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Abstract

Blocking is often used to reduce known variability in designed experiments
by collecting together homogeneous experimental units. A common model-
ing assumption for such experiments is that responses from units within a
block are dependent. Accounting for such dependencies in both the design of
the experiment and the modeling of the resulting data when the response is
not normally distributed can be challenging, particularly in terms of the com-
putation required to find an optimal design. The application of copulas and
marginal modeling provides a computationally efficient approach for estimat-
ing population-average treatment effects. Motivated by an experiment from
materials testing, we develop and demonstrate designs with blocks of size two
using copula models. Such designs are also important in applications rang-
ing from microarray experiments to experiments on human eyes or limbs with
naturally occurring blocks of size two. We present a methodology for design
selection, make comparisons to existing approaches in the literature, and assess
the robustness of the designs to modeling assumptions.
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1 INTRODUCTION AND MOTIVATION

Statistical design of experiments underpins much quantitative work in the biological, physical, and engineering sciences,
providing a principled approach to the efficient allocation of (typically sparse) experimental resources to address the aims
of the study. Often, experiments aim to understand a process by modeling discrete data, for example, arising from the
observation of a binary or count response. For completely randomized experiments, assuming homogeneous experimental
units, a generalized linear model (GLM) may provide an appropriate description, and there has been much research into
the construction of optimal and efficient designs for multifactor GLMs.1-3,4 See the work of Atkinson and Woods5 for a
comprehensive review.

When heterogeneous experimental units can be grouped into more homogeneous groups, or blocks, accounting for this
grouping can improve the precision of inferences made from the experimental data. Methods to find block designs for dis-
crete data have recently been proposed by Woods and vande Ven,6 Niaparast and Schwabe,7 and Waite and Woods,8 among
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others. Two modeling paradigms have been adopted in the design literature: conditional models where the joint distri-
bution of the data is derived by explicitly including block-specific random effects (eg, generalized linear mixed models9)
and marginal models, where the dependence structure of the data is specified separately from the marginal distribution
of each response (eg, with parameters estimated via generalized estimating equations [GEEs]10). For the linear model,
these two modeling approaches coincide. In this paper, we find optimal designs under a marginal modeling approach
when the intrablock dependence structure is defined via a copula. Such models are particularly appropriate when block
effects are not of interest in themselves and the aim of the experiment is to understand the effects of treatment factors
averaged across blocks. Optimal designs for marginal models using alternative definitions of the dependence structure
have been found by other works.11-13 Defining dependence via a copula model has the advantages of providing a flexible
dependence modeling separate to the marginal probability models, and a more interpretable approach to defining the
degree of dependence via commonly used measures; see Section 2 and, in particular, Section 2.3.

Although our methods can be generalized to arbitrary block sizes, we focus on the important special case of experiments
with blocks of size two (see the work of Godolphin14). Such blocks occur routinely in microarray experiments15,16 and in
experiments on people, for example, with eyes or arms as experimental units.17 Practical motivation for our work comes
from a materials science experiment. In Section 3, we find designs appropriate for aerospace materials testing experiments
similar to those performed by our collaborators at the UK Defence Science and Technology Laboratory. The aim of these
experiments is to compare the thermal properties of a set of novel materials against a reference material. In particular, one
aim is to assess the probability of failure due to the exposure to extreme (high) temperatures. The experiment is performed
using an arc jet to heat material samples, which are held in one of six “wedges,” each of which holds a pair of samples
on a strut attached to a circular carousel (see Figure 1). Hence, the experiment can be considered as a block design with
six blocks, each containing two units. In the particular experiment considered here, six materials were tested, a reference
and five novel samples. A variety of measures are made on each tested sample, including a visual inspection of quality to
assess material failure, which leads to a binary (pass/fail) response. It is this response for which we find optimal designs.

In common with most nonlinear models, the performance of a given design for a copula-based GLM model may depend
on the values of the model parameters that define both the marginal model and the dependence structure. If strong prior
information is available, then locally optimal designs can be sought for given values of the model parameters. Otherwise,
Bayesian18 or maximin19 approaches can be adopted. In common with much of the recent literature on designs for GLMs,
we find optimal designs robust to the values of the model parameters via a pseudo-Bayesian approach20(ch. 18) with a
classical quantity for design performance averaged with respect to a prior distribution on the parameters. Here, we adopt
variants of D-optimality for design selection.

