding a statistical model for (Y, Z) or (Y, Z|X) is

available, some models for (X, Y, Z) might be excluded from the class (6.1), and the

statistical model for (X, Y, Z) becomes less uncertain, see [17], [5] and [3]. Under a

parametric setting, such information assumes the form of constraints on the values of



nonestimable parameters. For example, in the normal case, the information may consist

of constraints on the values of the correlation ρY Z or equivalently, ρY Z|X .

In what follows we study the effect of ignoring informative sampling designs on the

class Hp and the uncertainty measure (νp−τp), under the sampling processes of Examples

1, 2 and 4, for the case of the trivariate normal population distribution. When the CIA

does not hold, the reference sample model in the statistical matching context is given by

f smA∪B(xi, yi, zi) = fA∪B(xi)fA(yi|xi)fB(zi|xi, yi). (7.2)

Example 5. Under the expectations (5.2), the joint sample pdf is

fS(xi, yi, zi) = fS(xi)fS(yi|xi)fS(zi|xi, yi) (7.3)

where,

(a) fS(xi) is N(µX + (γX + γZβZX|Y + (γY + βZY |XγZ)β1)σ
2
X , σ

2
X);

(b) fS(yi|xi) is N
(
µY |xi + (γY + γZβZY |X)σ2

Y |X , σ
2
Y |X

)
;

(c) fS(zi|xi, yi) is N(µZ|xiyi + γZσ
2
Z|XY , σ

2
Z|XY );

(d) the joint sample pdf f smA∪B(xi, yi, zi) (7.2) is N(µA∪B,Σ) with µA∪B defined in the

Supplementary Material, Equation (S6.6);

and S = A,B. The coefficient βZX|Y (βZY |X) is the partial regression coefficients of

Z on X given Y (the partial regression coefficients of Z on Y given X), σ2
Z|XY is the

residual variance in the regression of Z on X and Y . When Y and Z are conditionally

independent given X, we are back to the results in Example 1. Ignoring the informative

sampling designs implies in this case the assumption that the sample model coincides

with the population model. Since ΣA∪B = Σ (ΦA∪B = Φ where ΦA∪B and Φ are the



corresponding sample and population correlation matrices), the range of plausible values

for ρY Z, obtained under the added assumption that the sample correlation matrix is

positive semidefinite, remains unchanged. In this case, ignoring the informative sampling

designs affects the composition of the class Hp since the mean vector changes from µ to

µA∪B, but it does not affect the size of the class or the uncertainty measure (νp− τp). See

Supplementary Material, Section S6.

Example 6. Under the expectations (5.5), we obtain that

(a) fS(xi) is N(µX + (γX + γY β1)σ
2
X , σ

2
X);

(b) fS(yi|xi) is N

(
µY |xi+γY σ

2
Y |X

1−2γ2Y σ2
Y |X

,
σ2
Y |X

1−2γ2Y σ2
Y |X

)
;

(c) fS(zi|xi, yi) is N(µZ|xi,yi , σ
2
Z|XY );

(d) the joint sample pdf f smA∪B(xi, yi, zi) (7.2) is N(µA∪B,ΣA∪B), with parameters defined

in the Supplementary Material, Equations (S7.1), (S7.2);

where S = A,B. When Y and Z are conditionally independent given X, we are back to

the results of Example 2. In this case, ignoring the informative sampling design affects

both the class Hp both the uncertainty measure. See Supplementary Material, Section S7.

Example 7. Under the expectations (5.7), the sample pdf f smA∪B(xi, yi, zi) (7.2) is

N(µA∪B,Σ). Ignoring the informative sampling designs affects in this case the

composition of the class Hp, but not the uncertainty measure (νp−τp). See Supplementary

Material, Section S8.

8. Simulation study

In order to illustrate the effects of ignoring the sampling process in statistical matching

and to assess the performance of the imputation method described in Section 3, we

performed a simulation study as described below.