The remainder of the paper is organized as follows. In Section 2, we introduce the statistical models we employ, includ-
ing copulas, and develop design methods for blocked experiments. An illustrative comparison is made to previous design
approaches based on GEEs using an example from the work of Woods and vande Ven.6 In Section 3, we demonstrate and

FIGURE 1 Arc jet carousel, struts, and “wedges” (left) and schematic (right). In addition to the six wedges for holding material samples,
the carousel had two further wedges used for temperature measurement [Colour figure can be viewed at wileyonlinelibrary.com]
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assess our methods via application to the materials testing example. In particular, we show how prior information on
the parameters influences the choice of optimal design. We provide a brief discussion and some areas for future work in
Section 4.

2 DESIGNS FOR COPULA-BASED MARGINAL MODELS

Suppose the experiment varies m treatment factors, xT = (x1, … , xm), and the experiment has b blocks of size k;
throughout, our examples will assume k = 2. The jth unit in the ith block receives treatment xT

i𝑗 = (x1i𝑗 , … , xmi𝑗)
(i = 1, … , b; j = 1, … , k) and realizes observation Yi j. The xi j are chosen from a (typically standardized) compact
design space  , which could also be discrete and are not necessarily distinct. Independence of observations Yi𝑗 ,Yi′𝑗′ , for
i, i′ = 1, … , b; j, j′ = 1, … , k, is assumed across blocks (i ≠ i′), but we allow dependence within a block (i = i′), which we
describe via a copula model.

2.1 Statistical modeling via copulas
The problem of specifying a probability model for dependent random variables Yi1, … ,Yjk can be simplified by express-
ing the corresponding k-dimensional joint distribution FYi1,… ,Yik in terms of marginal distributions FYi1 , … ,FYik , and an
associated k-copula (or dependence function) C defined as follows (cf the work of Nelsen21).

Definition 1. A k-copula is a function C ∶ [0, 1]k → [0, 1], k ≥ 2, with the following properties.

1. (Uniform margins) for every u ∈ [0, 1]k, if at least one coordinate of u is 0, then

C(u) = 0,

and if all coordinates of u are 1 except ui, then
C(u) = ui.

2. (k-increasing) for all a, b ∈ [0, 1]k such that a ≤ b,

VC([a,b]) ≥ 0,

where VC is the measure induced by C on [0, 1]k.

The connection between a copula and a joint probability distribution is given by Sklar's theorem,22 which affirms that
for every k-dimensional joint distribution FYi1,… ,Yik with marginal distributions FYi1 , … ,FYik , there exists a k-copula C,
defined as in Definition 1, such that

FYi1,… ,Yik (𝑦1, … , 𝑦k) = C(FYi1 (𝑦1), … ,FYik (𝑦k)), (1)

for all 𝑦1, … , 𝑦k ∈ R. Conversely, if C is a k-copula and FY1 , … ,FYk are distribution functions, then the function FY1,… ,Yk

given by (1) is a joint distribution with marginals FY1 , … ,FYk . The copula C may not be unique for discrete margins;
however, the practical limitations for statistical purposes are little; cf the work of Genest and Nešlehová.23

Owing to Sklar's theorem, parametric families of copulas represent a powerful tool to describe the joint relationship
between dependent random variables. Selecting the appropriate dependence within an assumed parametric copula family
reduces to the selection of copula parameters, which correspond, for example, to a specific measure of association for the
modeled random variables. Assuming Yi1, … ,Yi k are continuous random variables with associated copula C(·; 𝛼), one
measure of association proposed by Joe24 is given by

𝜏k = 1
2k−1 − 1

⎧⎪⎨⎪⎩2k ∫
[0,1]k

C(·; 𝛼)dC(·; 𝛼) − 1
⎫⎪⎬⎪⎭ . (2)

Equation (2) is a generalized version of Kendall's 𝜏 and, hence, establishes a correspondence between a scalar copula
parameter 𝛼 and the degree of dependence. More details and properties of this quantity, and another more traditional
measure of concordance can be found in the work of Genest et al.25
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2.2 Design of experiments for copula models
In common with most work on optimal design of experiments, we base our criterion on the Fisher information matrix
(FIM), the inverse of which provides an asymptotic approximation to the variance-covariance matrix of the maximum
likelihood estimators of the model parameters.

Let 𝜁i = (xi1, … , xik) ∈ k denote the k treatment vectors assigned to the units in block i (i = 1, … , b; j = 1, … , k). We
will work within a class of normalized block designs defined as

𝜉 =
{
𝜁1, … , 𝜁n
w1, … , wn

}
, 0 < wi ≤ 1,

n∑
i=1

wi = 1,

with n ≤ b distinct (support) blocks. As defined, bwi must be an integer and it represents the replication of the ith support
block (i = 1, … ,n). Without loss of generality, we assume the first n blocks in the design corresponding to 𝜁1, … , 𝜁n,
with the remaining b − n blocks being replicates. We relax the assumption that bwi is the integer to find the so-called
approximate or continuous designs; see also the works of Cheng26 and Waite and Woods.8 Let Ξ denote the space of all
possible designs of this form.

Denote the vector of responses from the ith block as

Yi = (Yi1, … ,Yik)T , i = 1, … , b,

with corresponding expectation vector

𝜼i = [𝜂(xi1; 𝜷), … , 𝜂(xik; 𝜷)]T
,

where 𝜂(·; ·) is a known function and𝜷 = (𝛽1, … , 𝛽r)T is a vector of unknown parameters requiring estimation. Denote the
marginal distribution function for the jth entry in the block as FYi𝑗 (𝑦i𝑗 ; xi𝑗 ,𝜷), j = 1, … , k, and denote the joint distribution,
derived via a copula transformation, for the k responses in the ith block as C(FYi1 , … ,FYik ; 𝜶), where 𝜶 = (𝛼1, … , 𝛼l)T are
unknown (copula) parameters.

The FIM M(𝜁 i; 𝜸) for the ith block is an (r + l) × (r + l) matrix with vwth element

M(𝜁i; 𝜸)vw = E
(
− 𝜕2

𝜕𝛾v𝜕𝛾w
log cYi (𝜼i,𝜶)

)
, (3)

where 𝜸 = (𝛾1, … , 𝛾r+l)T = (𝛽1, … , 𝛽r, 𝛼1, , … , 𝛼l)T and

cYi (𝜼i,𝜶) =
𝜕k

𝜕𝑦i1 … 𝜕𝑦ik
C
(

FYi1 , … ,FYik ; 𝜶
)

is the joint density function represented through a copula C in accordance with Equation (1). The FIM for an approximate
block design 𝜉 is then given by

M(𝜉; 𝜸) =
n∑

i=1
wiM(𝜁i; 𝜸).

An optimal design 𝜉⋆ maximizes a scalar function 𝜓{M(𝜉; 𝜸)} of the information matrix. Previous work on optimal
designs for copulas has focused on finding completely randomized locally optimal designs for multivariate responses,
which can be considered as a block design where every unit within a block must receive the same treatment. We generalize
these methods to allow different treatments for each unit within each block. Denman et al27 found D-optimal designs for a
bivariate response (k = 2) that maximized 𝜓D{M(𝜉; 𝜸)} = det M(𝜉; 𝜸), and Perrone and Müller28 developed a correspond-
ing equivalence theorem. These methods were extended to the local DA-criterion and, as a special case, for the Ds-criterion
in the work of Perrone et al.29 Other relevant uses of design of experiments in copula models are those by Deldossi et al30

and Durante and Perrone,31 but until now, all relied on the availability of a single “best guess” vector of parameter values.
It is well recognized that, for many nonlinear models, optimal designs for particular values of the model parameters may
be very inefficient under different values; see the work of Woods et al1 for the case of scalar response GLMs.