8.1. Simulation set-up



The simulation experiment consists of the following four steps:

Step 1 Generate N = 2000 independent population measurements (xi, yi, zi) from the

following trivariate normal distribution satisfying the CIA:

1.1 xi is normal with parameters θX = (µX , σ
2
X); µX = 5, σ2

X = 1;

1.2 yi|xi is normal with parameters θY |X = (β0 + β1xi;σ
2
Y |X); β0 = 2, β1 = 1,

σ2
Y |X = 2;

1.3 zi|xi is normal with parameters θZ|X = (α0 + α1xi;σ
2
Z|X); α0 = 1, α1 = 0.5,

σ2
Z|X = 2.

Under the CIA, ρY Z = ρY XρZX = 0.19.

Step 2 Draw independently samples A and B of size nA = nB = 400 from the population

generated in Step 1 by Poisson sampling, with selection probabilities

πAi = nA
exp(γAXxi + γAY yi)∑N
i=1 exp(γAXxi + γAY yi)

;

πBi = nB
exp(γBXxi + γBZ zi)∑N
i=1 exp(γBXxi + γBZ zi)

. (8.1)

We use different vectors γA = (γAX , γ
A
Y ) and γB = (γBX , γ

B
Z ), so as to distinguish

between informative and non-informative samples. As shown in Example 1, these

sampling probabilities preserve the CIA at the sample level. Notice that despite

of the relatively large sampling fraction f = (400/2000), for the sampling designs

listed in Table 1 below, the percentage of common units in the samples A and B

varies between 0.72% and 1.2%.

Step 3 Construct a fused data set of size ñ = N = 2000 in which the variables (X, Y, Z)

are jointly observed, as described in Section 3. For this, the population model

parameters θX , θY |X , θZ|X are estimated in three different ways:



3.1 By ignoring the sample selection effects. Denote by f1(xi, yi, zi) the estimated

population distribution obtained in this case.

3.2 By assuming that the sampling probability coefficients γA, γB are known and

maximizing the sample likelihood (3.5) with respect to θX , θY |X , θZ|X . Denote

by f2(xi, yi, zi) the estimated population distribution obtained in this case.

3.3 By maximizing the observed sample likelihood (3.5) with respect

to θX , θY |X , θZ|X , but where the expectations EA(wAa |xa, ya; γA) and

EB(wBb |xb, zb; γB) appearing in the sample pdf s are also estimated. First,

the expectation EA(wAa |xa, ya; γA) is estimated by a linear regression of

wAa on (xa, ya). Second, EA(wAa |xa; γA) is evaluated as the integral of

EA(wAa |xa, ya; γA) with respect to the conditional sample pdf fA(ya|xa), and the

integral is inserted into the likelihood, with the unknown sampling parameters

γA set at their estimated values, so that the likelihood is maximized with

respect to the population parameters θY |X . A similar procedure is applied

for estimating EB(wBb |xb, zb; γB) and θZ|X . Finally, in order to estimate the

parameter θX , the expectations EA(wAa ; γA) and EB(wBb ; γB) are expressed as

the integrals of EA(wAa |xa; γA) and EB(wBb |xb; γB) with respect to the sample

pdf s fA(xa) and fB(xb), with the corresponding sampling parameters set at

their estimated parameters. Notice that by (8.1), the samples A and B are

informative not only with respect to Y and Z, but also with respect to X.

Denote by f3(xi, yi, zi) the estimated population distribution obtained in this

case.

Step 4 Repeat Steps 2 and 3 M = 500 times for each choice of the coefficients γA, γB

defining the sample selection probabilities. We generated the population values only

once (Step 1), so as to assess the design-based properties of the various estimation

procedures.