To overcome this dependence on assumed parameter values, here we adopt a pseudo-Bayesian approach for construct-
ing block designs. Adopting this approach provides a more robust approach to design than the localized methods provided
by Perrone et al.29 Furthermore, our primary interest is typically in s meaningful linear combination of the parameters.
Such combinations can be defined as elements of the vector AT𝜸, where AT is an s × (r + l) matrix of rank s < (r + l).
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If M(𝜉; 𝜸) is nonsingular, the variance-covariance matrix of the maximum likelihood estimator of AT𝜸 is proportional to
AT{M(𝜉; 𝜸)}−1A. Hence, we define a robust DA-optimal block design 𝜉⋆ as the design that maximizes

ΨD(𝜉; G,A) = ∫Γ
log det [AT{M(𝜉; 𝜸)}−1A]−1 dG(𝜸) , (4)

where G(𝜸) is a proper prior distribution function for 𝜸 and Γ ⊂ Rr+l is the support of G. See also the work of Woods and
vande Ven.6

Most often the main interest is in an s < (r+ l)-dimensional subset of the parameters. In such a case, a robust Ds-optimal
block design can be found by maximizing

ΨD(𝜉; G) = ∫Γ
log det

{
M11 − M12M−1

22 MT
12
}

dG(𝜸) , (5)

following the partition of the information matrix as

M(𝜉; 𝜸) =
(

M11 M12
MT

12 M22

)
.

Here, M11 is the (s × s) partition related to the parameters of interest. This criterion follows as a special case of the
DA-criterion with AT = (Is 0s×(r+l−s)), where Is is the s × s identity matrix and 0s×(r+l−s) is the s × (r + l − s) zero matrix.

We evaluate a design 𝜉 via its Bayesian efficiencies under a given criterion, relative to an appropriate reference design
𝜉∗ (see, for example, the work of Waite32). Under robust Ds-optimality, this efficiency is given by

eff(𝜉, 𝜉∗) =

(
exp ∫ log det

[
M11(𝜉, 𝜸) − M12(𝜉, 𝜸)M−1

22 (𝜉, 𝜸)M
T
12(𝜉, �̃�)

]
dF(𝜸)

exp ∫ log det
[
M11(𝜉∗, 𝜸) − M12(𝜉∗, 𝜸)M−1

22 (𝜉∗, 𝜸)M
T
12(𝜉∗, 𝜸)

]
dF(𝜸)

)1∕s

.

We find designs that maximize (4) and (5) numerically using a version of the Fedorov-Wynn algorithm,33,34 as implemented
in R package docopulae.35

The optimality of a block design 𝜉⋆ under the robust DA-criterion, regardless of how it was found, can be assessed
via application of the following Kiefer-Wolfowitz–type equivalence theorem. The proof is similar to that for completely
randomized experiments with multivariate response; see the work of Perrone et al29 for the locally optimal design case.

Theorem 1. The following properties are equivalent:

1. 𝜉⋆ is DA-optimal;
2. for every 𝜁 ∈ k,

∫
tr [M(𝜉⋆; 𝜸)−1A(ATM(𝜉⋆; 𝜸)−1A)−1ATM(𝜉⋆; 𝜸)−1M(𝜁 ; 𝜸)]dG(𝜸) ≤ s ;

3. over all 𝜉 ∈ Ξ, the design 𝜉⋆ minimizes the function

max
𝜁∈k ∫

tr [M(𝜉⋆, 𝜸)−1A(ATM(𝜉⋆, 𝜸)−1A)−1ATM(𝜉⋆, 𝜸)−1M(𝜁 ; 𝜸)]dG(𝜸),

where Ξ is the set of all possible block designs.

2.3 Comparative example
We demonstrate robust optimal block designs for copula models using a simple example from the work of Woods and
vande Ven,6 which allows comparison to the designs found by those authors for a GEE model. We again stress that the cop-
ula approach allows us to explicitly specify this dependence in terms of interpretable quantities (eg, generalized Kendall's
𝜏), unlike the GEE model under which the dependence is only specified implicitly.

We find robust designs for a single-factor log-linear regression model assuming Poisson marginal distributions and
quadratic linear predictor, implying log{𝜂(x; 𝜷)} = 𝛽0 + 𝛽1x + 𝛽2x2. The prior distribution G is uniform on the parameter
space [−1, 1] × [4, 5] × [0.5, 1.5]. In line with our motivating example, we assume blocks of size k = 2 and intrablock
dependence defined according to one of the following bivariate copula functions.
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1. Product copula, which represents the independence case,

C(u1,u2) = u1u2,

with generalized Kendall's 𝜏 of 𝜏2 = 0.
2. Clayton copula,

C𝛼(u1,u2; 𝛼) =
[
max

(
u−𝛼

1 + u−𝛼
2 −1, 0

)]− 1
𝛼 ,

with 𝛼 ∈ (0,+∞) and generalized 𝜏2 = 𝛼

𝛼+2
.

3. Gumbel copula,
C𝛼(u1,u2; 𝛼) = exp

(
−[(− ln u1)𝛼 + (− ln u2)𝛼]

1
𝛼

)
,

with 𝛼 ∈ [1,+∞) and generalized 𝜏2 = 𝛼−1
𝛼

.

The first copula is chosen for reference purposes; the latter two represent opposing dependencies in the tails (lower-tail
dependence for the Clayton versus upper-tail dependence for the Gumbel). To isolate the effect of the copula structure
from the strength of the dependence, we set 𝛼 for each copula such that the values for Kendall's 𝜏 coincide at three levels
𝜏2 = 𝜖, 1∕10, 1∕3, respectively. Here, 𝜖 = 10−9 > 0 is a small number to approximate the zero case but avoids singularity
issues. Note that, as blocks always consists of pairs of points, here the design space for each block is [−1, 1]2.

To find robust D-optimal designs, objective function (4) was evaluated using quadrature.36 Optimal designs under the
Clayton and Gumbel copulas are shown in Figure 2 and demonstrate that increasing the generalized dependence (ie,
increasing 𝜏2) leads to designs placing more weight on support blocks with points on the edge of the design space. All the
designs display a “mirror-image” structure, with all design points having x > 0. These features are common in designs
for Poisson regression (see the work of Russell et al4). The designs found under the Gumbel copula tend to include more
support blocks, but the pattern in the changes to these blocks as 𝜏2 is increased is similar for both copulas.

FIGURE 2 Optimal designs for the comparative example. (Crosses) design points, circles diameters are proportional to design weight); the
axes correspond to each design point within a block. (Rows) Clayton and Gumbel copula; column levels 𝜏2 = 𝜖, 1∕10, 1∕3 [Colour figure can
be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 1 D-efficiencies under various copula models for design (6), which was found assuming a
generalized estimating equation (GEE) model

Independence Clayton, 𝝉2 = 𝝐 Clayton, 𝝉2 = 1/3 Gumbel, 𝝉2 = 𝝐 > 0 Gumbel, 𝝉2 = 1/3

96.48% 89.85% 84.41% 95.55% 92.96%

For reference purposes, the optimal design using the independence copula, ie, an optimal design assuming no block
effect, was evaluated. It showed little difference to setting the nominal level for 𝜏2 = 0 for a particular copula. In particular,
the D-efficiencies (with respect to the reference design assuming no block effect) for the Clayton and Gumbel model
were 96.3% and 99.7%, respectively. This efficiency expectedly decreases as the association within the block increases, for
𝜏2 = 1∕3; for instance, it is already down to 65.0% and 61.3%, respectively.

In the work of Woods and vande Ven,6 robust D-optimal designs were found under the same Poisson marginal models
and prior distribution but with the dependence described using a GEE approach with an exchangeable correlation matrix
and pairwise working correlation of 0.5. The optimal design found was given by

𝜉⋆ =
{

(.03, 1) (1, .60) (−.40, .78)
.355 .310 .335

}
. (6)

That is, for example, the first support block is 𝜁1 = (0.03, 1). This design is somewhat different in structure to the copula
designs, without the same mirror structure. Quantitatively, the comparison shows the efficiencies under various scenarios
given in Table 1. Surprisingly, the design from the work of Woods and vande Ven6 seems to be most compatible with an
independence assumption.