8.2. Simulation results

We start by studying the effect of ignoring the informative sampling mechanisms

used for drawing the samples A and B, when constructing the fused data set in Step

3. This is done by comparing the estimated population distributions f1(xi, yi, zi) and

f2(xi, yi, zi). The results are shown in Tables 1-2 where the distance between the true

marginal population pdf s, fp(xi), fp(yi), fp(zi) and the corresponding estimated marginal

pdf s fh(xi), fh(yi), fh(zi), for h = 1, 2, are reported. In Table 3, the distance between

the true population pdf, fp(xi, yi, zi), and the estimated pdf s fh(xi, yi, zi), for h = 1, 2, 3

is evaluated. As a measure of distance, we use the symmetric metric,

KLp,h(fp, fh) = 0.5(KLph(fp, fh) +KLhp(fh, fp)) (8.2)

where KLph(fp, fh) is the Kullback-Leibler divergence between the two estimated pdf s fp

and fh. We computed for each of the 500 samples the metric (8.2) and then averaged the

500 values, which is viewed as the global divergence measure. Clearly, the smaller the

average, the closer on average is the estimated population pdf fh to the true population

pdf fp, and the better should be the constructed data set in terms of mirroring the true

data set. In Table 1 we report the KL-divergences (8.2) between the population pdf fp(x)

and the estimated pdf s fh(x), h = 1, 2. The predictive pdf s fh(x) are estimated from

the sample data in A, B and A ∪ B. The corresponding KL-divergences are denoted as

KLX,Ap,h , KLX,Bp,h and KLX,A∪Bp,h . Although in pratice the pdf fh(x) would be estimated

from the sample A∪B, in Table 1 we also report the KL-divergences when the predictive

pdf s fh(x); h = 1, 2 are estimated based only on the data in A or in B. This is done to

illustrate how the informativness of the sampling designs acting in A and B combine in

defining the sample model fA∪B(xi) and consequently, the KL-divergence KLX,A∪Bp,h , for

h = 1, 2.

For γA = (0, 0) KLX,Ap,1 coincides with KLX,Ap,2 since the sampling process acting in A



Table 1: KLX,Ap,h , KLX,Bp,h , KLX,A∪Bp,h , h=1,2, for different γA, γB coefficients.

γA γB KLX,Ap,1 KLX,Ap,2 KLX,Bp,1 KLX,Bp,2 KLX,A∪Bp,1 KLX,A∪Bp,2

(0.5,0) (0,0) 0.125 0.002 0.002 0.002 0.031 0.001
(0, 0) (0.5, 0) 0.002 0.002 0.126 0.002 0.031 0.001
(0, 1) (0, 0) 0.257 0.021 0.002 0.002 0.056 0.003
(0, 0) (0, 1) 0.002 0.002 0.091 0.010 0.020 0.003

(0.5, 1) (0.5, 1) 0.500 0.055 0.288 0.037 0.379 0.043

is not informative. When γA 6= (0, 0), KLX,Ap,1 is always larger than KLX,Ap,2 . The same is

true for KLX,Bp,1 and KLX,Bp,2 when γB 6= (0, 0). Thus, ignoring the sample selection process

affects negatively the quality of the predictions of X. Finally, since the sampling designs

in A and B combine in defining the sample model fA∪B(xi), KL
X,A∪B
p,1 is always between

KLX,Ap,1 and KLX,Bp,1 and KLX,A∪Bp,1 is always larger than KLX,A∪Bp,2 . Furthermore, the larger

the informativness of the sampling processes, the larger is the distance between fp and

fh in Table 1. Clearly, such a distance depends also on the characteristics of population

pdf, that is, on the correlation structure between the variables of interest. For example,

since ρY X = 0.58 > ρZX = 0.33 ignoring the sampling processes with γA = (0, 1) and

γB = (0, 0) yields KLX,A∪Bp,1 = 0.056, which is larger than KLX,A∪Bp,1 = 0.020 obtained

when γA = (0, 0) and γB = (0, 1). In what follows, the predictive pdf s fh(x) are estimated

from the sample A ∪ B. Table 2 shows the KL-divergences, KLYp,h, KL
Z
p,h, between the

marginal population pdf s fp(y), fp(z), and the corresponding estimated sample pdf s,

fh(y), fh(z); h = 1, 2. As in Table 1, KLYp,1 and KLZp,1 are always larger than KLYp,2 and

KLZp,2, respectively. Thus, ignoring the sample selection process affects negatively the

quality of the predictions of Y and Z.