3 APPLICATION TO THE MATERIALS EXAMPLE

In this section, we return to the materials testing example to find and assess designs for comparing six materials in block
of size two under a variety of modeling assumptions. The measured response is binary, with each material sample either
passing or failing a visual check. We label the five novel materials as “treatments,” with the reference material considered
as a control. Marginally, we assume a logistic regression to model the differences between materials set up as

Yi𝑗 ∼ Bernoulli
{
𝜂(xi𝑗 ; 𝜷)

}
; 𝜂(xi𝑗 ; 𝜷) = expit

(
𝛽0 +

5∑
l=1
𝛽ixi𝑗l

)
,

where expit(u) = 1∕{1 + exp(−u)}, Yi j is the binary response from the ith unit in the jth block (i = 1, 2; j = 1, … , b),
𝜂(xi j; 𝜷) is the associated probability of success, xijl is an indicator variable taking the value 1 if the ith unit in the jth block
was assigned treatment l (l = 1, … , 5) and 0 otherwise, and 𝛽0, … , 𝛽5 are unknown parameters to be estimated. Here, 𝛽0
is the logit for the reference material, with 𝛽 l being the difference in expected response, on the logit scale, between the
reference material and the lth novel material or treatment.

The choice of copula and the strength of intrablock association makes little difference to the design selected. However,
assuming different marginal models and adopting a local or pseudo-Bayesian approach has a strong impact on the designs.
The impact of the marginal model here is not surprising, as the degree of dependence between binary random variables
is also strongly determined by their marginal distributions.37(ch. 7) Example designs for the Gumbel copula are shown in
Figure 3. Note that the numbers 1, … , 6 must be understood as nominal labels.

With a null marginal model, ie, 𝜷T = (0, 0, 0, 0, 0, 0), when the response variance is constant, the locally D-optimal
design contains all material combinations, excluding those blocks containing replicates of a single treatment. This design
would also be optimal under a linear model with constant error variance. For different assumed parameter vectors, for
example 𝜷T = (0,−1, 2,−3, 4,−5), the optimal design contains only a few distinct treatment and treatment control combi-
nations, with differing weights; here, (1,2), (3,4), (4,5), and (5,6) are selected. The (pseudo)-Bayesian approach, assuming a
continuous uniform prior on [−1, 1] for each 𝛽 l (l = 0, … , 5) yields designs with unequal weights spread across all material
combinations. Changing to a continuous uniform prior on the space [−1, 1] × [−2, 0] × [1, 3] × [−4,−2] × [3, 5] × [−6,−4],
so centered on 𝜷T = (0,−1, 2,−3, 4,−5), adjusts the weighting of the support blocks to give more emphasis on compar-
ing treatments 2 and 4 and treatments 3 and 5. These pairs of treatments have coefficients with differences to the control
with the same sign. This last prior distribution is representative of the type of materials study that might be conducted
in practice, with differing prior beliefs about the size and direction of the difference between the expected response from
each treatment and the reference material.



8 RAPPOLD ET AL.

FIGURE 3 Optimal designs for the materials testing example assuming a Gumbel copula with 𝜏2 = 0.33 (circles areas are proportional to
design weight); the axes correspond to the material labels. (Rows) local and pseudo-Bayesian. (Columns) assumed parameters or prior mean
of 𝜷T = (0, 0, 0, 0, 0, 0) and 𝜷T = (0,−1, 2,−3, 4,−5), respectively

4 DISCUSSION

The modeling of block effects by copulas seems to be a natural choice and allows for elegant separation of the block
and the marginal effects. Experimental designs for such models are now readily calculable. The pseudo-Bayesian
DA-optimality criterion was added to theR packagedocopulae version 0.4 (see the work of Rappold35) with the functions
wDsensitivity andwDefficiency, both relying on a prespecified quadrature scheme for evaluation of the integrals.
In this paper, we have concentrated on finding designs to estimate the complete parameter vector but the implementation
provides flexibility for checking for symmetry, model discrimination, etc, as investigated in the work of Perrone et al.29

Our examples are confined to the case k = 2. While there is no theoretical necessity for that, it is difficult to spec-
ify high-dimensional parametric copulas with a sufficient range of dependence, for details, see the excellent survey of
Nikoloulopoulos.38 However, work on this issue would go well beyond the scope of this paper. It might also be interest-
ing to contrast our findings with some known analytic results for blocks of size two as, for example, given in the work of
Cheng,26 where a Gaussian copula is implicitly assumed.
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