Table 2: KLYp,h, KLZp,h, h=1,2, for different γA, γB coefficients.

γA γB KLYp,1 KLYp,2 KLZp,1 KLZp,2

(0.5,0) (0,0) 0.011 0.002 0.006 0.002
(0, 0) (0.5, 0) 0.012 0.002 0.006 0.002
(0, 1) (0, 0) 0.769 0.089 0.009 0.002
(0, 0) (0, 1) 0.008 0.002 0.740 0.044

(0.5, 1) (0.5, 1) 1.081 0.140 0.915 0.068



In order to evaluate the performance of the imputation procedure proposed in Section

3, we computed the KL-divergence KLXY Zp,h between the true population pdf fp(xi, yi, zi)

and the estimated predictive models fh(xi, yi, zi), for h = 1, 2, 3. The results are presented

in Table 3 for γB = (0, 0) and different γA coefficients. The last column contains the

mean sample size M(nA) over the 500 A samples selected in each case.

Table 3: KLXY Zp,h , h=1,2,3 and mean sample size M(nA) over the 500 samples for different γA

coefficients.

γA KLXY Zp,1 KLXY Zp,2 KLXY Zp,3 M(nA)

(0.5, 0) 0.462 0.417 0.421 365
(0, 1) 1.272 0.509 0.530 379

(0.5,1) 1.389 0.574 0.612 402

As expected, ignoring the sample selection effects results in large KL measures. What

we find encouraging is that the KL measures when estimating all the unknown parameters

are not much larger than the corresponding measures when the sampling parameters are

taken as known.

Tables 4 and 5 show the means and standard deviations (Sd) of the 500 estimates of

the population parameters θY |X = (β0, β1, σ
2
Y |X) under the predictive models fh(xi, yi, zi);

h = 1, 3. The tables help assessing the quality of the potential imputations obtained from

the use of the two distributions. The means are denoted as β̂0,h, β̂1,h, σ̂
2

Y |X,h; h = 1, 3.

Table 4: Means of estimates of (β0, β1, σ
2
Y |X) over the 500 samples with different γA coefficients.

True parameters are β0 = 2, β1 = 1, σ2Y |X = 2.

γA β̂0,1 β̂0,3 β̂1,1 β̂1,3 σ̂
2
Y |X,1 σ̂

2
Y |X,3

(0.5, 0) 1.90 2.05 1.03 0.98 1.95 2.02
(0,1) 5.08 2.10 0.69 0.97 1.29 1.99

(0.5,1) 5.84 2.15 0.55 0.90 1.30 1.95

As in Table 3, predictions based on f1(xi, yi, zi) which ignores the sample selection

effects produce a synthetic data set with distribution which differs from the true

underlying population distribution. Consequently, subsequent inferential procedures



Table 5: Standard deviations of estimates of (β0, β1, σ
2
Y |X) over the 500 samples with different

γA coefficients.

γA sd(β̂0,1) sd(β̂0,3) sd(β̂1,1) sd(β̂1,3) sd(σ̂2Y |X,1) sd(σ̂2Y |X,3)

(0.5,0) 0.32 0.37 0.06 0.06 0.04 0.04
(0, 1) 0.27 0.86 0.04 0.10 0.03 0.24

(0.5, 1) 0.30 1.23 0.05 0.14 0.03 0.36

based on this data set will be subject to bias, even though the estimates obtained

by ignoring the sample selection effects have the smallest variances, a well known

phenomenon from other studies. For one of the 500 imputed data sets with γA = (0.5, 1),

Figure 1 shows the population pdf, the kernel density estimate of the sample pdf, and the

distribution of the imputed Y -values when using the predictive distribution f3(xi, yi, zi).

The bandwidth selection rule is as proposed in [21]. Similar results are obtained when

using the average of the estimated parameters, reported in Table 4. As clearly seen,

the sample pdf is very different from the population pdf due to the use of informative

sampling, but the distribution of the imputed population values is close to the true

population distribution.

Figure 1: Population pdf, Kernel density estimate of the sample pdf when ignoring the sample
selection effects and distribution of the imputed Y -values.

Finally, Table 6 contains results of estimation of the correlation coefficient between Y and



Z for the case where γB = (0, 0) and alternative sets of sampling coefficients γA. In order

to evaluate the robustness of the procedure to deviations from the normality assumptions,

we consider three different scenarios regarding the true population distribution:

Scenario 1 a three-variate normal distribution as in Step 1, with ρ
(1)
Y Z = 0.19;

Scenario 2 xi has a gamma distribution with shape 3 and scale 1; yi|xi and zi|xi are normal

with parameters as in Step 1, with ρ
(2)
Y Z = 0.39;

Scenario 3 xi has a gamma distribution with shape 3 and scale 1; yi|xi is normal as in Step

1; log(zi|xi) is normal with parameters θZ|X = (α0 + α1xi;σ
2
Z|X) with α0 = 0.1,

α1 = 0.4 and σ2
Z|X = 1, with ρ

(3)
Y Z = 0.30.

For each scenario 500 samples have been drawn from the corresponding population

model and then 500 imputed data sets have been generated and used for estimating the

correlation. In Table 6, ρ
(t)
Y Z,1 and ρ

(t)
Y Z,3, t = 1, 2, 3 represent the means of the correlation

estimates from the 500 imputed data sets under the three scenarios, as obtained by

use of the imputed values from the estimated predictive distributions f1(xi, yi, zi) and

f3(xi, yi, zi).

Table 6: Correlation estimates under the three scenarios with different γA coefficients. True

correlations are ρ
(1)
Y Z = 0.19, ρ

(2)
Y Z = 0.39, ρ

(3)
Y Z = 0.30.

γA ρ
(1)
Y Z,1 ρ

(1)
Y Z,3 ρ

(2)
Y Z,1 ρ

(2)
Y Z,3 ρ

(3)
Y Z,1 ρ

(3)
Y Z,3

(0.5, 0) 0.21 0.19 0.48 0.39 0.49 0.36
(0, 1) 0.18 0.19 0.47 0.39 0.50 0.39

(0.5, 1) 0.16 0.18 0.46 0.38 0.46 0.35

Under the first scenario, the means of the estimated correlation coefficients based on

the predictive distributions f1(xi, yi, zi) and f3(xi, yi, zi) are similar with small empirical

bias. However, under the second and third scenarios, the mean estimates when ignoring

the sample selection effects show large empirical bias, where as the estimates obtained

when accounting for the sampling effects reveal only small bias.



9. Summary

In this paper we analyzed the statistical matching problem when the two sampling

processes used to select the samples A and B are informative. The conditions

guaranteeing the identifiability and estimability of the sample likelihood are investigated.

When the CIA does not hold, an uncertainty analysis is carried out, showing how ignoring

the sampling selection can affect the matching error. Furthermore, the effect of alternative

informative sampling designs on the inference process for a trivariate normal population is

studied. Finally, a simulation experiment has been performed showing that the magnitude

of the error will depend on both the informativeness of the sampling processes and the

correlations between the variables of interest. As our paper shows, accounting for the

sampling designs effects improves the quality of the matched data file very significantly.

The proposed procedure based on maximization of the sample likelihood reveals good

performance in terms of the Kullback-Leibler divergence and population parameters

estimation and hence in enabling good estimation of the population distribution and

imputation of missing observations. Clearly, more theoretical and empirical studies with

different population distributions and sampling designs are needed to further ascertain

the results of the present paper.

Supplementary Materials The Supplementary Material contains the proof of

Proposition 1 and of the results in Examples 1-7.
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